

Mastering Joomla! 1.5
Extension and Framework
Development
The Professional's Guide to Programming
Joomla!

James Kennard

 BIRMINGHAM - MUMBAI

Mastering Joomla! 1.5 Extension and Framework
Development
The Professional's Guide to Programming Joomla!

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2007

Production Reference: 1311007

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-84719-282-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

James Kennard

Reviewers

Joseph L. LeBlanc

Riccardo Tacconi

Senior Acquisition Editor

Douglas Paterson

Development Editor

Rashmi Phadnis

Technical Editors

Adil Rizwan Ahmed

Ved Prakash Jha

Editorial Manager

Dipali Chittar

Project Manager

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Chris Smith

Production Coordinator

Manjiri Nadkarni

Cover Designer

Shantanu Zagade

About the Author

James Kennard is a computer programmer with a particular interest in web-based
services. His interests in Joomla! started as a result of an internal assignment at work
when he was tasked with identifying suitable web systems to host a number of
intranet and Internet applications.

James currently maintains one open-source Joomla! component, which has been
translated into over fifteen languages. Examples of his work can be found on his
personal website: www.webamoeba.co.uk.

 About the Reviewers

Joseph L. LeBlanc started with computers at a very young age. His independent
education gave him the flexibility to experiment and learn computer science. Joseph
holds a bachelor's degree in Management Information Systems from the Oral
Roberts University.

Joseph is currently a freelance Joomla! extension developer. He released a popular
component tutorial in May 2004, then later authored the book Learning Joomla! 1.5
Extension Development: Creating Modules, Components, and Plugins with PHP. Work
samples and open-source extensions are available at www.jlleblanc.com. In
addition to freelancing, he is a board member of the DC PHP Conference. He has
also worked as a programmer for a web communications firm in Washington, DC.

Riccardo Tacconi works for an Italian company as a system administrator and
web developer using PHP, MySQL, and Oracle. He is an MCP and studies IT
part-time at the British Open University. His main interests are web development,
Windows and Linux administration, Robotics, and Java software development (JMF,
motion detection, CV, and distributed systems).

He loves Linux and he is a proud member of the local Linux User Group: GROLUG.
He tries to innovate ways to substitute Windows-based technologies with Linux and
open-source alternatives.

Table of Contents
Preface 1
Chapter 1: Introduction to Joomla! 7

Overview 7
History 8
Requirements 9
Extension Types and Their Uses 9

Components 10
Modules 10
Plugins 10
Languages 11
Templates 11
Tools 11

Extension Manager 12
JED and JoomlaCode.org 12
Development Tools 13

J!Code 14
J!Dump 14

Summary 16
Chapter 2: Getting Started 17

The Application and Document 17
Request to Response 18

The Process 18
URI Structure 22
Directory Structure 24
Libraries 26
A Quick Lesson in Classes 27

Inheriting from JObject 28

Table of Contents

[ii]

Working with the Request 29
The Factory 30
The Session 31
Predefined Constants 32
Multilingual Support 34

UTF-8 String Handling 34
Coding Standards 36

phpDocumentor 37
Summary 39

Chapter 3: The Database 41
The Core Database 41
Extending the Database 42

Table Prefix 42
Schema Conventions 42

Common Fields 42
Schema Example 44

Dealing with Multilingual Requirements 45
Querying the Database 46

Writing Queries 46
Getting Results 47

loadResult() : string 48
loadResultArray(numinarray : int=0) : array 48
loadAssoc() : array 48
loadAssocList(key : string='') : array 49
loadObject() : stdClass 49
loadObjectList(key : string='') : array 50
loadRow() : array 50
loadRowList(key : int) : array 51

Using ADOdb 51
JTable 52

CRUD 54
Manipulating Common Fields 58

Publishing 59
Hits 59
Checking Out 59
Ordering 60
Parameter Fields 61
Date Fields 62

Summary 63
Chapter 4: Component Design 65

Setting up a Sandbox 65
The Structure 67

Table of Contents

[iii]

The MVC 68
Building a Model 70
Building a View 75
Building a Controller 78
Building an MVC Component 82

Rendering Other Document Types 87
Feed 87
PDF 90
Raw 91

Dealing with Component Configuration 93
Elements and Parameters 95

Extending JElement 96
Using Custom JElement Classes 98

Help Files 99
Routing 100
Packaging 102

XML Manifest File 103
SQL Install and Uninstall Files and Queries 110
Install and Uninstall Files 111

Summary 113
Chapter 5: Module Design 115

Setting Up a Sandbox 115
First Steps 116

Standalone Modules 117
Modules and Components Working Together 118
Frontend and Backend Module Display Positions 119

Module Settings (Parameters) 120
Helpers 121
Layouts (Templates) 124

Media 126
Translating 126
Packaging 127

XML Manifest File 127
Summary 131

Chapter 6: Plugin Design 133
Setting Up a Sandbox 134
Events 136
Listeners 138

Registering Listeners 138
Handling Events 138

Table of Contents

[iv]

Plugin Groups 141
Authentication 142
Content 144
Editors 146
Editors-xtd 148
Search 151
System 152
User 152
XML-RPC 155

Loading Plugins 155
Using Plugins as Libraries (in Lieu of Library Extensions) 156
Translating Plugins 159
Dealing with Plugin Settings (Parameters) 160
Packaging 161

XML Manifest File 162
File Naming Conflicts 165

Summary 165
Chapter 7: Extension Design 167

Supporting Classes 167
Helpers 168
Using and Building getInstance() Methods 169
Using the Registry 174

Saving and Loading Registry Values 175
The User 177

User Parameters 178
The Session 184
The Browser 185
Assets 189
Summary 190

Chapter 8: Rendering Output 193
The joomla.html Library 193

Behavior 196
Email 200
Grid 200
Image 203
List 204
Menu 208
Select 209

Building Component HTML Layouts (Templates) 212
Iterative Templates 213

Table of Contents

[v]

Component Backend 214
Admin Form 215
Toolbar 216
Sub-Menu 222

Itemized Data 224
Pagination 224
Ordering 228
Filtering and Searching 231

Summary 241
Chapter 9: Customizing the Page 243

Application Message Queue 243
Redirects 245

Component XML Metadata Files and Menu Parameters 248
Using Menu Item Parameters 257
Modifying the Document 258

Page Title 259
Pathway/Breadcrumb 259
JavaScript 261
CSS 262
Metadata 263
Custom Header Tags 263

Translating 264
Translating Text 264
Defining Translations 265
Debugging Translations 267

Using JavaScript Effects 268
JPane 268
Tooltips 269
Fx.Slide 271

Summary 275
Chapter 10: APIs and Web Services 277

XML 277
Parsing 278
Editing 282
Saving 283

AJAX 284
Response 284
Request 286

LDAP 290
Email 294

Table of Contents

[vi]

File Transfer Protocol 297
Web Services 299
Building a Web Service (XML-RPC Plugin) 301
Summary 309

Chapter 11: Error Handling and Security 311
Errors, Warnings, and Notices 312

Return Values 313
Customizing Error Handling 314

Dealing with CGI Request Data 315
Preprocessing CGI Data 315
Escaping and Encoding Data 317

Escaping and Quoting Database Data 318
Encode XHTML Data 319

Regular Expressions 320
Patterns 320
Matching 322
Replacing 323

Access Control 323
Menu Item Access Control 325
Extension Access Control 325

Attacks 327
How to Avoid Common Attacks 328

Using the Session Token 328
Code Injection 329
XSS (Cross Site Scripting) 331
File System Snooping 332

Dealing with Attacks 332
Log Out and Block 333
Attack Logging 335
Notify the Site Administrator 336

Summary 337
Chapter 12: Utilities and Useful Classes 339

Dates 340
File System 345

Paths 345
Folders 347
Files 351
Archives 354

Arrays 355
Trees 359
Log Files 361
Summary 364

Table of Contents

[vii]

Appendix 365
Classes 365

JObject 366
Properties 366
Constructors 366
Methods 367

JUser 368
Properties 368
Constructors 369
Methods 369

JModel 372
Properties 372
Constructors 372
Methods 372

JView 374
Properties 375
Constructors 375
Methods 375

JController 378
Properties 379
Constructors 379
Methods 379

JTable 383
Properties 383
Constructors 383
Methods 384

JError 388
Methods 388

JDocument 393
Properties 393
Constructors 393
Methods 394

JApplication 398
Properties 398
Constructors 399
Methods 399

JURI 407
Properties 407
Constructors 407
Methods 407

JLanguage 411
Properties 411
Constructors 411
Methods 412

JLanguageHelper 416
Methods 416

Table of Contents

[viii]

JText 417
Methods 417

JElement 417
Properties 418
Constructors 418
Methods 418

JParameter 419
Properties 419
Constructors 419
Methods 420

JCache 422
Properties 422
Constructors 423
Methods 423

JMail 424
Constructors 425
Methods 425

JMailHelper 427
Methods 427

JFactory 428
Methods 428

JRegistry 431
Properties 431
Constructors 431
Methods 431

JSession 434
Properties 434
Constructors 434
Methods 435

JRoute 438
Methods 438

JMenu 438
Properties 438
Constructors 439
Methods 439

JPathway 441
Properties 441
Methods 441

JDatabase 442
Properties 442
Constructors 443
Methods 443

Parameters (Core JElements) 452
Configuration 455

Index 459

Preface
This book will guide you through the complexities of implementing components,
modules, and plugins in Joomla! 1.5. It provides useful reference material that
explains many of the advanced design features and classes available in Joomla! 1.5.

Joomla! is one of the world's top open-source content management systems. The
main sources of the PHP MySQL application's success are its comprehensive
extension libraries, which extend Joomla! far beyond content management, and its
very active forums where one can easily tap into the knowledge of other Joomla!
users, administrators, and developers.

The architecture of the latest version of Joomla! differs in many ways from previous
versions. Resultantly backward-compatibility with some extensions has been broken;
the race is on for developers to update their skills in order to rectify the problems
and start building new extensions. Perhaps the most important of the changes is the
reorganization and classification of files and classes. This change encourages but does
not force developers to use the Joomla! libraries consistently between extensions.

What This Book Covers
Chapter 1 deals with the history of Joomla! and gives an overview of the technology
in general.

Chapter 2 covers the process from request to response and also talks about directory
and URI structure along with a brief description of libraries. It also introduces a
number of common classes, variables, and constants that are used frequently when
creating Joomla! extensions.

Chapter 3 deals with the database. It talks about extending the database, conventions
for the database schema, and common fields. Then the focus moves on to storing
data common types of data in standard fields and dealing with multilingual
requirements. We then cover querying the database and getting results.

Preface

[2]

Next, the chapter explores how to manipulate common field types. The chapter
concludes with a brief description of the JTable. The JTable is used to display and
edit regular two-dimensional tables of cells. The JTable has many facilities that make
it possible to customize its rendering and editing but provides defaults for these
features so that simple tables can be set up easily.

Chapter 4 is about designing components. It starts with the structure and a basic
design of a component using the MVC design pattern. Then we learn configuring
the component and its various elements and parameters. The chapter finishes by
discussing component packaging and the various install and uninstall files.

Chapter 5 covers designing modules. It explains standalone modules, module
settings, frontend and backend modules, and modules and components working
together. Then we talk about using templates and packaging the modules.

Chapter 6 deals with designing plugins. It initially deals with listeners/observers
and then the various plugin groups like authentication, content editors, search, and
others. Then comes loading, translating, and using plugins as libraries. Finally it
deals with, plugin settings and how to package plugins.

Chapter 7 is all about designing extensions. Here, we start with helper classes then
cover building and using getInstance() methods. Then we cover the registry along
with saving and loading registry values. Towards the end of the chapter, we explain
the User, Session, Browser and the assets.

Chapter 8 explains ways to render output and how to maintain consistency
throughout. It starts with the joomla.html library and then continues to describe
how to build component HTML layouts. Then it discusses how to output the backend
of a component. The chapter ends with the details of itemized data and pagination.

Chapter 9 deals with customizing the page. We cover things like modifying the
document and translating, along with a brief explanation of using JavaScript effects
from the mootools library, which is included in Joomla!.

Chapter 10 explores some of the Joomla! APIs, specifically in relation to web services.
We also discuss some of the more common web services and take a more in-depth
look at the Yahoo! Search API. The chapter finishes by describing how we can create
our own web services using plugins.

Chapter 11 provides an introduction to handling and throwing errors, warnings, and
notices. Further, it talks about building secure Joomla! extensions. It also describes a
number of common mistakes made when coding with Joomla! and explains how to
avoid them.

Chapter 12 explains various utilities and useful classes like dates, arrays, tree
structures, and others.

Preface

[3]

The Appendix details the more common Joomla! classes. It also provides information
on how to handle the ever-useful JParameter object. The appendix ends with a
description of the Joomla! settings in relation to the registry/config.

What You Need for This Book
To use this book effectively you need access to a Joomla! 1.5 installation. In order
to run Joomla! 1.5 you need the following software: PHP 4.3 or higher (4.4.3 or
greater is recommended), MySQL 3.23 or higher and Apache 1.3 or higher or an
equivalent webserver.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are two styles for code. Code words in text are shown as follows: "When
we populate the $oldValue variable using the getValue() method we supply a
second parameter."

A block of code will be set as follows:

$user =& JFactory::getUser();
if ($user->guest)
{
 // user is a guest (is not logged in)
}

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"In the System tab we must set Debug Language to Yes".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to
use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Joomla!
This book is intended for use as a reference book for existing Joomla! developers.
It focuses on the Joomla! framework and how to utilize it to enhance and
standardize extensions.

Overview
Joomla! is a modular and extensible PHP MySQL CMS (Content Management
System). Joomla! is an open-source project, which is released under version 2 of the
GPL license. Joomla! has fast become one of the most popular open-source CMS, as is
proved by its numerous awards and massive online community.

One of the things that has made Joomla! so popular is the large number of freely and
commercially available extensions, which enable users to do far more than simply
manage content. This list details some common functions that extensions perform:

Banner Ads & Affiliates
Calendars
Communication (Chat Rooms, Forums, Guest Books, Mailing Lists,
Newsletters)
Content & News (Blogs, eCards, News)
Documentation (Downloads, FAQs, Wikis)
eCommerce (Auctions, Shopping Carts)
Forms
Gallery & Multimedia
Intranet & Groupware
Search & Indexing

•

•

•

•

•

•

•

•

•

•

Introduction to Joomla!

[8]

History
Rice Studios, formerly Miro, created a closed-source CMS called 'Mambo' in the
year 2000. One year later, Mambo was re-licensed under two separate licenses,
one of which was open source. The open-source version became known as 'Mambo
Site Server'.

In 2002 Mambo Site Server was re-branded 'Mambo Open Source' (Also referred to
as MamboOS or MOS) in an attempt to differentiate the commercial and open-source
flavors of Mambo. All rights to Mambo Open Source were officially released into the
open-source community in 2003.

Mambo Open Source was extremely successful and won a large number of
prestigious open-source awards.

In 2005 the commercial version of Mambo was re-branded as 'Jango'. Rice Studios,
at that time still Miro, also chose to form the Mambo Foundation, a non-profit
organization. The intention was to create a body that would help protect the
principles of Mambo and provide a more structured working methodology.

The creation of the Mambo Foundation created a rift in the Mambo Open Source
community. The creation of the Mambo Foundation was seen by many as an attempt
by Rice Studios to gain control of the Mambo Open Source project.

Not long after the Mambo Foundation was created, a group, consisting mainly of
the Mambo Open Source core developers, publicly announced that they intended to
abandon Mambo Open Source. The group formed a non-profit organization called
'Open Source Matters'.

Open Source Matters created the Joomla! project, a guaranteed 100% open-source
GPL project. The first release of Joomla! (Joomla! 1.0) was very similar to the then
current release of Mambo, the majority of extensions at the time being compatible
with both.

Restraints within Joomla! 1.0 led to a complete re-think of how Joomla! should be
constructed. After a long development period, and two beta releases, Joomla! 1.5 was
released in mid 2007.

Joomla! 1.5 is extensively different to Joomla! 1.0 and Mambo. Joomla! 1.5 introduces
many new classes and implements a comprehensive framework. These changes have
lead to reduced compatibility between Joomla! and Mambo.

The most notable change, for most third-party extension developers, is the
introduction of the MVC (Model View Controller) design pattern in components.
These changes now mean that all third-party developers tend to develop for Joomla!
or Mambo, but not both.

Chapter 1

[9]

Requirements
To use Joomla! and develop new extensions there are a number of basic
requirements. This list details the minimum requirements:

MySQL 3.23 available at http://www.mysql.com
PHP 4.3 available at http://www.php.net
A web server (if using Apache, minimum version is 1.13.19, which is
available at http://www.apache.org)

Precise version requirements may differ depending upon the exact
version of Joomla! that is being used.

An easy way to quickly obtain and install all of these is to use XAMPP (X, Apache,
MySQL, PHP, and Perl). This project packages all of the necessary pieces of software
required to run Joomla! in one installation package. XAMPP is available for the
Linux, Mac, Solaris, and Windows operating systems. To learn more about XAMPP
please refer to http://www.apachefriends.org/xampp.html.

Another easy way to get started with Joomla! is to use JSAS (Joomla! Stand
Alone Server). JSAS enables us to quickly set up multiple Joomla! installations
on a Windows-based system. To learn more about JSAS please refer to
http://jsas.joomlasolutions.com.

Joomla! itself is relatively easy to set up and, if necessary, an administration
and installation guide can be found on the official Joomla! help site:
http://help.joomla.org.

Whenever we are developing extensions for Joomla! it is always good
practice to test the extensions on multiple systems. Extensions should
preferably be tested on Windows and Linux systems and tested using
PHP 4 and PHP 5.

Extension Types and Their Uses
A Joomla! extension is anything that extends Joomla!'s functionality beyond the core.
There are three main types of extension: components, modules, and plugins.

There are also languages and templates, but these are solely designed to modify
page output, irrespective of the data being displayed. Although we will discuss the
use of translation files and templates, we will not explicitly cover these two extension
types in this book.

•

•

•

Introduction to Joomla!

[10]

Tools, sometimes referred to as extensions, are essentially any type of extension
that does not fall into the extension type categories just described. We will not be
discussing how to create tools in this book.

Extensions are distributed in archive files, which include an XML manifest file that
describes the extension. It is from the manifest file that Joomla! is able to determine
what type the extension is, what it is called, what files are included, and what
installation procedures are required.

Components
Components are undoubtedly the most fundamental Joomla! extensions. Whenever
Joomla! is invoked a component is always called upon. Unlike other extensions,
output created by a component is displayed in the main content area. Since
components are the most fundamental extension, they are also generally the
most complex.

One component of which all Joomla! administrators will be aware, is the content
component. This component is used to display articles, content categories, and
content sections.

In addition to outputting component data as part of an XHTML page, we can output
component data as Feeds, PDF, and RAW documents.

Many components tend to include, and sometimes require, additional extensions
in order for them to behave as expected. When we create our own components
it is generally good practice to add 'hooks' in our code, which will enable other
extensions to easily enhance our component beyond its base functionality.

Modules
Modules are used to display small pieces of content, usually to the left, right, top or
bottom of a rendered page. There are a number of core modules with which we will
be instantly familiar, for example the menu modules.

Plugins
There are various types of plugin, each of which can be used differently; however,
most plugins are event driven. Plugins can attach listener functions and classes to
specific events that Joomla! can throw using the global event dispatcher.

Chapter 1

[11]

This table describes the different core plugin types:

Plugin Type Description
authentication Authenticate users during the login process
content Process content items before they are displayed
editors WYSIWYG editors that can be used to edit content
editors-xtd Editor extensions (normally additional editor buttons)
search Search data when using the search component
system System event listeners
user Process a user when actions are performed
xmlrpc Create XML-RPC responses

In addition to the core plugin types we can define our own types. Many components
use their own plugins for dealing with their own events.

Languages
Joomla! has multilingual support, which enables us to present Joomla! in many
different languages. Language extensions include files that define translated strings
for different parts of Joomla!.

We will discuss how to create language files and how to use translations in Chapter 2
and Chapter 9.

Templates
We use templates to modify the general appearance of Joomla!. There are two types
of template extension: site templates and admin templates.

Most Joomla! sites use bespoke site templates to modify the appearance of the
frontend (what the end-user sees). Admin templates modify the appearance of the
backend (what the administrators see); these templates are less common.

There are many websites that offer free and commercial Joomla! templates, all of
which are easy to locate using a search engine.

Tools
Tools, although referred to as extensions, are very different to components, modules,
and plugins. The term 'tools' is used to describe any other type extension that can be
used in conjunction with Joomla!.

Introduction to Joomla!

[12]

Tools are not installed to Joomla!; they are generally standalone scripts or
applications, which may, or may not, require their own form of installation.

A good example of a Joomla! tool is JSAS (Joomla! Stand Alone Server). JSAS
provides an easy way to set up Joomla! installations on a Windows-based system. To
learn more about JSAS please refer to http://jsas.joomlasolutions.com.

Extension Manager
Joomla! uses the extension manager to manage extensions that are currently installed
and to install new extensions. When we install new extensions we use the same
installation mechanism irrespective of the extension type. Joomla! automatically
identifies the type of extension during the extension installation phase.

JED and JoomlaCode.org
JED (Joomla! Extension Directory) is an official part of Joomla! and is maintained by
the 'Sites and Infrastructure' working group. The directory categorizes details of third-
party Joomla! extensions on which users are allowed to post reviews and ratings.

Details of extensions that are listed in JED are submitted and maintained by the
extension owner or developer. A listed extension can include a category, name,
description, homepage, image, license, version, download link, demonstration link,
developers name, email address, and Joomla! version compatibility information.

Chapter 1

[13]

JED is the normal place where administrators look for extensions for their Joomla!
installation. Before we create new extensions it is good practice to investigate any
similar existing extensions; JED is the perfect place to begin. If we intend to make an
extension publicly available JED is one of the best places to advertise an extension.

Another invaluable resource is the developers' forge: http://www.joomlacode.org.
This official site is used to host open-source Joomla! projects. It provides third-party
open-source Joomla! developers with free access to useful project development tools.
This list details some of the tools with which JoomlaCode.org provides us:

Document Manager
Forums
FRS (File Release System)
Mail Lists
News
SVN (Subversion)
Tasks
Tracker
Wiki

If we intend to create an open-source Joomla! project, it is advisable to consider using
JoomlaCode.org to host the project, even if we do not intend to use all of the features
it provides.

Development Tools
There are numerous development tools available, which we can use to develop
Joomla! extensions. Most of these tools are not specific to Joomla!, but are PHP tools.

When we come to choose an editor for modifying PHP source files, it is important
that we ensure that the editor supports UTF-8 character encoding.

There are two development tools built especially for Joomla!. They are J!Code
and J!Dump.

•

•

•

•

•

•

•

•

•

Introduction to Joomla!

[14]

J!Code
A recent addition to the Joomla! developers toolkit is J!Code. Based on EasyEclipse
and PHPEclipse, J!Code is an IDE (Integrated Development Environment) designed
specifically for developing Joomla! extensions.

J!Code is currently in the early stages of development and has yet to release a stable version.

To get a copy of J!Code refer to
http://joomlacode.org/gf/project/jcode.

J!Dump
J!Dump allows us to output variables during development. The output is displayed
in a configurable pop-up window and describes data types, and object properties
and methods.

J!Dump comes as two separate extensions: a component, which we use to configure comes as two separate extensions: a component, which we use to configure
the functionality of J!Dump, and a system plugin, which defines functions that weJ!Dump, and a system plugin, which defines functions that we, and a system plugin, which defines functions that we
use to 'dump' data to the J!Dump popup. Both extensions are required in order forJ!Dump popup. Both extensions are required in order for popup. Both extensions are required in order for
J!Dump to function correctly. to function correctly.

To use J!Dump the plugin must be published. If it is
not, when we attempt to use the J!Dump functions
we will encounter fatal errors.

The most important function in J!Dump is the dump() function. We can pass
a variable to this function and it will be displayed in the popup. This example
demonstrates how we use the dump() function:

// create example object
$object = new JObject();
$object->set('name', 'example');

// dump object to popup
dump($object, 'Example Object');

Chapter 1

[15]

Using this will create a popup, which looks like this:

Other functions we can use include dumpMessage()(), dumpSysinfo()(),
dumpTemplate()(), and and dumpTrace()().

To get a copy of J!Dump refer to
http://joomlacode.org/gf/project/jdump.

Introduction to Joomla!

[16]

Summary
One of the most pleasurable things about working with Joomla! is the
encouragement of openness and friendliness amongst the members of the Joomla!
community. It is, without a doubt, the community that is driving the Joomla!
project. The name ‘Joomla!’ is derived from the Swahili word ‘Jumla’, meaning ‘all
together’. The Joomla! community lend a true sense of jumla to the project.

In this chapter we have seen that there are essentially six types of extension:
components, modules, plugins, languages, templates, and tools. As we have
seen, each type has a very specific use. We have lightly discussed the way in which
extensions of different types can be dependant upon one another.

Whilst we did not dwell on development tools, we have investigated the two most
prominent tools, J!Code and J!Dump. Even experienced PHP developers should
investigate other/new development tools.

Getting Started
This chapter explains some of the fundamental concepts behind Joomla!. It describes
the process from request to response. We touch lightly on some of the coding aspects
and explain how to use some of the more common Joomla! elements.

The Application and Document
The application is a global object used to process a request. The two application
classes that we are interested in are JSite and JAdministrator. Joomla! uses JSite and
JAdministrator to process frontend and backend requests respectively. Application
classes extend the abstract base class JApplication; much of the functionality of JSite
and JAdministrator is the same.

The document is a global object used to buffer a response. There are a number of
different documents: HTML, PDF, RAW, feed, and error. The HTML document uses
the site templates and renders an XHTML page. The PDF document renders content
in as a PDF file. The RAW document enables components to output RAW data with
no extra formatting. The feed document is used to render news feeds. The error
document renders the error templates.

When we output data in our extensions, it is added to the document. This enables us
to modify the output before sending it; for example, we can add a link to a JavaScript
file in the document header at almost any point during the application lifetime.

Getting Started

[18]

The application object is always stored in the $mainframe variable. The application
object is a global variable, which can be accessed from within functions and methods
by declaring $mainframe global:

/**
 * Pass-through method to check for admin application.
 *
 * @access public
 * @return boolean True if application is JAdministrator
 */
function isAdmin()
{
 global $mainframe;
 return $mainframe->isAdmin();
}

Unlike the application, to access the global document object we use the static
JFactory::getInstance() method:

$document =& JFactory::getDocument();

Note that we use the =& assignment operator to retrieve the document.
This ensures that we get a reference to the global document object and
that we do not create a copy of the object.

Request to Response
Frontend and backend requests are placed with the root index.php and
administrator/index.php entry points respectively. When we create extensions
for Joomla!, we must never create any new entry points. By using the normal entry
points, we are guaranteeing that we are not circumventing any security or other
important procedures.

The Process
To help describe the way in which the frontend entry points process a request, we
use a series of flow charts. The processes involving the backend are very similar.

The first flow chart describes the overall process at a high level in seven generic
steps. The following six flow charts describe the first six of these generic steps in
detail. We do not look at the seventh step in detail because it is relatively simple and
the framework handles it entirely.

Chapter 2

[19]

Receive Frontend Request Load Core Build Application

Overall process as handled
by index.php

Loads required framework and
application class

Builds the application
JSite object

Getting Started

[20]

Initialize Application Route Application
Prepares the application Determines application route

Chapter 2

[21]

Dispatch Application Render Application

Executes the determined route through
a component

Renders the application (exact rendering
process depends on the document type)

Getting Started

[22]

URI Structure
During Joomla! installation, we send URIs (Uniform Resource Indicators) packed full
of useful query data. Before we delve into data and its uses, the following diagram
will describe the different parts of a URI:

The query element is the part of the URI from which we retrieve the data. Query data
is composed of a series of key-value pairs each separated by an ampersand.

The first query value we will look at is option. This value determines the
component being requested. Component names are always prefixed with com_. In
this example, we access the component named example:

http://www.example.org/joomla/index.php?option=com_example

The menus are the primary means by which users navigate the Joomla! interface.
Menus consist of a number of menu items, each of which defines a link to a component
(internal) or a URI (external). We can also modify menu items by changing parameters
specific to the chosen component, and assigning templates to them.

A unique ID identifies every menu item. The ID enables us to invoke a component
without using the query option value. Instead, we can use the Itemid query value.
This value also serves a secondary purpose; when the menu item ID is known, the
menu item can be highlighted and any submenu items are displayed (depending on
the exact setup of the installation). In this example, we invoke menu item 1:

http://www.example.org/joomla/index.php?Itemid=1

Some components can output data in different formats. If we want to output data
in a different format, we can use the query value format. This will only work if
the component we are accessing supports the specified format. In this example, we
invoke component example and request the data in feed format:

http://www.example.org/joomla/index.php?option=com_example&format=feed

Another common query value is task, which is used to determine the task the
component will perform. When we create our own components, it is advantageous to
use them. The reason behind this is that these components are partially implemented
in the framework that we will be using. In this example, we request the component
example and invoke the task view:

http://www.example.org/joomla/index.php?option=com_example&task=view

Chapter 2

[23]

When we build our own URIs, we need to make sure that we do not conflict with
any of the core query values. Doing so could result in unexpected behavior. The
following is a list of some of the main core query values:

format
hidemainmenu (backend only)
Itemid
layout
limit
limitstart
no_html
option
start
task
tmpl
tp
vars
view

When we output URIs, we must use the static JRoute::_() method. Using this
means that we do not have to keep track of the menu item ID. The following example
shows how we use the method:

echo JRoute::_('index.php?option=com_example&task=view');

If we are using this method from within a component and are linking to the current
component, we do not need to specify option. Note that we do not encode the
ampersand, as per the XHTML standard; this is because JRoute will handle this for us.

There is another advantage of using the static JRoute::_() method. Joomla!
supports SEO (Search Engine Optimization). If enabled, the JRoute::_() method
will automatically convert addresses into SEO addresses. For example, the previous
piece of code might produce:

http://example.org/joomla/index.php/component/com_example

Always use the static JRoute::_() method to output URIs.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Getting Started

[24]

Directory Structure
Developing for Joomla! requires an understanding of the overall directory structure.
The following tree diagram describes the different folders and their purposes within
an installation:

Chapter 2

[25]

Getting Started

[26]

Libraries
Joomla! includes a selection of useful libraries, including its own library—joomla.
To import a library we use the jimport() function. In this example we import the
joomla.filesystem.file library, which is specifically for handling files:

jimport('joomla.filesystem.file');

When we import a library, we have the option of importing the entire library or
just a small part of it. The previous example imports the /libraries/joomla/
filesystem/file.php file. If we want, we can import all of the files in the filesystem
directory. To do this we need to use the asterisk wildcard:

jimport('joomla.filesystem.*');

Joomla! does not currently support library extensions. Future
developments might include the ability to upload custom libraries
and to implement dependencies.

The following table details the base libraries that are included in Joomla!:

Library Description License
archive tar file management class (www.phpconcept.net). PHP License 3
bitfolge Feed and vCard utilities (www.bitfolge.de). GNU LGPL

domit

DOM (Document Object Model) XML Parser (www.
phpclasses.org/browse/package/1468.html).

GNU LGPL

geshi Generic Syntax Highlighter (qbnz.com/highlighter). GNU GPL
joomla Core Joomla! library. GNU GPL

openid

Remote login management (www.openidenabled.com).

GNU LGPL

pattemplate Template handling (www.php-tools.net). GNU LGPL
pcl Archive handling (www.phpconcept.net). GNU GPL

pear

PHP Extension and Application Repository
(pear.php.net).

Mixed

phpgacl Generic Access Control (phpgacl.sourceforge.net). GNU LGPL

phpinputfilter

 Filter out unwanted PHP / Javascript / HTML tags (www.
phpclasses.org/browse/package/2189.html).

 GNU GPL

phpmailer

Class for sending email using either sendmail, PHP
mail(), or SMTP (phpmailer.sourceforge.net).

GNU LGPL

phputf8 UTF8 and ASCII tools (phputf8.sourceforge.net). Mixed
phpxmlrpc XML-RPC protocol (phpxmlrpc.sourceforge.net). Special
simplepie RSS and Atom reader (simplepie.org). GNU LGPL

tcpdf

PDF generator that does not require additional libraries.
(tcpdf.sourceforge.net).

 GNU LGPL

Chapter 2

[27]

We import these libraries in the same way as the Joomla! library. This example
demonstrates how we import the GeSHi class from the geshi library:

jimport('geshi.geshi');

A Quick Lesson in Classes
Joomla! is designed to run on both PHP 4 and PHP 5 environments. This has an
impact on how we build classes and use objects in Joomla!, both of which we will
discuss throughout this section. Joomla! has opted to continue using the PHP 4 syntax
for reasons of backward compatibility; many webservers are still using PHP 4. As backward compatibility; many webservers are still using PHP 4. Asbservers are still using PHP 4. As
third-party developers, we should follow suit and always build our extensions to be
PHP 4 and PHP 5 compatible despite the fact that it may restrict some things.

There are some important things that we need to be aware of, before we start
building and using classes. We'll start by looking some naming conventions.

Class names should start with an uppercase letter.
All named elements should use the camelCase standard.
Method names should start with a lowercase letter.
Non-public elements should start with an underscore.

As only PHP 5 and above support access modifiers, we use a special naming
convention to indicate non-public elements. Methods and properties that are
non-public are prefixed with an underscore.

We often pass and return objects and arrays by reference. Doing this means that
multiple variables can 'point' to the same object or array. Note that in PHP 5 objects
are always passed by reference. Methods, functions, and parameters that return and
are passed by reference are prefixed with an ampersand. When we use a method
or function that returns a reference, we must use the &= assignment operator as the
following example demonstrates:

function &go()
{
 $instance = new stdClass();
 return $instance;
}

$reference =& go();

When we pass objects around we must bear in mind that PHP versions 5 and above
handle objects differently. In PHP 5, objects are automatically passed by reference
(although technically not the same as references, the effects are essentially the same).

•

•

•

•

Getting Started

[28]

Inheriting from JObject

In Joomla! we often come across the class JObject. Many of the classes in Joomla!
are subclasses of JObject. This base class provides us with some useful common
methods including standard accessors and modifiers and a common error
handling mechanism.

To encourage PHP 5 methodology, JObject emulates the PHP 5 constructor allowing
us to use the constructor method, __constructor(), in subclasses irrespective of the
version of PHP is being used.

When we use inheritance in our classes we should, as a rule, always call the
constructor of the parent class. This guarantees that any construction work required
by a parent class is executed.

/**
 * Some Class which extends JObject
 */
class SomeClass extends JObject
{
 /**
 * Object name
 * @var string
 */
 var $name;

 /**
 * PHP 5 style Constructor
 *
 * @access protected
 * @param string name

Chapter 2

[29]

 */
 function __construct($name)
 {
 $this->name = $name;
 parent::__construct();
 }
}

Nearly all Joomla! objects and classes derive from the base class JObject.
This class offers several useful methods that all derived classes can use. The
getPublicProperties() method returns an array of public property names from
the object. This is determined at run time and uses the object properties, not the
class properties.

The get() and set() methods are used to get and set properties of the object. If
we use get() with a nonexistent property, the default value will be returned. If we
use set() with a nonexistent property, the property will be created. Both of these
methods can be used with private properties.

We can keep track of errors that occur in an object using the getErrors(),
getError(), and setError() methods. Errors are recorded in the _errors array
property. Errors can be strings or JException or Exception objects. JException objects
are created when we raise errors; this is explained in detail in Chapter 11.

A full description of the JObject class is available in the Appendix.

Working with the Request
Generally when we develop PHP scripts, we work extensively with the request
hashes: $_GET, $_POST, $_FILES, $_COOKIE, and $_REQUEST. In Joomla!, instead of
directly using these, we use the static JRequest class. We use this because it allows
us to process the input at the same time as retrieving it, this decreases the amount of
code required and helps improve security.

The request hashes $_GET, $_POST, $_FILES, $_COOKIE, and $_REQUEST are still
available, and in cases where we are porting existing applications we need not
change the use of these hashes.

The two methods that we use the most are JRequest::setVar() and JRequest::
getVar(). As the names suggest, one accesses request-data and the other sets it. In
this example, we get the value of id; if id is not set, we return a default value, 0 (the
default value is optional).

$id = JRequest::getVar('id', 0);

Getting Started

[30]

The JRequest::setVar() method is used to set values in the request hashes. In
comparison to the JRequest::getVar() method, this method is used relatively
infrequently. It is most commonly used to set default values. For example, we might
want to set the default task in a component if it is not already selected:

JRequest::setVar('task', 'someDefaultTask');

A useful trick to guarantee that a variable is set is to use the two methods in
conjunction. In this example, if name is not set, we set it to the default value
of 'unknown'.

JRequest::setVar('name', JRequest::getVar('name', 'unknown'));

Some other handy methods in JRequest are getInt(), getFloat(), getBool(),
getWord(), getCmd(), and getString(). If we use these methods, we guarantee
that the returned value is of a specific type.

It is important to familiarize yourself with the JRequest methods
described above because they are used extensively in Joomla!. In
addition, we will use them repeatedly in the code examples presented
throughout this book.

There is far more we can achieve using these methods, including preprocessing of
data. A more complete explanation is available in Chapter 11.

The Factory
Before we jump into the Joomla! factory, we need to take a quick moment to
contemplate the patterns that occur in code. Referred to as Design Patterns,
commonly occurring patterns within code have been studied for some time and
much has been learned from them.

One of the most common patterns with which we will be familiar is the iterator
pattern. This pattern describes how we perform one task multiple times using a loop.
Joomla! uses numerous Design Patterns, many of which are far more complex than
the iterator pattern.

For a complete description of Design Patterns, you should consider reading the book
Design Patterns: Elements of Reusable Object-Oriented Software. This book, originally
published in 1994 and written by the Gang of Four, is considered the ultimate guide
and reference to software Design Patterns.

The factory pattern is a creational pattern used to build and return objects. The factory
pattern is used in cases where different classes, usually derived from an abstract
class, are instantiated dependent upon the parameters. Joomla! provides us with the
static class JFactory, which implements the factory pattern. This class is important
because it allows us to easily access and instantiate global objects.

Chapter 2

[31]

This example shows how we can access some of the global objects using JFactory.
$db =& JFactory::getDBO();
$user =& JFactory::getUser();
$document =& JFactory::getDocument();

More information about JFactory can be found in the Appendix.

A singleton pattern is used to allow the creation of only a single object of a specificonly a single object of a specifica single object of a specific
class. This is achieved by making the constructor private or protected and using a
static method to instantiate the class. In versions of PHP prior to version 5, we are
unable to enforce this restriction.

Many of the Joomla! classes use a pseudo-singleton pattern to allow us to instantiate
and access objects. To achieve this, Joomla! often uses a static method called
getInstance(); in some cases JFactory acts as a pass through for this method.
Classes that implement this method are not always intended to be singleton classes.

We can think of them as being a hierarchy in how we instantiate objects. We should
use these methods in order of priority: JFactory method, getInstance() method,
normal constructor (new).

If you're unsure how a specific class implements a getInstance()
method, you should check the official API reference at
http://api.joomla.org. getInstance() and JFactory methods
always return references; always use the =& assignment operator to
prevent copying of objects.

In cases where JFactory and a class both provide a method to return an instance of
the class, you should generally use the JFactory method in preference. If the class
provides a more comprehensive getInstance() method than JFactory, you may
want to use the class method to get an instance tailored specifically for your needs.

The Session
Sessions are used in web applications as a means of providing a temporary storage
facility for the duration of a client's visit. In PHP, we access this data using the global
hash $_SESSION.

Joomla! always provides us with a session, irrespective of whether or not the client
user is logged in. In Joomla! instead of accessing the $_SESSION hash, we use
the global session object to get and set session data. Session data is stored in
namespaces; the default namespace is default. In this example, we retrieve the
value of default.example:

$session =& JFactory::getSession();
$value = $session->get('example');

Getting Started

[32]

If we want to retrieve a value from a namespace other than default, we must also
specify a default value. In this example, we retrieve the value of myextension.
example with a default value of null:

$session =& JFactory::getSession();
$value = $session->get('example', null, 'myextension');

Setting values is very similar to retrieving values. In this example, we set the value of
myextension.example to 1:

$session =& JFactory::getSession();
$session->set('example', 1, 'myextension');

Sessions store relatively flat data structures; because of this there is a JRegistry object
within the session,. The JRegistry class uses a far more sophisticated way of storing
data in namespaces. To use this area of the session we use the application method
getUserState(). A more complete explanation of sessions is available in Chapter 7.

Predefined Constants
There are over 400 constants, many of which are part of the third-party libraries,
though we don't need to know them all. One constant with which we will quickly
become familiar is _JEXEC; this constant is used to ensure that when files are
included, they are being included from a valid entry point. You should include the
following code, or similar, at the top of your PHP files:

defined('_JEXEC') or die('Restricted access');

The constants that you will probably use the most relate to paths. The DS constant is
the character used by the operating system to separate directories; this is normally a
backslash (\) or a forward slash (/). This table describes the different path constants;
the examples, described within the parentheses, assume that the installation is
located in /joomla and that we are accessing the installation from the frontend; the
actual paths will differ depending on the Joomla! installation:

Name Description
DS Directory Separator (/)
JPATH_ADMINISTRATOR Administrator path (/joomla/administrator)
JPATH_BASE Path to the entry directory (/joomla)
JPATH_CACHE Cache path (/joomla/cache)

JPATH_COMPONENT Component path (/joomla/components/
com_example)

JPATH_COMPONENT_
ADMINISTRATOR

Component backend path (/joomla/administrator/
components/com_example)

Chapter 2

[33]

Name Description

JPATH_COMPONENT_SITE Component frontend path (/joomla/components/
com_example)

JPATH_CONFIGURATION Configuration path (/joomla)
JPATH_INSTALLATION Installation path (/joomla/installation)
JPATH_LIBRARIES Libraries path (/joomla/libraries)
JPATH_PLUGINS Plugins path (/joomla/plugins)
JPATH_ROOT Path to the frontend entry directory (/joomla)
JPATH_SITE Path to the public directory (/joomla)
JPATH_THEMES Templates path (/joomla/templates)

Four date constants define different date-formats. These formats are designed to be
used when displaying dates using the JDate class; a full description of the JDate class
is available in Chapter 12. The format values vary depending on the language locale,
the default formats are used if they are not defined in the corresponding locale
language file (we will discuss multilingual support shortly).

Name Default Format Example
DATE_FORMAT_LC %A, %d %B %Y Sunday, 23 June 1912
DATE_FORMAT_LC2 %A, %d %B %Y %H:%M Sunday, 23 June 1912 00:00
DATE_FORMAT_LC3 %d %B %Y 23 June 1912
DATE_FORMAT_LC4 %d.%m.%y 23.06.12

A number of constants in Joomla! 1.5 have been deprecated. The following constants
are included for legacy compatibility. You should not use these in new extensions.
These constants are only available if the legacy system module is published.

Deprecated Constant Description
_ISO Character set
_VALID_MOS Use _JEXEC instead
_MOS_MAMBO_INCLUDED Use _JEXEC instead
_DATE_FORMAT_LC Use DATE_FORMAT_LC instead
_DATE_FORMAT_LC2 Use DATE_FORMAT_LC2 instead

Getting Started

[34]

Multilingual Support
A major strength of Joomla! is its built-in multilingual support. The default
language is configured in the Language Manager and can be overridden by a logged
in user's preferences.

The static JText class is the standard mechanism used to translate strings. JText has
three methods for translating strings, _(), sprintf(), and printf(). The method
that you will probably use most is _(). This method is the most basic; it translates
a string.

In this example, we echo the translation of Monday (if a translation cannot be found
for the string, the original string is returned):

echo JText::_('Monday');

The JText::sprintf() method is comparable to the PHP sprintf() function. We
pass one string to translate and any number of extra parameters to insert into the
translated string. The extra parameters will not be translated.

In this example, if the translation for SAVED_ITEMS is Saved %d items, the returned
value will be Saved 3 items.

$value = JText::sprintf('SAVED_ITEMS', 3);

Alternatively we can use the JText::printf() method. This method is comparable
to the PHP function printf(). This method returns the length of the resultant string
and outputs the translation.

$length = JText::printf('SAVED_ITEMS', 3);

If we want to create any new translations for our extensions, we can create special
INI translation files. A more complete explanation of how to build a translation file is
available in Chapter 7.

UTF-8 String Handling
In order for Joomla! to fully support multilingual requirements, Joomla! uses
the Unicode character set and UTF-8 (Unicode Transformation Format-8)
encoding. Unicode is a character set that attempts to include all characters for
every common language.

UTF-8 is a lossless encoding of Unicode, which employs a variable character
length. This makes it ideal for internet usage because it uses a minimal amount of
bandwidth but represents the entire Unicode character set.

Chapter 2

[35]

When dealing with English characters, UTF-8 uses the same encodings as ASCII and
ANSII. This has a purposeful consequence; UTF-8 encoded strings that use these
characters appear identical to their ASCII and ANSII alternatives. Applications that
are Unicode unaware are therefore able to handle many UTF-8 strings.

One such application that is not Unicode aware is PHP. We therefore have to be
careful when manipulating strings. PHP assumes all characters are eight bits (one
byte), but because UTF-8 encoded characters can be longer, this can cause corruption
of Unicode data.

There is a PHP module, mbstring, which adds support for multi-byte character
encodings; unfortunately, not all PHP systems have the mbstring module. In
Joomla! we are provided with the static JString class; this class allows us to perform
many of the normal string manipulation functions with UTF-8 characters.

This example demonstrates how we can use JString to convert a string to upper case.
Note that the method name is identical to the PHP function we would normally use:

$string = JString::strtoupper($string);

The following table describes the PHP string functions and the corresponding
JString methods:

PHP Function JString method Description
strpos strpos Finds the first occurrence of a string in a string.
substr substr Gets a portion of a string.
strtolower strtolower Converts a string to lowercase.
strtoupper strtoupper Converts a string to uppercase.
strlen strlen Counts the length of a string.

str_ireplace

str_ireplace

Substitutes occurrences of a string with another
string in a string (case insensitive).

str_split str_split Splits a string into an array.
strcasecmp strcasecmp Compares strings.

strcspn

strcspn

Gets the length of the string before characters
from the other parameters are found.

stristr

stristr

Finds the first occurrence of a string in a string
(case insensitive).

strrev strrev Reverses a string.

strspn

strspn

Counts the longest segment of a string
containing specified characters.

substr_replace substr_replace Replaces a defined portion of a string.
ltrim ltrim Removes white space from the left of a string.

Getting Started

[36]

PHP Function JString method Description
rtrim rtrim Removes white space from the right of a string.
trim trim Removes white space from both ends of a string.
ucfirst ucfirst Converts the first character to uppercase.

ucwords

ucwords

Converts the first character of each word
to uppercase.

transcode

Converts a string from one encoding to
another. Requires the PHP iconv module.

Coding Standards
Using a standardized format makes code easier to read and allows other developers
to edit code more easily. Joomla! uses the PEAR coding standards. A complete guide
to the PEAR coding standards is available at http://pear.php.net/manual/en/
standards.php.

Here is a break down of the more common rules:

Indents are four spaces:
{
 // four space before me!
Control structures have one space between the name and first parenthesis:
if (true) {
Use curly braces even when they are optional.
Functions and methods are named using the camelCase standard with a
lowercase first character.
Functions and method declarations have no spaces between the name and
first parenthesis. Parameter lists have no spaces at the ends. Parameters are
separated by one space: foo($bar0, $bar1, $bar2);
Optional function and method parameters must be at the end of the
parameter list. Optional parameter values, signified by an equals sign, are
separated by spaces: function foo($bar0, $bar1, $bar2 = '')
Use phpDocumentor tags to comment code http://www.phpdoc.org/.
Use include_once() and require_once() in preference to include()
and require().
Use <?php ?> in preference to all other PHP code block delimiters.

•

•

•

•

•

•

•

•

•

Chapter 2

[37]

phpDocumentor
phpDocumentor is a documentation tool that allows us to easily create
documentation from PHP source code. The documentation is extracted from the
source and from special comments within the source; these comments are very
similar to those used by JavaDoc.

This example demonstrates how we might document a simple function:

/**
 * Adds two integers together
 *
 * @param int $value1 Base value
 * @param int $value2 Value to add
 * @return int Resultant vaue
 */
function addition($value1, $value2)
{
 return ((int)$value1 + (int)$value2)
}

The multiline comment denotes a DocBlock, notice that it uses a double asterisk at
the start. The first line is a general description of the function, this description can
span more than one line. @param and @return are tags.

The @param tag is used to define a parameter in the format (the name is optional):

@param type [$name] description

The @return tag is used to define the return value in the format:

@return type description

So our initial example is telling us that the addition() function has two integer
parameters named that it will add togther and return the resultant integer value.

When we document complex functions, we might want to provide two descriptions,
a long description and a short description. This example demonstrates how we
do this:

/**
 * Does some complex processing
 *
 * A verbose description of the function that spans more than
 * one line
 *
 * @param int $value1 Base value

Getting Started

[38]

 * @param int $value2 Value to add
 * @return int Resultant vaue
 */
function someComplexFunction($value1, $value2)
{
 // does some complex processing
}

Functions are not the only elements that can be documented. Elements that we can
document include:

class methods
class varaibles
classes
define()
files
function declarations
global variables (requires use of the @global tag)
include()/include_once()

require()/require_once()

This list defines some common tags we are likely to encounter:

@access private|protected|public

@author name

@param type [$name] description

@return type description

@static

The DocBlocks are easy to read when they are displayed in code, but, more
importantly, we can automatically create documentation from the source code.
For more information about using phpDocumentor please refer to
http://www.phpdoc.org/.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[39]

Summary
The application embodies the complete process of responding to a request. The
document is used to determine the format of the response data and as a buffer to
store the response data.

Instead of using the request and session hashes in Joomla!, we use the static
JRequest class and the global JSession object. The JRoute class enables us to parse
and build internal URIs. The JText class is used to translate strings into different
languages. Limitations in PHP means we must use JString to handle UTF-8 data; if
we do not we run the risk of corrupting data.

Although the coding standards that we use are ultimately up to us, we should
consider using the same standards as those implemented by the Joomla! project. If
we chose not to use these standards, we should still consider adding doctags to our
classes and functions because they can greatly decrease development and debug time.

The Database
This chapter details the role of the database in Joomla!. It defines some standard rules
we need to abide by. It explains different ways in which we can query the database.
It also briefly covers the ADOdb emulation that is available for developers wanting
to port existing applications.

Joomla! is currently designed to use the MySQL database. However, the architecture
does allow for the implementation of other database drivers. There is some
uncertainty surrounding the issue of supporting other databases, because of the
usage in queries of functions and syntax that are specific to MyS�L.of functions and syntax that are specific to MyS�L.that are specific to MyS�L.

The Core Database
Much of the data we see in Joomla! is stored in the database. A base installation has
over thirty tables. Some of these are related to core extensions and others to the inner
workings of Joomla!.

There is an official database schema, which describes the tables created during
the installation. For more information, please refer to: http://dev.joomla.org/
component/option,com_jd-wiki/Itemid,31/id,guidelines:database/.

A tabular description is available at: http://dev.joomla.org/downloads/
Joomla15_DB-Schema.htm.

We access the Joomla! database using the global JDatabase object. The JDatabase
class is an abstract class, which is extended by different database drivers. There
are currently only two database drivers included in the Joomla! core, MySQL and
MySQLi. We access the global JDatabase object using JFactory:

$db =& JFactory::getDBO();

The Database

[42]

Extending the Database
When we create extensions, we generally want to store data in some form. If we are
using the database, it is important to extend it in the correct way. More information
on extending the database with components is available in Chapter 4.

Table Prefix
All database tables have a prefix, normally jos_, which helps in using a single
database for multiple Joomla! installations. When we write SQL queries, to
accommodate the variable table prefix, we use a symbolic prefix that is substituted
with the actual prefix at run time. Normally the symbolic prefix is #__, but we can
specify an alternative prefix if we want to.

Schema Conventions
When we create tables for our extensions, we must follow some standard
conventions. The most important of these is the name of the table. All tables must
use the table prefix and should start with name of the extension. If the table is
storing a specific entity, add the plural of the entity name to the end of the table
name separated by an underscore. For example, an items table for the extension 'My
Extension' would be called #__myExtension_items.

Table field names should all be lowercase and use underscore word separators; you
should avoid using underscores if they are not necessary. For example, you can
name an email address field as email. If you had a primary and a secondary email
field, you could call them email and email_secondary; there is no reason to name
the primary email address email_primary.

If you are using a primary key record ID, you should call the field id, make it of type
integer auto_increment, and disallow null. Doing this will allow you to use the
Joomla! framework more effectively.

Common Fields
We may use some common fields in our tables. Using these fields will enable us to
take advantage of the Joomla! framework. We will discuss how to implement and
manipulate these fields, using the JTable class, later in this chapter.

Chapter 3

[43]

Publishing
We use publishing to determine whether to display data. Joomla! uses a special field
called published, of type tinyint(1); 0 = not published, 1 = published.

Hits
If we want to keep track of the number of times a record has been viewed, we can
use the special field hits, of type integer and with the default value 0.

Checking Out
To prevent more than one user trying to edit one record at a time we can check out
records (a form of software record locking). We use two fields to do this, checked_
out and checked_out_time. checked_out, of type integer, holds the ID of the
user that has checked out the record. checked_out_time, of type datetime, holds
the date and time when the record was checked out. A null date and a user ID of 0 is
recorded if the record is not checked out.

Ordering
We often want to allow administrators the ability to choose the order in which
items appear. The ordering field, of type integer, can be used to number records
sequentially to determine the order in which they are displayed. This field does
not need to be unique and can be used in conjunction with WHERE clauses to form
ordering groups.

Parameter Fields
We use a parameter field, a TEXT field normally named params, to store additional
information about records; this is often used to store data that determines how a
record will be displayed. The data held in these fields is encoded as INI strings
(which we handle using the JParameter class). Before using a parameter field, we
should carefully consider the data we intend to store in the field. Data should only be
stored in a parameter field if all of the following criteria are true:

Not used for sorting records
Not used in searches
Only exists for some records
Not part of a database relationship

•

•

•

•

The Database

[44]

Schema Example
Imagine we have an extension called 'My Extension' and an entity called foobar. The
name of the table is #__myextension_foobars. This schema describes the table:

Field

Datatype

N
O

T
N

U
LL

A
U

TO
 IN

C

U
N

SI
G

N
ED

DEFAULT

id INTEGER NULL
content TEXT
checked_out INTEGER 0
checked_out_time DATETIME 0000-00-00 00:00:00
params TEXT
ordering INTEGER 0
hits INTEGER 0
published TINYINT(1) 0

This table uses all of the common fields and uses an auto-incrementing primary key
ID field. When we come to define our own tables we must ensure that we use the
correct data types and NOT NULL, AUTO INC, UNSIGNED and DEFAULT values.

The SQL displayed below will create the table described in the above schema:

CREATE TABLE '#__myextension_foobars' (
 'id' INTEGER UNSIGNED NOT NULL DEFAULT NULL AUTO_INCREMENT,
 'content' TEXT NOT NULL DEFAULT '',
 'checked_out' INTEGER UNSIGNED NOT NULL DEFAULT 0,
 'checked_out_time' DATETIME NOT NULL DEFAULT '0000-00-00
 00:00:00',
 'params' TEXT NOT NULL DEFAULT '',
 'ordering' INTEGER UNSIGNED NOT NULL DEFAULT 0,
 'hits' INTEGER UNSIGNED NOT NULL DEFAULT 0,
 'published' INTEGER UNSIGNED NOT NULL DEFAULT 0,
 PRIMARY KEY('id')
)
CHARACTER SET 'utf8' COLLATE 'utf8_general_ci';

Date Fields
We regularly use datetime fields to record the date and time at which an action has
taken place. When we use these fields, it is important that we are aware of the effect
of time zones. All dates and times should be recorded in UTC+0 (GMT / Z).

Chapter 3

[45]

When we come to display dates and times we can use the JDate class, described in
Chapter 12. The JDate class allows us to easily parse dates, output them in different
formats, and apply UTC time-zone offsets.

For more information about time zones, please refer to http://www.timeanddate.com.

We often use parsers before we display data to make the data safe or
to apply formatting to the data. We need to be careful how we store
data that is going to be parsed. If the data is ever going to be edited,
we must store the data in its RAW state. If the data is going to be
edited extremely rarely and if the parsing is reversible, we may want to
consider building a 'reverse-parser'. This way we can store the data in
its parsed format, eradicating the need for parsing when we view the
data and reducing the load on the server. Another option available to
us is to store the data in both formats. This way we only have to parse
data when we save it.

Dealing with Multilingual Requirements
In the previous chapter we discussed Joomla!s use of the Unicode character set using
UTF-8 encoding. Unlike ASCII and ANSII, Unicode is a multi-byte character set; it
uses more than eight bits (one byte) per character. When we use UTF-8 encoding,
character byte lengths vary.

Unfortunately, MySQL versions prior to 4.1.2 assume that characters are always
eight bits (one byte), which poses some problems. To combat the issue when
installing extensions we have the ability to define different S�L files for servers, that
do and do not support UTF-8.

In MyS�L servers that do not support UTF-8, when we create fields, which define a
character length, we are actually defining the length in bytes. Therefore, if we try to
store UTF-8 characters that are longer than one byte, we may exceed the size of the
field. To combat this, we increase the length of fields to try to accommodate UTF-8
strings. For example, a varchar(20) field becomes a varchar(60) field. We triple
the size of fields because, although UTF-8 characters can be more than three bytes,
the majority of common characters are a maximum of three bytes.

This poses another issue, if we use a varchar(100) field, scaling it up for a
MyS�L server, which does not support UTF-8, we would have to define it as a
varchar(300) field. We cannot do this because varchar fields have a maximum size
of 255. The next step is slightly more drastic. We must redefine the field type so as
it will accommodate at least three hundred bytes. Therefore, a varchar(100) field
becomes a text field.

The Database

[46]

As an example, the core #__content table includes a field named title. For MySQL
severs that support UTF-8, the field is defined as:

'title' varchar(255) NOT NULL default ''

For MyS�L severs that do not support UTF-8, the field is defined as:

'title' text NOT NULL default ''

We should also be aware that using a version of MySQL that does not support UTF-
8 would affect the MySQL string handling functions. For example ordering by a
string field may yield unexpected results. While we can overcome this using post-
processing in our scripts using the JString class, the recommended resolution is to
upgrade to the latest version of MySQL.

Querying the Database
When we perform a query, we tell the global JDatabase object the query that we
want to execute. We do this using the setQuery() method; this does not perform
the query.

$db =& JFactory::getDBO();
$result = $db->setQuery($query);

Once we have set the query we want to perform, we use the query() method to
execute the query. This is similar to using the PHP function mysql_query(). If the
query is successful and is a SELECT, SHOW, DESCRIBE, or EXPLAIN query, a resource
will be returned. If the query is successful, and is not one of the above query types,
true will be returned. If the query fails, false will be returned.

$db =& JFactory::getDBO();
if (!$result = $db->setQuery($query))
{
 // handle failed query
 // use $table->getError() for more information
}

Writing Queries
There are some rules we need to be aware of when we build database queries.

Use the #__ symbolic prefix at the start of all table names.
Use the nameQuote() method to encapsulate named query elements.
Use the Quote() method to encapsulate values.

•

•

•

Chapter 3

[47]

The symbolic prefix guarantees that we use the correct prefix for the current
Joomla! installation; an alternative symbolic prefix to #__ can be used if necessary.
nameQuote() ensures that named elements are encapsulated in the correct
delimiters. Quote() ensures that values are encapsulated in the correct delimiters.
This example demonstrates the use of all of these rules.

$db = JFactory::getDBO();
$query = 'SELECT * FROM '
 .$db->nameQuote('#__test')
 .' WHERE '
 .$db->nameQuote('name')
 .' = '
 .$db->Quote('Some Name');

If we were using a MySQL or MySQLi database driver, $query would equal
the following:

SELECT * FROM 'jos_test' WHERE 'name' = "Some Name";

Getting Results
We could use the query() method and process the resultant resource. However, it is
far easier to use one of the other JDatabase methods, which will get the results from a
query in a number of different formats.

To help explain each of the methods we will use a sample table called #__test. The
table has two fields, id, an auto-increment primary key, and name, a varchar field.
The table below shows the data we will use for demonstration purposes.

id name
1 Foo
2 Bar

Which methods we choose to use is dependent on three things: the data we want, the
format in which we want it, and our personal preference. Much of the Joomla! core
prefers methods that return objects.

For the purpose of these examples we won't bother using the nameQuote() and
Quote() methods.

The Database

[48]

loadResult() : string
This method loads value of the first cell in the result set. If we selected all the data
from our table, this method would return the ID for the first record, in this example:
1. This is useful when we want to access a single field in a known record. For
example, we might want to know the name of record 2:

$query = 'SELECT 'name' FROM '#__test' WHERE 'id'=2';
$db =& JFactory::getDBO();
$db->setQuery($query);
echo $db->loadResult();

Bar

loadResultArray(numinarray : int=0) : array
This method loads a column. numinarray is used to specify which column to get; the
column is identified by its logical position in the result set.

$query = 'SELECT 'name' FROM '#__test'';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadResultArray());

Array
(
 [0] => Foo
 [1] => Bar
)

loadAssoc() : array
This method loads the first record as an associative array using the table column
names as array keys. This is useful when we are only dealing with an individual
record. If the query returns more than one record, the first record in the result set will
be used:

$query = 'SELECT * FROM '#__test'';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadAssoc());
Array
(
 [id] => 1
 [name] => Foo
)

Chapter 3

[49]

loadAssocList(key : string='') : array
This method loads an array of associative arrays or an associative array of associative
arrays. If we specify the parameter key, the returned array uses the record key as the
array key:

$query = 'SELECT * FROM '#__test'';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadAssocList());

Array
(
 [0] => Array
 (
 [id] => 1
 [name] => Foo
)
 [1] => Array
 (
 [id] => 2
 [name] => Bar
)
)

loadObject() : stdClass
This method loads the first record as an object using the table column names as
property names. This is useful when we are only dealing with an individual record. If
the query returns more than one record, the first record in the result set will be used:

$query = 'SELECT * FROM '#__test'';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadObject());

stdClass Object
(
 [id] => 1
 [name] => Foo
)

The Database

[50]

loadObjectList(key : string='') : array
This method loads an array of stdClass objects or an associative array of stdClass
objects. If we specify the parameter key, the returned array uses the record key as the
array key:

$query = 'SELECT * FROM '#__test'';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadObjectList());

Array
(
 [0] => stdClass Object
 (
 [id] => 1
 [name] => Foo
)

 [1] => stdClass Object
 (
 [id] => 2
 [name] => Bar
)
)

loadRow() : array
This method loads the first record as an array. This is useful when we are only
dealing with an individual record. If the query returns more than one record, the first
record in the result set will be used:

$query = 'SELECT * FROM '#__test'';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadRow());

Array
(
 [0] => 1
 [1] => Foo
)

Chapter 3

[51]

loadRowList(key : int) : array
This method loads an array of arrays or an associative array of arrays. If we specify
the parameter key, the returned array uses the record key as the array key. Unlike
the other load list methods, key is the logical position of the primary key field in the
result set:

$query = 'SELECT * FROM '#__test';
$db =& JFactory::getDBO();
$db->setQuery($query);
print_r($db->loadRowList(0));
Array
(
 [0] => Array
 (
 [0] => 1
 [1] => Foo
)

 [1] => Array
 (
 [0] => 2
 [1] => Bar
)
)

Using ADOdb
ADOdb is a PHP database abstraction layer released under the BSD license. ADOdb
supports a number of leading database applications. Joomla! does not use ADOdb,
but it does emulate some ADOdb functionality in its own database abstraction layer.

We should only use the ADOdb methods if we are porting existing applications
that rely on ADOdb or if we are creating extensions that we also want to work as
standalone applications using ADOdb.

Joomla! uses the JRecordSet class to emulate the ADOdb ADORecordSet class. The
JRecordSet class is not yet complete and does not include all of the ADORecordSet
methods. This example shows the basic usage of JRecordSet; $row is an array:

$db =& JFactory::getDBO();
$rs = $db->Execute('SELECT * FROM #__test');
while ($row = $rs->FetchRow())
{
 // process $row
}

The Database

[52]

For more information about ADOdb, go to http://adodb.sourceforge.net/.

Although ADOdb emulation is being added to Joomla!, it should be
noted that there are currently no plans to integrate ADOdb as the
primary means of accessing the Joomla! database.

JTable
Joomla! provides us with the powerful abstract class JTable; with this we can
perform many basic functions on table records. For every table that we want to use
the JTable class with, we must create a new subclass.

When creating JTable subclasses we must follow some specific conventions.
These conventions enable us to integrate our extensions into Joomla! and the
Joomla! framework.

Assuming we are building a component, our JTable subclasses should be located in
separate files in a folder called tables within the component's administrative root.
The class name is the table singular entity name prefixed with Table. The name of
the file is the singular entity name.

We will use the table schema, which we defined earlier in this chapter, for the
entity foobar in the extension 'My Extension', to demonstrate how we use JTable in
conjunction with a database table. You may want to familiarize yourself with the schema
before continuing.

The class is called TableFoobar and is located in the file JPATH_COMPONENT_
ADMINISTRATOR.DS.'tables'.DS.'foobar.php'. The first thing we need to do in
our class is to define the public properties. The public properties relate directly to the
fields and must have exactly the same names. We use these properties as a 'buffer' to
store individual records.

The second thing we need to do is to define the constructor. In order to use the
JTable::getInstance() method, we must override the JTable constructor with a
constructor that has a single referenced parameter, the database object.

The third thing we need to do is override the check() method. This method is
used to validate the buffer contents, returning a Boolean result. If a check() fails
we use the setError() method to set a message that explains the reason why the
validation failed.

Chapter 3

[53]

/**
 * #__myextenstion_foobars table handler
 *
 */
class TableFoobar extends JTable
{
 /** @var int Primary key */
 var $id = null;
 /** @var string Content */
 var $content = null;
 /** @var int Checked-out owner */
 var $checked_out = null;
 /** @var string Checked-out time */
 var $checked_out_time = null;
 /** @var string Parameters */
 var $params = null;
 /** @var int Order position */
 var $ordering = null;
 /** @var int Number of views */
 var $hits = null;

 /**
 * Constructor
 *
 * @param database Database object
 */
 function __construct(&$db)
 {
 parent::__construct('#__myextension_foobars', 'id', $db);
 }

 /**
 * Validation
 *
 * @return boolean True if buffer is valid
 */
 function check()
 {
 if(!$this->content)
 {
 $this->setError(JText::_('Your Foobar must contain some
 content'));
 return false;
 }
 return true;

The Database

[54]

 }

}

Now that we have created our TableFoobar class what do we do with it? Well
first of all we need to instantiate a TableFoobar object using the static JTable::
getInstance() method.

JTable::addIncludePath(JPATH_COMPONENT_ADMINISTRATOR.DS.'tables');
$table = JTable::getInstance('foobar', 'Table');

Note that instead of including the foobar.php file, we tell JTable where the containing
folder is. When JTable comes to instantiate the TableFoobar object, if the class is not
defined, it will look in all of the JTable include paths for a file named foobar.php.

CRUD
CRUD (Create Read Update Delete) is the name given to the four common
data manipulation tasks. We will follow a record through its short 'CRUDy' life.
Throughout the CRUD examples $table refers to an instance of the TableFoobar
class and $id refers to the ID of the record we are dealing with. In this example, we
create a new record; $table is an instance of the TableFoobar class.

$table->reset();
$table->set('content', "Lorem ipsum dolor sit amet");
$table->set('ordering', $table->getNextOrder());
if ($table->check())
{
 if (!$table->store())
 {
 // handle failed store
 // use $table->getError() for an explanation
 }
}
else
{
 // handle failed check
 // use $table->getError() for an explanation
}

The reset() method ensures that the table buffer is empty. The method returns all
of the properties to their default values specified by the class. The getNextOrder()
method determines the next space in the record ordering. If there are no existing
records, this will be 1. In case the check() method returns false, we should have
some handling in place. In most circumstances using a redirect and en-queuing the
check() error message will suffice.

Chapter 3

[55]

Let us tidy up our example. Some of the fields have default values defined in the
table, so our buffer will not be up to date after the record is created. When we create
a new record because the class knows what the table primary key is, the primary key
buffer property is automatically updated. After the previous example the buffer for
$table looks like this:

 [id] => 1

 [content] => Lorem ipsum dolor sit amet

 [checked_out] =>

 [checked_out_time] =>

 [params] =>

 [ordering] => 1

 [hits] => 0

After storing the new record, we can load the record from the database ensuring
that the buffer is up to date. This example loads the new record from the table into
the buffer.

$table->load($table->id);

Now the buffer will look like this:

 [id] => 1

 [content] => Lorem ipsum dolor sit amet

 [checked_out] => 0

 [checked_out_time] => 0000-00-00 00:00:00

 [params] =>

 [ordering] => 1

 [hits] => 0

Instead of loading newly added records, we could modify the TableFoobar class so
that the default values correspond directly to the database table's default values. This
way we reduce our overheads and do not have to reload the record.

However, because some of the default values are dependent upon the database, to
do this we would have to modify the constructor and override the reset() method.
For example the checked_out_time field default value is $db->getNullDate(), and
we cannot use this when defining parameters.

The Database

[56]

The way we updated the table buffer after creating the new record is precisely the
same way we would load (read) any existing record. This example shows how we
load a record into the buffer:

if (!$table->load($id))
{
 // handle unable to load
 // use $table->getError() for an explanation
}

Well, we are steaming through this CRUD (not literally). Next up is updating an
existing record. There are two ways of updating a record. We can insert the updated
data into the buffer and update the record. Alternatively, we can load the record,
insert the updated data into the buffer, and update the record. This example shows
how we implement the simpler first option:

// set values
$table->reset();
$table->setVar('id', $id);
$table->setVar('content', JRequest::getString('content'));
if ($table->check())
{
 if (!$table->store())
 {
 // handle failed update
 // use $table->getError() for an explanation
 }
}
else
{
 // handle invalid input
 // use $table->getError() for an explanation
}

Although this works, if it fails, we do not even know whether it is due to an invalid
record ID or a more complex problem. There is a quirk we need to be aware of when
using the store() method. It only updates the values that are not null; we can
force it to update nulls, by passing a true parameter to the store method. The issue
with this is we would need to have the record loaded into the buffer so that we do
not overwrite anything with null values. This example demonstrates how we can
implement this.

if ($table->load($id))
{
 // handle failed load
 // use $table->getError() for an explanation
}

Chapter 3

[57]

else
{
 $table->setVar('content', JRequest::getString('content'));
 if ($table->check())
 {
 if (!$table->store(true))
 {
 // handle failed update
 // use $table->getError() for an explanation
 }
 }
 else
 {
 // handle invalid input
 // use $table->getError() for an explanation
 }
}

The last action that will occur in any record's life is deletion. Deleting a record using
JTable subclasses is very easy. This example shows how we delete a record.

if (!$table->delete($id))
{
 // handle failed delete
}

If we don't pass an ID to the delete() method, the ID in the buffer will be used. It is
important to bear in mind that if you do pass an ID the buffer ID will be updated.

If we are deleting a record that has relationships with other tables, we can check
for dependencies using the canDelete() method. The canDelete() method has
one parameter, a two dimensional array. The inner arrays must contain the keys,
idfield, name, joinfield, and label. idfield is the name of the primary key in
the related table. name is the name of the related table. joinfield is the name of the
foreign key in the related table. label is the description of the relationship to use in
the error message if any dependencies are found.

Imagine that there is another table called #__myextension_children; this table has
a primary key called childid and a foreign key called parent, which is related to
the primary key field id in #__myextension_foobars. In this example, we verify
there are no dependent records in the #__myextension_children table before
deleting a record from #__myextension_foobars.

$join1 = array('idfield' => 'childid',
 'name' => '#__myextension_children',
 'joinfield' => 'parent',
 'label' => 'Children');

The Database

[58]

$joins = array($join1);
if ($table->canDelete($id, $joins))
{
 if (!$table->delete($id))
 {
 // handle failed delete
 // use $table->getError() for an explanation
 }
}
else
{
 // handle dependent records, cannot delete
 // use $table->getError() for an explanation
}

We can define more than one join, for example had there been another table called
#__myextension_illegitimate_children we could also have defined this in the
$joins array.

$join1 = array('idfield' => 'childid',
 'name' => '#__myextension_children',
 'joinfield' => 'parent',
 'label' => 'Children');
$join2 = array('idfield' => 'ichildid',
 'name' => '#__myextension_illegitimate_children',
 'joinfield' => 'parent',
 'label' => 'illegitimate Children');
$joins = array($join1, $join2);

The names of primary keys and foreign keys in all of the tables must
not be the same as the names of any other fields in any of the other
tables. Otherwise, the query will become ambiguous and the method
will always return false.

Manipulating Common Fields
Let us rewind a bit, killing off our record in its prime was a little mean after all!
Our table includes all of those handy common fields we mentioned earlier and
JTable provides us with some useful methods for dealing specifically with those
fields. Throughout the Common Fields examples $table refers to an instance of the
TableFoobar class and $id refers to the ID of the record we are dealing with.

Chapter 3

[59]

Publishing
To publish and un-publish data we can use the publish() method. This method
publishes and un-publishes multiple records at once. If the table includes a checked_
out field, we can ensure that the record is not checked out or is checked out to the
current user. This example publishes a record.

$publishIds = array($id);
$user =& JFactory::getUser();
if (!$table->publish($publishIds, 1, $user->get('id')))
{
 // handle unable to publish record
 // use $table->getError() for an explanation
}

The first parameter is an array of keys of the records we wish to publish or un-
publish. The second parameter is the new published value, 0 = not published, 1 =
published; this is optional, by default it is 1. The final parameter, also optional, is
used only when the checked_out field exists. Only fields that are not checked out or
are checked out by the specified user can be updated.

The method returns true if the publishing was successful. This is not the same as
saying all the specified records have been updated. For example if a specified record
is checked out by a different user, the record will not be updated but the method will
return true.

Hits
To increment the hits field we can use the hit() method. In this example we set the
buffer record ID and use the hit() method.

$table->set('id', $id);
$table->hit();

Alternatively we can specify the ID when we use the hit() method. If we choose to
do this, we must remember that the buffer ID will be updated to match the hit ID.

$table->hit($id);

Checking Out
Before we start checking out records, we first need to check if a record is already
checked out. Remember that when a record is checked out we should not allow any
other user to modify the record. We can use the isCheckOutMethod() to achieve
this. In this example, we test to see if any user, other than the current user, has
checked out the record:

The Database

[60]

$table->load($id);
$user =& JFactory::getUser();
if ($table->isCheckedOut($user->get('id')))
{
 // handle record is already checked-out
}

Once we have determined a record isn't checked out, we can use the checkout()
method to check out the record. In this example, we check out the record to the
current user; this sets the checked_out field to the user's ID and the checked_out_
time field to the current time.

$table->load($id);
$user =& JFactory::getUser();
if (!$table->checkout($user->get('id')))
{
 // handle failed to checkout record
}

Now that we have a checked-out record, we need to know how to check it in. To do
this we use the checkin() method. This example checks in a record; this will set the
checked_out_time field to a null date:

$table->load($id);
$user =& JFactory::getUser();
if (!$table->checkin($user->get('id')))
{
 // handle failed to checkin record
}

We should only check records in and out for logged in users. For a
more comprehensive check-out system use Joomla!'s access control
system explained in Chapter 11.

Ordering
When we want to order items, JTable gives us a number of useful methods. The first
one of these we will look at is reorder(). This method looks at each record and
moves them up the order chain until any gaps in the order have been removed. In
this example, we reorder our table:

$table->reorder();

Very simple, but for more complicated tables there could be groupings within the
records. To deal with this we can provide the reorder() method with a parameter
to restrict the records. Imagine that our table also has a field named group; in this

Chapter 3

[61]

example, we reorder the records in group 1:

$db =& $table::getDBO();
$where = $db->nameQuote('group').' = 1';
$table->reorder($where);

Notice that we get the database object from $table not JFactory; this ensures that
we are using the correct database driver for the database server that $table is using.
Although this is not a major issue, as Joomla! begins to support other database
drivers, there may be occasions where the database driver being used by a table is
different from the global database driver.

You may remember earlier in this chapter we used the getNextOrder() method.
This method tells us what the next available position is in the order. As with
reorder(), we have the option of specifying groupings. Imagine that our table also
has a field named group; in this example, we get the next available position in the
records in group 1:

$db =& $table::getDBO();
$where = $db->nameQuote('group').' = 1';
$nextPosition = $table->getNextOrder($where);

Last of all we can use the move() method to move a record up or down one position.
In this example, we move a record up the order:

$table->load($id);
$table->move(-1);

Again, we have the option of specifying groupings. Imagine that our table also has a
field named group; in this example, we move a record down the order in group 1:

$db =& $table::getDBO();
$where = $db->nameQuote('group').' = 1';
$table->load($id);
$table->move(1, $where);

Parameter Fields
The JTable class does not provide us with any special methods for dealing with INI
parameter fields. The JTable buffer is designed to be populated with the RAW data,
as it will be stored in the database.

To handle a parameter field we use the JParameter class. The first thing we need to
do is create a new JParameter object and, if we are interrogating an existing record,
parse the parameter data.

The Database

[62]

The JParameter class extends the JRegistry class; the JRegistry class is explained in
Chapter 7. This example shows how we can parse INI data using the JParameter class:

$params = new JParameter($table->params);

Once we have a JParameter object we can access and modify the data in the object
using the get() and set() methods:

$value = $params->get('someValue');
$params->set('someValue', ++$value);

We can return the data to an INI string using the toString() method:

$table->params = $params->toString();

We can also use the JParameter class in conjunction with an XML metadata file to
define the values we might be holding in an INI string. This example shows how we
create a new JParameter object and load an XML metadata file; $path is the full path
to an XML manifest file:

$params = new JParameter('foo=bar', $pathToXML_File);

There is a full description explaining how to define an XML metadata file for these
purposes in Chapter 4 and the Appendix. We can use the render() method to output
form elements populated with the parameter values (how these are rendered is
defined in the XML file):

echo $params->render('params');

Date Fields
Different database servers use different date and time formats to store dates and
times. It is important that when we come to save dates and times we use the correct
format for the database that is being used.

Sadly, there is currently no way to ensure that we are using the format specific to the
database being used. Instead we must assume that the database is MySQL based.
This means that we must store dates in the format YYYY-MM-DD HH:MM:SS.

The easiest way to do this is to use the JDate class. JDate objects are used to parseJDate class. JDate objects are used to parse class. JDate objects are used to parseJDate objects are used to parse objects are used to parse
and represent date and time values. We use the toMySQL() method to ensure that the
value is formatted appropriately:

// import JDate class
jimport('joomla.utilities.date');

// get current date and time (unix timestamp)
$myDate = gmdate();

Chapter 3

[63]

// create JDate object
$jdate = new JDate($myDate);

// create query using toMySQL()
$query = 'SELECT * FROM #__example WHERE date < '.$jdate->toMySQL();

The value that we pass when creating the JDate object can be in the format UNIXJDate object can be in the format UNIX object can be in the format UNIX
timestamp, RFC 2822 / 822, or ISO 8601. A more complete description of JDate isJDate is is
available in Chapter 12..

Summary
We should now be able to successfully create new database table schemas; howsuccessfully create new database table schemas; howcreate new database table schemas; how
we add these tables to the database is explained in more detail in the next chapter,
Chapter 4. We can build queries that are ready for use with our specific database
driver using the nameQuote() and Quote() methods. We must remember to
use these two methods; if we do not we run the risk of restricting our queries to
MySQL databases.

We can extend the abstract JTable class adding an extra element to the data access
layer. JTable allows us to perform many common actions on records. Taking
advantage of the JTable class can significantly reduce the overheads incurred while
programming and it ensures that we use standardized methods to perform actions.

Component Design
This chapter explains the concepts behind building Joomla! components and shows
you how to build your own components. Components have two main elements, the
frontend and the backend.

At the heart of Joomla! components lies the MVC (Model-View-Controller)
framework. There are many ways in which the MVC design pattern can be
implemented; this chapter is specifically interested in Joomla!'s MVC implementation.

Setting up a Sandbox
When we start building a new component, it is imperative that we have a sandbox;
somewhere we can test the code. Ideally, we should have more than one system so
we can test our components on different server setups.

The quick and easy way to set up a component sandbox is to create the component
folders in the frontend and backend. This technique has some major drawbacks,
unless we hack the #__components table, and will prevent us from testing all aspects
of our code.

A more comprehensive approach is to create a basic installer, which sets up a blank
component. The XML displayed can be used to create a blank component called
'My Extension':

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM "http://dev.joomla.org/xml/1.5/
 component-install.dtd">
<install type="component" version="1.5">
 <name>My Extension</name>
 <creationDate>MonthName Year</creationDate>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>

Component Design

[66]

 <authorUrl>Author's Website</authorUrl>

 <copyright>Copyright Notice</copyright>

 <license>Component License Agreement</license>

 <version>Component Version</version>

 <description>Component Description</description>

 <administration>

 <menu>My Extension</menu>

 </administration>

 <install />

 <uninstall />

</install>

To use this create a new XML manifest file, using UTF-8 encoding, and save the code
into it. You should update the XML to suit the component you intend to build. We
will discuss the role of the XML manifest file in more detail at the end of this chapter.

The component name is used to uniquely identify your component. When you select
a name for your component, it is advisable to ensure that the name is not being used
by an existing component. The name will also be used in the form com_parsedname;
this is done automatically by Joomla!. For example, the name 'My Extension' will also
be used in the format com_myextension.

Once you have built your XML manifest file, create a new archive, which can be ZIP,
TAR, GZ, TGZ, GZIP, BZ2, TBZ2, or BZIP2, and add the XML manifest file to it. If you
install the archive as a component, you should get a blank component, which you
can begin to develop.

To get you started, the frontend for the component will be located at
components/com_myextension. In this folder, you need to create the root
component file called myextension.php; this file is executed when the component
is invoked from the frontend.

The backend for the component is stored at administrator/components/
com_myextension. In this folder, you need to create the root admin component file
called admin.myextension.php; this file is executed when the component is invoked
from the backend.

Once you have done this, to access your component from the frontend you will be
able to create a new menu item, in the menu manager, which uses your component.
To use your component from the backend you can use the link that will now appear
in the components menu.

Chapter 4

[67]

The Structure
Before we are stuck into building an MVC component, we need to understand the
folder structure. This diagram shows the structure of a typical MVC component
backend folder. The structure of the frontend is essentially the same but without the
elements, help, and tables folders.

Component Design

[68]

When you create folders in Joomla!, you should include a copy of index.html in
each. The index.html file is a blank HTML file, which prevents users from obtaining
a directory listing.

This folder structure is not compulsory. If we want to use the Joomla!
MVC, help (preferences button), and JTable subclasses, we must use
the models, views, help, and tables folders.

The MVC
A single Joomla! extension often caters for several user types and several interfaces.
This diagram describes how two different users might access the same system:

Without the MVC, or a similar solution, we would probably end up duplicating
large portions of code when dealing with the HTML and XML views, each of which
would contain elements specific to the view. This is extremely inefficient, intensive to
maintain, and is likely to result in inconsistencies between views.

The MVC design pattern allows us to create code, that is independent of the
interface. This is achieved by separating data access, presentation, and business
logic. Separating these out means that we can refactor any part of an MVC-based
component without affecting other parts of the component.

There are three parts to the MVC design pattern: the model, view, and controller.
The controller and view can both be considered as part of the presentation layer,both be considered as part of the presentation layer,be considered as part of the presentation layer,
while the model could be considered as a fusion between the business logic and
data-access layers.

Chapter 4

[69]

There is a similar pattern to the MVC called 3-tier architecture. It
is important that we do not confuse the two. 3-tier architecture is
more concerned with the data layer; the MVC focuses more on the
presentation layer. It is quite likely that we will find ourselves using a
combination of the two. For more information about 3-tier architecture,
refer to
http://en.wikipedia.org/wiki/Multitier_architecture.

Each part of the MVC is represented in Joomla! by an abstract class: JModel, JView,
and JController. These classes are located in the joomla.applictaion.component
library. This diagram shows how the classes relate to one another:

The model is used to handle data. In most cases, the data will be sourced from the
database; however, we can use any data source. A single model is designed to work
with multiple records; in other words a model does not represent a single record.

The model allows us to modify data; in most cases this is achieved using bespoke
methods, which define business processes. The methods that define business logic
are essentially defining the behavior of the data.

Models are never aware of controllers or views. It is important to remember this
because it often helps us understand better how we are supposed to make the MVC
components operate.

The view defines how we present the data. In Joomla!, when we use a view to
display HTML we also use layouts (a form of template). This gives us an extra layer
of control and enables us to define multiple templates for the same view.

The data that we display in a view originates from one or more models. These
models are automatically associated with the view by the controller.

Views never modify data. All modifications to data are completed within
the controller.

The controller is the brains behind the operation. Part of the presentation layer, the
controller analyses input data and takes the necessary steps to produce the result,
presenting the output.

Component Design

[70]

The controller selects the models with which the request is concerned and performs
any required data modifications. The controller determines the view to use and
associates the models with the view. In some cases, a view will not be required and a
redirect will be initiated instead.

The controller executes the action and either redirects the browser or displays data.
When displaying data the controller creates a view and optionally associates one or
more models with the view

Building a Model
Before we start building a model, we need to determine the name of the model.
To make the MVC work as intended, we follow a special naming convention: the
component's name, the word Model, the data entity name. The model must be in a
file named after the entity and be located in the models folder.

Imagine we are creating a model for the component 'My Extension' and the entity
data is called foobar. The model class would be called MyextensionModelFoobar
and it would be located in models/foobar.php.

All model classes extend the abstract JModel class. This example shows a very basic
implementation of the MyextensionModelFoobar class.

// ensure a valid entry point
 defined(_JEXEC) or die('Restricted Access');
// import the JModel class
 jimport('joomla.application.component.model');
/**
 * Foobar Model
 */
class MyextensionModelFoobar extends JModel
{
}

I warned you it was basic! Actually, it is so basic it is useless. Before we continue,
note that we had to import the joomla.application.component.model library.
This guarantees that the JModel class is present.

We use special methods prefixed with the word get to retrieve data from models.
Most models only have one of these methods. The next step is to build a get method.

Our example is dealing with the entity foobar, so we'll create a get method,
getFoobar(). To ensure that we get the right foobar we need to determine which
foobar we are looking for.

Chapter 4

[71]

We will assume that the ID of the foobar in which we are interested is either the first
element in the array cid or the value of id. We normally use cid when we have
come from a page with a selection of records and id when we have come from a
page with one record.

/**
 * Foobar Model
 */
class MyextensionModelFoobar extends JModel
{
 /**
 * Foobar ID
 *
 * @var int
 */
 var $_id;

 /**
 * Foobar data
 *
 * @var object
 */
 var $_foobar;

 /**
 * Constructor, builds object and determines the foobar ID
 *
 */
 function __construct()
 {
 parent::__construct();

 // get the cid array from the default request hash
 $cid = JRequest::getVar('cid', false, 'DEFAULT', 'array');
 if($cid)
 {
 $id = $cid[0];
 }
 else
 {
 $id = JRequest::getInt('id', 0);
 }
 $this->setId($id);
 }

Component Design

[72]

 /**
 * Resets the foobar ID and data
 *
 * @param int foobar ID
 */
 function setId($id=0)
 {
 $this->_id = $id;
 $this->_foobar = null;
 }

 /**
 * Gets foobar data
 *
 * @return object
 */
 function getFoobar()
 {
 // if foobar is not already loaded load it now
 if (!$this->_foobar)
 {
 $db =& $this->getDBO();
 $query = "SELECT * FROM ".$db-
 >nameQuote('#__myextension_foobar')
 " WHERE ".$db->nameQuote('id')." = ".$this->_id;
 $db->setQuery($query);
 $this->_foobar = $db->loadObject();
 }
 // return the foobar data
 return $this->_foobar;
 }
}

Our model is now usable; we can retrieve a record from the table #__myextesnion_
foobar. How we choose to implement get methods is entirely up to us. There are
some common techniques used when implementing the get methods, but these
should only be used where appropriate.

Use a property to cache retrieved data:
var $_foobar;

Create a private method to load the data:
 function _loadFoobar()
 {
 // Load the data
 if (empty($this->_foobar))
 {

•

•

Chapter 4

[73]

 $query = $this->_buildQuery();
 $this->_db->setQuery($query);
 $this->_foobar = $this->_db->loadObject();
 return (boolean) $this->_foobar;
 }
 return true;
 }

Create a private method to build a query string:
 function _buildFoobar()
 {
 $db =& $this->getDBO();
 return "SELECT * FROM "
 .$db->nameQuote('#__myextension_foobar')
 " WHERE ".$db->nameQuote('id') " = " .$this->_id;
 }

Create a private method to build a blank set of data:
 function initializeFoobar()
 {
 if (empty($this->_foobar))
 {
 $foobar = new stdClass;
 $foobar->id = 0;
 $foobar->name = null;
 $this->_foobar =& $foobar;
 }}
 }}

Data that we access in a model does not have to come from the database. We can
interrogate any data source. Data that we return using the get methods can be of any
type. Many of the core components return data in stdClass objects.

As well as accessing data, we use the model to modify data. In this example we
implement a save() method; this will act as a pass-through for the JTable class
TableFoobar save() method, which we defined in Chapter 3.

/**
 * Save a foobar
 *
 * @param mixed object or associative array of data to save
 * @return Boolean true on success
 */
function save($data)
{

•

•

Component Design

[74]

 // get the table
 $table =& $this->getTable('Foobar');
 // save the data
 if (!$table->save($data))
 {
 // an error occurred, update the model error message
 $this->setError($table->getError());
 return false;
 }
 return true;
}

In the example we use the getTable() method to retrieve an instance of the
TableFoobar class. We could have used the static JTable::getInstance() method
but this would have required more effort because it defaults to looking for core
JTable subclasses. Core JTable subclasses are prefixed with JTable, non-core tables
are prefixed with Table.

When we try to save $data there are a number of actions that are performed. $data
is bound to the table, the check() method is executed, the data is stored, and the
item is checked in. If any of these methods fails then false is returned.

Therefore, if the table save method does fail, we copy the error message to the model.
This way we can determine what went wrong.

Let's take a look at a method that doesn't use a JTable to modify data. We will
implement a hit() method, which will increment the value of a foobar's hit counter.

/**
 * Increments the hit counter
 *
 */
function hit()
{
 //
 $db =& JFactory::getDBO();
 $db->setQuery('UPDATE '.$db->nameQuote('#__myextension_foobar').'
 .'SET '.$db->nameQuote('hits').' = '.$db-
 >nameQuote('hits').' + 1 '.'WHERE id = '.$this->_id);
 $db->query();
}

We could just as easily have used this as a pass-through for thehave used this as a pass-through for theused this as a pass-through for the TableFoobar hit()
method. We can implement many different methods in a model object. How we
choose to implement them is entirely up to us.

Chapter 4

[75]

Building a View
Views are separated by folders; each view has its own folder located in the views
folder. Within a view's folder we define a different file for each different document
type that the view is going to support i.e. feed, HTML, PDF, and RAW. If we are
defining a view for the HTML document type, we will also need to create a folder
called tmpl, which will hold layouts (HTML templates) to render the view.

Before we start building a view class, we need to determine the name of the class.
To make the MVC work as intended, we follow a special naming convention: the
component's name, the word 'View', and the view name. The view class is stored in a
file named view.documentType.php.

Imagine we are creating an HTML view for the component 'My Extension' to view
the entity foobar. The view class would be called MyextensionViewFoobar and it
would be located in a file called view.html.php in the views folder in a subfolder
called foobar.

All view classes extend the abstract JView class. This example shows a very basic
implementation of the MyextensionViewFoobar class:

// ensure a valid entry point
 defined(_JEXEC) or die('Restricted Access');

// import the JView class
 jimport('joomla.application.component.view');

/**
 * Foobar View
 */
class MyextensionViewFoobar extends JView
{
}

Note that when we build a view we must import the joomla.application.
component.view library. This guarantees that the JView class is present.

The most important method in any view class is the display() method; this method
is already defined in the parent class JView. The display() method is where all of
the workings take place. We interrogate models for data, customize the document,
and render the view.

We never modify data from within the view. Data is only to be
modified in the model and controller.

Component Design

[76]

Let us continue modifying our previous example; we will display a Foobar. To
do this we need to override the display() method, get the necessary data from a
MyextensionModelFoobar object and render it:

/**
 * Foobar View
 */
class MyextensionViewFoobar extends JView
{

 /**
 * Renders the view
 *
 */
 function display()
 {
 // interrogate the model
 $foobar =& $this->get('Foobar');
 $this->assignRef('foobar', $foobar);
 // display the view
 parent::display();
 }
}

There is not a big difference here; all we have done is overridden the display method
and interrogated the model. Occasionally there are times when we do not need to
override the display method. For example if we were outputting static content.

The diagram we looked at earlier, which showed how the three classes—JModel,
JView, and JController—relate to one another, describes an aggregate relationship
between views and models. That is to say, within a view there can be references to
model objects. In our case, there is a reference to a MyextensionModelFoobar object.

Going back to our example: the JView get() method looks at all the different
models with which it is familiar and looks for a method named the same as the first
parameter of the get() call and prefixed with get. So when we use $this->
get('Foobar') we are asking the view to find a model with a method called
getFoobar(), to execute the method, and to return the result.

Slightly confusing is how we ended up with a reference to a
MyextensionModelFoobar object; because our view is called
MyextensionViewFoobar, a controller would know that these two classes relate to
one another (both are named Foobar). When we use a controller to display a view it
automatically attempts to root out a related model and, if it finds one, assigns it to
the view. We will explain this in slightly more detail when we cover controllers.

Chapter 4

[77]

In our case the getFoobar() method in the MyextensionModelFoobar class returns
a stdClass object (stdClass is a PHP class). Once we have this data, we can assign
it to our view ready to be used by our layout (template). We assign data to our view
because it makes it very easy to access from within a layout. We need not do this if
we are not using layouts to present our view.

There are two ways in which we can assign data to our view: we can use the
assign() or assignRef() method. The two methods are very similar, except that
assignRef() assigns a reference to the data and assign() assigns a copy of the
data. For both methods, the first parameter is the name of the data and the second
parameter is the data itself.

There is another way in which the assign() method can be used, which is similar to
a bind function. For more information, refer to the Appendix.

As a general rule: when dealing with vectors (objects and arrays) we should use the
assignRef() method; when dealing with scalars (basic data types) we should use
the assign() method.

Finally in our overridden display() method we call the parent display()
method. This is what loads and renders the layout, but we do not have a layout. In
components, layouts are unique to HTML views.

Layouts are essentially templates; in most cases, there is one template file per layout,
which displays a view. Template files are PHP files, which mainly consist of XHTML
and use small snippets of PHP to display dynamic data.

In theory, we do not actually need layouts because we can just echo data directly out
of the view class. However, layouts enable us to define multiple layouts for the same
view, so we can view the same data in a number of different ways.

To create a default layout we create a file called default.php in the view's tmpl
folder. This is the layout that will be used unless otherwise specified. This example
shows how we might implement the default.php file:

<table width="100%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <th>Name</th>
 <td><?php echo $this->foobar->name; ?></td>
 </tr>
 <tr>
 <th>Description</th>
 <td><?php echo $this->foobar->description; ?></td>
 </tr>
</table>

Component Design

[78]

We access foobar using $this->foobar. We can do this because
we used the assignRef() method to assign this data to the view.
This example assumes that the entity Foobar has the attributes name
and description.

A more complete description of how to build and use layouts is available in Chapter 8.

Building a Controller
We can use controllers in many different ways. The MVC design pattern might
insinuate that we only need one controller; in reality, it can be very useful to
implement multiple controllers, one controller per entity.

Controllers extend the abstract JController class, which we import from the joomla.
application.component.controller library. It can be useful to add an extra layer
of inheritance with an additional abstract controller class; this makes particular sense
if we are using multiple controllers, which use common methods.

Controllers use tasks, string names, to identify what we want to do. Within the
controller, there is a task map, which is used to map task names to methods. When
we instantiate a new controller, the task map is automatically populated with task
and method names.

If we had a JController subclass with three methods, foo(), bar(), and _baz(), our
task map would look like this:

Task Method
foo foo()

bar bar()

Notice that the _baz() method is missing; this is because _baz() is a private
method, which is denoted by the underscore at the start of the name. The task map
uses a many-to-one relationship: we can define many tasks for one method. To add
additional entries to the task map we can use the registerTask() method. More
information about this method is available in the Appendix.

Within JController there is a special method called execute(). This method is used
to execute a task. For example, if we wanted to execute the task foo, we would use
the following:

$controller->execute('foo');

Chapter 4

[79]

Assuming $controller is using the task map we spoke of earlier, the controller will
execute the foo() method.

When the execute() method is performed the controller will also perform an
authorization check. For more information about how to define permissions, refer to
Chapter 11.

Unlike models and views there are is no specific naming convention to which we
must adhere when we define a controller class. The core controllers tend to use the
format: component name, the word 'Controller', and optionally the entity name.

For example, we might choose to name our controller
MyextensionControllerFoobar. We will assume we only have the one entity, so we
will name our example controller MyextensionController.

Controllers are normally located in a folder called controllers, or, if there is only
one controller, it is in the root of the component in a file called controller.php.

Wherever you choose to locate your controllers, you will have to
import them manually.

To use the abstract JController class we must import the joomla.application.
component.controller library; this guarantees that the JController class is available
to be extended. This example defines a controller called MyextensionController:

// Check to ensure this file is included in Joomla!
 defined('_JEXEC') or die('Restricted Access');
 jimport('joomla.application.component.controller');
/**
 * MyExtension Controller
 *
 */
class MyextensionController extends JController
{
}

There are many methods within the JController class, which we can override. The
most commonly overridden method is display(). This method instantiates a view
object, attaches a model to the view and initiates the view.

There are two important request variables, which are used by the display() method
to determine what it does. The view request determines which view to instantiate.
The layout argument determines which layout to use if the document type is HTML.

Component Design

[80]

This might sound as if it does everything we need. However, there is a common
reason for overloading the display() method. We might want to increment a hit
counter associated with an entity. In this example, we do just that:

/**
 * MyExtension Controller
 *
 */
class MyextensionController extends JController
{
 /**
 * Display
 *
 */
 function display()
 {
 // get the Foobar model and increment the counter
 $modelFoobar =& $this->getModel('Foobar');
 $modelFoobar->hit();
 // display foobar
 parent::display();
 }
}

Note that to obtain the MyextensionModelFoobar object we use the
getModel() method and supply it with the name of the model.

There are a great many different tasks that we might want our controller to be able to
handle. This table identifies the common task and method names we use to identify
tasks (we are not limited to these; we can use others if we want to):

Task/Method Description
add Create a new item.
apply Apply changes to an item and return to the edit view.

 archive

Archive an item. Most components do not implement archiving:
for an example of a component that does, you can study the core
content component.

assign Assign an item to something.
cancel Cancel the current task.
default Make an item the default item.
publish Publish an item.

Chapter 4

[81]

Task/Method Description
remove Delete an item.
save Save an item and return to a list of items.
unarchive Un-archive an item.
unpublish Un-publish an item.

Imagine we want the controller to be able to deal with a save task. To do this we
need to implement a method that will deal with the task. For the sake of simplicity
we will name the method save(). This is an example of how we might implement
the method.

/**
 * Save a Foobar and redirect
 *
 */
function save()
{
 // get the data to be saved ($_POST hash)
 $data = JRequest::get('POST');

 // get the model
 $model = $this->getModel('Foobar');
 // bind the array to the model and save it.
 if ($model->save($data))
 {
 $message = JText::_('Foobar Saved');
 }
 else
 {
 $message = JText::_('Foobar Save Failed');$message = JText::_('Foobar Save Failed');
 $message .= ' ['.$model->getError().']';$message .= ' ['.$model->getError().']';
 }
 $this->setRedirect('index.php?option=com_foobar', $message);
}

This method is relatively generic, which makes the method very resilient to changes
in the component. Making methods relatively generic makes future development
easier and reduces the impact of changes.

We get a copy of the $_POST hash; this assumes that the data will always be
submitted via a POST request. We proceed to get an instance of the relevant model
and attempt to save the data.

Component Design

[82]

Using $_POST might look like a security issue, but because of the way in which the
save() method is implemented in JModel (using the JTable bind() method), only
the values that we require will be used.

We don't need to check in the record because the save() method in the model
automatically does this for us.

Finally, we set up a redirect; this will be used to redirect the browser to a new
location. This does not immediately redirect the browser, it just sets the redirect URI
for when we execute the controller's redirect() method.

Notice that we don't call the parent display() method. This is because we want to
separate out each task. We could have next decided to display a view, but this would
mean that a refresh of the page would execute the save method a second time!

The use of redirects is considered unnecessary by some developers, who
believe that we should instead invoke other controllers and controller
methods. However, many of the core Joomla! components use redirects.

Building an MVC Component
Knowing how to build each element of an MVC component is only the beginning.
We need to know how to put all of this into practice! Planning your component is
crucial because so many of the MVC elements are interdependent.

The best place to start is identifying the entities that your component deals with. An
easy way to do this is to create an ERD (Entity Relationship Diagram). If you are not
familiar with ERDs there are plenty of online resources available.

The next step is to build a database schema. When you do this, you must take into
consideration all of the aspects covered in Chapter 3. Remember to make use of the
common fields and to use the naming conventions.

To ensure you gain the best performance from your database, normalize your tables
to at least 2NF (2nd normal form). If you are not familiar with database normalization,
there is a good tutorial available on the official MyS�L developer zone website:
http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html.

Once you have done this, you should have a good basis on which to start building
your component. The best place to start is with the controllers. How you choose to
design your controllers normally depends on the complexity of your component and
the number of entities you are dealing with.

Chapter 4

[83]

For each major entity, you should identify the tasks associated with each. You can
use the table in the previous section, which identified common task and method
names to help identify tasks.

We have seen how to build models, views, and controllers but we have yet to see
how we actually use them. To get started we need to create a PHP file named after
the component in the component's frontend folder and we need to create a PHP
file named after the component and prefixed with admin. in the component's
backend folder.

These files are executed when the component is invoked via the frontend and backend
respectively. This example shows how we might implement one of these files:

// Check to ensure this file is included in Joomla!
 defined('_JEXEC') or die('Restricted Access');

// get the controller
 require_once(JPATH_COMPONENT.DS.'controller.php');

// instantiate and execute the controller
 $controller = new MyextensionController();
 $controller->execute(JRequest::getCmd('task', 'display'));

// redirect
 $controller->redirect();

You will often find that these files are relatively simple. In the above example we get
the controller class file, instantiate a new controller, execute the task, and redirect the
browser. The redirect() method will only redirect the browser if a redirect URI has
been set; use setRedirect() to set a redirect URI and, optionally, a message.

We can do far more with these files if we wish, but often we do not need to;
generally, it is better to keep the processing encapsulated in controllers.

It is common practice to use multiple controllers, one for each entity. These are
generally stored in a folder called controllers in files named after the entity. Each
controller class is named after the entity and prefixed with MyextensionController.

When we use multiple controllers, we generally use the URI query request value c
to determine the controller to instantiate. This demonstrates how we can deal with
multiple controllers:

// Check to ensure this file is included in Joomla!
defined('_JEXEC') or die('Restricted Access');

// get the base controller
require_once(JPATH_COMPONENT.DS.'controller.php');

Component Design

[84]

// get controller
if ($c = JRequest::getCmd('c', 'DefaultEntity'))
{
 // determine path
 $path = JPATH_COMPONENT.DS.'controllers'.DS.$c.'.php';
 jimport('joomla.filesystem.file');
 if (JFile::exists($path))
 {
 // controller exists, get it!
 require_once($path);
 }
 else
 {
 // controller does not exist
 JError::raiseError('500', JText::_('Unknown controller'));
 }
}
// instantiate and execute the controller
 $c = 'MyextensionController'.$c;
 $controller = new $c();
 $controller->execute(JRequest::getCmd('task', 'display'));
// redirect
 $controller->redirect();

An alternative method is to encapsulate this within another layer of inheritance. For
example we could create the controller class MyextensionController and add a
getInstance() method to it that will return an object of the desired subclass. This
example demonstrates how we might implement such a method:

/**
 * Gets a reference to a subclass of the controller.
 *
 * @static
 * @param string entity name
 * @param string controller prefix
 * @return MyextensionController extension controller
 */
function &getInstance($entity, $prefix='MyExtensionController')
{
 // use a static array to store controller instances
 static $instances;
 if (!$instances)
 {
 $instances = array();
 }
 // determine subclass name
 $class = $prefix.ucfirst($entity);

Chapter 4

[85]

 // check if we already instantiated this controller
 if (!isset($instances[$class]))
 {
 // check if we need to find the controller class
 if (!class_exists($class))
 {
 jimport('joomla.filesystem.file');
 $path = JPATH_COMPONENT.DS.'controllers',
 strtolower($entity).'.php';

 // search for the file in the controllers path
 if (JFile::exists($path)
 {
 // include the class file
 require_once $path;

 if (!class_exists($class))
 {
 // class file does not include the class
 return JError::raiseWarning('SOME_ERROR',
 JText::_('Invalid controller'));
 }
 }
 else
 {
 // class file not found
 return JError::raiseWarning('SOME_ERROR',
 JText::_('Unknown controller'));
 }
 }

 // create controller instance
 $instances[$class] = new $class();
 }

 // return a reference to the controller
 return $instances[$class];
}

We can now alter the component root file to use the getInstance() method:
// Check to ensure this file is included in Joomla!
 defined('_JEXEC') or die('Restricted Access');
// get the base controller
 require_once(JPATH_COMPONENT.DS.'controller.php');
 $c = JRequest::getCmd('c', 'DefaultEntity')
 $controller = MyextensionController::getInstance($c);
 $controller->execute(JRequest::getCmd('task', 'display'));
// redirect
 $controller->redirect();

Component Design

[86]

This list details some important things to consider when designing and
building controllers:

If you have one major entity, you should consider building one controller.
If you have a number of entities, you should consider using a separate
controller for each.
To manage multiple controllers, it can be useful to create another controller,
which instantiates the controllers and siphons tasks to them.
If you have a number of similar entities, you should consider building an
abstract controller, which implements common tasks.

Up to this point, we have hardly mentioned the back and frontends in relation to the
MVC. The way in which the MVC library is constructed leads us to using separate
controllers, views, and models for the front and back ends.

Since we will generally be using the same data in the front and backend, we might
want to use some of the same MVC elements in the frontend and backend. If you do
choose to do this, it is normal to define the common MVC elements in the backend.

To access models and views located in the backend from the frontend we can
manually tell Joomla! about additional paths to look in. It is relatively unlikely that
you would want to use the same view in the front and back-end. If you do want to
do this, you should carefully consider your reasons.

This is an example of an overridden controller constructor method. It tells the
controller that there are other places to look for models and views.

/**
 * Constructor
 *
 */
function __construct()
{
 // execute parent's constructor
 parent::__construct();
 // use the same models as the back-end
 $path = JPATH_COMPONENT_ADMINISTRATOR.DS.'models';
 $this->addModelPath($path);
 // use the same views as the back-end
 $path = JPATH_COMPONENT_ADMINISTRATOR.DS.'views'
 $this->addViewPath($path);
}

If we use this, the controller will look for models and views in the component's
backend folders, as well as the default frontend folders. In this example, the frontend
models and views will take precedence. If we wanted the admin paths to take

•
•

•

•

Chapter 4

[87]

precedence, all we would need to do is move the parent::__construct() call to the
end of the overridden constructor method.

Rendering Other Document Types
We mentioned earlier that you can create a view for the document types, feed,
HTML, PDF, and RAW. We have already briefly explained how to implement views
for the HTML document type. This section describes how to create feed, PDF, and
RAW views.

Every view, created in the views folder as a separate folder, can support any number
of the document types. This table shows the naming convention we use for each.

Document Type File Name Description
Feed View.feed.php Renders an RSS 2.0 or Atom feed.
HTML view.html.php Renders a text/html view using the site template.
PDF view.pdf.php Renders an application/pdf document.

RAW

view.raw.php

Renders any other type of document; defaults to
text/html, but we can modify this.

There is a fifth document type, error. We cannot create views within our components
for this document type. The error document renders using a template from the site
template or core error templates.

To request a page as a different document type, we use the request value format.
For example to request the component My Extension in feed format, we might use
this URI:

http://www.example.org/joomla/index.php?option=com_
myextension&format=feed

The four document types might sound restricting. However, the RAW document
type has a clever trick up its sleeve. When Joomla! encounters a unknown format, it
uses the RAW document. This means that we can specify bespoke formats. We will
discuss this in more detail in a moment.

Feed
Before you choose to create a feed view you should consider whether the data is
worthy of a feed. The data in question should be itemized and it should be likely to
change on a regular basis.

Joomla! supports RSS 2.0 (Really Simple Syndication) and Atom (Atom Syndication
Format) feeds; which is being used makes no difference as to how we build a feedmakes no difference as to how we build a feedas to how we build a feed
view class.

Component Design

[88]

We use the JFeedItem class to build feed items and add them to the document.
JFeedItem objects include properties that relate to the corresponding RSS and
Atom tags. The properties marked with a dash are not used by the corresponding
feed format.

Property
 R

eq
ui

re
d

by

 R
SS

 R
eq

ui
re

d
by

 A

to
m

Description

Author Author's name
authorEmail - - Author's email address, not currently supported by Joomla!
Category - Category of item
Comments - URI to comments about the item
Date - Date on which the item was created (UNIX timestamp)
Description Description of the item

Enclosure JFeedEnclosure object; describes an external source, for
example a video file

Guid - Item ID, must be unique
Link URI
pubDate Date on which the item was published
Source - - 3rd party source name, not currently supported by Joomla!
Title Name

For more information about how these tags work in RSS please refer to
http://www.rssboard.org/rss-specification. For more information about how
these tags work in Atom please refer to http://tools.ietf.org/html/rfc4287.

This example shows how we can build a feed; this would be located in a display()
method in a view class that deals with feeds.

// set the basic link
 $document =& JFactory::getDocument();
 $document->setLink(JRoute::_('index.php?option=com_myextension');

// get the items to add to the feed
 $db =& JFactory::getDBO();
 $query = 'SELECT * FROM #__myextension WHERE published = 1';
 $db->setQuery($query);
 $rows = $db->loadObjectList();

foreach ($rows as $row)

Chapter 4

[89]

{
 // create a new feed item
 $item = new JFeedItem();

 // assign values to the item
 $item->author = $row->author;
 $item->category = $row->category;
 $item->comments = JRoute::_(JURI::base().'index.php?option=
 com_myextension&view=comments&id='.$row->id);
 $item->date = date('r', strtotime($row->date));
 $item->description = $row->description;
 $item->guid = $row->id;
 $item->link = JRoute::_(JURI::base().'index.php?option=
 com_myextension &id='.$row->id);
 $item->pubDate = date();
 $item->title = $row->title;

 $enclosure = new JFeedEnclosure();
 $enclosure->url = JRoute::_(JURI::base().'index.php?option=com_
 myextension &view=video&format=raw&id='.$row->id);
 // size in bytes of file
 $enclosure->length = $row->length
 $enclosure->type = 'video/mpeg';

 $item->enclosure = $enclosure;

 // add item to the feed
 $document->addItem($item);
}

If a view is available in HTML and feed formats, you might want to add a link in the
HTML view to the feed view. We can use the HTML link tag to define an alternative
way of viewing data. This example shows how we can add such a tag to the HTML
header. This code should be located in the view class's display() method.

// build links
$feed = 'index.php?option=com_myextension&format=feed';
$rss = array(
 'type' => 'application/rss+xml',
 'title' => 'My Extension RSS Feed'
);
$atom = array(
 'type' => 'application/atom+xml',
 'title' => 'My Extension Atom Feed'
);

Component Design

[90]

// add the links
$document =& JFactory::getDocument();
$document->addHeadLink(JRoute::_($feed.'&type=rss'), 'alternate',
 'rel', $rss);
$document->addHeadLink(JRoute::_($feed.'&type=atom'), 'alternate',
 'rel', $atom);

To use this you will need to modify $feed to point to the correct location for
your component.

PDF
Views that support the PDF document type build the data to be rendered in PDF
format in HTML. Joomla! uses the TCPDF library to convert that HTML into a PDF
document. Not all HTML tags are supported. Only the following tags will affect the
layout of the document; all other tags will be removed.

h1, h2, h3, h4, h5, h6
b, u, i, strong, and em, sup, sub, small
a
img
p, br, and hr
font
blockquote
ul, ol
table, td, th, and tr

As well as setting the PDF document content, we can modify the application/
generator, file name, metadata/keywords, subject, and title. This example shows
how we can modify all of these. This should be done within the view class's
display() method.

$document =& JFactory::getDocument();
$document->setName('Some Name');
$document->setTitle('Some Title');
$document->setDescription('Some Description');
$document->setMetaData('keywords', 'Some Keywords');
$document->setGenerator('Some Generator');

•

•

•

•

•

•

•

•

•

Chapter 4

[91]

This screenshot depicts the properties of the resultant PDF document:

To add content to the document all we need to do is output the data as we would normally.

RAW
The RAW document type allows us to do anything we want to the document. Any
document we want to return that is not HTML, PDF, or a feed, is RAW. For example
if we wanted to output data in XML format, we could use the RAW document.

There are three important methods to output a document exactly as we want. By
default RAW documents have a MIME type (Internet Media Type) of text/html; to
change the MIME type we can use the setMimeEncoding() method.

$document =& JFactory::getDocument();
$document->setMimeEncoding('text/xml');

Component Design

[92]

If we are outputting a document in which the content has been modified at
a set date, we may want to set the document modified date. We can use the
setModifiedDate() method to do this. In this example you would need to replace
time() with an appropriate UNIX timestamp to suit the date to which you are trying
to set the modified date:

$document =& JFactory::getDocument();
$date = gmdate('D, d M Y H:i:s', time()).' GMT';
$document->setModifiedDate($date);

Normally we serve all Joomla! responses using UTF-8 encoding. If you want to use a
different character encoding you can use the setCharset() method:

$document =& JFactory::getDocument();
$document->setCharset('iso-8859-1');

Imagine we want to create an XML response using the RAW document. First, let
us choose a name for the document format. The name must not be the same as any
of the existing formats and although we could use the name 'raw', it is not very
descriptive. Instead, we will use the name xml. This URI demonstrates how we
would use this:

http://www.example.org/joomla/index.php?option=com_
myextension&format=xml

When we do this, the document will be of type JDocumentRaw.

The next thing we need to do is create the view class. This name of the file includes
the format name, note that we use the format name 'xml', not 'raw. For example, the
file might be named myview.xml.php. This example demonstrates how we might
construct the view class:

class MyextensionViewMyview extends JView
{
 function display($tpl = null)
 {
 // modify the MIME type
 $document =& JFactory::getDocument();
 $document->setMimeEncoding('text/xml');

 // add XML header
 echo '<?xml version="1.0" encoding="UTF-8" ?>';

 // prepare some data
 $xml = new JSimpleXMLElement('element');
 $xml->setData('This is an xml format document');

Chapter 4

[93]

 // output the data in XML format

 echo $xml->toString();

 }

}

This will output a very basic XML document with one XML element:

<?xml version="1.0" encoding="UTF-8" ?>

<element>This is an xml format document</element>

The great thing about this is it enables us to create many formats for one view.

Dealing with Component Configuration
The chances are that a component that we are building is going to need some
configuration options. Every component can store default parameters about itself.

A relationship exists between menu items and the component configuration. The
configuration edited from within the component defines the default configuration.
When we create a new menu item, we can modify the component configuration
specifically for the menu item. This enables us to override the default configuration
on a per-menu-item basis.

To define component parameters we must create an XML metadata file, called
config.xml, in the root of our component in the backend. The file contains a root
element config, and nested within this is a params tag. In this tag, we define
different parameters, each in its own param tag.

This example defines two parameters, a title and a description (a complete description
of the different parameters and their XML definition is available in the Appendix):

<?xml version="1.0" encoding="utf-8"?>

 <config>

 <params>

 <param name="title" type="text" default="My Title"
 label="Title" description="Title of page" size="30" />

 <param name="description" type="textarea" default=""
 label="Description" rows="5" cols="50" description=
 "Description to display at top of page." />

 </params>

 </config>

Component Design

[94]

Once we have created the XML file, the next step is to use the file to allow an
administrator to edit the component parameters. Joomla! provides us with an easy
way of doing this.

In the backend, components have a customizable menu bar. There is a special button
we can add to this menu bar, called preferences, which is used to enable editing of
a component's parameters. A complete description of the menu bar is available in
Chapter 8.

This example shows how we add the button. We use two parameters to define the
name of the component and the height of the preferences box. Adding buttons to the
administration toolbar is explained in detail in Chapter 8.

JMenuBar::preferences('com_myextension', '200');

When an administrator uses this button, they will be presented with a preferences
box. The first parameter determines which component's parameters we want to
modify. The second parameter determines the height of this box. This screenshot
depicts the preferences box displayed for com_myextension using the XML file we
described earlier:

Now that we can define and edit parameters for a component, we need to know how
to access these parameters from within the frontend of our component. To achieve
this we use the application getPageParameters() method:

$params =& $mainframe->getPageParameters('com_myextension');

The great thing about this method is that it will automatically override any of the
component's default configuration with the menu item's configuration. If it did not,
we would have to merge the two manually.

The returned object is of type JParameter. This class deals specifically with XML
metadata files, which define parameters. To get a value from the component
parameters we use the get() method:

$title = $params->get('title');

We can use this snippet of code anywhere in our component. Many of the core
components retrieve component parameters in models, views, and controllers.

Chapter 4

[95]

Elements and Parameters
We have mentioned using parameters in the component configuration file; there are
many other instances where we can use the param tag, for example defining module
parameters. When we use the param tag in XML files, we are defining data items. As
part of this we use the XML to produce rendered forms. JElement is the abstract class
subclasses of which can be used to render each of the parameters.of which can be used to render each of the parameters.

JElement subclasses are used in conjunction with a single param tag and render a
form input tag based upon it. There are a number of predefined parameter types
(JElements) that we can use:

category
editors
filelist
folderlist
helpsites
hidden
imagelist
languages
list
menu
menuitem
password
radio
section
spacer
sql
text
textarea
timzones

A full description of each of these is available in the Appendix.

Before we move on, it is important that we understand a bit more about JElement. In
Chapter 3, we talked about the use of the parameter fields in databases. Theses fields
are INI strings, which we can use in conjunction with the JParameter class.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Component Design

[96]

The JParameter class handles these strings and uses XML definitions, like the
ones we have discussed in this chapter, to help comprehend the data. As part of
JParameter we can render the INI string using an XML definition. It is at this point
that JElement kicks in.

A JElement subclass always overrides the fetchElement() method. This method is
what renders a single form input element. Because JParameter deals with INI strings,
a JElement form element can only return a single value. For example, we cannot
define a JElement subclass that renders a select list that allows multiple options to
be selected.

Extending JElement
Before we create a new JElement subclass, we should carefully consider if we need
to. If the data is coming from the database, we should always think about using the
sql element; this is a very generic element, which allows us to create a select list
based on a database query.

When we create new JElement subclasses, we must follow some specific naming
conventions. JElement subclasses are named after the element type and prefixed with
the word JElement. The class is stored in a separate file named after the element type.
The file is in the elements folder in the component's administrative root.

Imagine we want to create a new element type, menus. The class would be called
JElementMenus and be located in the file menus.php. The class needs to extend the
core JElement class; we do not need to import the joomla.html.parameter.element
library because the JParameter class does this atomically when it loads JElements.

In order to build the class, we need to decide on the XML we are going to use
to define a JElementMenus parameter. This element is very similar to the lists
element so we may as well use a similar structure. This example demonstrates the
XML we are going to use:

<param name="name" type="menus" label="Menus" description=
 "A Grouped List" default="1" class="Some CSS">
 <group>Group 1
 <option value="1">Value 1</option>
 <option value="2">Value 2</option>
 <option value="3">Value 3</option>
 </group>
 <group>Group 2
 <option value="4">Value 4</option>
 <option value="5">Value 5</option>
 </group>
</param>

Chapter 4

[97]

We use nested group tags to group the different options together. The option tags
are identical to those used by JElementList. For a complete description of menu select
lists, please refer to http://www.w3schools.com/tags/tag_optgroup.asp.

To build the JElementMenus class, there are two things we should always do when
defining JElement subclasses: override the fetchElement() method and set the
_name property.

To implement our fetchElement() method we will use the static JHTMLSelect
class; this class is used to build select lists and menu select lists. There are two
methods that we need to be aware of: JHTMLSelect::option() and JHTMLSelect::
genericList().

JHTMLSelect::option() returns an object that represents a list option.
JHTMLSelect::genericList() returns a rendered HTML string of a form select tag
based on an array of objects and a few additional parameters.

This example shows how we can implement the JElementMenus class:

/**
 * Renders a Menus Selection List
 *
 */
class JElementMenus extends JElement
{
 /**
 * Element type
 *
 * @access protected
 * @var string
 */
 var $_name = 'Menus';
 /**
 * Gets an HTML rendered string of the element
 *
 * @param string Name of the form element
 * @param string Value
 * @param JSimpleXMLElement XML node in which the element is
 defined
 * @param string Control set name, normally params
 */
 function fetchElement($name, $value, &$node, $control_name)
 {
 // get the CSS Style from the XML node class attribute
 $class = $node->attributes('class') ? 'class="'.$node->>
 attributes('class').'"' : 'class="inputbox"';

Component Design

[98]

 // prepare an array for the options
 $groups = array();
 foreach ($node->children() as $group)
 {
 // create new Group, <OPTGROUP> signifies a group
 $text = $group->data();
 $groups[] = JHTMLSelect::option('<OPTGROUP>',
 JText::_($text));
 foreach ($group->children() as $option)
 {
 // add an option to the group
 $val = $option->attributes('value');
 $text = $option->data();
 $groups[] = JHTMLSelect::option($val,
 JText::_($text));
 }

 // end the group
 $groups[] = JHTMLSelect::option('</OPTGROUP>');
 }
 // create the HTML list and return it (this sorts out the
 // selected option for us) selected option for us)
 return JHTMLSelect::genericList($groups,
 ''.$control_name.'['.$name.']', $class, 'value', 'text', $value,
 $control_name.$name);
 }
}

Using Custom JElement Classes
To use our JElementMenus class we need to do more than add a param tag
of type 'menus' to our XML file. We need to tell Joomla! where it can find the
JElementMenus class. To do this we use the addpath attribute.

Building on our previous example of a component config.xml file, this XML
defines another parameter, using the menus type JElement (assuming that
the JElementMenus class is located in the administrator/components/
com_myextension/elements folder):

<?xml version="1.0" encoding="utf-8"?>
 <config>
 <params addpath="/administrator/
 components/com_myextension/elements">
 <param name="title" type="text" default="My Title"
 label="Title" description="Title of page" size="30" />
 <param name="description" type="textarea" default=""

Chapter 4

[99]

 label="Description" rows="5" cols="50"
 description="Description to display at the top of the page." />
 <param name="menus" type="menus" label="Select Menus"
 description="Test JElementMenus" default="3">
 <group>Group 1
 <option value="1">Value 1</option>
 <option value="2">Value 2</option>
 <option value="3">Value 3</option>
 </group>
 <group>Group 2
 <option value="4">Value 4</option>
 <option value="5">Value 5</option>
 </group>
 </param>
 </params>
</config>

If we attempt to make a menu item using this XML metadata file the Menu Item
Parameters panel will appear like this:

Help Files
The Joomla! core components use special help files, which can be displayed in the
backend using the menu bar button, help. In this example, we add a button, which,
if used, will display the contents of the screen.system.info.html help file in a
pop-up window.

JMenuBar::help('screen.system.info');

Component Design

[100]

Core help files are located in the administrator/help directory. To support
multilingual requirements, the help directory contains one folder for each installed
language, for example en-GB. Located in these folders are the HTML help files.

We can use a similar implementation for our components. We must create a help
folder in the administration root of our component and add a subfolder for every
help language that we support.

Imagine we want to create a generic help file for the component 'My Extension'. In
the component's administrative root we need to create a folder called help and in
there we need to create a folder called en-GB. Now if we create a file called help.
html and save it into the help\en-GB folder, we can use the administration menu-
bar help button to view it, as this example demonstrates:

JMenuBar::help('help', true);

By adding the second parameter, we are telling Joomla! to look for help files in the
components help folder.

Help files are stored in XHTML format and the extension must
always be .html.

Routing
To make Joomla! respond appropriately to a request the application contains a
JRouter object. This object determines the direction to take through the application.
This is based on URI query values. To make Joomla! URIs friendlier, it can be set up
to use SEF (Search-Engine Friendly) URIs.

In order to take advantage of SEF URIs, when we render any URI we need to use
the JRoute::_() method. This method converts normal URIs into SEF URIs; this
will only happen if the component we are trying to link to has a router and the SEO
options are enabled. In this example we parse the URI 'index.php?option=com_
myExtension& category=3&item=6' into an SEF URI.

echo JRoute::_('index.php?option=com_myExtension&
 category=3&item=6');

This is an example of the output we might receive:

http://example.org/joomla/index.php/component/myExtension/3/6

The end of the URI, after index.php, is called the SEF segments. Each segment is
separated by a forward slash.

Chapter 4

[101]

To create a router for a component we must create a file called router.php in the
root of the component. In the file we need to define two functions, BuildRoute()
and ParseRoute(), both prefixed with the name of our component. These functions
build and parse between a URI query and an array of SEF segments.

The BuildRoute() function is used to build an array of SEF segments. The function
is passed an associative array of URI query values.

This is an example of the BuildRoute() function that we might have been using
in the previous example. We must return the array of data segments in the order
they will appear in the SEF URI. We must remove any elements from the referenced
$query associative array parameter; any elements we do not remove will be
appended to the end of the URI in query format. For example, if we passed the value
'index.php?option=com_myExtension& category=3&item=6&foo=bar' to the
JRoute::_() method, we would get the route:

http://example.org/joomla/index.php/component/myExtension/3/6?foo=bar.

/**

 * Builds route for My Extension.

 *

 * @access public

 * @param array Query associative array

 * @return array SEF URI segments

 */

function myextensionBuildRoute(&$query)

{

 $segments = array();

 if (isset($query['category']))

 {

 $segments[] = $query['category'];

 unset($query['category']);

 if (isset($query['item']))

 {

 $segments[] = $query['item'];

 unset($query['item']);

 }

 }

 return $segments;

}

Component Design

[102]

With this function implemented, JRoute::_() can build SEF URIs for our
component. The next step is to decode SEF URIs. This is an example of the
ParseRoute() function that we might use to decode the URI:

/**
 * Decodes SEF URI segments for My Extension.
 *
 * @access public
 * @param array SEF URI segments array
 * @return array Query associative array
 */
function myextensionParseRoute($segments)
{
 $query = array();

 if (isset($segments[0]))
 {
 $query['category'] = $segments[0];

 if (isset($segments[1]))
 {
 $query['item'] = $segments[1];
 }
 }

 return $query;
}

Note that this is essentially the exact opposite of the BuildRoute()
function.

Packaging
Components are packaged in archive files. A number of archive formats are
supported: .gz, .tar, .tar.gz, and zip. There is no specific naming convention for
component archive files; however, the following is often used: com_name-version.
For example, the package for version 1.0.0 of My Extension would be called
com_myextension-1.0.0.

When you package a component, ensure you do not include
any system files. Mac developers should be especially vigilant
and consider using the CleanArchiver utility
http://www.sopht.jp/cleanarchiver/.

Chapter 4

[103]

Within the package, as well as the component files, are some special files, which tell
Joomla! what to do during installation and un-installation of a component. These
include the XML manifest file, an install, uninstall PHP script, and an install and
uninstall S�L file.

XML Manifest File
The XML manifest file details everything the installer needs to know about an
extension. Any mistakes in the file may result in partial or complete installation
failure. XML manifest files should be saved using UTF-8 encoding.

Based on the XML manifest file that we defined at the start of this chapter to create
a sandbox, this example demonstrates a large number of the XML manifest file
elements that we can use:

<?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE install SYSTEM "http://dev.joomla.org/xml/1.5/component-
 install.dtd">
 <install type="component" version="1.5">
 <name>My Extension</name>
 <creationDate>MonthName Year</creationDate>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <copyright>Copyright Notice</copyright>
 <license>Component License Agreement</license>
 <version>Component Version</version>
 <description>Component Description</description>
 <administration>
 <menu>My Extension</menu>
 <submenu>
 <menu task="view">Items</menu>
 <menu link="option=com_categories§ion=com_wfaqs;">
 Categories</menu>
 </submenu>
 <files folder="administration">
 <filename>index.html</filename>
 <filename>admin.myextension.php</filename>
 <filename>install.sql</filename>
 <filename>install.noutf8.sql</filename>
 <filename>uninstall.sql</filename>
 <folder>models</folder>
 <folder>views</folder>
 <folder>controllers</folder>

Component Design

[104]

 <folder>tables</folder>
 </files>
 <languages folder="administration">
 <language tag="en-GB">en-GB.com_myextension.ini</language>
 <language tag="de-DE">de-DE.com_myextension.ini</language>
 </languages>
 <media destination="com_myextension">
 <filename>logo.jpg</filename>
 <filename>index.html</filename>
 </media>
 </administration>
 <install>
 <sql>
 <file driver="mysql" charset="utf8">install.sql</file>#
 <file driver="mysql" charset="">install.noutf8.sql</file>
 </sql>
 </install>
 <uninstall>
 <sql>
 <file driver="mysql">uninstall.sql</file>
 </sql>
 </uninstall>
 <installfile>install.myextension.php</installfile>
 <uninstallfile>uninstall.myextension.php</uninstallfile>
 <files>
 <filename>index.html</filename>
 <filename>myextension.php</filename>
 <folder>models</folder>
 <folder>views</folder>
 <folder>controllers</folder>
 <folder>tables</folder>
 </files>
 <languages>
 <language tag="en-GB">en-GB.com_myextension.ini</language>
 <language tag="de-DE">de-DE.com_myextension.ini</language>
 </languages>
 <media destination="com_myextension">
 <filename>logo.jpg</filename>
 <filename>index.html</filename>
 </media>
</install>

This is some information regarding this available from the official Joomla! Wiki:
http://dev.joomla.org/component/option,com_jd-wiki/Itemid,
/id,components:xml_installfile/.

Chapter 4

[105]

The following table describes the tags you can use in your XML manifest file in detail:

install (Root tag)

There are two different install tags. The root tag called install identifies the type of
extension and the version Joomla! for which the extension is written.

Example

<install type="component" version="1.5">

 <!-- sub-tags -->

</install>

Attributes type Type of extension.
version Version of Joomla! the extension is for.

Sub-tags

administration, author, authorEmail, authorUrl, copyright, creationDate,
description, files*, install, installfile, languages*, license, media*, name,
params, uninstall, uninstallfile, version

administration

Container for all the component's backend tags. This tag is required even if your
component needs no back-end tags.
Example <administration />
Sub-tags files, languages, media, menu, submenu

author

Author's name.
Example <author>John Smith</author>

authorEmail

Author's email address.
Example <authorEmail>johnsmith@example.org</authorEmail>

authorUrl

Author or component's website address.
Example <authorUrl>http://www.example.org</authorUrl>

copyright

Copyright notice.
Example <description>Copy me as much as you like!</description>

Component Design

[106]

description

Component description.
Example <description>Example component description.</description>

file

S�L file to execute.

Example

 <query charset="utf8" driver="mysql">install.sql</query>

<query charset="" driver="mysql">install.noutf8.sql</
query>

 Attributes charset UTF-8.

 driver

 Database driver name, normally mysql
(mysql and mysqli are synonymous in this
context).

files

Files and folders that belong in the component's frontend folder. To prevent confusion we
normally use the optional 'folder' attribute to make the archive tidier. This tag has two sub-
tags, filename and folder, which can be used zero to many times.
Example <files folder="site"><!-- sub-tags --></files>
Attributes [folder] Folder in the archive where the files reside.
Sub-tags filename, folder

filename

Defines a file we want to copy into the root.
Example <filename>example.php</filename>

folder

Defines folders we want to copy into the front-end folder; if a folder has subfolders and
files we do not have to specify these.
Example <folder>afolder</folder>

install

Database installation options. Do not confuse this with the root install tag!
Example <install><!-- sub-tags --></install>
Sub-tags queries, sql

Chapter 4

[107]

installfile

File to execute when installing the component. The file can optionally include a function
called com_install(), returning true on success. This is only required if you want to
perform additional processing during installation.
Example <installfile>install.php</installfile>

language

Language tags define a language INI file. The tag includes the attribute tag; this is used to
identify the language.
Example <language tag="en-GB">en-GB.com_example.ini</language>
Attributes tag Language tag.

languages

Language files. If any of the language files already exist, they will not be overwritten. This
tag has one subtag, language. Each language tag defines a language INI file. The language
tag must include the attribute tag; this is used to identify the language.

Example

<languages folder="languages">

 <!—sub tags -->

</languages>

Attributes [Folder] Folder in the archive where the files reside.
Sub-tags language

license

License agreement.
Example <license>GNU GPL</license>

media

Media files to be copied to the root Joomla! images folder.
Example <media destination="stories"><!—sub tags --></media>
Attributes [destination] Destination folder within the Joomla! images folder.

[folder] Source folder.
Sub-tags filename

Component Design

[108]

menu

Backend menu items.
Example <menu>Menu Name</menu>

Attributes

[act] Optional link parameter.
[controller] Optional link parameter.
[img] Location of menu item image.
[layout] Optional link parameter.
[link] URI Link.
[sub] Optional link parameter.
[task] Optional link parameter.
[view] Optional link parameter.

name

Component name.
Example <name>example</name>

param

A parameter. How this tag is used depends upon the type of parameter we are defining; a
complete description of these types and their attributes is available in the appendix.
Example <param type="text" name="foobar" label="Foobar"/>

params

Component parameters.
Example <params><!—sub tags --></params>

Attributes

addPath

Directory where custom JElements subclasses
can be found.

Sub-tags param

queries

SQL queries to execute.
Example <queries><!—sub tags --></queries>
Sub-tags query

Chapter 4

[109]

query

SQL queries to execute.

Example

<query>CREATE TABLE `#__myextension` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(255) NOT NULL default '',
 PRIMARY KEY (`id`)
) CHARACTER SET `utf8` COLLATE `utf8_general_ci`</query>

submenu

Backend sub-menu.
Example <submenu><!— sub tags --></submenu>
Sub-tags menu

sql

S�L files to execute.
Example <sql><!-- sub tags --></sql>
Sub-tags file

uninstall

Database un-installation options. Do not confuse this with the root install tag!
Example <uninstall><!-- sub tags --></uninstall>
Sub-tags queries, sql

uninstallfile

File to execute when uninstalling the component. The file can optionally include a function
called com_uninstall(), returning true on success. This is only required if you want to
perform additional processing during un-installation.

Example

<uninstallfile>uninstall.myextension.php</
uninstallfile>

version

Extension version. Most extensions use three digits in the form major.minor.patch;
version 1.0.0 normally denotes the first stable release.
Example <version>1.0.0</version>

Component Design

[110]

SQL Install and Uninstall Files and Queries
Most components have at least one table associated with them. We can use SQL
install and uninstall files to create, populate, and remove tables. Normally we create
three different S�L files, one for installing on UTF-8-compatible MyS�L servers, one
for installing on non-UTF-8-compatible MyS�L servers, and one uninstall file.

We normally name the S�L installation files install.extensionname.sql and
install_backward.extensionname.sql for UTF-8 and non-UTF-8 servers
respectively. We normally name the un-installation S�L file uninstall.
extensionname.sql. We do not have to use this naming convention.

This is an example of an S�L install file, which creates the table #_myextension_
foobars, which we defined in the previous chapter:

DROP TABLE IF EXISTS `#__myextension_foobars`;
CREATE TABLE `#__myextension_foobars` (
 `id` INTEGER UNSIGNED NOT NULL DEFAULT NULL AUTO_INCREMENT,
 `content` TEXT NOT NULL DEFAULT '',
 `checked_out` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 `checked_out_time` DATETIME NOT NULL DEFAULT '0000-00-00
 00:00:00',
 `params` TEXT NOT NULL DEFAULT '',
 `ordering` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 `hits` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 `published` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 PRIMARY KEY(`id`)
) CHARACTER SET `utf8` COLLATE `utf8_general_ci`;

Note that before we attempt to create the table we first delete it if it
exists. This guarantees that we will not encounter a 'table already exists'
type error.

We also define the character set and the collation; this ensures that our table is
UTF-8-compatible. Obviously, we only do this in the S�L file for UTF-8-compatible
MySQL severs. For more information about the differences between UTF-8-
compatible and non-UTF-8 compatible MySQL servers, refer to Chapter 3. We
only need one uninstall file because it will not be any different whether it is UTF-8
compatible or not. This is an example of the uninstall S�L file:

DROP TABLE IF EXISTS `#__some_table`;

You must copy the S�L files into the root of your component's backend
as well as defining them in install and uninstall tags.

Chapter 4

[111]

Alternatively, you can embed the queries inside the XML manifest file in query tags.

<queries>
 <query>DROP TABLE IF EXISTS `#__ myextension_foobars`;</query>
 <query>CREATE TABLE `#__myextension_foobars` (
 `id` INTEGER UNSIGNED NOT NULL DEFAULT NULL AUTO_INCREMENT,
 `content` TEXT NOT NULL DEFAULT '',
 `checked_out` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 `checked_out_time` DATETIME NOT NULL DEFAULT '0000-00-00
 00:00:00',
 `params` TEXT NOT NULL DEFAULT '',
 `ordering` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 `hits` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 `published` INTEGER UNSIGNED NOT NULL DEFAULT 0,
 PRIMARY KEY(`id`)
) CHARACTER SET `utf8` COLLATE `utf8_general_ci`;
 </query>
</queries>

Install and Uninstall Files
During the install and uninstall phases we can optionally execute install and
uninstall files. This allows us to perform additional processing that we may not be
able to do using the XML manifest file.

The install file normally includes a function called com_install(). This function is
used to execute additional processing that we may want/need during installation of
our component. If anything fails during the function, we can return Boolean false.
This will abort the extension installation.

We can also use the install file to output information. This is used for two different
purposes: to display some message that explains something about the component
and to show the success or failure of any processing.

This example shows how we can use the com_install() function. Note that this is
executed after the rest of the XML manifest file has been successfully processed.

/**
 * Some Component installation script
 *
 * @return boolean false on fail
 */

Component Design

[112]

function com_install()
{
 $return = true;
 echo '<pre>';
 // do some task
 echo JText::_('Doing Something').': ';
 if (dosomething())
 {
 echo JText::_('Success');
 }
 else
 {
 echo JText::_('Fail');
 }
 echo '</pre>';

 if ($return)
 {
 echo '<p style="text-align: center;">'
 ."\n"
 . JText::_('Thank you for installing Some Component')
 ."\n</p>";
 return true;
 }

 return $return;
}

The uninstall file is very similar; the file can include a function called
com_uninstall(). This function is used to execute additional processing that we
may need during un-installation of our component. If anything fails during the
function, we can return Boolean false.

We can also use the uninstall file to output information. This is often used for two
different purposes: to display some message that explains something about the
component and to show the success or failure of any processing in the uninstall file.

Unlike the install file, this function is run before the XML manifest file is processed to
remove the component.

Chapter 4

[113]

Summary
Components are undoubtedly the most complex extensions, and, as a result, the hardest
to implement. Before jumping in head first, it can be a good idea to examine existing
components to see how they are constructed. The Web Links component is used as an
example because it demonstrates many of the common aspects of a component and
does so with a relatively simple and easy-to-understand data structure.

The MVC pattern consists of three parts, the model, view, and controller. Getting to
grips with how these interact with one another is fundamental to creating
well-formed components.

We investigated the use of the different document formats: feed, HTML, PDF, and
RAW. Enabling a component to render the same data in several formats requires
very little effort and can make a component far more successful.

Understanding how menu items override the component configuration is imperative
when dealing with the component configuration. Administrators also sometimes
misunderstand the approach; we should take care to ensure that administrators are
aware of the mechanism.

Documentation, especially in open-source extensions, is often over looked. Since
Joomla! provides us with an easy way of integrating multilingual documentation
in the backend, this short-coming can easily be avoided. It is generally a good idea
to create help files with a brief outline while we are still developing components
because it helps ensure that when we come to write the complete documentation we
do not miss any important information.

More and more administrators are starting to use SEO URIs. This process is not
automatic, so to enable SEO URIs in our components we must build a router. We
should wait until the ending stages of development before creating a router. It is
common for us to change the way in which we handle data during the development
phase; creating the router too early may waste valuable time and effort.

Packaging a component is crucial to enable the distribution of the component. When we
create the XML manifest file, we should always remember to use UTF-8 encoding and
to include the DOCTYPE tag with a link to the Joomla! install component DTD schema.

The install and uninstall PHP scripts are very power tools. Using these to the full
potential enables us to create incredibly versatile installers. If there is anything that
we want to do during the install or uninstall phase, which we cannot achieve using
the XML manifest file, we should add it to the install and uninstall files. It can also
be a nice touch to add some generic 'getting started' tips for the administrator to the
install file.

Module Design
Joomla! modules come in two flavors, frontend and backend. Modules can be
standalone or, as is often the case, can work alongside components. In this chapter,
we will discuss the following points:

Setting up a Sandbox
First Steps
Module Settings (Parameters)
Helpers
Layouts (Templates)
Translating
Packaging

Setting Up a Sandbox
When we start building a new module, it is imperative that we have a sandbox,
to test our code. Ideally, we should have more than one system so we can test our
modules on different server setups.

To set up a sandbox module we can create a basic installer. The XML displayed
below can be used to create a blank module called My Extension.

<?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE install SYSTEM "http://dev.joomla.org/xml/1.5/
 module-install.dtd">
 <install version="1.5" type="module" client="site">
 <name>My Extension</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>

•

•

•

•

•

•

•

Module Design

[116]

 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Module License Agreement</license>
 <version>Module Version</version>
 <description>Module Description</description>
 <files>
 <filename module="mod_myextension">
 mod_myextension.php</filename>
 </files>
 </install>

To use this, create a new XML manifest file, using UTF-8 encoding, and save the
above code into it. The name of this file is not important, as long as the extension is
.xml. You will need to update the XML to suit the module you intend to build.

The module name can also be used in the form mod_parsedname. For example, the
name My Extension would also be used in the format mod_myextension.

Once you have built your XML manifest file, create a new PHP file called mod_
myextension.php. This is the file that is invoked when the module is used. If you do
not include this file, you will not be able to install the module.

Now create a new archive, which must be .gz, .tar, .tar.gz, or .zip, and add the
XML manifest file and PHP file to it. If you install the archive, you will get a blank
module ready for you to begin developing.

The module that the above process will install is a frontend module. If we want to
create a backend module, we would have to modify the install tag client attribute
value from site to administrator.

The module will be located at modules/mod_myextension. If we create a backend
module, it will be located at administrator/modules/mod_myextension.

In order to enable and use your module, you will need to use the Module Manager to
publish and assign the module to menu items.

First Steps
Now we are ready to start playing with a module. Joomla! allows us a good deal
of freedom within modules. The file mod_myextension.php is invoked when the
module is used. There are no restrictions as to what we choose to do within this file.

You can output data at any point during the execution of a module. To test this, if
you output some data from mod_myextension.php, the data will appear in
the module.

Chapter 5

[117]

Standalone Modules
Standalone modules do not depend on other extensions. These modules tend to
require more effort to produce because there is no existing API, other than that
which Joomla! provides.

Standalone modules normally use data sources external to Joomla!. If we want
to store data within Joomla! we are faced with the problem that modules do not
support the execution of custom SQL or other scripts during installation.

There are two good ways in which we can counter this:

We can use a conditional SQL query when the module is invoked. A
consideration, if using this method, is the additional strain that is placed
on the database server, especially if you are creating multiple tables. The
following example demonstrates how we can achieve this:
 $db =& JFactory::getDBO();
 $query = 'CREATE TABLE IF NOT EXISTS '.$db-
 >nameQuote('#__some_table').' ('.$db-
 >nameQuote('id').' int(11) NOT NULL auto_increment, '
 .$db->nameQuote('name').' varchar(255) NOT NULL default '', '
 .'PRIMARY KEY ('.$db->nameQuote('id'). ') '
 .') CHARACTER SET `utf8` COLLATE `utf8_general_ci`';
 $db->setQuery($query);
 $db->query();

We can use a flag to indicate if the tables have already been created. We can
implement a flag in several ways. For example, we could use a blank file or
a module configuration option. This example demonstrates how we can use
a module configuration option (we will discuss the module configuration
options in the next section):
if (!$params->get('tablecreated'))
{
 // create the table
 $db =& JFactory::getDBO();
 $query = 'CREATE TABLE IF NOT EXISTS '.$db-
 >nameQuote('#__some_table').' ('
 $db->nameQuote('id').' int(11) NOT NULL auto_increment, '
 .$db->nameQuote('name').' varchar(255) NOT NULL default '', '
 .'PRIMARY KEY ('.$db->nameQuote('id'). ') '
 .') CHARACTER SET `utf8` COLLATE `utf8_general_ci`';
 $db->setQuery($query);
 $db->query();

 // set the `tablecreated` flag to true
 $params->set('tablecreated', 1);
}

•

•

Module Design

[118]

Of course we don't have to use the database to store data. For example, we can use
XML files. A full description of using XML in Joomla! is available in Chapter 10.

Modules and Components Working Together
Joomla! does not provide a large API for Modules; it's partly for this reason that
generally we create modules in conjunction with components. Modules, which
complement components, should take advantage of existing component code. This
creates dependencies between the module and the component.

There is currently no formal way of defining dependencies in extensions. We must
manually ensure that all dependencies are met. It is important to understand that even
if an extension is installed, it may not necessarily work. Extensions can be flagged as
disabled; this means that we check if the extension is installed and if it is enabled.

To check that a component is installed, and is enabled, we can use the isEnabled()
method in the static JComponentHelper class. This example demonstrates how we
can check if some component is installed and enabled:

jimport('joomla.application.component.helper');

if (!JComponentHelper::isEnabled('com_somecomponent', true))
{
 JError::raiseError('SOME_ERROR', JText('Module requires the Some
Extension component'));
}

Notice that the second parameter we pass to the isEnabled() method is true. This
ensures that the method is executed in strict mode. If it is not, components that are
not installed will return true.

The way in which the example deals with a missing component is somewhat drastic.
A more polite method would be to output a warning message and end processing of
the module.

We could achieve this very neatly using a custom module error layout. We will
discuss this later in the chapter.

We can also check that specific plugins and modules are installed
and enabled. This works in the same way as described above, except
we use the static isEnabled() method in JPluginHelper and
JModuleHelper classes.

Chapter 5

[119]

Frontend and Backend Module Display
Positions
For the most part you will probably find yourself building modules.

In the frontend, modules are generally displayed in vertical blocks to the left or right
of the page. This list details the available positions; exact positions will depend upon
the site template:

banner
breadcrumb
footer
left
right
syndicate
top
user1
user2
user3
user4

In the backend, modules are displayed in some very different positions. When
creating backend modules we generally have a special position in mind for the
module. This list details the available positions; exact positions will depend upon the
admin template:

cpanel
footer
header
icon
menu
status
submenu
title
toolbar

We do not specify the position when we create a module; it is up to an administrator
where he or she chooses to publish a specific module. Nevertheless, we should always
bear in mind the different positions in which a module may end up being published.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Module Design

[120]

Module Settings (Parameters)
An important part of building modules is dealing with module settings. We can
define custom parameters for modules in the module XML manifest file. Module
parameters fall into two groups, Module Parameters and Advanced Parameters.

There is no difference in the application of Module Parameters and Advanced
Parameters; we split them into two groups to help the classification of the
parameters, consequently making the administrator's job easier.

As a general rule: Module Parameters are the more basic, although generally more
fundamental, of the two. Advanced Parameters pertain to settings that are more
complex and are rarely modified.

This example shows how we can add some simple parameters to a module:

<?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE install SYSTEM "http://dev.joomla.org/xml/1.5/module-
 install.dtd">
 <install version="1.5" type="module" client="site">
 <name>My Extension</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Module License Agreement</license>
 <version>Module Version</version>
 <description>Module Description</description>
 <files>
 <filename module="mod_myextension">mod_myextension.php</filename>
 </files>
 </install>
 <params>
 <param name="aparam" type="text" label="A Parameter"
 description="A description" />
 </params>
 <params group="advanced">
 <param name="anotherparan" type="text" label="Another Parameter"
 description="A description" />
 </params>
 </install>

Chapter 5

[121]

In this instance, we have added the text parameters aparam and anotherparam. The
first is displayed in the Module Parameters category, the second in the Advanced
Parameters category, as this screenshot demonstrates:

A complete description of the different types of parameters and how to define them
in XML is available in the Appendix.

Once we have defined all of the module parameters, we can access them in the
module using the variable $params. This variable is a JParameter object; it allows us
to retrieve module parameters at run time.

The most important methods we need to be aware of in the JParameter class are
def(), get(), and set().

We use def() to set a default value for a parameter if no value currently exists for it.
This example demonstrates how we would use the method to set a default value of
value for the parameter aparam:

$params->def('aparam', 'value');

We use get() to get the value of a parameter. This example demonstrates how we
would use the method to get the value of the parameter aparam:

$params->get('aparam');

We can also pass a second parameter to get(), which will be returned if no value
already exists for the parameter.

We use set() to set a value for a parameter. This example demonstrates how we
would use the method to set a value of value for the parameter aparam:

$params->set('aparam', 'value');

Helpers
Module helpers are static classes, which we use to encapsulate functions specific to
the module. Incorporating the functions in a static class reduces the chance of conflict
with other extensions and the core.

Module Design

[122]

We normally name module helper classes using the naming convention: the word
mod, the module name, the word Helper. For example, a helper class for the module
My Extension would be called modMyExtensionHelper.

Module helper classes are normally located in a file called helper.php in the root of
the module. In this example, we define the class modMyExtensionHelper and create
a method called getItems():

/**
 * My Extension Module Helper
 *
 * @static
 */
class modMyExtensionHelper
{

 /**
 * Gets an array of items
 *
 * @param JParameter Module parameters
 * @return mixed Array of items, false on failure
 */
 function &getItems(&$params)
 {
 $db =& JFactory::getDBO();
 $category = $params->get('category', 0);
 $query = modMyExtensionHelper::_buildQuery($category);
 $db->setQuery($query);
 $instance = $db->loadObjectList();
 return $instance;
 }
 /**
 * Gets an SQL query string
 *
 * @param JParameter Module parameters
 * @return string SQL query
 */
 function _buildQuery($category)
 {
 $db =& JFactory::getDBO();
 return 'SELECT * FROM '.$db->nameQuote('#__some_table').
 ' WHERE '.$db->nameQuote('category').' = '.$category.
 ' AND '.$db->nameQuote('published').' = 1';
 }
}

Chapter 5

[123]

We split the getItems() method into two; this makes the code more readable and
aids the logical structure of the class. Notice that the getItems() method returns a
reference, which reduces memory overheads when using the method.

We also need to pass a JParameter object to the getItems() method, most likely
the module parameters, $params. We then use a parameter named 'category' to
determine which records to get from the fictitious database table, #__some_table.

It is common practice to pass the $params object to module helper class methods. If a
method is only using one parameter from $params, it is still a good idea to pass the
entire object because it will make the addition of any extra parameters easier.

We could have specified $instance as static, only executing the query if it hadn't
been executed already. This would only make sense if there were a possibility that
the method would be executed more than once. This example shows how we might
choose to implement this:

/**
 * Gets an array of items
 *
 * @param JParameter Module parameters
 * @return mixed Array of items, false on failure
 */
function &getItems(&$params)
{
 static $instances;
 if (!isset($instances))
 {
 $instances = array();
 }
 $category = $params->get('category', 0);
 if (empty($instances[$category]))
 {
 $db =& JFactory::getDBO();
 $query = modMyExtensionHelper::_buildQuery($category);
 $db->setQuery($query);
 @$instances[$category] = $db->loadObjectList();
 }
 return $instances[$category];
}

Note that we have renamed $instance to $instances and that
it is now an array.

Module Design

[124]

This is an example of how we would use the helper we have just defined, and use the
getItems() method. This assumes we are in the root module file and hence $params
is available to us.

require_once(dirname(__FILE__).DS.'helper.php');
$items =& modMyExtensionHelper::getItems($params);

Once we have done this, we could then verify that $items is an array. If not, we
could raise an error, notice, or warning.

We can use helpers for many different tasks as well as data retrieval. Joomla!
encourages, although it does not force, the use of OO (Object-Oriented) design.
Functionality that we build in helpers is specifically functionality that has no
other logical category. Helper classes allow us to stick to OO design without any
compromise on the logical design of classes.

Layouts (Templates)
Layouts (templates) are used in modules in much the same way as they are in
components. Module layouts allow us to define multiple appearances for data.

Layouts are essentially template files, PHP files, which are mainly XHTML interlaced
with snippets of PHP. For a complete explanation of how to build template files
please, refer to Chapter 9.

Site templates can override module layouts. To render a module using a layout we
use the getLayoutPath() method in the static JModuleHelper class. This method
determines the location of a template file based on two parameters, the parsed
module name and the layout name.

In this example we render the default layout (mod_myextension/tmpl/default.
php) using the getLayoutPath() method:

require(JModuleHelper::getLayoutPath('mod_myextension'));

In this example, we render an alternative layout, aptly named 'alternate' (mod_
myextension/tmpl/alternate.php):

require(JModuleHelper::getLayoutPath('mod_myextension',
 'alternate'));

If you create alternative module layouts, you can name them the way you want. The
name of a layout corresponds directly to the name of a template file. For example, the
template file vert.php would be the layout vert.

Chapter 5

[125]

Unlike in components, in modules we do not create XML metadata files to describe
each layout. Instead, if we want to allow an administrator to select which layout he
or she wants to use, we must add a module parameter and use it accordingly.

This is an example of how we might define a parameter to handle different layouts in
the module XML manifest file (alternatively, we could use a list parameter and manually
define each available layout):

<param name="layout" type="filelist" label="Layout"
 description="Style with which to display the module"
 directory="/modules/mod_myextension/tmpl"
 default="default" hide_default="1" hide_none="1"
 stripext="1" filter="\.php$" exclude="^_" />

This parameter, named 'layout', generates a list of items based on the template files.
It includes PHP files and excludes files with names that start with an underscore.
The list of items is displayed without the file extensions, and the values are saved
without the file extensions.

Imagine the tmpl folder contains the files: default.php, horiz.php, index.html,
vert.php, and _item.php. This is what the parameter would appear like when
rendered as a form element:

To use this parameter to render a template we can use the following; note that if the
parameter is not defined we use the layout 'default':

$layout = $params->get('layout', 'default');
require(JModuleHelper::getLayoutPath('mod_myextension', $layout));

We mentioned earlier the possibility of using a bespoke module error layout if
anything were to go amiss during the execution of our module. We can use the
JError class to define an error. Joomla! uses this class to describe errors, and objects
of this type are often returned from methods when errors occur.

This example shows how we could use a JError object, stored in $error, in
conjunction with a tailored layout:

<p>
 <?php echo $error->code; ?>

 <?php echo JText::_($error->message); ?>
</p>

Module Design

[126]

If we save this as a layout in the module's tmpl folder and call it _error.php, we
can proceed to use it. We use an underscore at the start of the name because it is an
internal template and we don't want it to appear in the selection of layouts. This
example shows how we can use the layout in conjunction with a JError object:

$result = modMyExtensionHelper::someMethod();
if (JError::isError($result))
{
 $params->set('layout', '_error');
 $error =& $result;
}

$layout = $params->get('layout', 'default');
require(JModuleHelper::getLayoutPath('mod_myextension', $layout));

Media
If you intend to include any images or other media files with your module, you
might want to add the files to the Joomla! root images folder. This is the folder that
the Joomla! Media Manager uses. You should either add your files to the root of this
folder or create a sub-folder.

The way in which the module installer works forces us to go
only one folder deep within the images folder.

Translating
As part of a module, we can define a set of translations. A full description of how
to create language files is available in Chapter 9. When we create module translation
files, we must name the file according to a specific naming convention: the language
tag, a period, the Joomla! parsed module name. For example, the
British English translation file for the module My Extension would be called
en-GB.mod_myextension.php.

Module translation files are located in the language and administrator/language
folders. If you are creating a frontend module, use the language folder. If you are
creating a backend module, use the administrator/language folder.

By using this specific naming convention, when we use our module, the module's
translation file will automatically be loaded. We can, if we so choose, manually load
other language files.

Chapter 5

[127]

If we are creating a module in conjunction with a component, we may want to use
a component language file instead of, or in addition to, the module language file.
To load a component language file from within a module we can use the global
JLanguage object.

This example shows how we would load the My Extension component language file
(you would need to do this before using JText to translate any strings):

$language =& JFactory::getLanguage();
$language->load('com_myextension');

Packaging
Modules are packaged in archive files. A number of archive formats are supported:
.gz, .tar, .tar.gz, and .zip. There is no specific naming convention for module
archive files; however, the following is often used: mod_name-version. For
example, the package for version 1.0.0 of My Extension would be called
mod_myextension-1.0.0.

When you package a module, ensure you do not include any system
files. Apple Mac developers should be especially vigilant and
consider using the CleanArchiver utility
(http://www.sopht.jp/cleanarchiver/).

Within the package, as well as the module files, there is a special XML manifest file,
which describes the module.

Interestingly there is no specific name that we are expected to use for the XML file.
When we install a module, Joomla! will interrogate all the XML files it can find in the
root of the archive until it finds a file that it believes to be a Joomla! installation XML
manifest file.

If you want to use a standard naming convention for your XML manifest file, you
should consider using the name of the archive. For example if the module archive is
named mod_myextension-1.0.0.zip you might want to call the XML manifest file
mod_myextension-1.0.0.xml.

XML Manifest File
The XML manifest file details everything the installer needs to know about an
extension. Any mistakes in the file may result in partial or total installation failure.
XML manifest files should be saved using UTF-8 encoding. For a base manifest file,
you can use the file detailed at the start of this chapter, used to create a sandbox.

Module Design

[128]

The tables below describe the tags you can use in your XML manifest file in detail.

install (Root tag)

The root tag, called 'install', identifies the type of extension and the version Joomla! for
which the extension is written.

Example

<install type="module" version="1.5">

 <!-- sub-tags -->

</install>

Attributes type Type of extension.
version Version of Joomla! the extension is for.

Sub-tags

author, authorEmail, authorUrl, copyright, creationDate, description, files*,
languages*, license, media*, name, params, version

author

Author's name.
Example <author>John Smith</author>

authorEmail

Author's email address.
Example <authorEmail>johnsmith@example.org</authorEmail>

authorUrl

Author's or module's website address
Example <authorUrl>http://www.example.org</authorUrl>

copyright

Copyright notice.
Example <description>Copy me as much as you like!</description>

description

Module description.
Example <copyright>Example module description.</copyright>

Chapter 5

[129]

files

Files and folders that belong in the module's frontend folder. To prevent confusion we
normally use the optional folder attribute to make the archive tidier. This tag has two sub-
tags, filename and folder, which can be used zero to many times.
Example <files><!-- sub-tags --></files>
Attributes [folder] Folder in the archive where the files reside.
Sub-tags filename, folder

filename

Defines a file we want to copy.
Example <filename>example.php</filename>

folder

Defines folders we want to copy; if a folder has subfolders and files we do not have to
specify these.
Example <folder>afolder</folder>

language

Language tags define a language INI file. The tag includes the attribute tag, which is used
to identify the language.
Example <language tag="en-GB">en-GB.com_example.ini</language>
Attributes tag Language tag.

languages

Language files. If a language files already exist it will not be overwritten.
Example <languages folder="languages">

 <!—sub tags -->

</languages>

Attributes [Folder] Folder in the archive where the files reside.
Sub-tags language

license

License agreement.
Example <license>GNU GPL</license>

Module Design

[130]

media

Media files to be copied to the root Joomla! images folder.
Example <media destination="stories"><!—sub tags --></media>

Attributes

[destination]

Destination folder within the Joomla! images
folder.

Sub-tags filename

name

Module name.
Example <name>example</name>

param

A parameter: How this tag is used depends upon the type of parameter we are defining; a
complete description of these types and their attributes is available in the Appendix.
Example <param type="text" name="foobar" label="Foobar"/>

params

Module parameters.
Example <params><!—sub tags --></params>

Attributes

addParameterDir

Directory where custom JElements subclasses
can be found.

Sub-tags param

versionVersion
Extension version: Most extensions use three digits in the form major.minor.patch;
version 1.0.0 normally denotes the first stable release.
Example <version>1.0.0</version>

Chapter 5

[131]

Summary
The two flavors in which modules come, frontend and backend, essentially define
two different types of extension. Backend modules are often overlooked because we
tend to be less aware of them. We should try to remember that backend modules
are very powerful and can greatly enhance the administrative capabilities of
components.

Modules are integral to the success of a component. It's not uncommon for one
component to include several modules.

The simple nature of modules makes it easy to become sophisticated about them.
It's important to remember that because they are used and rendered so frequently,
efficient code is essential to good module design.

Plugin Design
Plugins enable us to modify system functionality without the need to alter existing
code. For example, plugins can be used to alter content before it is displayed, extend
search functionality, or implement a custom authentication mechanism. As an
example, this chapter shows how to replace a string in an article with an image.

Plugins use the Observer pattern to keep an eye on events. It is by listening to these
events that we can modify the system functionality. However, this also means that
we are limited to only modifying those parts of the system that raise events.

Plugins represent the listener, and they can define either a listener class or a listener
function to handle specific events.

In this chapter, we will cover the following:

Setting up a Sandbox
Events
Listeners
Plugin Groups
Loading Plugins
Using Plugins as libraries (in lieu of library extensions)
Translating Plugins
Dealing with Plugin Settings (Parameters)
Packaging
File Naming Conflicts

•

•

•

•

•

•

•

•

•

•

Plugin Design

[134]

Setting Up a Sandbox
When we start building a new plugin it is imperative that we have a sandbox:
somewhere we can test our code. Ideally, we should have more than one system so
we can test our plugins on different server setups.

To set up a plugin sandbox we can create a basic installer. The XML displayed below
can be used to create a blank plugin called 'Foobar - My Extension'.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM
 "http://dev.joomla.org/xml/1.5/plugin-install.dtd">
<install version="1.5" type="plugin" group="foobar">
 <name>Foobar - My Extension</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Plugin License Agreement</license>
 <version>Plugin Version</version>
 <description>Plugin Description</description>
 <files>
 <filename
 plugin="myextension">myextension.php</filename>
 </files>
 <params/>
</install>

To use this, create a new XML manifest file, using UTF-8 encoding, and save the
above code into it. You should update the XML to suit the plugin you intend to build.

One of the most important pieces of information in this file is the group attribute of the
install tag. Plugins are organized into logical groups. This list details the core groups:

authentication
content
editors
editors-xtd
search
system
user
xmlrpc

•

•

•

•

•

•

•

•

Chapter 6

[135]

We can use other groups as well. For example, the group in our XML is foobar.

It may seem slightly obscure, but another piece of important information in the XML
is the filename tag plugin parameter. This parameter identifies the plugin element.
The element is a unique identifier used to determine the root plugin file and used as
part of the naming convention.

Be careful when you select an element name for your plugin. Only one plugin per
group may use any one element name. This table details reserved plugin element
names (used by the core):

Group Reserved element name
authentication gmail

joomla
ldap
openid

content emailcloak
geshi
loadmodule
pagebreak
pagenavigation
sef
vote

editors none
tinymce
xstandard

editors-xtd image
pagebreak
readmore

search categories
contacts
content
newsfeeds
sections
weblinks

system cache
debug
legacy

Plugin Design

[136]

Group Reserved element name
system log

remember
user joomla
xmlrpc blogger

joomla

Once you have built your XML manifest file, create a new PHP file named after
the plugin element; this is the file that is invoked when the plugin is loaded. For
example, you would have to name the file myextension.php if you were to use the
XML displayed above. If you do not include this file, you will not be able to install
the plugin.

Now create a new archive, it can be gz, .tar, .tar.gz, or zip, and add the XML
manifest file and PHP file to it. If you install the archive, you should get a blank
plugin, which you can begin to develop.

Plugins are not stored in separate folders. This is because generally plugins only
consist of two files: the XML manifest file and the root plugin file. Installed plugins
are located in the root plugins folder in a subfolder named after the plugin group.
Our example would be located in the folder plugins/foobar.

In order to use your plugin, you will need to use the Plugin Manager to publish it.

Events
As we have already mentioned, plugins use the Observer pattern to keep an eye
on events and handle them. The Observer pattern is a design pattern in a logical
function, which is common to programming. This particular pattern allows listeners
to attach to a subject. The subject can initiate a notification (essentially an event),
which will cause the listeners to react to the event.

The expressions 'listener' and 'observer' are interchangeable, as are 'subject' and
'observable'.

If you are unfamiliar with the Observer pattern, you may want to refer to
http://www.phppatterns.com/docs/design/observer_pattern.

When we create plugins, we generally define listeners for specific events.

The application uses a global object called the event dispatcher to dispatch events to
registered listeners. The global event dispatcher, a JEventDispatcher object, extends
the abstract JObservable class.

Chapter 6

[137]

In Joomla! a listener can be a class or a function. When we use a class listener,
the class should extend the abstract class JPlugin; we extend this class because it
implements the methods that are used to attach the listener to a subject.

This diagram illustrates the relationship between the JEventDispatcher class and
listeners that extend the JPlugin class:

There are several events that are used in the core. In addition to these, we can use
our own events. We do not have to define events; we can just use them.

Let's imagine we have a component, which displays information about an entity
called Foobar. We might choose to use a custom event called onPrepareFoobar to
allow listeners to perform any additional processing to the Foobar data before we go
ahead and display a Foobar.

To issue an event, we trigger it. There is a method in the application called
triggerEvent(), which triggers events in the global event dispatcher, notifying
the relevant listeners. This is a pass-through method for the JEventDispatcher
trigger() method.

The triggerEvent() method accepts two parameters: the name of the event and an
array of arguments to pass to the listener.

Imagine we want to trigger the event onPrepareFoobar. This example shows how
we can achieve this; it assumes $foobarData is an object that represents a Foobar
entity. Note that $mainframe is the application.

$arguments = array(&$foobarData);
$result = $mainframe->triggerEvent('onPrepareFoobar', $arguments);

Plugin Design

[138]

The most important thing to notice here is that we reference and wrap $foobarData
in an array. The second parameter must always be an array. This array is dissected,
and each element is used as a separate parameter when dispatching an event to
a listener.

We purposefully make sure that $foobarData is passed by reference so we can make
changes to $foobarData in our listeners.

Once all of the listeners have been updated, the method returns an array of
responses. In our example this is recorded in $result. Imagine that all of the
onPrepareFoobar listeners return a Boolean value. $result would contain an array
of Boolean values.

Listeners
There is one more thing we need to do first. We need to know how to attach listeners
to the event dispatcher.

Registering Listeners
When we create a new plugin, if we are using functions, we must inform the
application of each function and event. We do this using the application's
registerEvent() method. The method accepts two parameters, the name of the
event and the name of the handler. This acts as a pass-through method for the global
event dispatcher register() method.

Technically the name of the handler can be the name of a class. We rarely need to
use the method in that context because when we load a plugin that defines a class,
Joomla! automatically registers the class and events.

For example, the core Joomla! search component uses plugins to search for results.
The plugin that searches content articles uses the function plgSearchContent() to
handle the onSearch event. This is how the function is registered:

$mainframe->registerEvent('onSearch', 'plgSearchContent');

Handling Events
We mentioned earlier that we could use functions or a class to handle events. We
will start by exploring event handling using functions.

Imagine we have a bespoke plugin called My Plugin in the group Foobar and we
want to handle an event called onPrepareFoobar.

Chapter 6

[139]

Before we start building our function we need to name it; generally we use the
following naming convention: the word plg, the plugin group, the element name, the
event. For example, we might call the function plgFoobarMyPluginPrepareFoobar.

This is an example of a function we could use to handle that event:

$mainframe->registerEvent('onPrepareFoobar',
 'plgFoobarMyPluginPrepareFoobar');

/**
 * Makes the name of the foobar uppercase.
 *
 * @param Foobar Reference to a Foobar object
 */
function plgFoobarMyPluginPrepareFoobar(&$foobar)
{
 $foobar->name = strtoupper($foobar->name);
}

The most striking part of this function is the parameter. Earlier in this chapter, we
described how to trigger an event and we passed an array; each element of that array
is passed as a separate parameter to the listeners. In this example we can assume
that the one parameter is the Foobar object, which we passed by reference in the
triggering events example.

A single plugin can contain multiple functions for handling
multiple events.

If we want to create a listener using a class, we extend the abstract class JPlugin.

Before we start building a listener class, we must determine the name for the
class. JPlugin subclasses follow a special naming convention: the word plg, the
name of the plugin group, the name of the plugin element. For example, a plugin
with the name myplugin in the group foobar might define the JPlugin subclass
plgFoobarMyplugin.

This example is designed to handle two events: onPrepareFoobar and
onAfterDisplayFoobar:

// import the JPlugin class
jimport('joomla.event.plugin');

/**
 * My Plugin event listener
 */

Plugin Design

[140]

class plgFoobarMyplugin extends JPlugin
{

 /**
 * handle onPrepareFoobar event
 *
 * @param object Foobar to prepare
 */
 function onPrepareFoobar(&$foobar)
 {
 $foobar->name = JString::strtoupper($foobar->name);
 }

 /**
 * handle onAfterDisplayFoobar event
 *
 * @param object Foobar which is being displayed
 * @return string XHTML to display after the Foobar
 */
 function onAfterDisplayFoobar(&$foobar)
 {
 return '<p>'.JText::_('Foobar Name converted to upper case by
 My Plugin').'</p>';
 }
}

The first thing that should have struck you about this example is that we have not
bothered to register any events with the global event dispatcher. The advantage
of using classes is we do not need to do this, so long as we follow the strict class
naming convention.

If we do not follow the naming convention, we can register a class in the
same way as we register a function, as described earlier in the chapter.

When plugins are imported into Joomla! the global event dispatcher will
automatically look for listener classes and register them.

You probably also noticed the names of the two methods are identical to the names
of the events they handle. This is essential when creating JPlugin subclasses. As we
do not manually register each event to each method, this is the only way in which
the event dispatcher can determine which event a method is designed to handle.

The onAfterDisplayFoobar() method has one major difference to the other
method; it returns a value. You may remember that earlier we mentioned that when
an event is triggered we get an array of all the results.

Chapter 6

[141]

This is an example of how we might choose to handle the results of the
onAfterDisplayFoobar event:

$arguments = array(&$foobar);
$result = $mainframe->triggerEvent('onAfterDisplayFoobar',
 $arguments);
$foobar->onAfterDisplayFoobar = trim(implode("\n", $result));

What we are doing is taking all the string values returned by the
onAfterDisplayFoobar event handlers and imploding them into one string. This is
then stored in the onAfterDisplayFoobar attribute of the $foobar object.

We normally do this type of thing in component view classes. A template would
then output the value of the onAfterDisplayFoobar parameter after the Foobar
was displayed.

It is important to understand that this event, although the name contains 'After', is
executed before the Foobar is actually outputted, what this is really identifying is that
the 'After' refers to where strings returned from the event handlers will be displayed.

Our event handlers have all been very simple; there are all sorts of other things
we can achieve using plugins. For example, we can modify referenced parameters,
return important data, alter the page title, send an email, or even make a log entry!

When we think of plugins we must think beyond content and think in terms of
events and listeners. The plugin groups, which we will discuss in a moment, will
demonstrate a number of different things we can achieve, which go far beyond
modifying content.

Plugin Groups
Plugins are organized into different groups. Each plugin group is designed to handle
a specific set of events. There are eight core groups:

authentication
content
editors
editors-xtd
search
system
user
xmlrpc

•

•

•

•

•

•

•

•

Plugin Design

[142]

Each of these groups performs different functions, we will discuss precisely what
they are and how they handle them in a moment.

In addition to the core groups, we can create plugins that belong to other groups. For
example, if we created a component named Foobar and we wanted to add plugins
specifically for that component we could create a custom plugin group called foobar.

The following sections describe each of the core plugin groups, and creating
new plugins for the groups. At the end of each of these sections, we detail the
related events.

There are no strict rules regarding which event listeners belong to which group.
However using the events in the groups described below will ensure that the plugin
is loaded when these events occur.

Authentication
Authentication plugins are used to authenticate a user's login details. Joomla!
supports four different authentication methods:

GMail
Joomla!
LDAP
OpenID

By creating new authentication plugins, we can allow Joomla! to support additional
authentication methods. It is common for businesses to run more than one system,
each with its own authentication. Joomla! authentication plugins allow us to integrate
authentication between systems and reduce system management overheads.

There is only one authentication event, onAuthenticate. This event is used to
determine if a user has authentic credentials. To return a result from this event we
use the third parameter, a referenced JAuthenticationResponse object.

We set values within the object to signify the status of the authentication. This table
describes each of the properties we can set:

Property Description
birthdate User's Birthday
country User's Country
email User's email address.
error_message Error message on authentication failure or cancel
fullname User's Full name

•

•

•

•

Chapter 6

[143]

Property Description
gender User's gender
language Language tag
postcode Postcode or zipcode
status Status of the authentication
timezone User's timezone
username User's username – completed automatically

The status property is used to determine the result of the authentication. This table
describes the three different constants we use to define the value of status.

Constant Description
JAUTHENTICATE_STATUS_CANCEL Authentication Canceled
JAUTHENTICATE_STATUS_FAILURE Authentication Failed
JAUTHENTICATE_STATUS_SUCCESS Authentication Successful

Authentication plugins are stackable. We can use multiple authentication plugins
simultaneously. The plugins are used in published order and if any of them sets the
status of the JAuthenticationResponse object to JAUTHENTICATE_STATUS_SUCCESS
the login is deemed successful and no more authentication plugins are triggered.

The default setup, shown below, places the plugins in the order: Joomla!, LDAP,
OpenID, GMail. Only Joomla! authentication is enabled by default.

Additional processing can be performed once a login has completed using user
plugins. These are discussed later in the chapter.

onAuthenticate

Description

Triggered when a user attempts to log in, this event is used to authenticate
user credentials.

Parameters username Username
password Password
response Referenced JAuthenticationResponse object

Plugin Design

[144]

Content
The content plugins allow us to modify content items before we display them. The
most commonly used content event is onPrepareContent. This event, always the
first of all the content events to be triggered, is used to modify the text content.

Let's imagine we want to create a content plugin which will replace all occurrences
of ':)' with a small smiley face icon. This is how we could implement this:

// no direct access
defined('_JEXEC') or die('Restricted access');

// register the handler
$mainframe->registerEvent('onPrepareContent',
 'plgContentSmiley');

/**
 * Replaces :) with a smiley icon.
 *
 * @param object Content item
 * @param JParameter Content parameters
 * @param int Page number
 */
function plgContentSmiley(&$row, &$params, $page)
{
 $pattern = '/\:\)/';
 $icon = '';
 $row->text = preg_replace($pattern, $icon, $row->text);
}

Notice that we do not return the changes, we modify the referenced $row object.
The $row object is the content item; it includes a great many attributes. This table
describes the attributes that we are most likely to modify:

Attribute Description
created Created date and time in the format 0000-00-00 00:00:00.
modified Modified date and time in the format 0000-00-00 00:00:00.
text Body content of the item.
title Content Item Title.
toc Table of Contents.

Chapter 6

[145]

onAfterDisplayContent

Description Creates an XHTML string, which is displayed directly after the content item.

Parameters row Reference to a content item object.

params

Reference to a JParameter object, which is
loaded with the content item parameters.

page Page number.

Returns XHTML to display directly after the content item.

onAfterDisplayTitle

Description

Creates an XHTML string, which is displayed directly after the content
item title.

Parameters row Reference to a content item object.

params

Reference to a JParameter object, which is
loaded with the content item parameters.

page Page number.
Returns XHTML to display directly after the title of the content item.

onBeforeDisplayContent

Description

Creates an XHTML string, which is displayed directly before the content
item text. For example the 'Content - Rating' plugin.

Parameters row Reference to a content item object.

params

Reference to a JParameter object, which is
loaded with the content item parameters.

page Page number.
Returns XHTML to display directly before the content item text.

onPrepareContent

Description

Prepares a RAW content item ready for display. If you intend to modify
the text of an item, you should use this event.

Parameters

row

Reference to a content item object. To modify
content we must directly edit this object.

params

Reference to a JParameter object, which is
loaded with the content item parameters.

page Page number.
Returns True on success.

Plugin Design

[146]

Editors
Probably the most complex of all the core plugins are editors. These plugins are used
to render handy client-side textarea editors. One of the core editors is TinyMCE
(http://tinymce.moxiecode.com/), a separate project in its own right. TinyMCE
is a JavaScript-based editor, which allows a user to easily modify data in a textarea
without the need for any knowledge of XHTML.

This is a screenshot of TinyMCE in action in Joomla!:

Note that the buttons displayed at the bottom of the editor are not part of the editor.
These are created by editors-xtd plugins, explained later in this chapter.

Generally editor plugins are derived from existing JavaScript editors. This is a list of
just some of the editors that have already been ported for use with Joomla!:

ASBRU Web Content Editor
FCKeditor
wysiwygPro
XStandard

Porting an editor for use with Joomla! is no easy task. Intimate understanding of the
editor and Joomla! editor plugins is required.

•

•

•

•

Chapter 6

[147]

onDisplay

Description Gets the XHTML field element to use as the form field element.

Parameters name Name of the editor area/form field.
content Initial content.
width Width of editor in pixels.
height Height of editor in pixels.
col Width of editor in columns.
row Height of editor in rows.

buttons

Boolean, show/hide extra buttons; see the
onCustomEditorButton event, part of
editors-xtd, explained in the next section.

Returns XHTML form element for editor.

onGetContent

Description Gets some JavaScript, which can be used to get the contents of the editor.
Parameters editor Name of the editor area/form field.

Returns

A JavaScript string that, when executed client-side, will return the contents
of the editor. Must end with a semicolon.

onGetInsertMethod

Description

Gets some JavaScript which defines a function called
jInsertEditorText().

Parameters name Name of the editor area/form field.

Returns

A JavaScript string that defines the function
jInsertEditorText(text), which, when executed client-side, will
insert text into the current cursor position in the editor.

onInit

Description

Initialize the editor. This is only run once irrespective of how many times
an editor is rendered.

Returns

An XHTML tag to be added to the head of the document. Normally this
will be a script tag containing some JavaScript, which is integral to client-
side initialization of the editor.

Plugin Design

[148]

onSave

Description Gets some JavaScript, which is used to save the contents of the editor.
Parameters editor Name of the editor area/form field.

Returns

A JavaScript string, which must be executed before a form containing the
editor field is submitted. Not all editors will require this.

onSetContent

Description Gets some JavaScript, which can be used to set the contents of the editor.

Parameters
name Name of the editor area/form field.
HTML The new content of the editor.

Returns

A JavaScript string that when executed client-side, will set the contents of
the editor to the value of the HTML parameter.

Editors-xtd
This group is used to extend editor plugins by creating additional buttons for the
editors. Unfortunately, the core 'xstandard' editor does not support these plugins.
There is only one event associated with this group, onCustomEditorButton.

Since there is only one event associated with the group, we tend to use functions
instead of full-blown JPlugin subclasses. This example shows how we can add a
button, which adds the smiley ':)' to the editor content.

// no direct access
defined('_JEXEC') or die('Restricted access');

$mainframe->registerEvent('onCustomEditorButton',
 'plgSmileyButton');

/**
 * Smiley button
 *
 * @name string Name of the editor
 * @return array Array of three elements: JavaScript action,
 Button name, CSS class.
 */
function plgSmileyButton($name)
{
 global $mainframe;

 // get the image base URI
 $doc =& JFactory::getDocument();
 $url = $mainframe->isAdmin() ? $mainframe->getSiteURL() : JURI::
base();
 // get the JavaScript

Chapter 6

[149]

 $js = "
 function insertSmiley()
 {
 jInsertEditorText(' :) ');
 }
 ";

 $css = " .button1-left .smiley { background:
 url($url/plugins/editors-xtd/smiley1.gif)
 100% 0 no-repeat; }";
 $css .= "\n .button2-left .smiley { background:
 url($url/plugins/editors-xtd/smiley2.gif)
 100% 0 no-repeat; }";
 $doc->addStyleDeclaration($css);
 $doc->addScriptDeclaration($js);
 $button = array("insertSmiley()", JText::_('Smiley'),
 'smiley');

 return $button;
}

Temporarily ignoring the contents of the function, we do two very important
things in this code. We define the handler function and we register it with the global
event dispatcher.

Moving on to the guts of the plgSmileyButton() function, we will start by looking at
the $name parameter. This parameter is the name of the editor area. It is important we
have this so that we can identify which area we are dealing with. Admittedly, we do
not use this in our example function, but it is likely that it will be of use at some point.

We build some JavaScript and some CSS. The client will execute the JavaScript when the
button is pressed. We define two CSS styles to render the button in different locations.

The $button array that we return is an array that describes the button we want the
editor to display. The first element is the JavaScript to execute when the button is
pressed. The second element is the name of the button. The third element is the name
of the CSS style to apply to the button.

This screenshot demonstrates what our button might look like (fourth button):

Plugin Design

[150]

You will also notice that in this example we are using images located in the editors-
xtd folder. If you are wondering how we achieve this then look no further! The image
files would be included in the plugin archive and described in the XML manifest file.

This snippet shows the files tag in the XML manifest file:

<files>
 <filename plugin="smiley">smiley.php</filename>
 <filename>smiley1.gif</filename>
 <filename>smiley2.gif</filename>
</files>

Before we move on, there are some handy methods available to us of which you
should be aware. We can interrogate the editor to get some useful JavaScript
snippets. This table details the methods to do this:

Method Description
getContent JavaScript to get the content of the editor.
save JavaScript to save the content of the editor. Not all editors use this.
setContent JavaScript to set the content of the editor.

All of these methods return a JavaScript string. We can use the strings to build scripts
that interact with the editor. We use these because most of the editors are JavaScript
based, and therefore require bespoke script to perform these functions client-side.

This is an example of how we would use the getContent() method to build a script
that presents a JavaScript alert that contains the contents of the editor identified
by $name:

// get the editor
$editor =& JFactory::getEditor();

// prepare the JavaScript which will get the value of editor
$getContent = $editor->getContent($name);

// build the JavaScript alert that contains the contents of the editor
$js = 'var content = '.$getContent."\n"
 .'alert(content);';

onCustomEditorButton

Description Build a custom button for an editor.
Parameters name Name of the editor area.

Returns

An array of three elements, the JavaScript to execute when the button is
pressed, the name of the button, and the CSS Style.

Chapter 6

[151]

Search
We use search plugins to extend the core search component and get search results.
There are two events associated with this group, onSearch and onSearchAreas. The
purpose of onSearchAreas is a little more obscure.

To help explain, this is a screenshot of the search component:

As part of this, a user has the option as to which areas they want to search. In this case,
'Articles', 'Weblinks', 'Contacts', 'Categories', 'Sections', and 'Newsfeeds'. When we
trigger the onSearchAreas event, it is these 'areas' that we expect to be returned.

A single search plugin can deal with multiple areas.

The onSearch event is more implicit; it is the event that is raised when a search takes
place. Listeners to this event should return an array of results. Exactly how you
implement this will depend upon what you are searching.

onSearch

Description Perform a search and return the results.

Parameters text Search string.
phrase Search type, 'any', 'all', or 'exact'.

ordering

Order of the results, 'newest', 'oldest',
'popular', 'alpha' (alphabetical), or 'category'.

areas Areas to search (based on onSearchArea).

Returns

An array of results. Each result must be an associative array containing
the keys 'title', 'text', 'created', 'href', 'browsernav' (1 = open link in new
window), and 'section' (optional).

onSearchAreas

Description

Gets an array of different areas that can be searched using this plugin.
Every search plugin should return at least one area.

Returns

Associative array of different areas to search. The keys are the area values
and the values are the labels.

Plugin Design

[152]

System
There are four important system events. We have mentioned these once before, in
Chapter 2 Getting Started they occur in a very specific order and occur every time a
request is made. This list shows the order in which the four events occur:

onAfterInitialize

onAfterRoute

onAfterDispatch

onAfterRender

If you look at the diagrams we used to describe the process from request to response
in Chapter 2, you will see that each of these events is triggered at a very special point.

onAfterDispatch

Description Occurs after the application has been dispatched.

onAfterInitialize

Description Occurs after the application has been initialized.

onAfterRender

Description

Occurs after the application has been rendered, but before the response has
been sent.

onAfterRoute

Description Occurs after the application has been routed.

User
User plugins allow additional processing during user-specific events. This is
especially useful when used in conjunction with a component that defines tables that
are associated to the core #__users table.

We will take the event onAfterUserStore as an example. This event is triggered
after an attempt has been made to store a user's details. This includes new and
existing users.

This example shows how we can maintain another table, #__some_table, when a
new user is created:

$mainframe->registerEvent('onAfterStoreUser',
 'plgUserMaintainSomeTableStoreUser');

•

•

•

•

Chapter 6

[153]

/**
 * Add new rcord to #__some_table when a new user is created
 *
 * @param array User attributes
 * @param boolean True if the user is new
 * @param boolean True if the user was successfully stored
 * @param string Error message
 * @return array Array of three elements: JavaScript action, Button
 name, CSS class.
 */
function plgUserMaintainSomeTableStoreUser($user, $isnew, $success,
 $msg)
{
 // if they are a new user and the store was successful
 if ($isnew && $success)
 {
 // add a record to #__some_table
 $db = JFactory::getDBO();
 $query = 'INSERT INTO '.$db->nameQuote('#__some_table')
 .' SET '.$db->nameQuote('userid').' = '.$user['id'];
 $db->setQuery($query);
 $db->query();
 }
}

onBeforeStoreUser

Description Allows us to modify user data before we save it.

Parameters

user

Associative array of user details. Includes the
same parameters as the user table fields.

isnew True if the user is new.

onAfterStoreUser

Description

Allows us to execute code after a user's details have been updated. It's
advisable to use this in preference to onBeforeStoreUser.

Parameters

user

Associative array of user details. Includes the
same parameters as the user table fields.

isnew True if the user is new.
success True if store was successful.
msg Error message if store failed.

Plugin Design

[154]

onBeforeDeleteUser

Description

Enables us to perform additional processing before a user is deleted.
This is useful for updating non-core tables that are related to the core #__
users table

Parameters

user

Associative array of user details. Only has the
key id, which is the user's ID.

onAfterDeleteUser

Description

Same as onBeforeDeleteUser, but occurs after a user has been removed
from the #__users table.

Parameters

user

Associative array of user details. Only has the
key id which is the user's ID.

success True if the user was successfully deleted.
msg Error message if deletion failed.

onLoginFailure

Description

During a failed login this handles an array derived from a
JAuthenticationResponse object. See authentication plugins earlier in
this chapter.

Parameters

response

JAuthenticationResponse object as returned
from the onAuthenticate event, explained
earlier in the chapter.

onLoginUser

Description

During a successful login this handles an array derived from a
JAuthenticationResponse object. See authentication plugins earlier in this
chapter. This is not used to authenticate a user's login.

Parameters

user

JAuthenticationResponse object as returned
from the onAuthenticate event, explained
earlier in the chapter.

remember True if the user wants to be 'remembered'.
Returns Boolean false on failure.

onLogoutUser

Description

User is attempting to logout. The user plugin 'joomla' destroys the session
at this point.

Parameters

user

Associative array of user details. Only has
the keys 'id', which is the user's ID, and
'username', which is the user's username.

Returns Boolean false of failure.

Chapter 6

[155]

XML-RPC
XML-RPC is a way in which systems can call procedures on remote systems via
HTTP using XML to encode data. Joomla! includes an XML-RPC server, which we
can extend using plugins.

There are essentially two parts to XML-RPC plugins: the event handler for the event
onGetWebServices, which returns an array of supported web service calls, and a
static class or selection of functions that handle remote procedure calls.

For more information about creating XML-RPC plugins, please refer to Chapter 10.

onGetWebServices

Description Gets an associative array describing the available web service methods.

Returns

An associative array of associative arrays, which define the available
XML-RPC web service calls.

Loading Plugins
Before a plugin can respond to an event, the plugin must be loaded. When we
normally load plugins we load a group at a time. To do this we use the static
JPluginHelper class.

This example shows how we would load plugins from the group foobar:

JPluginHelper::importPlugin('foobar');

It is essential that we import plugins before firing events that relate to them. There is
one time when this does not apply; we never need to import 'system' plugins. System
plugins are imported irrespective of the request that is being handled. It is, however,
unlikely that we would ever need to trigger a system event because Joomla! should
handle all system events.

So where and when do we import plugins? Well firstly, it does not matter if we
attempt to import the same group of plugins more than once. At what point we
choose to import the plugins is entirely up to us. The most common place to import
plugins is in a component in a controller.

For example, the search component imports all of the search plugins before it raises
any events that are specific to search plugins:

JPluginHelper::importPlugin('search');

Note that it is not the responsibility of the plugin to load itself. It is up
to the extension that uses the associated plugin group to do this.

Plugin Design

[156]

In the unlikely event that we want to import a specific plugin, we can do this:

JPluginHelper::importPlugin('foobar', 'somePlugin');

This example imports the plugin somePlugin, located in the foobar group.

Using Plugins as Libraries (in Lieu of
Library Extensions)
We have mentioned the Joomla! library a number of times in the past. Although
the library is a powerful part of Joomla!, it is not extensible. There are currently
discussions within Joomla! to create library extensions and implement an extension
dependency mechanism.

In the meantime, we can use plugins as libraries. Plugins, although not designed for
this, are ideally suited to this because they enable us to build up a shared directory
structure based on several plugins.

First, we must use a common plugin group for a library; we should think of this as
the root library namespace. This XML defines a plugin called 'My Library - Base'.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM
 "http://dev.joomla.org/xml/1.5/plugin-install.dtd">
<install version="1.5" type="plugin" group="mylibrary">
 <name>My Library - Base</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Plugin License Agreement</license>
 <version>Plugin Version</version>
 <description>Plugin Description</description>
 <files>
 <filename plugin="base">base.php</filename>
 <folder>base</folder>
 <folder>foo</folder>
 </files>
 <params/>
</install>

This will create two folders, base and foo, in the plugin folder mylibrary.

Chapter 6

[157]

Note that we have to include a file with a plugin
element, base.php.

To import elements from this pseudo-library we can use the JLoader class. This class
is what sits behind the regularly used jimport() function, which we use to import
parts of the Joomla! library.

Let's create a function called myimport() to import library elements from the plugin
group mylibrary.

function myimport($path)
{
 return JLoader::import($path, JPATH_PLUGINS . DS . 'mylibrary');
}

A good place to create this function is in the base.php file. So, bearing in mind our
folder structure looks something like this:

how do we use the myimport() function? This example demonstrates how we would
import all of the files in mylibrary/foo/bar:

JPluginHelper::importPlugin('mylibrary', 'base');
myimport('foo.bar.*');

The first line of the example only needs to be used once. It imports the library
plugin, which we defined earlier. Assuming we placed the myimport() function
in the base.php file we can now use the function to import a particular part of the
pseudo-library.

Plugin Design

[158]

We should be careful when selecting names for libraries. We should
ensure that the names do not conflict with those used in the Joomla!
libraries. Otherwise, this could cause problems later. One way to resolve
this would be to add an additional layer to library, i.e. we could prefix
somelibrary. to all myimport paths.

We can create additional plugins that belong to the group mylibrary adding
additional files to the pseudo-library. This example shows how we might choose to
add to this library:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE install SYSTEM
 "http://dev.joomla.org/xml/1.5/plugin-install.dtd">

<install version="1.5" type="plugin" group="mylibrary">

 <name>My Library - Baz</name>

 <author>Author's Name</author>

 <authorEmail>Author's Email</authorEmail>

 <authorUrl>Author's Website</authorUrl>

 <creationDate>MonthName Year</creationDate>

 <copyright>Copyright Notice</copyright>

 <license>Plugin License Agreement</license>

 <version>Plugin Version</version>

 <description>Plugin Description</description>

 <files>

 <filename plugin="baz">baz.php</filename>

 <folder>baz</folder>

 </files>

 <params/>

</install>

Chapter 6

[159]

Our mylibrary class will now look something like this:

Translating Plugins
As part of a plugin, we can define a set of translations. A full description of how to
create language files is available in Chapter 9.

When we create plugin translation files, we must name the file according to a specific
naming convention: the language tag, a period, the Joomla! parsed plugin name.
For example, the English translation file for the plugin My Extension would be called
en-GB.plg_myextension.ini.

Plugin translation files are located in the administrator/language folders.

Unlike components and modules, plugin language files are not automatically loaded
when a plugin is loaded. To use a plugin language file we must manually load it.
We can do this using the static loadLanguage() method in the JPlugin class, as this
example demonstrates:

JPlugin::loadLanguage('plg_myextension', JPATH_ADMINISTRATOR);

Notice that when we load the language file we also tell Joomla! that the file is located
in the backend language folder. Plugin language files are always located in the
backend. If we do not use this, the language file will only be loaded when we are
accessing the backend.

Plugin Design

[160]

We need to consider where we should include such a piece of code. Adding it at
the beginning of a plugin file, although logical, might be loading it unnecessarily
because it may not be required. A more appropriate approach might be to load it
when a handler method or function is executed.

Dealing with Plugin Settings (Parameters)
To deal with plugin settings we can use the, ever handy, params tag in our
XML manifest file. This example shows how we can add some simple parameters
to a plugin:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE install SYSTEM "http://dev.joomla.org/xml/1.5/plugin-
 install.dtd">
<install version="1.5" type="plugin" group="foobar">
 <name>Foobar - My Extension</name>
 <author>Author's Name</author>
 <authorEmail>Author's Email</authorEmail>
 <authorUrl>Author's Website</authorUrl>
 <creationDate>MonthName Year</creationDate>
 <copyright>Copyright Notice</copyright>
 <license>Plugin License Agreement</license>
 <version>Plugin Version</version>
 <description>Plugin Description</description>
 <files>
 <filename plugin="elementName">myextension.php</filename>
 </files>
 <params>
 <param name="aparam" type="text" label="A Parameter"
 description="A description" />
 </params>
</install>

In this instance, we have added a text parameter aparam. Parameters that we
define here are used in the Plugin Manager when we edit a plugin. This screenshot
demonstrates how the above parameter would be rendered:

A complete description of the types of parameters and how to define them in XML is
available in the Appendix.

Chapter 6

[161]

If we are using a JPlugin subclass, we access the defined parameters via the params
attribute within the class. The attribute is a JParameter object.

The most important methods we need to be aware of in the JParameter class are
def(), get(), and set().

We use def() to set a default value for a parameter if no value currently exists for it.
This example demonstrates how we would use the method to set a default value of
value for the parameter aparam:

$this->params->def('aparam', 'value');

We use get() to get the value of a parameter. This example demonstrates how we
would use the method to get the value of the parameter aparam:

$this->params->get('aparam');

We can also pass a second parameter to get(), a default value, which will be
returned if no value already exists for the parameter.

We use set() to set a value for a parameter. This example demonstrates how we
would use the method to set a value of value for the parameter aparam:

$this->params->set('aparam', 'value');

If we are using functions to handle events we must manually get the plugin
parameters. To do this we can use the JPluginHelper class. This example demonstrates
how we would get the parameters for a plugin called bar, in the group foo:

// get an object with all the data about the plugin
$plugin =& JPluginHelper::getPlugin('foo', 'bar');
$params = new JParameter($plugin->params);

As a rule, it is easier and more efficient to use a JPlugin subclass if we
intend to use parameters with a plugin.

Packaging
Plugins are packaged in archive files. A number of archive formats are supported; .gz,
.tar, .tar.gz, and zip. There is no specific naming convention for plugin archive
files; however, the following is often used: plg_name-version. For example, the
package for version 1.0.0 of My Extension would be called plg_myextension-1.0.0.

When you package a plugin, ensure you do not include any system files.
Apple Mac developers should be especially vigilant and consider using
the CleanArchiver utility http://www.sopht.jp/cleanarchiver/.

Plugin Design

[162]

Within the package, as well as the plugin files, there is a special XML manifest file,
which describes the plugin.

Interestingly there is no specific name that we are expected to use for the XML file.
When we install a plugin Joomla! will interrogate all the XML files it can find in the
root of the archive until it finds a file that it believes to be a Joomla! installation XML
manifest file.

If you want to use a standard naming convention for your XML manifest file, you
should consider using the name of the plugin element. For example, if the plugin
element is foobar you might want to call the XML manifest file foobar.xml.

XML Manifest File
The XML manifest file details everything the installer needs to know about an
extension. Any mistakes in the file may result in partial or total installation failure.
XML manifest files should be saved using UTF-8 encoding. For a base manifest file,
you can use the file detailed at the start of this chapter, to create a sandbox.

The tables below describe the tags you can use in your XML manifest file in detail:

install (Root tag)

The root tag, called install, identifies the type of extension and the version of Joomla! for
which the extension is written.

Example

<install type="plugin" version="1.5">

 <!-- sub-tags -->

</install>

Attributes type Type of extension.
version Version of Joomla! the extension is for.

Sub-tags

author, authorEmail, authorUrl, copyright, creationDate, description, files,
languages, license, media, name, params, version

author

Author's name.
Example <author>John Smith</author>

authorEmail

Author's email address.
Example <authorEmail>johnsmith@example.org</authorEmail>

Chapter 6

[163]

authorUrl

Author or component's website address.
Example <authorUrl>http://www.example.org</authorUrl>

copyright

Copyright notice.
Example <copyright>Copy me as much as you like!</copyright>

description

Plugin description.
Example <description>Example component description.</description>

files

Plugin files and folders.
Example <files><!-- sub-tags --></files>

Attributes [folder] Folder in the archive where the files reside.
Sub-tags filename, folder

filename

Defines a file we want to copy.
Example <filename>example.php</filename>

Attributes

plugin

Plugin element. Can only be used with one
file, the root plugin file.

folder

Defines folders we want to copy; if a folder has subfolders and files we do not have to
specify these.
Example <folder>afolder</folder>

language

Language tags define a language INI file. The tag includes the attribute tag; this is used to
identify the language. Language files are copied into the backend languages folder.
Example <language tag="en-GB">en-GB.com_example.ini</language>
Attributes tag Language tag.

Plugin Design

[164]

languages
Language files. If any of the language files already exist they will not be overwritten. This
tag has one sub tag, language. Each language tag defines a language INI file. The language
tag must include the attribute tag; this is used to identify the language.

Example

<languages folder="languages">
 <!—sub tags -->
</languages>

Attributes [folder] Folder in the archive where the files reside.
Sub-tags language

license
License agreement.
Example <license>GNU GPL</license>

media
Media files to be copied to the root Joomla! images folder.
Example <media destination="stories"><!—sub tags --></media>
Attributes [destination] Destination folder within the Joomla! images folder.
Sub-tags filename

name
Plugin name.
Example <name>example</name>

param
A parameter. How this tag is used depends upon the type of parameter we are defining; a
complete description of these types and their attributes is available in the appendix.
Example <param type="text" name="foobar" label="Foobar"/>

params
Plugin parameters.
Example <params><!—sub tags --></params>

Attributes

addParameterDir

Directory where custom JElement
subclasses can be found.

Sub-tags param

version
Extension version. Most extensions use three digits in the form major.minor.patch;
version 1.0.0 normally denotes the first stable release.
Example <version>1.0.0</version>

Chapter 6

[165]

File Naming Conflicts
When we explored the possibility of using plugins as libraries, we saw that plugins
of any one group are all stored in the same folder. This can pose a problem if we
have two files with the same name in different plugins that are in the same group.in different plugins that are in the same group. that are in the same group.

If we attempt to install a plugin that includes a file with the same name as an existing
file, the installation will fail. This is a screenshot of the error message received when
such incident occurs:

A good way to avoid this is to place any related files in a sub folder. This XML
demonstrates how we could achieve this:

<files>
 <filename plugin="example">example.php</filename>
 <folder>example</folder>
</files>

In instances where there are only two files, for example, the plugin file and an image,
it is common to name the image the same as the plugin element:

<files>
 <filename plugin="example">example.php</filename>
 <filename>example.gif</filename>
</files>

Summary
Joomla! events are occurrences that trigger the event dispatcher to notify the relevant
listeners that an event has occurred. Listeners, in plugins, are classes and functions
that attach themselves to the global event dispatcher.

We put plugins into groups to increase the efficiency of plugins. The group imports
Plugins. Grouping events together means that we only need to import the relevant
plugins when we need them. Remember that we are not forced to use the existing
groups and that we can define as many new groups as we like.

In lieu of library extensions, we can manipulate plugins to behave like libraries.
Plugins can go far beyond the intended use of handling events. If we utilize plugins
to our advantage, we can create modular extensions.

Extension Design
Over and above the design issues we have discussed in the previous three chapters,
there are additional design elements to consider when building extensions. This
chapter explains some of the other design elements, common to all extensions, which
we have not yet covered.

Supporting Classes
In the last three chapters, we have discussed the creation of subclasses from some
of the core classes. In addition to these classes, we may want to define our own
unique classes.

The MVC is a very good pattern for creating systems quickly and easily. However, it
is not, nor is it intended to be, all encompassing.

Unsurprisingly, many components contain supporting classes. The core
component that deals with menus is a prime example. This component defines
two additional classes, iLink and iLinkNode. A tree representation of a menu is
built using these classes.

When we create classes such as this, it is common practice to place them in a special
folder called 'classes'. When creating a component we place this folder in the backend.

Supporting classes can extend existing Joomla! classes, for example the JObject class.
They can also be completely unrelated and separate works in their own right.

'PHP Classes', www.phpclasses.org/browse, is a good place to look for existing
classes that we can utilize.

Remember that, although Joomla! provides us with an excellent
framework, we should never feel restricted by it. There is nothing to
prevent us from building extensions in other ways.

Extension Design

[168]

Helpers
Helpers are static classes used to perform common functions. Helpers often
complement one other class. For example, the static JToolBarHelper helper class
works in conjunction with the JToolBar class.

There are forty-nine helper classes in the Joomla! core alone.

When building helpers that complement another class, the functions that we place
within the helpers must relate to the other class.

Imagine we have a class named SomeItem, which deals with an itemized entity. If
each item were to have a category, we might want to be able to get a list of those
categories especially for use with the item.

Placing a method to do this in the SomeItem class is questionable because the
method is dealing with a different entity. Instead we could create a helper class
SomeItemHelper and define a method getCategories() that returns an XHTML
drop-down list of categories.

Helpers that do not relate to other classes generally relate to an extension or a library.
Many of the core modules define and use a helper class. This diagram illustrates how
the helper for the Poll module is constructed:

Note that there are some special rules we follow when creating helpers for modules;
these are explained in Chapter 5.

This list describes common functions that helpers execute:

Getting a list (usually an array) of items, often called getList()
Getting or building a data item
Getting or building a data structure
Parsing data
Rendering data to XHTML, often called render()

•

•

•

•

•

Chapter 7

[169]

When we use helpers in components, we can use the JView loadHelper() method.
This method will load a helper, based on the name of the file in which it is located.
The method searches predefined locations of helper files. By default, this is the
helpers’ folder in the root of the component. To add additional paths, use the
addHelperPath() method.

Using and Building getInstance()
Methods
Many of the core classes in Joomla! use a special method called getInstance().
There are various ways to use this method; we will start by looking at using it to
implement the singleton pattern.

We restrict the instantiation of a class to one of its own member
methods by using the singleton design pattern. This enables us to
create only a single instance of the class, hence the name 'singleton'.
To implement a true singleton pattern, the language must support
access modifiers. If the language does not, we cannot guarantee that
the class will not be instantiated from a different context.

This example shows how we can create a class that, instead of instantiating via the
constructor, we instantiate via the getInstance() method:

/**
 * Demonstrates the singleton pattern in Joomla!
 */
class SomeClass extends JObject
{
 /**
 * Constructor
 *
 * @access private
 * @return SomeClass New object
 */
 function __construct() { }
 /**
 * Returns a reference to the global SomeClass object
 *
 * @access public
 * @static
 * @return SomeClass The SomeClass object
 */
 function &getInstance()
 {

Extension Design

[170]

 static $instance;
 if (!$instance)
 {
 $instance = new SomeClass();
 }
 return $instance;
 }
}

Since we are implementing this as a singleton pattern, we need to prevent the
instantiation of the object outside of the class. Put simply, the __construct()
method needs to be limited to scope of the class. Sadly, we cannot guarantee this in
PHP versions prior to 5.

In our example, we use the access doctag, @access, to indicate that the constructor is
private. If we were building this class specifically for a PHP 5 or above environment,
we would be able to use access modifiers (visibility). For more information about
access modifiers, refer to http://php.net/manual/language.oop5.visibility.php.

In the declaration of the getInstance() method we make the method return a
reference and we define it as static in the doctags. This means when we use the
method we must always use the =& assignment operator, to prevent copying of
the returned object, and we must use the method in the static form SomeClass::
getInstance().

At the start of the getInstance() method we declare a new static variable. Unlike
normal variables, static variables do not die after a function or method has completed.
We use the variable as a long-term store to remember the singleton object.

This example demonstrates how we can use this method:

$anObject =& SomeClass::getInstance();
$anObject->set('foo', 'bar');
$anotherObject =& SomeClass::getInstance();
echo $anotherObject->get('foo');

The two variables, $anObject and $anotherObject, are both pointing to the same
object. This means that the example will output bar.

A similar use of the getInstance() method is to only allow instantiation of one
object per different constructor parameter. This example demonstrates how we can
implement this:

/**
 * Demonstrates how to implement getInstance
 */
class SomeClass extends JObject
{

Chapter 7

[171]

 /**
 * A private string attribute.
 * @access private
 * @param string
 */
 var $_foo = null;

 /**
 * Constructor
 *
 * @access private
 * @param string A string
 * @return SomeClass New object
 */
 function __construct($foo)
 {
 $this->_foo = $foo;
 }

 /**
 * Returns a reference to a global SomeClass object
 *
 * @access public
 * @static
 * @param string A string
 * @return SomeClass A global SomeClass object
 */
 function &getInstance($foo)
 {
 static $instances;
 $foo = (string)$foo;

 if (!$instances)
 {
 $instances = array();
 }

 if (!$instance[$foo])
 {
 $instances[$foo] = new SomeClass($foo);
 }

 return $instances[$foo];
 }
}

Extension Design

[172]

This example is extremely similar to the singleton example, except we create a
static array to house multiple objects instead of a single object. As with the previous
example in the declaration of the getInstance() method, we make the method
return a reference and we define it as static in the doctags.

An extension of this mechanism is to allow instantiation of subclasses. A good
example of this is the core JDocument class that can instantiate JDocumentError,
JDocumentFeed, JDocumentHTML, JDocumentPDF, or JDocumentRAW (located at
libraries/joomla/document).

In this example, we will attempt something similar; assume that the subclasses are
located in the root of a component and named with the prefix SomeClass:

/**

 * Returns a reference to the global SomeClass object

 *

 * @access public

 * @static

 * param string A string

 * @return mixed A SomeClass object, false on failure

 */

function &getInstance($foo)

{

 static $instances;

 // prepare static array

 if (!$instances)

 {

 $instances = array();

 }

 $foo = (string)$foo;

 $class = 'SomeClass'.$foo;

 $file = strtolower($foo).'.php';

 if (empty($instances[$foo]))

 {

 if (!class_exists($class))

 {

 // class does not exists, so we need to find it

 jimport('joomla.filesystem.file');

 if(JFile::exists(JPATH_COMPONENT.DS.$file))

 {

Chapter 7

[173]

 // file found, let's include it

 require_once JPATH_COMPONENT.DS.$file;

 if (!class_exists($class))

 {

 // file doesn't contain the class!

 JError::raiseError(0, 'Class '.$class.'
 not found.');

 return false;

 }

 }

 else

 {

 // file where the class should be not found

 JError::raiseError('ERROR_CODE', 'File '.$file.'
 not found.');

 return false;

 }

 }

 $instances[$foo] = new $class();

 }

 return $instances[$foo];

}

Having explained how to implement the getInstance() methods, we need to
examine why we would need to. There are three main reasons:

This makes it easier to keep track of objects. Take the JDatabase object as an
example. We can access this object at any time using the static JFactory::
getDBO() method. If we were unable to do this, we would need to
continually pass the object around or declare it global in every method and
function that required it.
This helps prevent us from duplicating work. For classes that support it, we
do not have to continually instantiate a new object of that type every time we
need it. This helps reduce the overall work that PHP is required to complete.
This provides us with a common way of instantiating globally available
objects that conforms to standards within the Joomla! core.

•

•

•

Extension Design

[174]

Using the Registry
Joomla! provides us with the class JRegistry; this class enables us to store and
retrieve data using namespaces. Data stored in a JRegistry object is organized using a
hierarchy based on namespaces.

Namespaces are unique hierarchical tree identifiers used to categorize data. Imagine
we want to store the number of sightings of animals in an area. We could use the
following hierarchy:

animal
animal.total
animal.bird
animal.bird.chaffinch
animal.bird.swan
animal.mammal
animal.mammal.badger
animal.mammal.squirrel.red
animal.mammal.squirrel.grey

Based on this example, if we wanted to know how many badgers we have sighted,
we would retrieve the value using the registry path animal.mammal.badger. If we
wanted to know how many mammals we have sighted, we would retrieve the value
using the registry path animal.mammal.

A drawback of using this type of hierarchy is that data items can only
be stored in one path. This can be difficult if the location of a data item
is ambiguous.

The main purpose of this class in Joomla! is to store global configuration options.
There is a global JRegistry object, referred to as the registry or config. We can
access this object via JFactory; this example demonstrates how we get a reference to
the object:

$registry =& JFactory::getConfig();

There are two important methods, getValue() and setValue(), which function as
accessors and modifiers for registry data. This example demonstrates how we can
increment the value foo.bar in the registry using these methods:

$registry =& JFactory::getConfig();
$oldValue = $registry->getValue('foo.bar', 0);
$registry->setValue('foo.bar', ++$oldValue);

Chapter 7

[175]

When we populate the $oldValue variable using the getValue() method we supply
a second parameter. This is the default value to return if no value currently exists,
and this parameter is optional.

The site settings are located in the config namespace within the registry. A table
describing the values we expect to be present in the config namespace can be found
in the Appendix.

Saving and Loading Registry Values
A powerful feature of JRegistry objects is the capacity to save and load data. The
class supports two different format types, run-time data and files. Run-time data are
arrays and objects. File data can come from files in INI, PHP, and XML format.

In the previous three chapters, we have discussed the handling of extension
settings. In addition to those methods, we can use the JRegistry class. This example
demonstrates how to load an INI file into the myExtension namespace:

$file = JPATH_COMPONENT.DS.'myExtension.ini';
$registry =& JFactory::getConfig();
$registry->loadFile($file, 'INI', 'myExtension');

If we make changes to the myExtension namespace, we can save the changes back to
our INI file:

// import JFile
jimport('joomla.filesyste.file');

// prepare for save
$file = JPATH_COMPONENT.DS.'myExtension.ini';
$registry =& JFactory::getConfig();
$ini = $registry->toString('INI', 'myExtension');

// save INI file
JFile::write($file, $ini);

Exporting in XML format is identical except that we substitute all occurrences of
INI with XML. Exporting to PHP is slightly different. The site configuration file,
configuration.php, is a prime example of using a PHP file to store data.

The PHP format saves values into a class. In the case of the site configuration,
the class is called JConfig. We must provide, as a string parameter, the name ofthe name of
the class as which we wish to save the settings when we use the JRegistrywe wish to save the settings when we use the JRegistry
toString() method.

Extension Design

[176]

This example demonstrates how we would export the settings to a PHP class named
SomeClass:

// import JFile
jimport('joomla.filesystem.file');

// prepare for save
$file = JPATH_COMPONENT.DS.'myExtension.php';
$registry =& JFactory::getConfig();
$php = $registry->toString('PHP', 'myExtension',
 array('class'=>'SomeClass'));

// save PHP file
JFile::write($file, $php);

If you choose to use this mechanism to store settings, it is important to consider the
best file format for your settings. PHP and INI formats are restricted to a maximum
depth of zero and one respectively. XML has no depth restrictions.

This might make XML seems like the most suitable; XML, however, is the most
intensive format to parse. Hence, we should use the format that best suits the data
we are storing.

The next three examples demonstrate how we represent the registry tree, which we
defined earlier, in three different formats. Take note of the data loss within the PHP
and INI format examples. This is an example of a PHP string:

<?php
class JConfig
{
 var $total = '10';
}
?>

This is an example of an INI string:

total=10

[bird]
chaffinch=1
swan=2

[mammal]
badger=3

Chapter 7

[177]

This is an example of an XML string:

<?xml version="1.0" ?>
<config>
 <group name="bird">
 <entry name="chaffinch">1</entry>

 <entry name="swan">2</entry>
 </group>
 <group name="mammal">
 <entry name="badger">3</entry>
 <group name="squirrel">
 <entry name="red">1</entry>
 <entry name="grey">3</entry>
 </group></group>
 </group>
 <entry name="total">10</entry>
</config>

A complete description of the JRegistry class is available in the Appendix.

The User
Many extensions use the currently logged-in user to determine what to display. A
user has several attributes in which we might be interested. This table describes each
of the attributes:

Attribute Description
activation String used to activate new user accounts
Aid Legacy user group ID
block True if the user's access is blocked
email The user's email address
Gid User group ID
guest True if the user is a guest (not logged in)
Id The user's ID, an integer; this is not the same as their username
lastvisitDate Date and time at which the user last logged in
name User's name
params INI string of parameters
password Hashed password
registerDate Date and time at which the user account was registered
sendEmail True if the user wishes to receive system emails
username User's username
usertype Name of user group

Extension Design

[178]

The browsing user is represented by a JUser object; we can access this object using
the getUser() method in the JFactory class. This class has all of the attributes
described here. This example demonstrates how we can test if a user has logged in or
if the user is a guest:

$user =& JFactory::getUser();
if ($user->guest)
{
 // user is a guest (is not logged in)
}

User Parameters
The params attribute is special. We design an INI string to store additional
parameters about a user. The users.xml file, located in the backend in the root of the
user's component, contains the default attributes.

This table details the default parameters defined in the users.xml file:

Parameter Description
admin_language Backend language
language Frontend language
editor User's editor of choice.
helpsite User's help site
timezone Time zone in which the user is located (hours offset from UTC+0)hours offset from UTC+0)offset from UTC+0)

To access these we use the getParam() and setParam() methods. We could directly
access the params attribute but we would then have to parse the data. This example
demonstrates how we determine the user's time zone:

// get the default time zone from the registry
$registry =& JFactory::getConfig();
$tzdefault = $registry->getValue('config.offset');

// get the user's time zone
$user =& JFactory::getUser();
$tz = $user->getParam('timezone', $tzdefault);

Notice that we supply a default value, $tzdefault, which is extracted from the site
settings. We use this as the second parameter for getParam(); this parameter
is optional.

This example demonstrates how we can modify the value of the user's time zone:

$user =& JFactory::getUser();
$user->setParam('timezone', '0');

Chapter 7

[179]

When we perform any modifications to the user's session, unless we save the
changes, the modifications will last only until the session expires. User parameters
are not used as a temporary store. To store temporary data we should use the session
and the user state; we will see both in the next section.

If we store temporary data in user parameters, we run the risk
of saving the data accidently to the user's database record.

A common design issue is the extension of the user beyond their predefined
attributes. There are three common ways of dealing with this:

Add additional fields to the #__users table.
Create a new table that maintains a one-to-one relationship with the
#__users table.
Use the user's parameters to store additional data.

The first option can cause some major problems. If several extensions choose this
method, there is a chance that there will be a naming conflict between fields.

The second option is a good choice if the extra data is searchable, ordered, or used
to modify results returned from the queries. To maintain the table successfully,
we would have to create a plugin to deal with the events onAfterStoreUser and
onAfterDeleteUser, explained in Chapter 6.

The final option is ideal if the extra data is not subject to searches, ordered, or used to
restrict query results. We might implement these parameters in one of the three ways:

Manually edit the parameters using the setParam() method. This is suitable
if there are not many parameters or the user never modifies the parameters
using a form.
Use JParameter as the basis to create a form in which users can modify
the parameters.
Allow the user to modify the parameters, via the user's component. To do
this, we need to modify the users.xml file (for more information about
editing XML, see Chapter 10).

Before we begin, there is something we need to understand. A JUser object
essentially has two sets of parameters, a RAW parameters string or array (params)
and a JParameter object (_params).

Both of these are loaded from the database when the user's session starts. If we modify
either of them, the changes will be present only until the user's session ends. If we
want to save the parameters to the database, as is normally the case, we can use the
save() method. This will update the parameters based on the RAW parameters alone.

•
•

•

•

•

•

Extension Design

[180]

When we use the setParam() method only the JParameter object is modified. It is
because of this that we must update the RAW params attribute before saving. We
must take extra care when saving changes to the user's parameters. Poor handling
can result in loss of data.

This example demonstrates how we can set the user's foo parameter and save the
changes to the database:

// get the user and add the foo parameter
$user =& JFactory::getUser();
$user->setParam('foo', 'bar');

// update the raw user parameters
$params =& $user->getParameters();
$user->set('params', $params->toString());

// save the changes to the database
if (!$user->save())
{
 JError::raiseError('SOME_ERROR', JText::_('Failed to save
 user'));
}

Next we will explore parameters that a user can update via a form. We will begin by
creating an XML file that defines the extra parameters. We will see the parameters in
detail in the Appendix. The following XML defines two text parameters, myparameter
and myotherparameter:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <params>
 <param name="myparameter" type="text" default="example"
 label="My Parameter" description="An example user
 parameter" />
 <param name="myotherparameter" type="text" default="example"
 label="My Other Parameter" description="An example user
 parameter" />
 </params>
</metadata>

We can create form elements using this XML and the user's JParameter object. We
can get a reference to the JParameter object using the getParameters() method:

// get the user
$user =& JFactory::getUser();

// get the user's parameters object
$params =& $user->getParameters();

Chapter 7

[181]

Once we have the parameters object, we can load the XML file and render the form
elements using the render() method, as this example demonstrates:

$params->loadSetupFile($pathToXML_File);
echo $params->render('myparams');

A form field is created for each parameter, all of which are treated as a form array.
The parameter that we provide to the render() method is used to name the form
array. If we do not provide the parameter, the default name 'params' is used.

Our example will create two text inputs called myparams[myparameter] and
myparams[myotherparameter]. This is a screenshot of how these parameters
would appear:

Alternatively we could use the JParameter renderToArray() method
that returns an array of arrays that define the different form elements.

Creating a form to deal with extra parameters is only the beginning; we need to
process submitted forms. In this example, we retrieve the parameters from the POST
array (assuming that the form is submitted using the POST method), add them to the
user's existing parameters, rebind them to the user object, and save the changes:

// get the user object and the post array.
$user =& JFactory::getUser();
$post = JRequest::get('post');

// get the existing parameters
$params = $user->getParameters();

// add the parameters from the form submission
$params->bind($post['myparams']);

// update and save the user
$user->set('params', $params->toString());
$user->save();

The last option we will explore is modifying the users.xml file. To do this, we will
utilize the JSimpleXML parser. For a complete description of the JSimpleXML parser,
please refer to Chapter 10.

Extension Design

[182]

The first thing we need to do is get hold of the XML file and parse the contents:

// get a parser
$parser =& JFactory::getXMLParser('Simple');

// define the path to the XML file
$pathToXML_File = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_users'.
DS.'users.xml';

// parse the XML
$parser->loadFile($pathToXML_File);

In order to add new param tags to the XML, we need to navigate to the params tag:

// get the root tag (install)
$document =& $parser->document;

// get the params tag
$params =& $document->params[0];

We can now start adding to the XML using the addChild() method to add child
param tags, and the addAttribute() method to set the necessary param tag
attributes. This example adds the parameters myparameter and myotherparameter,
both of which we defined in the previous example:

// Add myparameter
$myparameter =& $params->addChild('param');

// modify the myparameter attributes
$myparameter->addAttribute('name', 'myparameter');
$myparameter->addAttribute('type', 'text');
$myparameter->addAttribute('label', 'My Parameter');
$myparameter->addAttribute('description', 'An example user
 parameter');

// Add myotherparameter
$myotherparameter =& $params->addChild('param');

// modify the myotherparameter attributes
$myotherparameter->addAttribute('name', 'myotherparameter');
$myotherparameter->addAttribute('type', 'text');
$myotherparameter->addAttribute('label', 'My Other Parameter');
$myotherparameter->addAttribute('description', 'An example user
 parameter');

Chapter 7

[183]

Now that we have made the changes to the XML file, we need to save those changes
to the users.xml file. We can do this using the JFile class:

// create XML string
$xmlString = '<?xml version="1.0" encoding="UTF-8" ?>'."\n";
$xmlString .= $document->toString();

// get the JFile class
jimport('joomla.filesystem.file');

// save the changes
if (!JFile::write($pathToXML_File, $xmlString))
{
 // handle failed file save
}

These alterations will enable users to modify myparameter and myotherparameter,
when they use the user's component to modify their details. This screenshot depicts
the resultant form with the changes:

If one were to employ this technique, the best place to do so would probably be in a
component installation file. It is also important to consider making a backup of the
existing file, in case of any unexpected difficulties.

Modifying this file could also lead to problems if the file is ever updated, for example
as part of an upgrade. However, it does mean that all of the user's details are editable
from one central point.

Extension Design

[184]

The Session
When a user accesses Joomla!, a new session is created; this occurs even if the user
is not logged in. Instead of accessing the $_SESSION hash, as we do in most PHP
applications, we must use the global JSession object.

When we access session data, we provide the value name and, optionally, the
namespace. If we do not provide a namespace the default namespace, aptly named,
default is assumed. In this example, we retrieve the value of default.example:

$session =& JFactory::getSession();
$value = $session->get('example');

It is unusual when accessing the session in this way to use anything other than the
default namespace. That is why the second parameter in the get() method is not the
namespace, but the default value. In this example, we retrieve the value of default.
example, returning a value of 1 if the value does not exist:

$session =& JFactory::getSession();
$value = $session->get('example', 1);

The last parameter is the namespace. This example demonstrates how to retrieve a
value from a different namespace (someNamespace):

$session =& JFactory::getSession();
$value = $session->get('example', 1, 'someNamespace');

In addition to retrieving values, we can also set them. In this example, we set the
value of default.example and someNamespace.example:

$session =& JFactory::getSession();
$session->set('example', 1);
$session->set('example', 1, 'someNamespace');

You might be wondering why we tend to use the default namespace. Due to
limitations of the namespace handling within the JSession class, we use a special area
of the session known as the 'user-state'.

The user-state is a JRegistry object that is stored in the session. The application
accesses this object, which is located in default.registry. There are two application
methods that we use, getUserState() and getUserStateFromRequest().

We'll start by exploring getUserState(). This example demonstrates how we can
retrieve the value of session.counter, a counter that represents the number of
requests a user has made:

$mainframe->getUserState('session.counter');

Chapter 7

[185]

Setting user-state values is very similar. This example demonstrates how we can set
an alternative template for a user:

$mainframe->setUserState('setTemplate', 'someSiteTemplate');

The getUserStateFromRequest() method is very similar to the getUserState()
method, except that it checks the request values first. This method is used extensively
in Joomla!'s implementation of pagination.

The method has three parameters, the key (a path), the name of the request, and
a default value. This example retrieves the value of com_myextension.list.
filter.order:

$order = $mainframe-
 >getUserStateFromRequest('com_myextension.list.filter.order',
 'filter_order', 'name');

The second parameter is especially important. If a request were made in which the
query contained filter_order=owner, the value returned would be owner. It would
also update the user-state to equal owner.

This method is of particular interest when we want to allow a user to modify their
state values. It is for this reason that the getUserStateFromRequest() method is
used extensively in pagination.

There is not a setUserStateFromRequest() method because when we execute the
getUserStateFromRequest() method the value is updated.

As a final note, Joomla! session data is not always stored in the usual way. Joomla!
uses session storage classes to allow alternative methods of data storage. These
methods include the database, php-eaccelerator, and php-pecl-apc. We must install
php-eaccelerator or php-pecl-apc on the server if we have to use them.

There is a limitation of database session-storage. The session data size
is limited to 65,535 characters. This can cause problems with extensions
that require large amounts of session storage space.

The Browser
A useful source of information about the client is the browser. We can use the
JBrowser class, located in joomla.environment.browser, to investigate the
client browser.

Browsers have features that enable them to behave in certain ways. For example, a
browser may or may not support JavaScript. We can use the hasFeature() method
to check for different features.

Extension Design

[186]

This example checks for JavaScript support:

$browser =& JBrowser::getInstance();
if ($browser->hasFeature('javascript'))
{
 // the browser has JavaScript capabilities
}

This is a list of the different features we can check for when using the hasFeature()
method:

accesskey
cite
dom
frames
hdml
homepage
html
iframes
images
java
javascript
optgroup
rte
tables
utf
wml
xmlhttpreq

Browsers also have quirks (peculiarities of behavior). We can use JBrowser to check
for certain quirks in browsers. In this example, we check that the browser is happy to
deal with popups:

$browser =& JBrowser::getInstance();
if ($browser->hasQuirk('avoid_popup_windows'))
{
 // the browser does not like popups
}

Generally, all browsers, except mobile browsers and old browsers, will deal
with popups.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7

[187]

This is a list of the different quirks that we can check for using JBrowser:

avoid_popup_windows
break_disposition_filename
break_disposition_header
broken_multipart_form
cache_same_url
cache_ssl_downloads
double_linebreak_textarea
empty_file_input_value
must_cache_forms
no_filename_spaces
no_hidden_overflow_tables
ow_gui_1.3
png_transparency
scroll_tds
scrollbar_in_way
windowed_controls

Both the quirks and features are hard-coded in Joomla!; they are not retrieved from
the browser. This means that JBrowser will not detect popup blockers or other
unexpected settings. This is a list of the browsers known to Joomla!:

AvantGo
BlackBerry
Ericsson
Fresco
HotJava
i-Mode
Konqueror
Links
Lynx
MML
Motorola
Mozilla

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Extension Design

[188]

MSIE
Nokia
Opera
Palm
Palmscape
Up
WAP
Xiino

There are a number of handy methods to determine which browser a user is using.
This example demonstrates how we would output a formatted string representation
of the user's browser:

$browser =& JBrowser::getInstance();
$string = ucfirst($browser->getBrowser()).' ';
$string .= $browser->getVersion().' (';
$string .= $browser->getPlatform().')';

This is an example of the value of $string: Mozilla 5.0 (win).

We will now discuss three additional JBrowser methods that we can use to make our
extensions more user friendly and secure.

Imagine we want to prevent robots from viewing an extension. Robots are programs
that systematically 'crawl' though a website indexing the content for use in search
engines. We can check if a browser is a robot using the isRobot() method:

$browser =& JBrowser::getInstance();
if ($browser->isRobot())
{
 JError::raiseError('403', JText::_('Robots are disallowed'));
}

When we use components, we can choose to modify the MIME type of a response.
Before we do this, using JBrowser, we can check that the browser supports the
MIME type. This example checks that the browser can handle the MIME type
application/vnd.ms-excel (an MS Excel file) before displaying a certain link:

$browser =& JBrowser::getInstance();
if ($browser->isViewable('application/vnd.ms-excel'))
{
 echo '<a
 href="'.JRoute::_('index.php?option=com_myextension&format=
 raw&application=xls').'">Link to an XLS document';
}

•

•

•

•

•

•

•

•

Chapter 7

[189]

Imagine we want to display an image of a padlock if we access the site via SSL
(Secure Sockets Layer). We can use the isSSLConnection() method:

$browser =& JBrowser::getInstance();
if ($browser->isSSLConnection())
{
 echo '<img src="images/padlock.jpg" alt="Secure Connection"
 style="width: 36px; height: 36px;"/>';
}

Assets
It is common to want to include additional 'assets' in our extensions. Assets are
normally media, for example image files. This is a list of common files that we can
classify as assets:

JavaScript
Image
Cascading Style Sheet
Video
Flash

We deal with asset files in two commom ways.

We can use the media tag in our extension XML manifest files to add assets to the
Joomla! Media Manager. This is ideal if we want to allow users the right to modify
the assets.

Within the media tag, we must detail each file that we intend to add. Unlike
copying extension files, we cannot define folders that we want to copy into the
Media Manager.

This example demonstrates how we can copy two images, foo.png and bar.jpg,
from a folder in the extension archive named assets into the stories folder in the
Media Manager:

<media destination="stories" folder="assets">
 <filename>foo.png</filename>
 <filename>bar.jpg</filename>
</media>

The stories folder is a special folder within the Media Manager. When we edit
content items adding pictures, only files within the stories folder can be added
(unless hard-coded).

•

•

•

•

•

Extension Design

[190]

We can copy files into any folder in the Media Manager using the media tag
destination attribute. If we want to add files to the root of the Media Manager, we
need not include the destination attribute.

Alternatively, we can create a folder in our extensions called assets. Many of the
core extensions use this approach. It prevents modification of the assets, and is ideal
for any assets that we always require.

When we use this method to add assets to a component, generally we create one
assets folder and create it in the frontend. Of course, we do not have to do this;
where we choose to create such a folder is entirely at the developer's discretion.

Summary
There are restrictions as to what we can do in Joomla!, but there are many ways to
achieve the same goal. You should never feel restricted by conventional extension
design, but you should always work with Joomla! and take advantage of the facilities
with which we are provided.

Building classes that do not relate specifically to part of the Joomla! framework is
a common way to extend Joomla! beyond its intended scope. We discussed in a
previous chapter the use of plugins in lieu of library extensions. If we want, we can
use the same logic, JLoader, to create 'internal' libraries in any extension.

Making extensions easy to build is all part of the logic behind helper classes. These
static classes allow us to categorize functionality and increase the code reuse.

Programming patterns are one of the weapons we can use to tackle a problem.
Joomla! uses patterns extensively, from the complex MVC to basic iterators. A
common pattern found in Joomla! is the use of the getInstance() method.

Whenever we have objects that we want to make globally available we should
consider implementing a getInstance() method in the corresponding class. You
can also consider creating a class similar to the core class JFactory to further increase
accessibility of global objects.

A JRegistry object handles the site settings and extension settings, stored in INI,
XML, and PHP files. We should consider the use of JRegistry before we create any
settings files.

The user is a complex entity and how we handle it is very important. We can
extend users in various ways. Whichever mechanism we choose, we should always
consider creating a 'repair' function to allow administrators to check the database
for errors, which may have occurred in relation to any customization of the user
made by our extensions.

Chapter 7

[191]

We must always remember to use the global JSession object to handle sessions.
Directly accessing the $_SESSION variable can have some unexpected results.

Modifying our site to suit a browser may seem drastic, but when checking for
features and quirks in the browser is as easy as one simple method, it makes sense.
Bulletproof extensions always consider the unexpected, and quirks in the browser
are just one of those things.

Beyond common code, there is land full of imagery, multimedia, and the occasional
unicorn. If we want to give administrators full control over an extension, being able
to modify an extension's repository of assets is necessary. Use the installer assets
tag to take advantage of the Joomla! Media Manager.

Rendering Output
In Joomla!, there are several ways in which we can render output that make our lives
easier and force a level of consistency across extensions. In this chapter, we
will explore:

The ever useful joomla.html library, which enables us to render output in a
common form
How to build layouts and templates, with particular emphasis
on components
The intricacies of building templates in component backends
How to deal with itemized data

The joomla.html Library
This part of the library is used to aid in the rendering of XHTML. Integral to this is
the static JHTML class. Within this class is a method, _(), which we provide with a
type and a mixture of additional parameters. This example demonstrates how we use
the method to output a tooltip:

echo JHTML::_('tooltip', 'content', 'title');

There are six basic types. Basic types are identified by a single name. This is a list of
the six basic types:

link
image
iframe
date
tooltip
calendar

•

•

•

•

•

•

•

•

•

•

Rendering Output

[194]

There are seven grouped types. Grouped types are identified by a group name and a
name. This is a list of the seven grouped types:

behavior
email
grid
image
list
menu
select

Before we start looking at some examples, we need to import the library. We must
always do this in order to use the JHTML class:

jimport('joomla.html.html');

We'll use the basic type link as an example. This example demonstrates how to
create a link to the root of a component:

echo JHTML::_('link', 'index.php?option=com_somecom', 'Some
 Component');

The first parameter we provide is the type, in this case link; the following
parameters are specific to the link type. We will explain what each of the extra
parameters is, for the different types, in a moment.

Next we'll use the type cloak in the email group as an example. This example
demonstrates how to create a mailto link without giving away the email address:

echo JHTML::_('email.cloak', 'example@example.org');

This time the type is prefixed with the group name email and a period. The email.
cloak type is used to hide email addresses from spam-bots that crawl websites
looking for email addresses. We'll explain how to use this type in more detail later in
this section.

There are some types that do not return anything. These types are generally used
to add special declarations to the document header. For example the behavior.
calendar type adds some JavaScript to the header.

•

•

•

•

•

•

•

Chapter 8

[195]

The rest of this section of this chapter describes each of the different types and how
to use them. We'll start with the six basic types:

Link
Gets an XHTML link

Parameters url Link URI
text Link text

[attribs]

An associative array or string of additional
attributes to apply to the tag

Returns Link XHTML string

Image
Gets an XHTML image

Parameters url Image URI
alt Alternative text if the image is not available

[attribs]

An associative array or string of additional
attributes to apply to the img tag

Returns Image XHTML string

Iframe
Gets an XHTML floating frame (iframe)

Parameters url Frame URI, must be internal
name Name of the frame

[attribs]

An associative array or string of additional
attributes to apply to the img tag

[noFrames]

Message to display if frames are not supported
by the browser; default is a null string

Returns Floating frame XHTML string

Date
Takes a date and formats it accordingly. The date should always be UTC. The offset is
retrieved from the registry unless a custom offset is provided.

Parameters

date

Date and time (UTC), supports RFC822,
ISO8601, and Unix time stamps

[format] Date format; default is DATE_FORMAT_LC
[offset] Number of hours offset from UTC

Returns Date string

Rendering Output

[196]

Tooltip
Gets some XHTML, either an image or a text string, which when displayed in a browser
displays a tooltip. In order for this type to work as expected it is necessary to invoke
JHTML::_('behavior.tooltip').

If we want to modify the appearance of the tooltips, we can redefine the CSS for .tool-
tip, .tool-title, and .tool-text.

Parameters tooltip Tooltip content
[title] Title of the tooltip

[image]

Image to use, must be located in includes/js/
ThemeOffice

[text] Text to use instead of an image
[href] Internal link
[link] True if link is enabled; default is true

Returns A string or image with a tooltip

Calendar
Gets an XHTML form field that can be easily used to select a date

Parameters value Initial date value
name Input name
id Input ID
[format] Format in which to display dates
[attribs] Associative array of additional input tag attributes

Returns XHTML date text form field with an attached JavaScript calendar

Behavior
These types are special because they deal with JavaScript in order to create client-
side behaviors.

We'll use behavior.modal as an example. This behavior allows us to display an
inline modal window that is populated from a specific URI. A modal window is a
window that prevents a user from returning to the originating window until the
modal window has been closed. A good example of this is the 'Pagebreak' button
used in the article manager when editing an article.

The behavior.modal type does not return anything; it prepares the necessary
JavaScript. None of the behavior types return data; they are solely intended to import
functionality into the document.

Chapter 8

[197]

This example demonstrates how we can use the behavior.modal type to open a
modal window that uses www.example.org as the source:

// prepare the JavaScript parameters

$params = array('size'=>array('x'=>100, 'y'=>100));

// add the JavaScript

JHTML::_('behavior.modal', 'a.mymodal', $params);

// create the modal window link

echo '<a class="mymodal" title="example"
 href="http://www.example.org" rel="{handler: \'iframe\',
 size: {x: 400, y: 150}}">Example Modal Window';

The a.mymodal parameter is used to identify the elements to which we want the
modal window to attach. In this case, we want to use all a tags of class mymodal. This
parameter is optional; the default selector is a.modal.

We use $params to specify default settings for modal windows. This list details the
keys that we can use in this array to define default values:

ajaxOptions

size

onOpen

onClose

onUpdate

onResize

onMove

onShow

onHide

The link that we create can only be seen as special because of the JavaScript in the
rel attribute. This JavaScript array is used to determine the exact behavior of the
modal window for this link.

We must always specify handler; this is used to determine how to parse the input
from the link. In most cases, this will be iframe, but we can also use image, adopt,
url, and string.

•

•

•

•

•

•

•

•

•

Rendering Output

[198]

The size parameter is optional; here it is used to override the default specified
when we used the behavior.modal type to import the JavaScript. The settings
have three layers of inheritance:

The default settings defined in the modal.js file
The settings we define when using the behavior.modal type
The settings we define when creating the link

For information about other parameters, please refer to the modal.js file located in
the media/system/js folder.

This is a screenshot of the resultant modal window when the link is used:

Let's have a look at the several types:

Tooltip
Adds the necessary JavaScript to enable tooltips, the mootools JavaScript class Tips. To
create tooltips we use the basic tooltip type, explain earlier in this chapter.

Parameters [selector] Class suffix; default is hasTip

[params]

Associative array of options. Possible options
are: maxTitleChars, timeout, showDelay,
hideDelay, className, fixed, onShow, and
onHide

Modal
Adds JavaScript that enables us to implement modal windows. Modal windows are
essentially inline popups that prevent the user from performing actions elsewhere on the
page until the modal window has been closed.

Parameters

[selector]

Selector used to determine which links should use
modal windows; default is a.modal

[params]

Associative array of default modal window options

•

•

•

Chapter 8

[199]

Mootools
Adds the mootools JavaScript library to the document.
Parameters [debug] Use the uncompressed version of mootools

Caption
Modifies images on the page of class caption in such a way that the content of the image
tags title attribute appears beneath the image.

Formvalidation
Adds the generic JFormValidator JavaScript class to the document and instantiates an
object of this type in document.formvalidator. This object can be used to aid the
validation of forms.

Switcher
Adds JavaScript that can be used to toggle between hidden and shown page elements. This
is specifically used in conjunction with the backend submenu. For example, both the site
configuration and system information areas in the backend use this.

Combobox
Adds JavaScript to modify the behavior of text fields (that are of class combobox) so as to
add a combo selection. The available selections must be defined in an unordered list with
the ID combobox-idOfTheField.

Uploader
Adds JavaScript that enables us to create a dynamic file uploading mechanism that allows
users to upload a queue of files. For example, the media manager uses this.

Calendar
Adds the necessary JavaScript in order to use the JavaScript showCalendar() function to
make date selection easier. If we want to use this when a user is not logged in we must add
the joomla.javascript.js JavaScript file to the document:

$document =& JFactory::getDocument();
$document->addScript('includes/js/joomla.javascript.js');

Generally, we should use the basic calendar type instead.

Rendering Output

[200]

Keepalive
Adds a special invisible floating frame to the response that is updated regularly in order
to maintain a user's session. This is of particular use in pages on which a user is likely to
spend a long time creating or editing content.

Email
There is only one email type: cloak. Let's see this in detail:

Cloak
Uses JavaScript to display an encrypted email address in the browser. This prevents the
spam-bots, which crawl websites looking for email addresses, from discovering this email
address. The form of encryption is very limited and is not a guaranteed way of beating
spam-bots.

Parameters mail Email address
[mailto] Create mailto link; default is true
[text] Alternative text to show
[email] text is an email address; default is true

Returns A JavaScript string used to display an email address

Grid
The grid types are used for displaying a dataset's item elements in a form in a table
in the backend. There are seven grid types, each of which represents handles a
common field found used in the database.

Before we begin there are some important things that need to be in place. The
form must be called adminForm, and it must include two hidden fields, one called
boxchecked with the default value 0 and one called task used to determine which
task a controller will execute.

We'll use grid.id and grid.published as an example. Imagine we have a database
table with the primary key id, a field called published, which we use to determine if
an item is visible, and a field called name.

We use grid.published to display each record's published state.

This example demonstrates how we process each record in a template and output data
into a grid/table ($rows is an array of objects representing records from the table):

<?php
$i = 0;
foreach ($rows as $row) :
 $id = JHTML::_('grid.id', ++$i, $row->id);
 $published = JHTML::_('grid.published', $row, $i);

Chapter 8

[201]

 ?>
 <tr class="row<?php echo $i%2 ?>">
 <td>';
 <?php echo $id; ?>
 </td>
 <td>
 <?php echo $row->name; ?>
 </td>
 <td align="center">
 <?php echo $published ?>
 </td>
 </tr>
<?php
endforeach;
?>

If $rows were to contain two objects named 'Item 1' and 'Item 2', of which only the
first object is published, the resulting table would look like this:

Not all of the grid types are used for data item elements. The grid.sort and grid.
order types are used to render table column headings. The grid.state type is
used to display an item state selection box, All, Published, Unpublished and,
optionally, Archived.

Access
Gets a text link that describes the access group (legacy group) to which the item is subject.
When pressed the access of the item is designed to cycle through the available legacy groups.

Parameters

row

Referenced object that we are representing.
Must contain the attributes access and
groupname.

i Physical row number
[archived] -1, if item is archived

Returns

A text link that describes the access group, which when pressed submits
the form with the task accessregistered, accessspecial,
or accesspublic

Rendering Output

[202]

checkedOut
Gets a selectable checkbox or displays a small padlock image if the record is locked.

Parameters

row

Referenced object that we are representing.
Must contain the attribute checked_out or be
a JTable object

i Physical row number
[identifier] Name of the record primary key; default is id

Returns

Checkbox that is a member of a checkbox array; its value is equal to the record
ID value. If the row/record is checked out a small padlock image is returned.

Id
Gets a selectable checkbox. If checkedOut is true, a null string is returned. This is used by
most the other grid types; it is recommended that all admin grids/tables use this. If the
record might be checked out we should consider using grid.checkedOut instead.

Parameters rowNum Physical row number
recId Record ID
[CheckedOut] Record is checked out; default is false
[name] Name of the checkbox array; default is cid

Returns Checkbox that is a member of a checkbox array; the value is equal to recId

Order
Outputs an image with an onClick JavaScript to be used at the top of an order column.
Every data row cell in this column will normally contain a text box called order as this
example demonstrates:

<input type="text" name="order[]" size="5" value="<?php echo
$row->ordering;?>" class="text_area" style="text-align: center" />

Parameters rows Array of rows being displayed
[image] Admin image name
[task] Update order task; default is saveorder

Published
Gets an image that represents a published state. When pressed the image issues a JavaScript
event selecting the item, submitting the form with the task publish or unpublish.

Parameters row Referenced object, which represents a data row/record
i Physical row number
[imgY] Published image name located in images
[imgX] Unpublished image name located in images
[prefix] Task name prefix

Returns An image used to publish and unpublish an item

Chapter 8

[203]

Sort
Gets a heading for a grid/table column, which when pressed sets the form fields filter_
order and filter_order_Dir to the current column and the preferred direction.

Parameters title Column name
order Value with which to populate filter_order

direction

Current direction; filter_order_Dir is
populated with the opposite, asc or desc

selected

The currently selected ordering column; relates
to order

[task] Optional value with which to populate task
Returns A sortable heading for a grid/table column

State
Gets a drop-down selection box called filter_state with four or five options. Normally
used to select the published, unpublished, or archived state. When an option is
selected the form is submitted.

Parameters

[filter_state]

Current state, must be a null string, *, P, U or A;
default is *

[published] Published (P) name; default is Published

[unpublished]

Unpublished (U) name; default is
Unpublished

[archived]

Archived (A) name; default is null which
prevents the archived option being displayed

Returns A drop-down selection box of different states

Image
We use the image types to enable a form of image overriding. We can check if a
template has an image before using a system default image. There are two image
types, image.administrator and image.site.

We will look at image.site, in order to demonstrate how it works. This is an
example of how to use it with an image named edit.png:

echo JHTML::_('image.site', 'edit.png');

This will output an image tag for the image named edit.png. The image will
be located in the currently selected template images sub-folder. If there isn't an
image in that folder named edit.png, the image will be located in the folder
/images/M_images.

Rendering Output

[204]

We can change these directories using the $directory and $param_directory
parameters.

Administrator
Get an image tag for a backend image.

Parameters file Name of the image file
[directory] Default directory; default is images

[param]

Overriding image file name; intended for use with
JParameter

[param_directory] Overriding directory; default is images
[alt] Alternative text
[name] Deprecated

[type]

Get image tag or image location; default is true
(get image tag)

[align]

Image-tag alignment attribute value; default is
middle

Returns Image tag or image location

Site
Get an image tag for a frontend image.

Parameters file Name of the image file
[directory] Default directory; default is images/M_image

[param]

Overriding image file name; intended for use
with JParameter

[param_directory] Overriding directory; default is images
[alt] Alternative text
[name] Deprecated

[type]

Get image tag or image location; default is true
(get image tag)

[align]

Image-tag alignment attribute value; default
is top

Returns Image tag or image location

List
The list types are used for the generation of common selection lists. We'll take a look
at the list.accesslevel type. This type produces a selection list populated with
the legacy groups.

Chapter 8

[205]

This type is relatively simple; it only requires one parameter, an object that includes
the attribute access. This type is intended for use when modifying a single item, so in
most cases the parameter will be an object representation of the item.

This code demonstrates how we might use list.accesslevel:

// get an item

$query = 'SELECT *'
 .' FROM #__sometable'
 .' WHERE id = '.(int)$id;

$db =& JFactory::getDBO();

$db->setQuery($query);

$item = $db->loadObject();

echo JHTML::_('list.accesslevel', $item);

Assuming that the selected item has an attribute called access and it is 0 (Public),
the resultant selection list will appear like this:

The list types are generally used to implement a filter when viewing itemized data
or, as with list.accesslevel, for use when creating or modifying a single item. We
discuss how to use the list types to implement a filter later in this chapter.

Accesslevel

Gets a selection box of the legacy groups. The selected group will be the group identified in
the $row attribute, access. The resulting form control is named access.

Parameters row Object that includes the attribute access

Returns A selection box of the legacy groups

Rendering Output

[206]

Category
Gets a drop-down selection box of different categories related to a specific section. We
can use categories outside of the content component in order to maintain categories for a
different extension. We do this by specifying a section value equal to that of the extension
name, for example com_somecomponent.

Parameters name List name
section Section ID or extension name
[active] Initially selected category

[javascript]

String of JavaScript event attributes to add to
the category select tag

[order] SQL ORDER BY clause; default is ordering
[size] Size of the selection box; default is 1

[sel_cat]

Display a Select a Category option at the
top of the category list; default is true

Returns A selection box of categories in a section

Genericordering
Gets an array of options, for use with the select types, of possible positions in an order.
Consider using grid.specificordering, if the current position is known.

Parameters

sql

S�L query to execute; must return the fields
text and value

[chop]

Maximum length of the value of text; default
is 30 characters

Returns Array of different available ordering positions

Images
Gets a drop-down list of images available in a directory. The first option in the list is
always Select Image. Images must be of type BMP, GIF, JPG, or PNG. By default the list
has a JavaScript onChange event associated with it that will update the src attribute of an
img tag called imagelib.

Parameters name List name
[active] Initially selected option
[javascript] JavaScript to include
[directory] Images directory; default is images/stories

Returns Drop-down list populated with image names

Chapter 8

[207]

Positions
Gets a drop-down list of different positions. The positions can contain none, center,
left, and right. This is intended to enable the selection of image positions but can be
used for other purposes.

Parameters name Name of the drop-down list form control
[active] Initially selected position
[javascript] String of JavaScript event attributes
[none] Show none; default is true
[center] Show center; default is true
[left] Show left; default is true
[right] Show right; default is true
[id] Drop-down list ID

Returns Drop-down list of positions

Section
Gets a drop-down list of published sections. The first two options are always Select
Section and Uncategorized.

Parameters name Name of the drop-down list form control
[active] Initially selected section
[javascript] String of JavaScript event attributes

[order]

SQL ORDER BY clause used when selecting the
sections from the #__sections table; default is
ordering

Returns Drop-down list of sections

Specificordering
Gets a drop-down list of possible positions in an order. $row is an obect which represents
the current item. If $id is false, a hidden field is returned with a textual description. The
description is related to creating new items; we use $neworder to suggest that the item will
be placed at the start or end of the existing order. The returned control is named ordering.

Parameters row Referenced object with the attribute ordering
id If true drop-down list; if false, hidden field

query

S�L query to execute; must return the fields
text and value

[neworder] Created at start of order; default is false
Returns Drop-down list of possible positions in an order

Rendering Output

[208]

Users
Gets a drop-down list of site users. By default this does not include registered users.

Parameters name Name of the drop-down list form control
active Initially selected user
[nouser] Include No User option; default is false
[javascript] String of JavaScript event attributes
[order] #__users field to order by; default is name
[reg] Exclude registered users; default is true

Returns Drop-down list of site users

Menu
The menu types are designed specifically for use with menus. It is unlikely that
we should ever need to use any of these because menus are handled for us by
Joomla!. However, the menu.treerecurse type may be of interest if we are
rendering tree structures.

Linkoptions
Gets an array of options, for use with select.genericlist, which represents the menu
items. We can also add the optional values of All and Unassigned to start of the list.

Parameters [all] Show All; default is false
[unassigned] Show Unassigned; default is false

Returns Array of options

Ordering
Gets a drop-down list of menu items from a menu in order to facilitate the modification
of menu item ordering. The value of each option is equal to the ordering value of the
corresponding menu item. If $id is false, a hidden fields will be returned with a textual
description. The description explains that new items will be added to the end of the
existing order.

Parameters row An object that represents a menu item
id Use dropdown list; default is true

Returns Drop-down list of menu items from a menu

Chapter 8

[209]

Treerecurse
Builds an array of objects from menu items. Adds the attributes treename and
children. treename is the text to display before an item. children is number of child
menu items.

Parameters id ID of the menu item to build the array
indent Current indent
list Array of menu items, normally empty
children Array of objects representing menu items
[maxlevel] Maximum recursive depth; default is 9999
[level] Current recursive level; default is 0

[type]

Type of menu item pretext; if true pretext is L,
otherwise pretext is -

Returns An array of parsed menu items

Select
The select types are intended to create selection boxes easily. They can be used to
create drop-down selection boxes and radio selection buttons.

We'll use select.genericlist as an example to create a drop-down selection box
with three values. We'll call the drop-down selection box someoptions and use the
second option as the default.

// prepare the options
$options = array();
$options[] = JHTML::_('select.option', '1', 'Option A');
$options[] = JHTML::_('select.option', '2', 'Option B');
$options[] = JHTML::_('select.option', '3', 'Option C');

// render the options
echo JHTML::_('select.genericlist', $options, 'someoptions',
 null, 'value', 'text', '2');

The resultant drop-down selection box will look like this:

Rendering Output

[210]

Booleanlist
Gets a pair of Boolean radio options, one with a value of 0, the other with a value of 1.

Parameters name Name of the Boolean inputs
[attribs] Additional radio button tag attributes
[selected] Initially selected option
[yes] True text, default is yes
[no] False text, default is no
[id] Selection ID

Returns Pair of Boolean radio options

Genericlist
Gets a select list based on an array of options.

Parameters

arr

An array of associative arrays or objects,
normally an array of objects created using
select.option

name List name
attribs Additional list attributes

[key]

The value key in the associative arrays or
objects, normally value

[text]

The text key in the associative arrays or objects,
normally text

[selected]

Key value of the currently selected option;
default is null

[idtag] List ID, default is null
[translate] Translate text using JText; default is false

Returns Selectable list of options

Integerlist
Gets a selectable list of numbers.

Parameters start Start value
end Maximum value
inc Increment value, normally 1
name List name
[attribs] Additional list attributes

[selected]

Key value of the currently selected option;
default is null

[format]

sprintf() format to apply to the text, for
example, Number %d

Returns Selectable list of numeric options

Chapter 8

[211]

Optgroup
Gets an object that represents an option group.

Parameters text Group name
[value_name] Name of the value attribute; default is value
[text_name] Name of the text attribute; default is text

Returns Object with two attributes—a value and a text name

Option
Gets an object that represents a single selectable option.

Parameters value Option value
[text] Option name
[value_name] Name of the value attribute; default is value
[text_name] Name of the value attribute; default is text
[disabled] Option is disabled; default is false

Returns Object with two attributes—a value and a text name

Options
Gets an XHTML string of select list options based on the passed array of associative arrays
or objects.

Parameters

arr

An array of associative arrays or objects,
normally an array of objects created using
select.option

[key]

The value key in the associative arrays or
objects, normally value

[text]

The text key in the associative arrays or objects,
normally text

[selected]

Key value of the currently selected option;
default is null

[translate] Translate text using JText; default is false
Returns XHTML String of options

Rendering Output

[212]

Radiolist
Gets a radio button selection list.

Parameters

arr

An array of associative arrays or objects,
normally an array of objects created using
select.option

name List name
[attribs] Additional list attributes

[key]

The value key in the associative arrays or
objects; default is value

[text]

The text key in the associative arrays or objects;

default is text

[selected]

Key value of the currently selected option;
default is null

[idtag] List ID; default is null
[translate] Translate text, using JText; default is false

Returns Radio button options

Building Component HTML Layouts (Templates)
When we think of templates we normally envisage site templates detailing
precisely what our website is going to look like. In Joomla!, to help separate out the
presentation we also have templates within components.

Templates are PHP files that mainly consist of XHTML and include small snippets
of PHP to output data. Although there are no strict conventions on the way in which
we use our templates, there are some common rules that we normally observe:

Do not process data
Use colon and endX in preference of curly braces
Encapsulate each line of PHP in its own PHP tags
Keep tag IDs lowercase and use underscore word separators
Indent for the XHTML, not the PHP

This example shows a very basic template that demonstrates each of the rules:

<div id="some_division">
<?php foreach ($this->items as $item) : ?>
 <div id="item_<?php echo $item->id; ?>">
 <?php echo $item->name; ?>
 </div>
<?php endforeach; ?>
</div>

•
•
•
•
•

Chapter 8

[213]

Take particular note of the use of the colon to denote the start of the foreach block,
and endforeach to denote the end of the block. Using this alternative syntax makes
templates easier to read; just imagine hunting for the correct ending curly brace in a
large template file!

You almost certainly noticed the use of $this in the example template. Templates
are always invoked by a view; when we do this we actually incorporate the template
code into the view object's loadTemplate() method.

This means that the variable $this is referring to the view object from which the
template was invoked. This is why we attach data to our view; it means that in the
template we can access all the data we added to view via $this.

It is generally best to use an existing template in order to build a new template. This
ensures that we use the conventions and styles implemented by Joomla! to render
our output.

Iterative Templates
We can break down templates into smaller chunks. We can use a separate template
to render common or iterative elements; these templates can then be called from
other templates.

These sorts of sub-templates are prefixed with the word default_. For example if
we had a sub-template to display a form it would be called default_form.php. This
example shows what we might have within such a file:

<div id="some_division">
 <form action="<?php echo
 JRoute::_('index.php?option=com_myextension&task=submitform');
 ?>" name="someform" id="someform">
 <table width="100%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td><label for="name"><?php echo JText::_('Name');
 ?></label></td>
 <td><input name="name" type="text" size="40"
 maxlength="40"></td>
 </tr>
 <tr>
 <td><label for="surname"><?php echo JText::_('Surname');
 ?></label></td>
 <td><input name="surname" type="text" size="40"
 maxlength="40"></td>
 </tr>
 <tr>

Rendering Output

[214]

 <td><label for="email"><?php echo JText::_('Email');
 ?></label></td>
 <td><input name="email" type="text" size="40"
 maxlength="40"></td>
 </tr>
 </table>
 </form>
</div>

Having created the sub-template how do we use it from within other templates?
Well, essentially in the same way in which the first template was invoked. We
mentioned earlier the loadTemnplate() method; this method loads template files.
This example shows how we include the default_form.php template in another
template file:

<!-- Put the form here -->
<?php echo $this->loadTemplate('form'); ?>

Notice that we have to echo the output; this is because the loadTemplate() method
uses PHP output buffering to catch the data that is outputted by the loaded template.
Also notice that we do not use the full name of the sub-template; this is because the
loadTemnplate() method automatically prefixes the string default_ to the name.

We can take this a step further by restricting the sub-template to just one of the
templates. Imagine we have a template in a file called foobar.php. If we wanted
to make our default_form.php file unique to this template, all we need to do
is rename it. Instead of prefixing the file name with default_, we prefix it with
foobar_. The great thing about this is we do not need to alter the code.

Component Backend
When we build the backend of a component there are some very important things
that we need to be aware of. Components usually take advantage of the toolbar and
the submenu.

This is a screenshot of the Banner component:

Across the top is the toolbar, and across the bottom is the sub-menu. We'll discuss
how to modify these in a moment. First of all we need to be aware of the admin form.

Chapter 8

[215]

Admin Form
When we create templates for component backends that require a form, we must
always name the form adminForm. This code demonstrates how we normally define
adminForm in a template:

<form action="<?php echo $this->request_url; ?>" method="post"
 name="adminForm" id="adminForm">

Instead of adding buttons to the form in the usual way we add buttons to the toolbar.

It's normal when creating a form in the backend to also include JavaScript validation.
Note that we must never rely on JavaScript validation alone.

This is an example of such a script, which checks a form with two inputs, a text field
called name and an editor area called text:

<?php// prepare the editor retrieval JavaScript
$editor =& JFactory::getEditor();
$getText = $editor->getContent('text'); ?>

<script language="javascript" type="text/javascript">
<!--
function submitbutton(pressbutton)
{
 var form = document.adminForm;

 // check we aren't cancelling
 if (pressbutton == 'cancel')
 {
 // no need to validate, we are cancelling
 submitform(pressbutton);
 return;
 }

 // get text
 text = <?php echo $getText; ?>

 // validate
 if (form.name.value == "")
 {
 // no name supplied
 alert("<?php echo JText::_('You must supply a name',
 true); ?>");
 }
 else if (question == "" && answer == "")
 {
 // no text supplied

Rendering Output

[216]

 alert("<?php echo JText::_('You must supply some
 text', true); ?>");
 }
 else
 {
 // success save the
 <?php echo $editor->save('text'); ?>
 submitform(pressbutton);
 }
}
//-->
</script>

Most important is our defining of the JavaScript function submitbutton(). This
function is executed when toolbar buttons are used to submit the form.

The first part of the function checks that the button that has been pressed is not
cancel. If it is, then the function stops because no validation is required.

We then continue to retrieve the value of text. We don't used form.text.value to
retrieve the value because some editors don't support this. Instead, we use $editor
->getContent('text'); this returns a JavaScript string, which when executed gets
the value of the editor named text.

Once we have done this we proceed to check the values of the two fields. If either of
them is empty, we present a JavaScript alert box. When we translate the text to show
the alert, we provide a second parameter of true. This makes the translated text
JavaScript safe.

If no validation problems are encountered we proceed to submit the form. In order to
do this, we use a JavaScript function called submitform().

If you require more complex JavaScript form validation, you might want to
investigate the use of the behavior.formvalidation JHTML type, described briefly
earlier in this chapter.

Toolbar
The administration toolbar consists of a title and a number of buttons that, as an
administrator, we use to perform actions. The following example shows the toolbar
as it appears when we edit an article:

Chapter 8

[217]

We modify the administrative component toolbar in our view classes using the static
JToolBarHelper class. In this example, we add a cancel button to the menu bar and
set the title of the menu bar to FooBar.

JToolBarHelper::title('FooBar');
JToolBarHelper::cancel();

There are many different buttons we can add to the menu bar and if we cannot find
a suitable button we can define our own. Most of the buttons act like form buttons
for the form adminForm. For some of the buttons to perform correctly the form must
include certain input fields.

The following tables give detail of the buttons that we can add to the toolbar:

addNew(task : string='add', alt : string='New') : void

Adds an 'add new' button; default task is add.

Parameters [task] Task
[alt] Name

addNewX(task : string='add', alt : string='New') : void
Adds an 'add new' button; default task is add. This method hides the main menu
when pressed; the adminForm form must include an input called hidemainmenu.

Parameters [task] Task
[alt] Name

apply(task : string='apply', alt : string='Apply') : void

Adds an apply button to the menu bar. The default task is apply.

Parameters [task] Task
[alt] Name

archiveList(task : string='archive', alt : string='Archive') : void
Adds an archive button to the menu bar. The default task is archive. Requires
that at least one list item is selected.

Parameters [task] Task
[alt] Name

assign(task : string='assign', alt : string='Assign') : void

Adds an 'assign' button to the menu bar. The default task is assign.

Parameters [task] Task
[alt] Name

Rendering Output

[218]

back(alt : string='Back', href : string='javascript:history.back();') : void

Adds a 'back' button to the menu bar.

Parameters [alt] Name
[href] URI

cancel(task : string='cancel', alt : string='Cancel') : void

Adds a 'cancel' button to the menu bar.

Parameters [task] Task
[alt] Name

custom(task : string='', icon : string='', iconOver : string='', alt : string='', listSelect :
boolean=true, x : boolean=false) : void

Adds a custom button to the menu bar. To use x your form must include an input
called hidemainmenu.

Parameters [task] Value of the task input
[icon] Icon to use
[iconOver] Icon to use on mouse over
[alt] Name
[listSelect] Check if a list item is selected
[x] Hide main menu

customX(task : string='', icon : string='', iconOver : string='', alt : string='', listSelect :
boolean=true) : void

Adds a custom button to the menu bar.

Parameters [task] Value of the task input
[icon] Icon to use
[iconOver] Icon to use on mouse over
[alt] Name
[listSelect] Check if a list item, cid[], is selected

deleteList(msg : string='', task : string='remove', alt : string='Delete') : void

Adds a 'delete' button to the menu bar. The default task is remove.

Parameters [msg] Delete confirmation message
[task] Task
[alt] Name

Chapter 8

[219]

deleteListX(msg : string='', task : string='remove', alt : string='Delete') : void

Adds a 'delete' button to the menu bar. The default task is remove.

Parameters [msg] Delete confirmation message
[task] Task
[alt] Name

divider() : void
Adds a divider; a vertical line.

editCss(task : string='edit_css', alt : string='Edit CSS') :void

Adds an 'edit' button to the menu bar. The default task is edit_css.

Parameters [task] Task
[alt] Name

editCssX(task : string='edit_css', alt : string='Edit CSS') :void

Adds an 'edit' button to the menu bar. The default task is edit_css.

Parameters [task] Task
[alt] Name

editHtml(task : string='edit_source', alt : string='Edit HTML') : void

Adds an 'edit' button to the menu bar. The default task is edit_source.

Parameters [task] Task
[alt] Name

editHtmlX(task : string='edit_source', alt : string='Edit HTML') : void
Adds an 'edit' button to the menu bar. The default task is edit_source. Checks
the value of the input box checked; if it equals 0, a JavaScript alert message is
displayed telling the administrator to make a selection.

Parameters [task] Task
[alt] Name

editList(task : string='edit', alt : string='Edit') : void
Adds an 'edit' button to the menu bar. Requires that at least one list item is
selected, cid[].

Parameters [task] Task
[alt] Name

Rendering Output

[220]

editListX(task : string='edit', alt : string='Edit') : void
Adds an 'edit' button to the menu bar. Requires that at least one list item
is selected, cid[]. This method hides the main menu when pressed; the
adminForm form must include an input called hidemainmenu.

Parameters [task] Task
[alt] Name

help(ref : string, com : boolean= false) : void
Adds a 'help' button to the menu bar. $ref determines the help file to use. $com
chooses to use a component-specific help file. Component-specific help files are
located in the help folder in the administrator component folder.

Parameters ref Help file
[com] Use component-specific help files

makeDefault(task : string='default', alt : string='Default') : void

Adds a make-default button. The default task is default.

Parameters [task] Task
[alt] Name

media_manager(directory : string='', alt : string='Upload') : void
Adds a button that when pressed allows an administrator to upload a file to the
Media Manager.

Parameters [directory] Directory in
[alt] Name

preferences(component : string, height : string='150', width : string='570', alt :
string='Preferences', path : string = '') : void

Adds a 'preferences' button to the menu bar. When pressed a pop-up box appears
with the component's preferences as defined by the XML file. If path is not
specified the default location, JPATH_COMPONENT_ADMISTRATOR.'config.
xml', is used.

Parameters component Component name
[height] Pop-up box height
[width] Pop-up box width
[alt] Name
[path] Path to the configuration XML file

Chapter 8

[221]

preview(url : string= '', updateEditors : boolean=false) : void

Adds a 'preview' button to the menu bar and appends &task=preview to the URI.

Parameters [url] URI
[updateEditors] Deprecated

publish(task : string='publish', alt : string='Publish') : void

Adds a 'publish' button to the menu bar.

Parameters [task] Task
[alt] Name

publishList(task : string='publish', alt : string='Publish') : void
Adds a 'publish' button to the menu bar. Requires that at least one list item is
selected, cid[].

Parameters [task] Task
[alt] Name

save(task : string='save', alt : string='Save') : void

Adds a 'save' button to the menu bar.

Parameters [task] Task
[alt] Name

spacer(width : int='') : void
Adds a spacer; use width parameter to determine the size of the spacer.

Parameters [width] Spacer width

title(title : string, icon : string='generic.png') : void
Sets the title and the icon title class of the menu bar.

Parameters title Title
[icon] Title class, prepended to icon-48-

trash(task : string='remove', alt : string= Trash', check : boolean=true) : void

Adds a 'trash' button to the menu bar. The default task is remove.

Parameters [task] Task
[alt] Name
[check] Check that an item is selected

Rendering Output

[222]

unarchiveList(task : string='unarchive', alt : string='Unarchive') : void
Adds an 'unarchive' button to the menu bar. The default task is unarchive.
Requires that at least one list item is selected, cid[].

Parameters [task] Task
[alt] Name

unpublish(task : string='unpublish', alt : string='Unpublish') : void

Adds an 'unpublish' button to the menu bar. The default task is unpublish.

Parameters [task] Task
[alt] Name

unpublishList(task : string='unpublish', alt : string='Unpublish') : void
Adds an 'unpublish' button to the menu bar. The default task is unpublish.
Requires that at least one list item is selected, cid[].

Parameters [task] Task
[alt] Name

Sub-Menu
The sub-menu appears directly beneath the toolbar. It is automatically populated
with the component sub-menu items defined in the component XML manifest file.

If we modify sub-menu items, the automatically generated items will not be
included. We can modify entries using the static JSubMenuHelper class. This
example adds two options to the sub-menu:

// get the current task
$task = JRequest::getCmd('task');

if ($task == 'item1' || $task == 'item2')
{
 // determine selected task
 $selected = ($task == 'item1');

 // prepare links
 $item1 = 'index.php?option=com_myextension&task=item1';
 $item2 = 'index.php?option=com_myextension&task=item2';

 // add sub menu items
 JSubMenuHelper::addEntry(JText::_('Item 1'), $item1,
 $selected);
 JSubMenuHelper::addEntry(JText::_('Item 2'), $item2,
 $selected);
}

Chapter 8

[223]

The addEntry() method adds a new item to the sub-menu. Items are added in order
of appearance. The first parameter is the name, the second is the link location, and
the third is true if the item is the current menu item.

This screenshot depicts the given example, in the component My Extension, when
the selected task is Item1:

It is common to use this type of code in the root component file if one of the
sub-menu options is part of a different component. It's not uncommon for
components to use the core categories component to handle categories.

This is an example of a link we might add to the sub-menu if we were using the core
categories component to handle categories for the component com_myextension:

$link = 'index.php?option=com_categories§ion=com_myextension';
JSubMenuHelper::addEntry(JText::_('Categories'), $link);

There is one more thing that we can do with the sub-menu. We can remove it. This
is especially useful with views for which, when a user navigates away without
following the correct procedure, an item becomes locked.

If we modify the hidemainmenu request value to 1, the sub-menu will not be
displayed. We normally do this in methods in our controllers; a common method in
which this would be done is edit(). This example demonstrates how:

JRequest::setVar('hidemainmenu', 1);

There is one other caveat when using this; the main menu will be deactivated. This
screenshot depicts the main menu across the top of backend:

This screenshot depicts the main menu across the top of backend when
hidemainmenu is enabled; notice that all of the menu items are grayed out:

Rendering Output

[224]

Itemized Data
Most components handle and display itemized data. Itemized data is data having
many instances; most commonly this reflects rows in a database table. When dealing
with itemized data there are three areas of functionality that users generally expect:

Pagination
Ordering
Filtering and Searching

In this section we will discuss each of these areas of functionality and how to
implement them in the backend of a component.

Pagination
To make large amounts of itemized data easier to understand, we split the data
across multiple pages. Joomla! provides us with the JPagination class to help us
handle pagination in our extensions.

There are four important attributes associated with the JPagination class:

limitstart: This is the item at which we begin a page, for example the first
page will always begin with item 0.
limit: This is the maximum number of items to display on a page.
total: This is the total number of items across all the pages.
_viewall: This is the option to ignore pagination and display all items.

Before we head into piles of code, let's take the time to examine the listFooter, the
footer that is used at the bottom of pagination lists:

The box to the far left describes the maximum number of items to display per page
(limit). The remaining buttons are used to navigate between pages. The final text
defines the current page out of the total number of pages.

The great thing about this footer is we don't have to work very hard to create it!
We can use a JPagination object to build it. This not only means that it is easy to
implement, but that the pagination footers are consistent throughout Joomla!.

•

•

•

•

•

•

•

Chapter 8

[225]

JPagination is used extensively by components in the backend when displaying lists
of items. Normally we add a method called getPagination() to the model, which
deals with the items we are trying to paginate, to get a pagination object. This is an
example of such a method:

/**
 * Get a pagination object
 *
 * @access public
 * @return JPagination
 */
function getPagination()
{
 if (empty($this->_pagination))
 {
 // import the pagination library
 jimport('joomla.html.pagination');

 // prepare the pagination values
 $total = $this->getTotal();
 $limitstart = $this->getState('limitstart');
 $limit = $this->getState('limit');

 // create the pagination object
 $this->_pagination = new JPagination($total, $limitstart,
 $limit);
 }

 return $this->_pagination;
}

There are three important aspects to this method. We use the attribute _pagination
to cache the object. We use the getTotal() method to determine the total number of
items. We use the getState() method to determine the number of results to display.

The getTotal() method is a method that we must define in order to use. We don't
have to use this name or this mechanism to determine the total number of items. This
is an example of how we might implement the getTotal() method:

/**
 * Get number of items
 *
 * @access public
 * @return integer
 */
function getTotal()
{

Rendering Output

[226]

 if (empty($this->_total))
 {
 $query = $this->_buildQuery();
 $this->_total = $this->_getListCount($query);
 }

 return $this->_total;
}

This method uses the private method _buildQuery() to get the query that we use to
get the data. This is the same method as the model's getData() method is likely to
be using. We then use the private method _getListCount() to count the number of
results that will be returned from the query.

The _getListCount() method is defined in the JModel class.

Moving on to our use of $limit and $limitstart, we use the getState() method.
JModel objects store a state object in order to record the state of the model. It is
common to use the state variables limit and limitstart to record the list limit and
start position.

We set the state variables in the model constructor, as this example demonstrates:

/**
 * Constructor
 *
 */
function __construct()
{
 global $mainframe;

 parent::__construct();

 // Get the pagination request variables
 $limit = $mainframe->getUserStateFromRequest('global.list.limit',
 'limit', $mainframe->getCfg('list_limit'));
 $limitstart = $mainframe->getUserStateFromRequest
 ($option.'limitstart',($option.'limitstart',
 'limitstart', 0);

 // set the state pagination variables
 $this->setState('limit', $limit);
 $this->setState('limitstart', $limitstart);
}

Chapter 8

[227]

We use the getUserStateFromRequest() method to get the limit and limitstart
variables.

We use the user state variable, global.list.limit, to determine the limit. This
variable is used throughout Joomla! to determine the length of lists. For example, if
we were to view the Article Manager and select a limit if 5 items per page, when we
move to a different list it will also be limited to 5 items.

If a value is set in the request value limit (part of the listFooter) we use that value.
Alternatively we use the previous value, and if that is not set we use the default
value defined in the application configuration.

The limitstart variable is retrieved from the user state value $option, plus
.limitstart. $option is the component name, for example com_content. If we
build a component that has multiple lists we should add an extra level to this,
normally named after the entity.

If a value is set in the request value limitstart (part of the listFooter) we use that
value. Alternatively we use the previous value, and if that is not set we use the
default value 0, which will lead us to the first page.

At this stage you might be wondering why we handle this in the constructor and
not the getPagination() method. As well as using these values for the JPagination
object, we also need to use them when getting data from the database.

Assuming we are using a method called getData() to retrieve the itemized data, our
method might look like this:

/**
 * Get itemized data
 *
 * @access public
 * @return array
 */
function getData()
{
 if (empty($this->_data))
 {
 $query = $this->_buildQuery();
 $limitstart = $this->getState('limitstart');
 $limit = $this->getState('limit');
 $this->_data = $this->_getList($query, $limitstart, $limit);
 }

 return $this->_data;
}

Rendering Output

[228]

This method uses the private _buildQuery() method that we discussed earlier.
We get the object state variables limit and limitstart and pass them to the
_getList() method. The _getList() method is used to get an array of objects from
the database based on a query and, optionally, limit and limitstart.

The _getList() method is defined in the JModel class.

The last two parameters will modify the first parameter, a query, in such a way that
we only return the desired results. For example if we requested page 1 and were
displaying a maximum of 5 items per page, the following would be appended to the
query: LIMIT 0, 5.

Ordering
It's generally nice to allow the user to select a column in a table from which they
want to be able to order itemized data. In Joomla!; we can use the JHTML grid.sort
type to achieve this.

Before we begin we must add two hidden fields to our form of itemized data,
filter_order and filter_order_Dir. The first defines the field by which we want
to order our data and the latter defines the direction in which we want to order our
data, ascending or descending.

At the top of each column in the itemized data table we create a heading using the
grid. This is an example of a heading for a name column:

<?php echo JHTML::_('grid.sort', 'Name', 'name', $this-
 >lists['order_Dir'], $this->lists['order']); ?>

After grid.sort the parameters are the name that will appear at the top of the
column, the sort value, the current order direction, and the current column by which
the data is ordered.

We'll concentrate on the last two parameters. Bearing in mind that this code is to be
used in a template file, the lists attribute is something that we must have assigned
to the JView object in the display() method.

Chapter 8

[229]

This example demonstrates how we build the lists attribute; note that $option and
$mainframe are declared global:

// prepare list array
$lists = array();

// get the user state of the order and direction
$filter_order = $mainframe-
 >getUserStateFromRequest($option.'filter_order',
 'filter_order', 'published');
$filter_order_Dir = $mainframe-
 >getUserStateFromRequest($option.'filter_order_Dir',
 'filter_order_Dir', 'ASC');

// set the table order values
$lists['order_Dir'] = $filter_order_Dir;
$lists['order'] = $filter_order;

// add the lists array to the object ready for the layout
$this->assignRef('lists', $lists);

We use the application method getUserStateFromRequest() to determine
the order and the direction, using the paths $option plus filter_order and
filter_order_Dir respectively. The default values are published, which is the
default column by which we will order the data, and ASC, the default ordering
direction, ascending.

We mentioned earlier that to facilitate the correct usage of JPagination we have to
add two hidden fields, filter_order and filter_order_Dir. These are the fields
from which these two $lists values are derived.

So now that we have the lists attribute sorted we can quickly add those hidden
fields to our temple. This example demonstrates how:

<input type="hidden" name="filter_order" value="<?php echo
 $this->lists['order']; ?>" />$this->lists['order']; ?>" />
<input type="hidden" name="filter_order_Dir" value="" />

The most important thing to notice here is that we leave the value of the filter_
order_Dir field empty. This is because the listFooter deals with this for us.

Returning to our column heading there were two other parameters: the text that
appears at the top of the column, and the sort value.

The first of these is very straightforward. The second is slightly more ambiguous. It
is the value that will be placed in the filter_order form field should we choose towe choose tochoose to
order our itemized data by this column.

Rendering Output

[230]

In order for us to be able to use these headings to their expected effect we need to
modify our JModel class to deal with these.

Earlier we spoke about the use of a _buildQuery() method to create the query with
which we retrieve itemized data. This is an example of such a method:

/**
 * Builds a query to get data from #__sometable
 *
 * @return string SQL query
 */
function _buildQuery()
{
 return ' SELECT * ' .
 ' FROM #__sometable ' . $this->_buildQueryOrderBy();
}

This method in turn calls a method named _buildQueryOrderBy() that builds
the ORDER BY clause for the query. Let's imagine that the entity with which we
are dealing has three columns: name, published, and id. This is an example of a
_buildQueryOrderBy() method:

/**
 * Builds the ORDER part of a query
 *
 * @return string Part of an SQL query
 */
function _buildQueryOrderBy()
{
 global $mainframe, $option;

 // Array of allowable order fields
 $orders = array('name', 'published', 'id');

 // get the order field and direction
 $filter_order = $mainframe->getUserStateFromRequest(
 $option.'filter_order',$option.'filter_order',
 'filter_order', 'published');
 $filter_order_Dir = strtoupper($mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_order_Dir',
 'filter_order_Dir', 'ASC'));

 // validate the order direction, must be ASC or DESC
 if ($filter_order_Dir != 'ASC' && $filter_order_Dir != 'DESC')
 {
 $filter_order_Dir = 'ASC';

Chapter 8

[231]

 }

 // if order column is unknown use the default
 if (!in_array($filter_order, $orders))
 {
 $filter_order = 'published';
 }

 // return the ORDER BY clause
 return ' ORDER BY '.$filter_order.' '.$filter_order_Dir;
}

As with the view, we retrieve the order column name and direction using the
application getUserStateFromRequest() method. Since this data is going to be
used to interact with the database, we perform some data sanity checks to ensure
that the data is safe to use with the database.

Finally, we build the ORDER BY clause and return it. When we deal with entities that
have an ordering field, we generally build more complex ORDER BY clauses. For
example, when we order by ascending name, we might want the ORDER BY clause to
be ORDER BY name, ordering.

Now that we have done this we can use the table headings to order itemized data.
This is a screenshot of such a table:

Notice that the current ordering is name ascending, as denoted by the small arrow to
the right of Name.

Filtering and Searching
In many respects, the process of filtering and searching itemized data is very similar
to ordering itemized data. We'll begin by talking a look at filtering.

This is a screenshot of the filtering and search form controls that appear at the top of
the Article Manager:

In this case, there are many filtering options: the section, category, author, and
published state. We will start with the easiest—we will look at how to implement a
published-state filter.

Rendering Output

[232]

We can use the grid.state type to easily render a published state drop-down
selection box. Unlike previous examples, we'll use the type in the JView class's
display() method. This example demonstrates how we can implement this:

// prepare list array
$lists = array();

// get the user-state of the published filter
$filter_state = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_state',
 'filter_state');

// set the table filter values
$lists['state'] = JHTML::_('grid.state', $filter_state);

// add the lists array to the object
$this->assignRef('lists', $lists);

We use the application getUserStateFromRequest() method to determine the
current published state filter value, using the path $option plus filter_state. The
default value is a null string, which indicates that no selection has been made.

Once we have the published state filter value, we use the grid.state type to render
a drop-down list form control with the available published state properties. This
control has some JavaScript associated with it that automatically submits the form
when the JavaScript onChange event is fired.

A complete description of the grid.state type is available earlier in this chapter.

$lists is an array because, if we are implementing more than one filter, we can
easily add all of these filters to a single attribute within the view, ready for the layout
to use. Alternatively, we could use a different view attribute to deal with each filter.

Now that we have a form control we need to display it. We do this in the template,
as this example demonstrates:

<table>
 <tr>
 <td align="left" width="100%">
 </td>
 <td nowrap="nowrap">
 <?php echo $this->lists['state']; ?>
 </td>
 </tr>
</table>

Chapter 8

[233]

It is normal to use a table with one row and two cells to display filters and search
controls. The left-hand cell is used to display the search and the right-hand cell is
used to display the filter drop-down selection boxes.

As with most things in Joomla!, there are no strings attached as to how we
implement filtering and searching. We don't have to format the filter in this way, and
for those of us who prefer a good dose of CSS, it is perfectly acceptable to implement
a table-less design.

The next question is: How do we apply a filter? This is far easier than it might sound.
When we discussed ordering we described the _buildQuery() method in the model.
It's back to that method to make some more changes:

/**

 * Builds a query to get data from #__sometable

 *

 * @return string SQL query

 */

function _buildQuery()

{

 return ' SELECT * '
 . ' FROM #__sometable '
 . $this->_buildQueryWhere()
 . $this->_buildQueryOrderBy();

}

This time we have a call to the _buildQueryWhere() method. This method works in
much the same way as the _buildQueryOrderBy() method except that it returns a
WHERE clause instead of an ORDER BY clause.

This example demonstrates how we can implement this method in order to apply the
published state filter:

/**

 * Builds the WHERE part of a query

 *

 * @return string Part of an SQL query

 */

function _buildQueryWhere()

{

 global $mainframe, $option;

 // get the filter published state value

 $filter_state = $mainframe-
 >getUserStateFromRequest($option.'filter_state',

Rendering Output

[234]

 'filter_state');
 // prepare the WHERE clause
 $where = '';

 // Determine published state
 if ($filter_state == 'P')
 {
 $where = 'published = 1';
 }
 elseif ($filter_state == 'U')
 {
 $where = 'published = 0';
 }

 // return the WHERE clause
 return ($where) ? ' WHERE '.$where : '';
}

The first thing we do is retrieve the published state value from the user state.
This will be one of four values: null, P, U, or A. null means 'any'. P and U relate to
'published' and 'unpublished' respectively. A means 'archived'.

Use of the archived published state is unusual. Archived refers to items that are no
longer in use and aren't to be modified or viewed in any form. If we want to use
archive as a published state, we would have to modify our use of grid.state. This
is explained earlier in the chapter.

We then build our WHERE clause and return the result. When we create a method such
as this, it is important to remember that any external data we use is sanitized and
escaped for use with the database.

This now means that we can implement and use a published state filter. Let's go to
the next stage, adding the ability to filter by a category. Unsurprisingly, we start in
much the same place, the JView's display method.

This example builds on the previous example and adds a category filter drop-down
selection box:

// prepare list array
$lists = array();

// get the user state of the published filter
$filter_state = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_state',
 'filter_state');
$filter_catid = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(

Chapter 8

[235]

 $option.'filter_catid',

 'filter_catid');

// set the table filter values

$lists['state'] = JHTML::_('grid.state', $filter_state);

$js = 'onchange="document.adminForm.submit();"';

$lists['catid'] = JHTML::_('list.category', 'filter_catid',
 'com_myextension', (int)$filter_catid, $js);

// add the lists array to the object

$this->assignRef('lists', $lists);

This time we also retrieve the current value for filter_catid; there are no
restrictions on what we call filter form controls, but it is normal to prefix them with
filter_. Instead of using grid, we use a list type, list.category, to render the
category filter form control.

Unlike grid.state, we must tell list.category the name of the control, the
extension name (category section), and the current category. Note that we cast the
value of $filter_catid to an integer for security reasons. Last of all, we include
some JavaScript.

This JavaScript forces the adminForm form to submit itself, applying the filter
immediately. The first entry in the resultant drop-down list is Select a Category. We
can opt to make our JavaScript slightly more intelligent by not submitting the form if
the Select a Category option is chosen, as this JavaScript demonstrates:

$js = "onchange=\"if (this.options[selectedIndex].value!='')
 { document.adminForm.submit(); }\"";

Now when we build our template, we can add the lists['catid'] value to the
table above the itemized data:

<table>

 <tr>

 <td align="left" width="100%">

 </td>

 <td nowrap="nowrap">

 <?php echo $this->lists['catid']; ?>

 <?php echo $this->lists['state']; ?>

 </td>

 </tr>

</table>

Rendering Output

[236]

The final stage is to apply the category filter to the itemized data. We do this in
much the same way as we modified the results for the published state filter. This
example shows how we can modify the JModel _buildQueryWhere() method to
incorporate the category.

/**
 * Builds the WHERE part of a query
 *
 * @return string Part of an SQL query
 */
function _buildQueryWhere()
{
 global $mainframe, $option;

 // get the filter values
 $filter_state = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_state',
 'filter_state');
 $filter_catid = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_catid',
 'filter_catid');

 // prepare the WHERE clause
 $where = array();

 // Determine published state
 if ($filter_state == 'P')
 {
 $where[] = 'published = 1';
 }
 elseif ($filter_state == 'U')
 {
 $where[] = 'published = 0';
 }

 // Determine category ID
 if ($filter_catid = (int)$filter_catid)
 {
 $where[] = 'catid = '.$filter_catid;
 }

 // return the WHERE clause
 return (count($where)) ? ' WHERE '.implode(' AND ', $where) : '';
}

Chapter 8

[237]

To facilitate the easiest way of building the WHERE clause we make $where an array
and implode it at the end. Note that we cast $filter_catid to an integer; this
ensures the value is safe for use with the database.

Before we move on to explain how to implement a search filter, we will quickly
discuss the use of other filters.

So far we have demonstrated how to use grid.state and list.category. There
are many other things on which we might want to filter itemized data. Some of these
are easily available through the list types, for example list.positions. These are
described earlier in the chapter.

If there isn't a suitable list type, we can construct our own filter drop-down
selection boxes using the select types. This is an example of how we might construct
a custom drop-down selection filter form control (it assumes $js is the same as in
the previous examples):

// prepare database
$db =& JFactory::getDBO();
$query = 'SELECT value, text' .
 'FROM #__sometable' .
 'ORDER BY ordering';
$db->setQuery($query);

// add first 'select' option
$options = array()
$options[] = JHTML::_('select.option', '0', '- '.JText::_('Select a
" Custom Thing').' -');

// append database results
$options = array_merge($options, $db->loadObjectList());

// build form control
$lists['custom'] = JHTML::_('select.genericlist', $options,
 'filter_custom', 'class="inputbox" size="1" '.$js,
 'value', 'text', $filter_custom);

If we do create custom filter lists such as this, we might want to consider extending
JHTML. For example to create a foobar group type we would create a class named
JHTMLFoobar in a file named foobar.php. We would then need to use the JHTML::
addIncludePath() method to point to the folder where the file is located.

To use the new class we would need to define methods within the class, for example
baz(). We would then be able to call baz() using JHTML::_('foobar.baz'). For
examples of existing classes we can browse the joomla.html library files.

Rendering Output

[238]

Next up is searching. This functionality may sound more complex, but in reality it is
relatively simple. The first thing we must do to implement a search filter is create the
necessary form controls:

<table>
 <tr>
 <td align="left" width="100%">
 <?php echo JText::_('Filter'); ?>:
 <input type="text" name="filter_search" id="search"
 value="<?php echo $this->lists['search'];?>"
 class="text_area" onchange=
 "document.adminForm.submit();" />
 <button onclick="this.form.submit();"><?php echo
 JText::_('Go'); ?></button>
 <button onclick="document.adminForm.
 filter_search.value='';this.form.submit();">
 <?php echo JText::_('Reset'); ?></button>
 </td>
 <td nowrap="nowrap">
 <?php echo $this->lists['catid']; ?>
 <?php echo $this->lists['state']; ?>
 </td>
 </tr>
</table>

As you can see, this is more complex, displaying the previous filter form controls.
We output the text Filter and add three form controls—a search text box called
filter_search, a reset button, and a search button.

The text box is used to allow the user to define the search terms. The search button
submits the form. The reset button sets the search text box value to a null string and
then submits the form.

We use the lists['search'], value to store the value of the current search. To
populate this we need to modify the JView display method. This example builds on
the previous two examples:

// prepare list array
$lists = array();

// get the user state of the published filter
$filter_state = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_state',
 'filter_state');
$filter_catid = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_catid',

Chapter 8

[239]

 'filter_catid');
$filter_search = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_search',
 'filter_search');

// set the table filter values
$lists['state'] = JHTML::_('grid.state', $filter_state);
$js = 'onchange="document.adminForm.submit();"';
$lists['catid'] = JHTML::_('list.category', 'filter_catid',
 'com_myextension', (int)$filter_catid, $js);
$lists['search'] = $filter_search;

// add the lists array to the object
$this->assignRef('lists', $lists);

That's it! Now all we need to do is implement the search in the JModel. To do this,
we again modify the _buildQueryWhere() method. This example demonstrates how
we do it:

/**
 * Builds the WHERE part of a query
 *
 * @return string Part of an SQL query
 */

function _buildQueryWhere()
{
 global $mainframe, $option;

 // get the filter values
 $filter_state = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_state',
 'filter_state');
 $filter_catid = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_catid',
 'filter_catid');
 $filter_search = $mainframe->getUserStateFromRequest(>getUserStateFromRequest(
 $option.'filter_search',
 'filter_search');

 // prepare the WHERE clause
 $where = array();

 // Determine published state
 if ($filter_state == 'P')
 {

Rendering Output

[240]

 $where[] = 'published = 1';
 }
 else if ($filter_state == 'U')
 {
 $where[] = 'published = 0';
 }

 // Determine category ID
 if ($filter_catid = (int)$filter_catid)
 {
 $where[] = 'catid = '.$filter_catid;
 }

 // Determine search terms
 if ($filter_search = trim($filter_search))
 {
 $filter_search = JString::strtolower($filter_search);
 $db =& $this->_db;
 $filter_search = $db->getEscaped($filter_search);
 $where[] = 'LOWER(name) LIKE "%'.$filter_search.'%"';
 }

 // return the WHERE clause
 return (count($where)) ? ' WHERE '.implode(' AND ', $where) : '';
}

This example only searches the name field; it's likely that we would actually want
to search multiple fields. If this were the case we would need to modify the query
appropriately. For example:

$where[] = '(LOWER(name) LIKE "%'.$filter_search.'%"'.'
 OR LOWER(text) LIKE "%'.$filter_search.'%")';

Notice that we convert the search string to lowercase before commencing. We
do this to make the search case-insensitive. We use the JString class to convert the
string to lowercase because the normal strtolower() function will corrupt some
UTF-8 characters.

We use the JDatabase object to escape the search string; this prevents SQL injection
and corruption of the query.

Our search facility will now work!

Chapter 8

[241]

Summary
We have explored the massive joomla.html library that enables us to create
standardized XHTML for rendering in our extensions. It’s important to explore the
library so as to gain as much from it as possible. There are many useful types that
can massively reduce our over all development time.

Investigating the use of existing layouts and templates should put us in good stead
for creating our own. Remember to take advantage of the predefined CSS styles. This
makes it easier for site template developers and ensures that our layouts will not
look out of place.

When we create templates in the backend for components there are a number of rules
that we should conform to. Using these allows us to create integrated components
that adhere to the consistency of the Joomla! interface.

Itemized data requires special attention. If we apply the described functionality,
pagination, ordering, filtering, and search, we immediately make our extensions
more user-friendly and increase the chances of having successfully created a
commercially winning or freely available extension.

Customizing the Page
This chapter discusses the following:

How to modify the document properties to suit the contents of the page
How to make extensions support the multi-lingual capacities of Joomla!
How to use some common JavaScript elements to create a more interactive
and user-friendly experience

Application Message Queue
You may have noticed that when we raise a notice or a warning, a bar appears across
the top of the page containing the notice or warning message. These messages are
part of the application message queue.

The application message queue is a queue of messages that are rendered the next
time the application renders an HTML view. This means that we can enqueue
messages in one request but not show them until a later request.

There are three different core types of message: message, notice, and error.
This screenshot depicts how each of the different types of application message
is rendered:

•

•

•

Customizing the Page

[244]

So how do we add a new message to the queue? Well it's quite simple; we use
the enqueueMessage() method in the application. This example demonstrates
how we would add all of the messages shown in the previous screenshot to the
message queue:

$mainframe->enqueueMessage('A message type message');
$mainframe->enqueueMessage('A notice type message', 'notice');
$mainframe->enqueueMessage('An error type message', 'error');

The first parameter is the message that we want to enqueue and the second
parameter is the type of message we want to enqueue , which defaults to message. It
is uncommon to add messages of type notice or error this way because we usually
do that using JError::raiseNotice() and JError::raiseWarning() respectively.

This means that we will probably ever use only one parameter with the
enqueueMessage() method. However, it is possible to add messages of other types.
This is an example of how we would add a message of type bespoke:

$mainframe->enqueueMessage('A bespoke type message', 'bespoke');

Messages of other types will render in the same format as message type messages.
Imagine we want to use the bespoke message type to render messages but not
display them. This could be useful for debugging purposes.

This example demonstrates how we can add a CSS Declaration to the document,
using the methods, described earlier in the chapter, to modify the way in which the
bespoke messages are displayed:

$css = '/* Bespoke Error Messages */
#system-message dt.bespoke
{
 display: none;
}

dl#system-message dd.bespoke ul
{
 color: #30A427;
 border-top: 3px solid #94CA8D;
 border-bottom: 3px solid #94CA8D;
 background: #C8DEC7 url(notice-bespoke.png) 4px 4px no-repeat;
}';

$doc =& JFactory::getDocument();
$doc->addStyleDeclaration($css);

Now when bespoke messages are rendered, they will appear like this:

Chapter 9

[245]

Redirects
Redirection allows us to redirect the browser to a new location. Joomla! provides us
with some easy ways in which to redirect the browser.

Joomla! redirects are implemented using HTTP 301 redirect response codes. In
the event that response headers have already been sent, JavaScript will be used to
redirect the browser.

The most common time to redirect a browser is after a form has been submitted.
There are a number of reasons why we might want to do this:

This prevents forms from being submitted multiple times when the browser
is refreshed.
We can redirect to different locations dependent upon the submitted data.
Redirecting to another view reduces the amount of development required for
each task in the controller.

Imagine a user submits a form that is used to create a new record in a database table.
The first thing we need to do when we receive a request of this type is
to validate the form contents. This flow diagram describes the logic that we
could implement:

The No route passes the invalid input to the session. We do this so that when we
redirect the user to the input form we can repopulate the form with the invalid input.
If we do not do this the user will have to complete the entire form again.

•

•

•

Customizing the Page

[246]

We may choose to miss out the Pass invalid input to user session process, as the
core components do. It is normal to include JavaScript to validate forms before they
are submitted, and since the majority of users will have JavaScript support, it would
be relatively safe to assume that such an occurrence would be very unlikely.

Note that missing out this process is not the same as missing out form validation. We
must never depend on JavaScript or other client-side mechanisms for data validation.
It is best to start developing forms without the bells and whistles of client-side
validation so as to ensure that we properly handle invalid data if the server-side
scripts ever need to deal with it.

As a quick aside, a good way to validate form contents is to use a JTable subclass
check() method.

If we place failed input into the session, we might want to put it in its own
namespace. This makes it easier to remove the data later and helps prevent naming
conflicts. This example demonstrates how we might add the field value of myField
to the myForm session namespace:

// get the session
$session =& JFactory::getSession();

// get the raw value of myField
$myFieldValue = JRequest::getString('myField', '', 'POST',
 JREQUEST_ALLOWRAW);

// add the value to the session namespace myForm
$session->set('myField', $myFieldValue, 'myForm')

When we come to display the form we can retrieve the data from the session using
the get() method. Once we have retrieved the data we must remember to remove
the data from the session, otherwise it will be displayed every time we view the form
(unless we use another flag as an indicator). We can remove data items from the
myForm namespace using the clear() method:

// get the session
$session =& JFactory::getSession();

// Remove the myField
$session->clear('myField', 'myForm');

The final thing we do in the No route is to redirect the user back to the input form.
When we do this, we must add some messages to the application queue to explain to
the user why the input has been rejected.

The Yes route adds a new record to the database and then redirects the user to the
newly created item. As with the No route, it is normal to enqueue a message that will
say that the new item has been successfully saved, or something to that effect.

Chapter 9

[247]

There are many scenarios where the use of a redirect is common. This list identifies
some of these:

Canceling editing an existing item
Copying items
Creating new items and updating existing items
Deleting items
Publishing/unpublishing items
Updating item ordering

The next question is: How do we redirect? There are essentially two ways in which
we can do this. The first is to use the application redirect() method.

It is unusual to use this mechanism unless we are developing a component without
the use of the Joomla! MVC classes. This example demonstrates how we use the
application method:

$mainframe->redirect('index.php?option=com_example');

This will redirect the user's browser to index.php?option=com_example. There are
two additional optional parameters that we can provide when using this method.
These are used to enqueue a message.

This example redirects us, as per the previous example, and enqueues a notice type
message that will be displayed after the redirect has successfully completed:

$mainframe->redirect('index.php?option=com_example', 'Some Message',
 'notice');

The final parameter, the message type, defaults to message.

The application redirect() method immediately enqueues the
optional message, redirects the user's browser, and ends the application.

The more common mechanism for implementing redirects is to use the JController
setRedirect() method. We generally use this from within a controller method
that handles a task, but because the method is public we can use it outside of
the controller.

This example, assuming we are in a method in a JController subclass, will set the
controller redirect to index.php?option=com_example:

$this->setRedirect('index.php?option=com_example');

•

•

•

•

•

•

Customizing the Page

[248]

As with the application redirect() method, there are two additional optional
parameters that we can provide when using this method. These are used to enqueue
a message.

This example sets the controller redirect, as per the previous example, and
enqueues a notice type message that will be displayed after the redirect has
successfully completed:

$this->setRedirect('index.php?option=com_example', 'Some Message',
 'notice');

Unlike the application redirect() method, this method does not immediately
enqueue the optional message, redirect the user's browser, and end the application.
To do this we must use the JController redirect() method.

It is normal, in components that use redirects, to execute the controller redirect()
method after the controller has executed a given task. This is normally done in the
root component file as this example demonstrates:

$controller = new ExampleController();
$controller->execute(JRequest::getCmd('task'));
$controller->redirect();

Component XML Metadata Files and Menu
Parameters
When we create menu items, if a component has a selection of views and layouts,
we can choose which view and which layout we want to use. We can create an
XML metadata file for each view and layout. In these files we can describe the view
or layout and we can define extra parameters for the menu item specific to the
specified layout.

Imagine we have a view named foobar, with two layouts: default.php and
alternative.php. The next figure describes the folder structure we would expect
to find in the views folder (for simplicity, only the files and folders that we are
discussing are included in the figure):

Chapter 9

[249]

When an administrator creates a link to this view, the options displayed will not give
any information beyond the names of the folders and files described above, as this
screenshot demonstrates:

Customizing the Page

[250]

The first element of this list that we will customize is the view name, 'Foobar'. To do
this we must create a file in the foobar folder called metadata.xml. This example
customizes the name and description of the foobar view:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <view title="My Complete Foobar Title">
 <message>
 <![CDATA[A description of foobar]]>
 </message>
 </view>
</metadata>

Now if an administrator were to view the list of menu item types, 'Foobar' would be
replaced with the text 'My Complete Foobar Title' as defined in the view tag title
attribute. The description, defined in the message tag, is displayed when the mouse
cursor is over the view name.

The next task is to customize the definitions of the layouts, default.php
and alternative.php.

Layout XML metadata files are located in the tmpl folder and are named the same
as the corresponding layout template file. For example, the XML metadata file for
default.php would be named default.xml.

So we need to add the files default.xml and alternative.xml to the tmpl folder.

Within a layout XML metadata file, there are two main tags in which we are
interested: layout and state. This example shows a basic XML metadata file that
defines a name and title for a layout:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="My Layout">
 <message>
 <![CDATA[Description of my layout.]]>
 </message>
 </layout>
 <state>
 <name>My Layout</name>
 <description>Description of my layout.</description>
 </state>
</metadata>

Chapter 9

[251]

At first this example may seem odd because we appear to be duplicating information
in the layout and state tags. Fear not, there is reason for this madness! The layout
tag includes information that is displayed in the menu item type list (essentially an
overview). The state tag includes information that is displayed during the creation
of a menu item that uses the layout.

There are occasions when a more detailed description is required when we come to
define a menu item. For example, we may want to warn the user that they must fill in
a specific menu parameter. We will discuss menu parameters in a moment.

If we used the given XML in the default.xml file and we duplicated it in the
alternative.xml file, renaming the layout, 'My Other Layout', the menu item type
list would now appear like this:

Now that we know how to modify the names and descriptions of views and layouts,
we can investigate how to define custom menu parameters.

Customizing the Page

[252]

There are many different types of parameter that we can define. Before you continue,
you might want to familiarize yourself with this list of parameter types because we
will be using them in the examples (a complete description of these parameters is
available in the Appendix):

category

editors

filelist

folderlist

helpsites

hidden

imagelist

languages

list

menu

menuitem

password

radio

section

spacer

sql

text

textarea

timezones

Menu parameters can be considered as being grouped into several categories:

System
Component
State
URL
Advanced

The system parameters are predefined by Joomla! (held in the administrator/
components/com_menus/models/metadata/component.xml file). These parameters
are used to encourage standardization of some common component parameters. We
cannot prevent these parameters from being displayed.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 9

[253]

The component parameters are those parameters that are defined in the component's
config.xml file. Note that changing these parameters when creating a new menu
item only affects the menu item, not the entire component. In essence, this is a form
of overriding. A full explanation of how to create a component config.xml file is
available in Chapter 4.

This form of overriding is not always desirable; it is possible to prevent the
component parameters from being shown when creating or editing a menu item. To
do this we add the attribute menu to the root tag (config) of the component config.
xml file and set the value of the attribute to hide:

<config menu="hide">

The remaining parameter groups—State, URL, and Advanced—are defined on a
per layout basis in the layout XML metadata files inside the state tag. These are the
groups in which we are most interested.

The State parameters are located in a tag called params. In this example, which
builds on the previous default.xml example, we add two parameters: a text field
named text_field and a radio option named radio_option:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="My Layout">
 <message>
 <![CDATA[Description of my layout.]]>
 </message>
 </layout>
 <state>
 <name>My Layout</name>
 <description>Description of my layout.</description>
 <params>
 <param type="text" name="text_field" label="A Parameter"
 description="Some description of the parameter"
 default="default value"/>
 <param name="radio_option" type="radio" default="1"
 label="Show" description="Show/Hide something">
 <option value="0">Hide</option>
 <option value="1">Show</option>
 </param>
 </params>
 </state>
</metadata>

When an administrator creates a new menu item for this layout, they will be
presented with these two parameters under the heading 'Parameters—Basic'.

Customizing the Page

[254]

They are not presented under a 'State' heading, because State and URL
parameters are consolidated into one section. URL parameters always
appear above State parameters.

We define URL parameters in much the same way, only this time we place them in
a tag named url. The URL parameters are automatically appended to the URI; this
means that we can access these parameters using JRequest.

These parameters are of particular use when we are creating a layout that is used
to display a single item, which is retrieved using a unique ID. If we use these
parameters to define an ID that is retrieved from a table, we should consider using
the, often overlooked, sql parameter type.

This example builds on the previous example, and adds the URL parameter id,
which is extracted from the #__myextension table:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="My Layout">
 <message>
 <![CDATA[Description of my layout.]]>
 </message>
 </layout>
 <state>
 <name>My Layout</name>
 <description>Description of my layout.</description>
 <url>
 <param type="sql" name="id" label="Item"
 description="Item to display" query="SELECT id AS
 value, title AS id FROM #__content" />
 </url>
 <params>
 <param type="text" name="text_field" label="A Parameter"
 description="Some description of the parameter"
 default="default value"/>
 <param name="radio_option" type="radio" default="1"
 label="Show" description="Show/Hide something">
 <option value="0">Hide</option>
 <option value="1">Show</option>
 </param>
 </params>
 </state>
</metadata>

Chapter 9

[255]

The query might be slightly confusing if you are not familiar with the sql parameter
type. The query must return two fields, value and id. value specifies the value of
the parameter and id specifies the identifier displayed in the drop-down box that is
displayed when the parameter is rendered.

When using the sql parameter type, if applicable, remember to
include a WHERE clause to only display published or equivalent items.

The Advanced parameters are specifically for defining parameters thath are more
complex than the State parameters. These parameters are defined in the advanced tag.

This example adds an advanced parameter called advanced_setting:

<?xml version="1.0" encoding="utf-8"?>
<metadata>
 <layout title="My Layout">
 <message>
 <![CDATA[Description of my layout.]]>
 </message>
 </layout>
 <state>
 <name>My Layout</name>
 <description>Description of my layout.</description>
 <url>
 <param type="sql" name="id" label="Item" description="Item to
 display" query="SELECT id AS value, title AS id
 FROM #__content" />
 </url>
 <params>
 <param type="text" name="text_field" label="A Parameter"
 description="Some description of the
 parameter" default="default value"/>
 <param name="radio_option" type="radio" default="1"
 label="Show" description="Show/Hide
 something">
 <option value="0">Hide</option>
 <option value="1">Show</option>
 </param>
 </params>
 <advanced>
 <param name="advanced_setting" type="radio" default="1"
 label="Advanced Setting" description="Use
 Advanced Setting">
 <option value="0">No</option>

Customizing the Page

[256]

 <option value="1">Yes</option>
 </param>
 </advanced>
 </state>
</metadata>

Any Advanced parameters will appear under the 'Parameters Advanced' heading.

The resultant parameters area for this layout will look like this:

If the extension also specified component parameters, these would be displayed
under the heading 'Parameters—Component'.

All name and description elements from the XML metadata files will
be translated into the currently selected locale language.

When we save a menu item, all of the parameters, except URL parameters, are saved
to the params field in the menu item record. This means that we can end up with
naming conflicts between our parameters. We must ensure that we do not name
any two parameters the same. This includes not using the predefined System
parameter names.

Chapter 9

[257]

This list details the System parameter names:

page_title

show_page_title

pageclass_sfx

menu_image

secure

Once we have successfully created the necessary XML, we will be able to access the
parameters from within our component using a JParameter object. This is described
in the next section.

Using Menu Item Parameters
Before we jump in and start using menu item parameters, let us take a moment to
consider the overriding effects of the component parameters.

When we save a menu item a second set of component parameters are saved to the
menu item. This means that the component parameters are saved as part of the menu
item, not the component. The idea is that it allows a component, which can only be
installed once, to be linked to from the menu multiple times using different settings.

This raises the question: What is the purpose of the component preferences button in
the backend? The preferences button, used to save the component settings, is used to
modify the default component settings.

The default settings are used when we create a new menu item as the initial
'Component Parameters' values. They are also used if the component is invoked but
the active menu item does not correspond to the invoked component.

Imagine the link index.php?option=com_foobar. This link will invoke the com_
foobar component, but because no menu item is specified the active menu item will
be the first menu item in the main menu.

Now imagine the link index.php?Itemid=53&option=com_foobar. This link
will invoke the com_foobar component, and because the menu item is specified,
the active menu item will be menu item 53. Assuming this menu item is for the
corresponding component then the component parameters saved to the menu item
will be used.

In order to access the page parameters there is a useful method in the application,
getPageParameters(). We briefly mentioned this method in Chapter 4.

•

•

•

•

•

Customizing the Page

[258]

This method returns a JParameter object that is loaded with the Component and
Menu Item Parameters. The Menu Item Parameters always take precedence over the
component parameters. For example if the component defined a parameter foobar
and so did the menu item, the value recorded by the menu item would be the value
that would be used in the JParameter object.

It is common to use this method in the display() method of JView sub-classes
and assign the resultant object to the view for use by the layout. This example
demonstrates how we can do this:

$params =& $mainframe->getPageParameters();
$this->assignRef('params', $params);

We can then use params as an attribute in our template files. This example
demonstrates how we can check the value of the show_something parameter before
proceeding to 'show something':

<?php if ($this->params->get('show_something')) : ?>
<div id="something">
 <?php echo $this->something; ?>
</div>
<?php endif; ?>

It is generally easier when developing templates to include all possible elements.
Once this is complete, it is generally easier to add the necessary parameters and
make each element optional.

Modifying the Document
The document, as described in Chapter 2, is a buffer used to store the content of the
document that will be returned when a request is complete. There are a number
of different things that we can modify in the document that will customize the
resultant page.

Whenever we want to modify the document, we use the JFactory class to get the
global document object. This example demonstrates how:

$document =& JFactory::getDocument();

Notice that we use the =& assignment operator. If we do not, any modification we
make to the document will not be applied.

All of the following examples in this section assume that $document is the global
document object.

Chapter 9

[259]

Page Title
The page title is the most commonly modified part of the page. The title is the
contents of the title tag that is located in the XHTML head tag.

There are two methods related to the title: getTitle() and setTitle(). The
getTitle() method retrieves the existing title; setTitle() sets the title to a
new value.

This example demonstrates how we use setTitle() to make the title 'Some
Exciting Title'.

$document->setTitle(JText::_('Some Exciting Title'));

Notice that we use JText to translate the title before passing it. This is because the
setTitle() method does not translate new titles for us.

We never have to set the document title. If we don't, the site name
will be used.

It's not uncommon to use the two methods in conjunction. This way we can append
title information. This is such an example:

$title = $document->getTitle().' - '.JText::_('Some Exciting Title')
$document->setTitle($title);

Pathway/Breadcrumb
The pathway, also known as the breadcrumb (trail), describes to the user their
current navigational position in a website. This is an example of a pathway for a
menu item named 'Joomla! Overview':

Joomla! handles the pathway to the depth of the menu item. Beyond that we must
manually add items to the breadcrumb. For example, a component that handles
categories and multiple items will generally add to the pathway in order to display
its internal hierarchy.

The pathway is handled by a global JPathway object. We can access the object using
the application. This example demonstrates how we get the breadcrumb handler:

$pathway =& $mainframe->getPathway();

Notice that, as per usual, we must use the =& assignment operator. If we do not, any
changes we make to $pathway will not be reflected.

Customizing the Page

[260]

We use the addItem() method to add new items to the pathway. Imagine we are
viewing a category in a component and we want to add the category as an extra layer
in the pathway trail:

$pathway->addItem($categoryName);

There is one glaringly obvious thing missing from this example. There is no URI.
Since we are viewing the category, there is no need to specify the URI because it is
the current URI.

The last item in the pathway is never a link. We only need to specify a URI
when we add items that are not going to be the last item in the pathway. This
example demonstrates how we might build the pathway for an item within the
aforementioned category:

$pathway->addItem($categoryName, $categoryURI);
$pathway->addItem($itemName);

Notice this time we include a URI when adding the category item. It is normal to
add to the pathway in the display() method of each JView class. It is important to
realize that we must always add pathway items in order of appearance.

There is one pitfall to the currently explained way of adding items to the pathway. It
is likely that in the described scenario, we would be able to create a menu item that
links directly to a category or item in the component.

We can overcome this by interrogating the current menu item. This example shows
how we get access to the current menu item:

$menus =& JMenu::getInstance();
$menuitem =& $menus->getActive();

The JMenu class is responsible for the handling of Joomla! menus. The getActive()
method returns a reference to the currently selected menu item object. This object is a
stdClass object that contains various attributes that relate to the menu item.

The attribute that we are interested in is query. This attribute is an associative array
that describes the URI query associated with the menu item. So to enhance our
category pathway we would do this:

if ($menuitem->query['view'] != 'category')
{
 $pathway =& $mainframe->getPathWay();
 $pathway->addItem($categoryName);
}

The view key is the layout that the menu item is set to view.

Chapter 9

[261]

To improve our pathway when viewing an item we can build on this example by
adding a switch statement:

if ($menuitem->query['view'] != 'item')
{
 $pathway =& $mainframe->getPathWay();

 switch ($menuitem->query['view'])
 {
 case 'categories':
 $pathway->addItem($categoryName, $categoryURI);
 default:
 $pathway->addItem($itemName);
 }
}

We now have the ability to build the pathway from the point at which the menu item
enters the component.

By using a switch statement without any breaks we make the building of the
pathway extremely versatile. It would be very easy for us to add an extra hierarchical
layer to the pathway based on this.

JavaScript
In order to add JavaScript cleanly it should be added to the document header. We
can use the following methods to add JavaScript in this way:

The addScript() method is used to add a link to an external JavaScript file.
This is an example of how to use the addScript() method:
 $js = JURI::base().'components/com_foobar/assets/script.js';
 $document->addScript($js);

The addScriptDeclaration() method is similar; it allows us to add
RAW JavaScript to the header. This is an example of how to use the
addScriptDeclaration() method:

 $js = 'function notify(text) { alert(text); }';
 $document->addScriptDeclaration($js);

We can use these two methods for any type of script. If we want to use script other
than JavaScript, we can supply a second parameter defining the script MIME type.
For example, if we wanted to use Visual Basic Script we would specify the MIME
type text/vbscript.

•

•

Customizing the Page

[262]

CSS
In order to add CSS styles cleanly they should be added to the document header. We
can use the methods addStyleSheet() and addStyleDeclaration() to add CSS.

addStyleSheet() is used to add a link to an external CSS file. This is an example of
how to use the addStyleSheet() method:

$css = JURI::base().'components/com_foobar/assets/style.css';
$document =& JFactory::getDocument();
$document->addStyleSheet($css);

The nice thing about using this method is we can also specify the media type to
which the styles apply. Imagine we have a special CSS file that is intended to
format a document when we come to print. To achieve this we can specify the
media type print:

$document->addStyleSheet($css, 'text/css', 'print');

Notice that the second parameter is text/css; this parameter is used to identify
the MIME type and is used in the same way as it is in the addScript() and
addScriptDeclaration() methods.

The third parameter is the media type, in this case print. This is a list of the CSS2
recognized media types:

all
aural
braille
embossed
handheld
print
projection
screen
tty

For more information about CSS media types please refer to the official documentation
available at http://www.w3.org/TR/1998/REC-CSS2-19980512/media.html.

The addStyleDeclaration() method allows us to add RAW CSS styles to the
header. This is an example of how to use the addStyleDeclaration() method:

$css = '.somestyle { padding: 10px; }';
$document->addStyleDeclaration($css);

•

•

•

•

•

•

•

•

•

Chapter 9

[263]

Metadata
Metadata tags are used to help describe a document. There are two different types of
metadata: http-equiv and non http-equiv. Metadata that is http-equiv is used to
determine metadata to be used as HTTP header data.

There are two metadata methods in the document:

getMetaData(): This is used to retrieve the document metadata.
setMetaData(): This is used to add metadata to the document.

When we create extensions that handle information that we want search engines to
index, it is important to add metadata to the document. This example adds some
keywords metadata:

$keywords = 'monkey, ape, chimpanzee, gorilla, orang-utan';
$document->setMetaData('keywords', $keywords);

Adding http-equiv metadata is very similar. Imagine we want to turn off browser
theme styling. We can use the http-equiv metadata type MSTHEMECOMPATIBLE:

$document->setMetaData('MSTHEMECOMPATIBLE', 'no', true);

It is that final parameter, when set to true, which tells the method that the metadata
is http-equiv.

The getMetaData() method works in much the same way, except we retrieve
values. Imagine we want to append some keywords to the document:

$keywords = explode(',', $document->getMetaData('keywords'));
$keywords[] = 'append me';
$keywords[] = 'and me';
$document->setMetaData('keywords', implode(',', $keywords));

This gets the existing keywords and explodes them into an array; this ensures we
maintain the keyword comma separators. We proceed to add some new keywords to
the array. Finally, we implode the array and reset the keywords metadata.

Custom Header Tags
If we want to add a different type of tag, not a script, CSS, or metadata, we can use
the addCustomTag() method. This method allows us to inject code directly into a
document header.

Imagine we want to add a comment to the document header:

$comment = '<!-- Oi, stop looking at my page source! :p -->';
$document->addCustomTag($comment);

•

•

Customizing the Page

[264]

Translating
A major strength of Joomla! is its built-in multilingual support. Joomla! has
special language handling classes that translate strings. The default language is
configured in the Language Manager. The language can be overridden by a
logged-in user's preferences.

Translating Text
We use the static JText class to translate text. JText has three methods for translating
text: _(), sprintf(), and printf(). The method that we use most is _(). This
method is the most basic; it simply translates a string.

This example outputs the translation of Monday; if a translation cannot be found, the
original text is returned:

echo JText::_('Monday');

The JText::sprintf() method is comparable to the PHP sprintf() function. We
pass one string to translate, and any number of extra parameters to insert into the
translated string.

The extra parameters are inserted into the translated string at the defined points. We
define these points using type specifiers, this is the same as when using the PHP
sprintf() function. This list describes the different type specifiers:

Argument Type Representation
%F Floating point Floating point
%f Floating point Floating point (locale aware)
%c Integer ASCII character (does not support UTF-8 multi-byte characters)
%b Integer Binary Number
%d Integer Decimal
%u Integer Decimal (Unsigned)
%x Integer Hexadecimal
%X Integer Hexadecimal
%o Integer Octal
%e Scientific Expression Decimal
%s String String

This example demonstrates how we use the JText::sprintf() method:

$value = JText::sprintf('SAVED_ITEMS', 3);

Chapter 9

[265]

If the translation for SAVED_ITEMS were Saved %d items, the returned value would
be Saved 3 items.

Alternatively, we can use the JText::printf() method. This method is comparable
to the PHP function printf(). This method returns the length of the resultant string
and outputs the translation.

As with JText::sprintf(), the extra parameters are inserted into the translated
string at the defined points, which are defined using the type specifiers defined in the
table given on the previous page.

This example returns the byte length (not UTF-8 aware) of Saved %d items and
outputs the translated string:

$length = JText::printf('SAVED_ITEMS', 3);

The extra parameters used by the JText sprintf() and sprint()
methods are not translated. If we want to translate them, we must do
so before passing them.

Defining Translations
Different languages are identified by tags defined by RFC 3066. Each language has its
own separate folder and will have many translation files, all of which will be held in
the same folder. This table identifies some of the more common language tags:

Language Tag
English, Britain en-GB
French, France fr-FR
German, Germany de-DE
Portuguese, Portugal Pt-PT
Spanish, Spain es-ES

Translations are stored in INI files in the root language and administrator language
directories. When we create extensions we use the languages tag in the extension
manifest file to define the language files that we want to add. A complete description
of the languages tag is available in the Appendix.

A translation file will normally consist of a header, describing the contents of the file,
and a number of translations. Translations comprise two parts: a name in uppercase,
and the translated text. The name of the translated string is the value we use to
identify the translation when using the three JText translation methods.

Customizing the Page

[266]

If we use lowercase characters when defining the name of a translation, we will not
be able to retrieve the translation.

When we create new extension translation files we must follow the standard naming
convention, tag.extensionName.ini.

Imagine we want to create a German translation for the component 'My Extension'.
We would have to name the translation file de-DE.com_myextension.ini. This is an
example of what our file contents might look like:

myExtension German Translation
Version 1.0

WELCOME=Willkommen
HOW ARE YOU=Wie geht's?
THANK_YOU=Danke schön
SEEYOULATER=Bis später
POLITEHELLO=Guten tag %s

The names of the translations, to the left of the equal signs, have no specific naming
convention. This examples use a mixture of different conventions we can use to
name translations. Whatever way we choose to name our translations, we should
always be consistent.

When we translate long pieces of text it is sometimes easier to use abbreviations. For
example the name for an incorrect login is LOGIN_INCORRECT, but the translated text
is far longer.

When we create and edit translation files, it is essential to ensure that the file is UTF-
8 encoded. There are lots of text editors available that support UTF-8 multi-byte
character encoding. One such editor is SciTE, a freely available source-code editor
(http://www.scintilla.org/SciTE.html):

Chapter 9

[267]

Debugging Translations
It can be useful when creating a new translation to enable language debugging.
When language debugging is enabled, all the text that has passed through a
translation mechanism will be highlighted and some additional information is
displayed at the bottom of the page.

In order to enable language debugging, we must edit the global configuration. In
the System tab we must set Debug Language to Yes (and the debug plugin must
be enabled):

Successfully translated strings are encapsulated by bullet characters; strings
translated from a constant are encapsulated in double exclamation marks; strings
that are not translated are encapsulated in double question marks. Untranslated
strings appear at the bottom of the page.

Customizing the Page

[268]

Using JavaScript Effects
Joomla! includes mootools—a powerful compact JavaScript framework. Mootools
enables us to do many things, but it is used extensively in Joomla! to create client-
side effects. Some of these, such as the accordion, are accessible via Joomla! classes.
Others require special attention.

In some instances it may be necessary to manually add the mootools library to the
document. We can do this using the JHTML behavior.mootools type:

JHTML::_('behavior.mootools');

JPane
A pane is an XHTML area that holds more than one set of information. There are two
different types of panes:

Tabs: Tabs provides a typical tabbed area with tabs to the top that are used to
select different panes.
Sliders: Sliders, based on the mootools accordion, are vertical selections of
headings above panels that can be expanded and contracted.

We use the JPane class to implement panes. This example demonstrates a basic
tabular pane with two panels:

$pane =& JPane::getInstance('Tabs');
echo $pane->startPane('myPane');
{
 echo $pane->startPanel('Panel 1', 'panel1');
 echo "This is Panel 1";
 echo $pane->endPanel();

 echo $pane->startPanel('Panel 2', 'panel2');
 echo "This is Panel 2";
 echo $pane->endPanel();
}
echo $pane->endPane();

There are essentially two elements to a pane: the pane itself and the panels within
the pane. We use the methods startPane() and endPane() to signify the start and
end of the pane. When we use startPane() we must provide one string parameter,
which is a unique identifier used to identify the pane.

Panels are always created internally to a pane and use the methods startPanel()
and endPanel(). We must provide the startPanel() method with two parameters,
the name, which appears on the tab, and the panel ID.

•

•

Chapter 9

[269]

This is a screenshot of the pane created from the given example code:

Had we wanted to create a slider pane instead of a tab pane when we used the
getInstance() method, we would need to have supplied the parameter Sliders
instead of Tabs. This is a screenshot of the same pane as a slider:

Panes are used extensively in Joomla!

As a general rule, tabs are used for settings and sliders are used
for parameters.

Tooltips
Tooltips are small boxes with useful information in them that appear in response
to onmouseover events. They are used extensively in forms to provide more
information about fields and their contents.

In the previous chapter, we discussed the use of JHTML. We use JHTML to render
tips easily. There are two types that we use:

behavior.tooltip is used to import the necessary JavaScript to enable
tooltips to work and it does not return anything. We only ever need to call
this type once in a page.
tooltip is used to render a tooltip in relation to an image or a piece of text.
There are six parameters associated with tooltip, of which five are optional.
We will explore the more common uses of these parameters.

The most basic usage of tooltip returns a small information icon, which
onmouseover displays a tooltip; as this example demonstrates:

echo JHTML::_('tooltip', $tooltip);

•

•

Customizing the Page

[270]

The next parameter allows us to define a title that is displayed at the top of the tooltip:
echo JHTML::_('tooltip', $tooltip, $title);

The next parameter allows us to select an image from the includes/js/
ThemeOffice directory. This example uses the warning.png image:

echo JHTML::_('tooltip', $tooltip, $title, 'warning.png');

The next obvious leap is to use text instead of an image and that is just what the next
parameter allows us to do:

echo JHTML::_('tooltip', $tooltip, $title, null, $text);

There are some additional parameters all of which relate to using
hypertext links. A full description of these is available in Chapter 8.

We can modify the appearance of tooltips using CSS. There are three style classes
that we can use: .tool-tip, .tool-title, and .tool-text. The tooltip is
encapsulated by the .tool-tip class, and the .tool-title and .tool-text styles
relate to the title and the content.

Chapter 9

[271]

This code demonstrates how we can add some CSS to the document to override the
default tooltip CSS:

// prepare the cSS
$css = '/* Tooltips */
.tool-tip
{
 min-width: 100px;
 opacity: 0.8;
 filter: alpha(opacity=80);
 -moz-opacity: 0.8;
}

.tool-title
{
 text-align: center;
}

.tool-text {
 font-style: italic;
}';

// add the CSS to the document
$doc =& JFactory::getDocument();
$doc->addStyleDeclaration($css);

Fx.Slide
We will use the mootools Fx.Slide effect to demonstrate how we can build a PHP
class to handle some mootools JavaScript. The Fx.Slide effect allows an XHTML
element to seamlessly slide in and out of view horizontally or vertically.

We'll create a class named 'Slide', which will handle the Fx.Slide effect. The class
will have five methods: __construct(), startSlide(), endSlide(), button(),
and addScript().

The way in which we use Fx.Slide requires us to add JavaScript to the window
domready event. This event is fired once the DOM (Document Object Model)
is ready. If we do not add the JavaScript in this way it is likely that we will incur
problems. This is because if important parts of the DOM are missing, such as a slider,
then the JavaScript will not be able to execute properly.

As the domready event can only trigger one event handler, we'll use the
addScript() method as a static method to build up an event handler. This will
allow us to use the Slider class to add multiple sliders without overwriting any
previous domready event handlers.

Customizing the Page

[272]

This is the Slide class:

/**
 * Handles mootools Fx.Slide
 */
class Slide extends JObject
{
 /**
 * Slider mode: horizontal|vertical
 */
 var $_mode;

 /**
 * Constructor
 *
 * @param string Slide mode: horizontal|vertical
 */
 function __construct($mode = 'vertical')
 {
 $this->_mode = $mode;

 // import mootools library
 JHTML::_('behavior.mootools');
 }

 /**
 * Starts a new Slide
 *
 * @param string Slider ID
 * @param string Slider class
 * @return string Slider XHTML
 */
 function startSlider($id, $attributes = '')
 {
 // prepare slider JavaScript
 $js = "var ".$id." = new Fx.Slide('".$id."', {mode:
 '".$this->_mode."'});";
 Slide::addScript($js);

 // return the slider
 return '<div id="'.$id.'" '.$attributes.'>';
 }

 /**
 * Ends a slide
 *

Chapter 9

[273]

 * @return string Slider XHTML
 */
 function endSlide()
 {
 // end the slide
 return '</div>';
 }

 /**
 * Creates a slide button
 *
 * @param string Button text
 * @param string Button Id
 * @param string Slider Id
 * @param string Button type: toggle|slideIn|slideOut|hide
 * @return string Slider XHTML action button
 */
 function button($text, $buttonId, $slideId, $type = 'toggle')
 {
 // prepare button JavaScript
 $js = "$('".$buttonId."').addEvent('click', function(e){"
 ." e = new Event(e);"
 ." ".$slideId.".".$type."();"
 ." e.stop();"
 ." });";
 Slide::addScript($js);

 // return the button
 return '<a id="'.$buttonId.'" href="#"
 name="'.$buttonId.'">'.$text.'';
 }

 /**
 * Adds the JavaScript to the domready event and adds the event
 handler to the document
 *
 * @static
 * @param string JavaScript to add to domready event
 */
 function addScript($script = null)
 {
 // domready event handler
 static $js;

 if ($script)
 {

Customizing the Page

[274]

 // append script
 $js .= "\n".$script;
 }
 else
 {
 // prepare domready event handler
 $script="window.addEvent('domready',
 function(){".$js."});"

 // add event handler to document
 $document =& JFactory::getDocument();
 $document->addScriptDeclaration($script);
 }
 }
}

Notice that at no point do we tell the document that we need to include the
mootools library. This is because mootools is always included when we render an
HTML document.

So how do we use our newly created class? Well it's relatively simple. We use
startSlide() and endSlide() to indicate a slider; anything that we output
between these two calls will be within the slider. We use the button() method
to output a button, which when pressed will perform a slider event on the slider.
Once we have outputted all the sliders we intend to, we use the static addScript()
method to add the necessary JavaScript to the document.

This example demonstrates how we can create two slides using our Slide class:

$slide = new Slide();

echo $slide->button('Toggle Slide 1', 'toggle1', 'slide1');
echo $slide->startSlider('slide1', 'class="greyBox"');
echo 'Slide 1';
echo $slide->endSlider();

echo $slide->button('Toggle Slide 2', 'toggle2', 'slide2');
echo $slide->startSlider('slide2', 'class="greyBox"');
echo 'Slide 2';
echo $slide->endSlider();

Slide::addScript();

Notice that we call the static addScript() method at the end with no parameters.
This will add the necessary JavaScript to make our slides work. We should never call
the addScript() method without parameters more than once.

Chapter 9

[275]

The resultant slides look like this:

When we use the toggle buttons, the corresponding slides will vertically slide in and
out. The buttons don't have to toggle the slides; when we create the buttons we can
specify the button type as toggle, slideIn, slideOut, or hide. Buttons don't have
to be placed above the slide that they control; we can place them anywhere.

Both of these particular slides are vertical, but there is nothing to prevent us from
using horizontal and vertical slides on the same page. To do this we would require
two Slide objects, one which when instantiated is passed the variable horizontal:

$slideHorizontal = new Slide('horizontal');
$slideVertical = new Slide();

There are many different effects we can achieve using mootools, and we don't have
to use a PHP class to implement them. If you want to take advantage of mootools
then the best place to start is at the mootools website: http://mootools.net/.

Summary
In terms of extension design, we have explained how we can use redirects in
conjunction with the application message queue to decrease the development work
required and make the user experience friendlier. Use of both these elements should
always be considered when we create component controller methods that modify data.

An important feature of component design is the overriding effect that menu
parameters have on a page. This design can cause great consternation to
administrators and developers alike who are unaware of the overriding effects.
It's important, not only to understand this concept, but also to pass the necessary
information on to your component administrators.

To help create clean and valid XHTML documents we are able to modify the
document before it is sent to the browser. We do this using several different methods
that allow us the ability to edit the document headers. We should never be tempted
to 'whop in a tag', which should be in the document header!

Customizing the Page

[276]

Making our extensions multilingual is a very easy process, and doing so will greatly
improve the quality of the extension. Even when an extension is intended solely for
one language or we only have one translation we should still use the multilingual
mechanisms. This will help to make the extension future proof.

We can use JavaScript to greatly enhance the appearance and user-friendly nature of
our extensions. In addition to the existing implementations that allow us to harness
the mootools JavaScript library, we can create our own PHP classes to handle other
parts of the mootools library or, if we prefer, another JavaScript library. Exploring
the mootools website is a good idea, if we want to create an original interface.

APIs and Web Services
The terms API (Application Programming Interface) and web service when used
together describe how we access remote third-party services from an application. We
can use web services and APIs in our Joomla! extensions.

This chapter explores some of the Joomla! API, specifically in relation to web
services. We will also discuss some of the more common web services and take a
more in-depth look at the Yahoo! Search API.

The final section of this chapter investigates how to implement web services of our
own, using XML-RPC plugins. For more information about plugins please refer to
Chapter 6.

XML
XML (Extensible Markup Language) is often used to send and receive web service
data. It is important that we understand how XML is structured so that we can
interact with such web services.

This example demonstrates how a typical XML document is constructed:

<?xml version="1.0" encoding="UTF-8" ?>
<rootNode>
 <subNode attr="Some Value">Some Data</subNode>
</rootNode>

The first line of code is known as the XML declaration. It declares that the document
is XML, which version of XML it is, and what the character encoding is.

We then encounter the opening tag rootNode. XML documents have one root node
that encapsulates the XML document.

APIs and Web Services

[278]

Within rootNode is another node, subNode. This node contains some data and an
attribute called attr. There is no limit to the depth of an XML document; this is one
of the things that make XML so flexible.

When creating our own XML schemas, we can choose the names of all the tags and
attributes that we are going to implement. Here are some quick pointers that should
help when we come to define and write our own XML documents:

Tag and attribute names are case sensitive.
Tag and attribute names can only contain letters and numbers.
Special characters within data must be encoded.
Tags must be nested correctly.
Attribute values must be encapsulated in double quotes.

Parsing
Joomla! provides us with three different XML parsers: DOMIT (DOM), JSimpleXML
(Simple), and SimplePie (RSS/Atom). We will explore how to use the JSimpleXML
parser because it is the most commonly used XML parser in Joomla!.

The first thing we need to do is obtain an instance of the parser. We do this using the
JFactory method getXMLParser(). When we use this method we must tell it which
XML parser we want to use:

$parser =& JFactory::getXMLParser('Simple');

The next step is to load and parse some XML. There are two ways in which we
can do this; we can either load XML from a file or from a pre-existing string. This
example demonstrates how we load XML from a file:

$parser->loadFile($pathToXML_File);

Loading XML from a string is a very similar process, as this example demonstrates:

$xml = '<?xml version="1.0" ?>
<catalogue name="Some Music Collection">
 <album>
 <title>Moving Pictures</title>
 <artist>Rush</artist>
 <year>1981</year>
 <tracks>
 <track length="4:33">Tom Sawyer</track>
 <track length="6:06">Red Barchetta</track>
 <track length="4:24">YYZ</track>

•

•

•

•

•

Chapter 10

[279]

 <track length="4:19">Limelight</track>
 <track length="10:56">The Camera Eye</track>
 <track length="4:43">Witch Hunt</track>
 <track length="4:43">Vital Signs</track>
 </tracks>
 </album>
</catalogue>';

$parser->loadString($xml);

That is all we have to do in order to parse XML using the JSimpleXML parser!

We can only use a JSimpleXML parser once; if we attempt to use the
load methods more than once, we will encounter errors.

Once we have loaded some XML into the parser we can use the parser document
attribute to interrogate the data. Before we rush into this, let's take a closer look at
the XML we used in the previous example. The XML has been used to record the
contents of a music catalogue, in this case 'Some Music Collection'.

The root node is catalogue and has one attribute, name, which is used to identify the
catalogue in question. Next, there is an album node. This node encapsulates four other
nodes: name, artist, year, and tracks. The tracks node identifies individual tracks
in track nodes that identifies a name and the length of the track in a length attribute.

The parser document attribute is a JSimpleXMLElement object. JSimpleXMLElement
objects are used to describe individual XML nodes. In the case of the document
attribute, this is always the root node.

Having loaded the XML, we'll start interrogating the data by retrieving the name of
the catalogue:

$document =& $parser->document;
$catalogue = $document->attributes('name');

Notice that the first thing we do is get a reference to the document attribute.
Although we don't have to do this, it is generally easier than accessing the document
directly using $parser->document.

Next we use the attributes() method. This method returns the value of an
attribute from the current node. When we use this method we supply the name of
the attribute we wish to retrieve, in this case name. If a requested attribute does not
exist, null is returned.

APIs and Web Services

[280]

If we want to retrieve all of the attributes associated with a node, we simply
omit to pass the name of an attribute. This returns an associative array of the node's
attributes.

What if, for some reason, there was a possibility that the root node wasn't of the
expected type? We can use the name() method to get the name of the node type; in
our case we are checking for a catalogue node:

if ($document->name() != 'catalogue')
{
 // handle invalid root node
}

Nodes can have child nodes; in the case of our example, the root node has one child
node, album. The root node could well contain more album nodes. To retrieve child
nodes we use the children() method. This method returns an array of nodes, each
of which is a JSimpleXMLElement object:

$children = $document->children();

What if there was a mixture of album and single nodes? A single node would be
essentially identical to the album node, except it would contain data specifically for
music released as single.

We could use the $children array and determine the type of each node
using the name() method. This is slightly cumbersome, and for larger XML files
rather intensive.

Luckily for us, the child nodes are categorized into types. These are accessible
through attributes that are named after the node type. So, in order to retrieve the
album nodes from the root node we would do this:

$albums =& $document->album;

Our next task is to process the $albums array. As we iterate over the array, we will
have to access the sub-nodes: name, artist, year, and tracks. We could use a similar
method to that we used in the above example. However, there is another way.

We can use the getElementByPath() method to retrieve a node, provided that its
path is unique. An album will only ever have one of each of these sub-nodes.

This example iterates over the $albums array and outputs title, artist, and year
(we will deal with tracks shortly):

for ($i = 0, $c = count($albums); $i < $c; $i ++)
{
 // get the album
 $album =& $albums[$i];
 echo '<div>';

Chapter 10

[281]

 if ($name =& $album->getElementByPath('title'))
 {
 // display title
 echo ''.$name->data().'
';
 }
 if ($artist =& $album->getElementByPath('artist'))
 {
 // display the artist
 echo ''.$artist->data().'';
 }
 if ($year =& $album->getElementByPath('year'))
 {
 // display the year of release
 echo ' ('.$year->data().')';
 }
 echo '</div>';
}

Our use of the getElementByPath() method is clear. We simply pass the name of
the child node. In more complex data structures we might want to use a deeper path.
To do this we use forward slashes to separate the node names.

The other method that we use in the example is data(). This method returns any
data that is contained within a node. Remember that the getElementByPath()
method returns JSimpleXMLElement objects, and title, artist, and year are nodes
in their own right.

We are now left with one last thing to do. We need to get the track listing for each
album. To do this, we will iterate over the tracks node child nodes:

if ($tracks =& $album->getElementByPath('tracks'))
{
 // get the track listing
 $listing =& $tracks->track;

 // output listing table
 echo '<table><tr><th>Track</th><th>Length</th></tr>';
 for ($ti = 0, $tc = count($listing); $ti < $tc; $ti ++)
 {
 // output an individual track
 $track =& $listing[$ti];
 echo '<tr>';
 echo '<td>'.$track->data().'</td>';
 echo '<td>'.$track->attributes('length').'</td>';
 echo '</tr>';
 }
 echo '</table>';
}

APIs and Web Services

[282]

We retrieve the tracks node using getElementByPath(). We get each track using
the track attribute. We get the name of the track using the data() method. We get
the track length attribute using the attributes() method.

We can use this example in conjunction with the previous example in order to output
each album and its track listing. This example demonstrates what the resultant
output could look like once some CSS has been applied:

Editing
In addition to interrogating XML data, we can modify data. Imagine we want to add
a new album to the catalogue. We need to use the addChild() method; this method
adds a new sub-node of a specified type and returns a reference to the new node:

$newAlbum =& $document->addChild('album');

Now that we have added the new album node, we need to add to the album the child
nodes title, artist, year, and tracks:

$title =& $newAlbum->addChild('title');
$artist =& $newAlbum->addChild('artist');

Chapter 10

[283]

$year =& $newAlbum->addChild('year');
$tracks =& $newAlbum->addChild('tracks');

The first three of these nodes require us to set the data values. Unfortunately,
we can't do this when we create the node; we must do this afterwards using the
setData() method:

$title->setData('Green Onions');
$artist->setData('Booker T. & The MG\'s');
$year->setData('1962');

Those are the easy ones. It is toughest to deal with the tracks node. We need to
add multiple track nodes to this node, each of which needs to include the track
length as a parameter:

$track =& $tracks->addChild('track', array('length' => '1.45'));
$track->setData('Green Onions');

The second parameter that we pass to the addChild() method is an associative array
of node parameters. In this case we specify the length of the track as 1.45. We then
proceed to set the name of the track using the setData() method.

There is another way in which we could have added the length parameter to the
track node. The addAttribute() method is used to add and modify attributes.
Imagine we accidentally entered the wrong length value and we want to correct it:

$track->addAttribute('length', '2.45');

Saving
The last thing that we look at is how to save XML. Imagine we have parsed an
existing XML file and we have made some alterations to the parsed XML. In order
to apply these changes we need to convert the parsed document back into an XML
string and save it to the original file.

The JSimpleXMLElement class includes a method calledJSimpleXMLElement class includes a method called toString(). This method
takes the parsed XML and converts it into an XML string:

// get the root node
$document =& $parser->document;
$xmlString = $document->toString();

The string returned from the toString() method is missing one vital part of an
XML document, the XML declaration. We must manually add this to $xmlString:

$xmlString = '<?xml version="1.0" encoding="UTF-8" ?>'
 ."\n".$xmlString;

APIs and Web Services

[284]

Now that we have prepared the new contents of the XML file, we need to save it. To
do this, we use the JFile class that we import from the joomla.filesystem library:

if (!JFile::write($pathToXML_File, $xmlString))pathToXML_File, $xmlString)), $xmlString))
{
 // handle failed file save
}

Yes, it really is as easy as that!

There are numerous methods in the JSimpleXMLElement class that allow us to
manipulate and interrogate data. For a full description of all these methods please
refer to the official documentation at: http://api.joomla.org/.

It is vital when working with JSimpleXML and JSimpleXMLElement
to pass objects by reference. Failing to do this can result in loss and
corruption of data.

AJAX
AJAX (Asynchronous JavaScript and XML) is a JavaScript mechanism used to
request data, normally in XML format, from which a page can be updated. We can
use AJAX in our Joomla! extensions in a bid to improve the user experience.

Joomla! does not include any support specifically for AJAX. However, Joomla! does
include the lightweight JavaScript framework, mootools. This framework includes
useful client-side features for handling AJAX.

Before we ascend into the intricacies of JavaScript, we need to look at how we deal
with an AJAX request. This might seem back to front, but it will make building the
JavaScript far easier.

Response
To send a response we need to return an XML document. To do this we must use a
component. Joomla! supports five core document response types:

Error
Feed
HTML
PDF
RAW

•

•

•

•

•

Chapter 10

[285]

XML is clearly missing from the list. This essentially leaves us with two options: we
can either create another document type, or we can use a RAW document. We will
use the RAW document type.

The RAW format is used when a format value is provided in the
request, and is not equal to Feed, HTML, PDF, or Error.

Before we start, we need to consider the data we are going to retrieve. We'll work
with a basic table, #__items, with three fields, id, name, and text. When a request is
made we return a single record from the table.

The first thing we need to do is create the RAW view. To do this we create a new
PHP file called view.raw.php in the items view (the view in which we create this file
is based on the entity).

Once we have created this, we need to add a view class to the file; this is the same
as it would be for any other view in a component. Our next job is to build the
display() method.

This method is essentially very similar to the display() method that would be
located in the item's view.html.php file. The first thing we need to do in this method
is retrieve the data:

// get the data
$data =& $this->get('Data');

No surprises here. This retrieves the data from the item model using the
getData() method.

Now that we have the data we need to sort out the response. We'll use the
JSimpleXMLElement class to build the XML response:

// import library
jimport('joomla.utilities.simplexml');

// create root node
$xml = new JSimpleXMLElement('item', array('id' => $data->id));

This creates a root node of type item with an attribute id populated with the value
of the chosen item's ID. Now we can add some sub-nodes:

// add children
$name =& $xml->addChild('name');
$text =& $xml->addChild('text');

// set child data values
$name->setData($data->name);
$text->setData($data->text);

APIs and Web Services

[286]

This adds two sub-nodes, name and text, and populates them with the item's
corresponding values.

Now that we have built our XML response, our last task is to output the XML. We
start with the XML declaration and then use the toString() method:

echo '<?xml version="1.0" encoding="UTF-8" ?>'."\n";
echo $xml->toString();

If we were to test this, we would experience a slight oddity; the response will be
displayed as plain text. Although we have declared the content as XML, we have
not declared the document header MIME type as text/xml. To do this we use the
document setMimeEncoding() method:

$document =& JFactory::getDocument();
$document->setMimeEncoding('text/xml');

We're now ready to take a look at our XML response. We can do this by simply
adding the string &format=raw to the end or our URI query string when viewing an
item. This tells Joomla! that we want to use the RAW document and that we want to
use the view class held in the view.raw.php file.

This is a screenshot of the resultant XML when we perform the request:

One important thing to notice here is the use of the XHTML paragraph tag within
the text node. The paragraph tag is part of the text value within the database,
but the XML doesn't treat it as an XML node. This is because when we use the
JSimpleXMLElement toString() method, node data is automatically encoded.

Request
AJAX requests hinge on the JavaScript XMLHttpRequest class. This class is used to
perform HTTP requests. In Joomla! we don't have to directly use this class because
Joomla! comes with the mootools library.

There are a few different ways in which we can handle AJAX using mootools. We
can use the Ajax class, the XHR class, or the send() method. We generally only use
the Ajax and XHR classes directly if we are creating complex AJAX requests.

Chapter 10

[287]

We will explore the send() method. This method is intended for use with form
elements; it submits form data and allows us to handle the response when it is
received. For more information about the Ajax and XHR classes please consult the
official mootools documentation: http://docs.mootools.net/.

Before we delve into the JavaScript we need to create a form which can be used to
initiate an AJAX request:

<form id="form1" method="post" action="<?php
 echo JRoute::_('index.php?option=com_mycomponent'); ?>">
 <input name="id" type="text" id="id" />
 <input name="format" type="hidden" id="format" value="raw" />
 <input name="view" type="hidden" id="view" value="wfaq" />
 <input name="Submit" type="submit" value="Submit" />
</form>

When we use this form we are rewarded with the XML document we described in
the previous section.

OK, so this isn't the desired functionality; we don't want to be presenting users
with XML documents. What we want to do now is add some JavaScript to handle
the response.

It's important when we add the JavaScript that we encapsulate it within the window
domready event. This ensures that the JavaScript isn't executed until the DOM
(Document Object Model) is fully loaded:

// add mootools
JHTML::_('behavior.mootools');

$js = "window.addEvent('domready', function()
 {
 $('form1').addEvent('submit', function(e)
 {
 // Stop the form from submitting
 new Event(e).stop();

 // Update the page
 this.send({ update: $('update') });
 });
 });"

Before we add this JavaScript to the page, let's take the time to examine it in
more detail.

The first thing we do is to invoke the mootools JHTML behavior. This ensures that the
mootools library is loaded; without it the JavaScript we want to use will not work.

APIs and Web Services

[288]

The first line of JavaScript adds a new event handler function to the window
domready event. Within the event handler function we add a new submit event
handler function to form1. This function will be executed when form1 is submitted.

We use the $('someDOM_ID') syntax to point the JavaScript at
a specific DOM element identified by the supplied ID.

The first thing that this function does is prevent the form submission event from
continuing. If we do not do this, the user will be redirected to the XML. The next
thing we do is execute the send() method.

There are a number of settings that we can pass to the send() method. In this case
we pass the DOM element we want to update, aptly named update. This brings us
to our next task before we can use our JavaScript. We need to add an element to the
document where the results from the AJAX request will be displayed:

<div id="update">Update Area</div>

We can now proceed and use the form button. This is a screenshot before the AJAX is
put in action:

And, this is the screenshot after the AJAX is put in action:

There is one rather obvious issue with this AJAX—the updated area has been
populated with the RAW XML response. In some cases, this is useful because we
don't have to return an XML response.

If we wanted to simply display some basic text, instead of responding with an XML
document, we could respond with an XHTML snippet. However, we are trying to
deal with an XML response. This means that we need to parse the XML and update
the page accordingly.

This example builds on the JavaScript we used earlier. This time we have removed
the update setting and added the onComplete setting. The onComplete setting is a
function that is executed on completion of a request:

Chapter 10

[289]

// Update the page
this.send({ onComplete: function(response, responseXML)
{
 alert('AJAX Response Received');
}});

The onComplete function is always passed two parameters, response and
responseXML. response is the RAW response. responseXML is an XMLDocument
object generated from the parsed response; this is the parameter in which we
are interested.

Remembering what our XML response looked like, we need to access the root node,
item. We then need to access the sub-nodes name and text. From these we can create
an XHTML string with which to update the page.

This example shows how we do this using the responseXML object's
documentElement property and the Element object getElementsByTagName()
method and nodeValue property:

// Update the page
this.send({ onComplete: function(response, responseXML)
{
 // get the XML nodes
 var root = responseXML.documentElement;
 var name = root.getElementsByTagName('name').item(0);
 var text = root.getElementsByTagName('text').item(0);

 // prepare the XHTML
 var updateValue = '<div>'
 + name.firstChild.nodeValue + '</div><div>'
 + text.firstChild.nodeValue + '</div>';
}});

There is one last thing we need to do. We must update the page with the new value.
We do this at the end of the onComplete function:

// Update the page
this.send({ onComplete: function(response, responseXML)
{
 // get the XML nodes
 var root = responseXML.documentElement;
 var name = root.getElementsByTagName('name').item(0);
 var text = root.getElementsByTagName('text').item(0);

 // prepare the XHTML
 var updateValue = '<div>'
 + name.firstChild.nodeValue + '</div><div>'
 + text.firstChild.nodeValue + '</div>';

APIs and Web Services

[290]

 // update the page element 'update'
 $('update').empty().setHTML(updateValue);
}});

Now when we use the form, the update element content will be updated with an
XHTML interpretation of the XML retrieved by the AJAX request. This screenshot
depicts the resultant updated page with some CSS applied:

When we encounter difficulties creating JavaScript, it can be useful to use a
JavaScript debugger. An example of such a debugger is the freely available Firebug,
a utility for Firefox that provides us with a number of useful tools (http://www.
getfirebug.com):

LDAP
LDAP (Lightweight Directory Application Protocol) is often associated with user
authentication. While it is true that LDAP is used extensively for authentication,
directory applications can be used for far more.

We'll stick with the user theme, but instead of authenticating, we'll use an LDAP
connection to create a listing of users and their telephone numbers.

Joomla! provides us with the JLDAP class; this class allows us to connect to
an LDAP server and browse the contents. To use the class we must import the
corresponding library:

jimport('joomla.client.ldap');

Chapter 10

[291]

Before we jump in head first, there is one more thing we need to take a look at. For
the purpose of the following examples we will use an LDAP test server.

This screenshot depicts the LDAP tree we're interested in:

In order to interrogate the LDAP server we must connect to it. We'll assume the
following settings are being used:

Setting JLDAP Setting Name Value
Host host 192.168.0.2
Port port 389
LDAP v3 use_ldapV3 True
TLS negotiate_tls False
No Referrals no_referrals True
Base DN base_dn dc=example,dc=org
User DN users_dn cn=[username],dc=example,dc=org

When we create a new JLDAP object we have the option to pass an object to it with
the necessary settings. The easiest way to achieve this is normally via a JParameter
object. This means that we can use the JParameter and JElement classes to allow an
administrator to define the necessary LDAP settings:

$params = new JParameter($paramString);
$client = new JLDAP($params);

The next step is to connect to the LDAP server. This is relatively easy:

if (!$client->connect())
{
 // connection failed, handle it!
}

APIs and Web Services

[292]

The connect() method instantiates a connection with the LDAP server. Once we are
connected we need to bind to the server. There are two ways of doing this.

We can bind anonymously; this is generally less common because of security issues
and privacy of data. To do this we use the anonymous_bind() method:

if (!$client->anonymous_bind())

{

 // bind failed, handle it!

}

Alternatively, we can bind as a user. In this example, we bind as the user Manager
with the password secret, the default user and password in an OpenLDAP server:

if (!$client->bind('Manager', 'secret'))

{

 // bind failed, handle it!

}

You might be scratching your head because of the username. Should this should
be a DN (Distinguished Name)? We don't have to provide the username as a DN
because our settings include users_dn.

The value of this is cn=[username],dc=example,dc=org. When we bind to LDAP,
we automatically use this string, substituting [username] with the bound username.

If we don't want to use this, when we connect, we can supply the full user DN and
pass a third parameter. When this third parameter is true, no substitution based on
the users_dn setting occurs:

if (!$client->bind('cn=Manager,dc=example,dc=org', 'secret', true))

{

 // bind failed, handle it!

}

Once we have successfully bound to the server we can start looking for LDAP
objects. To do this we need to use the search() method. This method searches the
base DN and all OUs (Organization Units) within it. When we perform a search we
must define one or more filters.

The filter syntax is defined by RFC 2254. For more information please
visit: http://www.ietf.org/rfc/rfc2254.txt?number=2254.

Chapter 10

[293]

We are looking specifically for Person objects. The filter we use to describe this is
(objectClass=Person). This will filter out any LDAP objects that are not of the
class Person:

$filters = array('(objectClass=Person)');
$results = $client->search($filters);

Notice that $filters is an array. This is because we are able to supply multiple
searches at once. When we do this the results are combined into a single result set.

If we don't want to search the base DN, we can specify a different DN to search
within. The screenshot we showed earlier describes users in the people OU. We can
restrict the search to this OU:

$people = 'ou=people,dc=example,dc=org'
$results = $client->search($filters, $people);

Once the search has been performed, $results is populated with an array of
results. Each result is represented as an associative array. Our next task is to
present the results:

for ($i = 0, $c = count($results); $i < $c; $i ++)
{
 $result =& $results[$i];
 echo '<div>';
 echo ''.$result['givenName'][0].'
';
 echo $result['description'][0].'
';
 echo ''.$result['telephoneNumber'][0].'';
 echo '</div>';
}

Notice that each result array element is an array in its own right. This is because
LDAP allows multiple values for object attributes. The only exception to this is the
DN; LDAP objects can only have one location.

Our example assumes that the object attributes givenName, description, and
telephoneNumber are always present in the results. In a production environment,
we would test the attributes to ensure they are present.

APIs and Web Services

[294]

If we apply some suitable CSS when we output the results we may be presented with
something like this:

There are many other things that we can achieve using the JLDAP class. For a
complete description of all of the available methods please refer to the official JLDAP
documentation: http://api.joomla.org/Joomla-Framework/Client/JLDAP.html.

Email
Email has revolutionized communication. Joomla! provides us with the JMail class,
which allows us to send emails. JMail supports three different mechanisms for
sending email: the PHP mail function, Sendmail, and SMTP.

There is a global JMail object that we can access using the JFactory method
getMailer(). This object is configured with the global mail settings that
administrators edit through the Global Configuration Server settings:

Chapter 10

[295]

The first thing we need to do when we come to send an email is retrieve the JMail
object and set the sender's email address:

$mailer =& JFactory::getMailer();
$mailer->setSender('example@example.org');

There are two ways in which we can specify the email address. We can either use a
string, as in the given example, or we can use an array that defines the email address
and name:

$sender = array('example@example.org', 'example')
$mailer =& JFactory::getMailer();
$mailer->setSender($sender);

If we want to, we can add reply-to addresses. Unlike setting the sender, the email
addresses must either be an array of strings or an array of arrays:

$reply = array('example@example.org', 'Example');
$mailer->addReplyTo($reply);

$reply0 = array('example@example.org', 'Example');
$reply1 = array('example@example.org', 'Example');
$replies = array($reply0, $reply1);
$mailer->addReplyTo($replies);

We can add recipients in three ways:

As a normal recipient: Using addRecipient()
As a BCC (Blind Carbon Copy) recipient: Using addBCC()
As a CC (Carbon Copy) recipient: Using addCC()

Unlike the sender and reply-to address we cannot define the recipient email address
name. We either provide an email string or an array of email strings:

$mailer->addRecipient('foo@example.org');

$recipients = array('bar@example.org', ' baz@example.org ');
$mailer->addRecipient($recipients);

Out next task is to set the subject line and the body text of the email. We do this
using the setSubject() and setBody() methods:

$mailer->setSubject('Some Email');
$mailer->setBody('Lorem ipsum dolor sit amet.');

•

•

•

APIs and Web Services

[296]

By default email body content is always plain text. We can modify the body to support
HTML using the IsHTML() method; this sets the body MIME type to text/html:

$mailer->IsHTML(true);

Our final task is to send the email. This is done using the Send() method. This will
send the email using the preconfigured email options:

if ($mailer->Send() !== true)
{
 // an error has occurred
 // a notice will have been raised by $mailer
}

That's it, we're all done. We can now prepare and send emails! There are just a few
more things that can be useful to know.

If we want to modify the way in which the email will be sent, we can use the
useSendmail() and useSMTP() methods. These methods, when supplied with
the proper parameters, are used to set the mechanism by which the mailer will
send emails.

If you have recognized any of the methods so far, you have probably worked with
the open-source PHPMailer library. The JMail class is an extension of the PHPMailer
class. If you prefer, you can use the PHPMailer class. To do this you will first have to
import the necessary library:

jimport('phpmailer.phpmailer');
$mailer = new PHPMailer();

Be aware that when doing this the object will not be automatically loaded with the
global email settings.

There is one last method that we will discuss. In addition to the JMail class, there is a
static JMailHelper class. This class mainly consists of methods designed to clean data
before adding to an email (we don't have to use these, JMail takes care of it for us).

There is another method in the helper, isEmailAddress(). This method confirms
that an email address is of a valid format. This is especially helpful if we ever ask
users to input their email address:

if (!JMailHelper::isEmailAddress($someEmailAddress))
{
 $this->setError(JText::_('INVALID_EMAIL_ADDRESS'));
 return false;
}

Chapter 10

[297]

If we haven't used the JMail class earlier in the script, we will need to import the
JMail library before we use the JMailHelper class:

jimport('joomla.utilities.mail');

File Transfer Protocol
FTP has long been established as the standard way for administrators to transfer files
to their web servers. Joomla! provides us with the JFTP class, which can be used to
connect to FTP servers and perform common functions.

The main purpose of this class is to overcome problems with access rights
when working with the local file system. When FTP access is enabled in the site
configuration, Joomla! will attempt to use FTP instead of PHP file system functions.

Whenever we connect to an FTP server we require certain settings to be in place. If
we want to use the FTP settings defined in the global configuration, we can use the
JClientHelper class to easily access these settings.

This example demonstrates how we can use JClientHelper static getCredentials()
method to get the FTP settings:

jimport('joomla.client.helper');
$FTP_Settings = JClientHelper::getCredentials('ftp');

The JClientHelper static getCredentials() method returns an associative array
with the following keys: enabled, host, port, user, pass, and root. We briefly
mentioned earlier that the global FTP access can be enabled and disabled; the
enabled key provides us with the value of this option. We must never attempt to use
the global FTP settings if this value is not equivalent to 1:

if ($FTP_Settings['enabled'] == 1)
{
 // It is OK, we can use the global FTP settings
}

Of course we don't have to use the global FTP settings. We can just as easily use
some other settings, perhaps specified in a component configuration.

To use the JFTP class we must first import and create a new instance of the class. We
use the static JTFP getInstance() method to create a new instance of the class. This
example does just the same:

jimport('joomla.client.ftp');

$client =& JFTP::getInstance($FTP_Settings['host'],
 $FTP_Settings['port'],

APIs and Web Services

[298]

 null,
 $FTP_Settings['user'],
 $FTP_Settings['pass']);

The third parameter, in the above example set to null, is an optional associative
array of FTP options. This array can contain the type and timeout keys:

type is used to determine the FTP connection mode, either of FTP_
AUTOASCII, FTP_BINARY, or FTP_ASCII; the default mode is FTP_BINARY.
timeout is used to set the maximum time, in seconds, which should lapse
before the FTP connection timeouts. PHP versions prior to 4.3.0 do not
support the timeout option.

The great thing about using the getInstance() method is that the returned object
will already have created a connection to the FTP server and authenticated itself.
Obviously there may be occasions when this fails. To ensure that the JFTP object has
successfully connected we can use the isConnected() method:

if (!$client->isConnected())
{
 // handle failed FTP connection
}

Most of the available JFTP methods are self explanatory and are standard FTP type
functions. This table describes some of the more common methods we can use with a
JFTP object:

Method Description
quit Closes the FTP connection

pwd

Determines the current working directory. When using the global settings
the root key value should indicate the location of the Joomla! installation.

chdir Changes the current working directory
rename Renames a file or folder
chmod Changes a file or folder mode (permissions)
delete Removes a file or folder
mkdir Creates a new folder
create Creates a new file
read Reads the contents of a file
get Retrieves a file
store Stores a file on the server
listNames List the names of files in the current working directory
listDetails List the names of the files and folders in the current working directory

•

•

Chapter 10

[299]

Web Services
There are many Web Service APIs that we can use in conjunction with Joomla!. This
is a list of few of the more common Web Service APIs that we are likely to use:

eBay
Google (Calendar, Checkout, Maps, Search)
Microsoft (Live, MSN, XBOX)
Yahoo! (Mail, Maps, Search)

The API and service that we use determines the way in which we handle the API.
We will take a look at the Yahoo! Search API. Before we start, we need to discuss the
Yahoo! Application ID.

Yahoo! uses a unique ID to identify the applications that use its API. If you intend to
use the Yahoo! API, it is important that you register your application before you start
development. This will ensure that you are able to obtain the desired ID.

Most Web Service APIs require us to use an ID of some description.
This allows the owners of the API to analyze the usage of their services.

For the purposes of this example we will use the application ID YahooDemo—this is
the default ID used when demonstrating the use of the Yahoo Search API.

The first thing that we need to do to create our Yahoo! Search is build the request
query that we will use to obtain the results. This example assumes that we have used
a search box named yahooSearch:

// get the search terms
$query = rawurlencode(JRequest::getString('yahooSearch',
 'Joomla!', 'DEFAULT', JREQUEST_ALLOWRAW));

We use the PHP rawurlencode() method because $query will be used in a URI. We
use the JREQUEST_ALLOWRAW mask so as not to lose any data from the request. There
is a full explanation of the JRequest masks in Chapter 11.

We make the assumption that if no search terms are provided we want to search for
Joomla!. In reality we would probably redirect the user.

•

•

•

•

APIs and Web Services

[300]

Next we need to create the request URI from which we will obtain the
search results:

// Prepare the request URI
$request = 'http://search.yahooapis.com/WebSearchService/V1/
 webSearch?appid=YahooDemo&query='.$query.'&results=4';

Now that we have the URI we can proceed to interact with the Yahoo! API. We
use the PHP function file_get_contents() to perform the request and retrieve
the results:

// Perform search
if (!$xml = file_get_contents($request))
{
 // handle failed search request
}

The results of the request, if successful, are returned as an XML document. How we
choose to interpret these results is up to us. We explained how to use the JSimpleXML
parser earlier in the chapter. We can use it to interpret the Yahoo! results:

$parser =& JFactory::getXMLParser('Simple');
$parser->loadString($xml);
$results =& $parser->document->Result;

Now that we have a parsed XML document, we can process the search results.
The $results variable becomes an array of result nodes; these are the nodes that
Yahoo! uses to encapsulate each result.

We will keep the processing simple, and output the results directly to screen as an
ordered list. This example uses the result sub-nodes ClickUrl, Title, Summary,
and DisplayUrl. In each case, we always access the zero element; we can do this
because we know that only one node of each of these types will ever be present in a
result node:

echo '';
for ($i = 0, $c = count($results); $i < $c; $i ++)
{
 $result =& $results[$i];
 echo '';
 echo 'ClickUrl[0]->data().'"
 target="_blank">'.$result->Title[0]-
 >data().'
';
 echo $result->Summary[0]->data().'
';
 echo $result->DisplayUrl[0]->data();
 echo '';
}
echo '';

Chapter 10

[301]

If we add some CSS to our document we can create a highly customizable search
facility, which a user need not even know is based on the Yahoo! API:

This example has demonstrated how easy it is to use web services. Although this
example is not particularly advanced, it shows how quickly we can create very
powerful tools for Joomla!.

Building a Web Service (XML-RPC Plugin)
XML-RPC is way in which systems can call procedures on remote systems via HTTP
using XML to encode data. Joomla! includes an XML-RPC server that we can extend
using plugins. For more information about plugins, please refer to Chapter 6.

The XML-RPC server will only function if the 'Enable Web Services'
option in the Global Configuration is enabled.

Before we begin, it is important to understand that Joomla! relies heavily on the
phpxmlrpc library, which is available from: http://phpxmlrpc.sourceforge.net.
Due to this, some of the conventions we will encounter when building XML-RPC
plugins will differ from the rest of Joomla!.

When we briefly discussed XML-RPC in Chapter 6, we described an event that
enables us to define XML-RPC web service calls. This is only one part of XML-RPC
plugins; the second part is a static class or group of functions that handle an XML-
RPC request.

APIs and Web Services

[302]

Before we delve any further, we need to be familiar with the XML-RPC data types.
There are six simple data types and two compound data types. This table describes
the six simple data types:

Type Variable Description
base64 $xmlrpcBase64 Base64 binary encoded data
boolean $xmlrpcBoolean True or false: 0 = false, 1 = true

dateTime.iso8601 $xmlrpcDateTime

Date and time in iso8601 format, for
example YYYYMMDDTHH:MM:SS

double $xmlrpcDouble Floating-point number
int/i4 $xmlrpcInt or $xmlrpcI4 Integer
string $xmlrpcString ASCII text

This table describes the two compound data types:

Type Variable Description
array $xmlrpcArray Array
struct $xmlrpcStruct Associative array (hash)

Compound data types are so called because they combine the other types. array and
struct data types encapsulate multiple values, each of which can be of any
data type.

If you are wondering exactly why we care about the different data types in
XML-RPC, it is because we need them in order to create a signature for the different
XML-RPC calls. A signature defines the data that is outputted and inputted by a
web service call.

We will start by creating a plugin called 'foobar' that will perform some basic
mathematical functions. The first thing we need to do is create a handler for the
onGetWebServices event:

$mainframe->registerEvent('onGetWebServices', 'plgXMLRPCFoobar');

/**
 * Gets the available XML-RPC functions
 *
 * @return array Definition of the available XML-RPC functions
 */
function plgXMLRPCFoobar()
{
 // get the XMl-RPC types
 global $xmlrpcI4, $xmlrpcInt, $xmlrpcBoolean, $xmlrpcDouble,

Chapter 10

[303]

 $xmlrpcString, $xmlrpcDateTime, $xmlrpcBase64,
 $xmlrpcArray, $xmlrpcStruct, $xmlrpcValue;

 // return the definitions
 return array
 (
 // addition service
 'foobar.add' => array
 (
 'function' => 'plgXMLRPCFoobarServices::add',
 'docstring' => 'Adds two numbers.',
 'signature' => array(array($xmlrpcStruct, $xmlrpcDouble,
 $xmlrpcDouble))
),
 // subtraction service
 'foobar.subtract' => array
 (
 'function' => 'plgXMLRPCFoobarServices::subtract',
 'docstring' => 'Multiplies two numbers.',
 'signature' => array(array($xmlrpcStruct, $xmlrpcDouble,
 $xmlrpcDouble))
)
);
}

This example is a little busy, and what it is doing is less than obvious! So let's break itis less than obvious! So let's break it! So let's break it
down into its component parts. The first thing that we do in the plgXMLRPCFoobar()
function is to declare a bunch of variables global.

We described these variables in the tables about XML-RPC data types. There is one
addition to this list, $xmlrpcValue; this variable is used to encapsulate all other data
types. This is an example of an integer in an XML-RPC document:

<value><int>666</int></value>

Technically, we do not have to use the type variables because they are
only strings. For example, the value of $xmlrpcDouble is double.
However, using the variables helps ensure compatibility should the
values of these variables change.

Once we have made these variables global, we build an associative array and return
it. The keys in this associative array are the names that a client would use to invoke
an XML-RPC service call. In our example, we define two keys: foobar.add and
foobar.subtract.

APIs and Web Services

[304]

The values for these keys are also associative arrays. This table describes the keys we
use in these arrays:

Key Description
docstring A string describing the purpose of the XML-RPC call

function

The function that Joomla! will execute when an XML-RPC response of this
nature is received

signature Defines the return type and the input required from and XMLRPC request

To explain this further, we will use the foobar.add array as an example:

The function is defined as plgXMLRPCFoobarServices::add. This means
that when a foobar.add call is made we will execute the static add() method
in the plgXMLRPCFoobarServices class.

An XML-RPC function can be a static method in a
class or a function.

The docstring is nice and easy; it tells us that this web service call 'Adds
two numbers'. This is only a human-readable string, and generally does not
carry any meaning to the client machine itself.
The signature, used to define the input and output of the call, is an array.
The output value is always the first value in the array. The remaining
elements describe the input values that a client must provide when calling
the service.

In our example, the signature tells us that the call will return a struct, and requires
two double input values. This is what the foobar.add signature value looks like:

array(array($xmlrpcStruct, $xmlrpcDouble, $xmlrpcDouble))

You may have noticed that the signature is an array of arrays. This is because service
call can have multiple signatures. Imagine we want to allow the addition of two or
three values; we would need to define two signatures, as this example demonstrates:

array(
 array($xmlrpcStruct, $xmlrpcDouble, $xmlrpcDouble),
 array($xmlrpcStruct, $xmlrpcDouble, $xmlrpcDouble,
 $xmlrpcDouble)
)

•

•

•

Chapter 10

[305]

Now that we have defined the web service calls, we need to create the procedures
that drive them. For our example, we need to create the static methods add() and
subtract() in a class named plgXMLRPCFoobarServices. It is normal to implement
these procedures within the same class as the event handler.

When we define the parameters for these methods, we must define the same number
of parameters as we did in the signatures. This example shows how we might
implement the add() and subtract() methods:

**
 * Foobar XML-RPC service handler
 *
 * @static
 */
class plgXMLRPCFoobarServices
{
 /**
 * Adds values together
 *
 * @static
 * @param float xmlrpcDouble
 * @param float xmlrpcDouble
 * @return xmlrpcresp xmlrpcDouble
 */
 function add($value1, $value2)
 {
 global $xmlrpcDouble, $xmlrpcStruct;

 // determine the sum of the two values
 $product = $value1 + $value2;

 // build the struct response
 $result = new xmlrpcval(array(
 'value1' => new xmlrpcval($value1, $xmlrpcDouble),
 'value2' => new xmlrpcval($value2, $xmlrpcDouble),
 'product' => new xmlrpcval($product, $xmlrpcDouble)
), $xmlrpcStruct);

 // encapsulate the response value and return it
 return new xmlrpcresp($result);

 }

 /**
 * Subtracts a value from another
 *

APIs and Web Services

[306]

 * @static
 * @param float xmlrpcDouble
 * @param float xmlrpcDouble
 * @return xmlrpcresp xmlrpcDouble
 */
 function subtract($value1, $value2)
 {
 global $xmlrpcDouble, $xmlrpcStruct;

 // determine the difference of the two values
 $product = $value1 - $value2;

 // build the struct response
 $result = new xmlrpcval(array(
 'value1' => new xmlrpcval($value1, $xmlrpcDouble),
 'value2' => new xmlrpcval($value2, $xmlrpcDouble),
 'product' => new xmlrpcval($product, $xmlrpcDouble)
), $xmlrpcStruct);

 // encapsulate the response value and return it
 return new xmlrpcresp($result);
 }
}

The example introduces two classes that are fundamental to creating a response.

The xmlrpcval class is used to define an XML-RPC value. When we construct a class
of this type, we pass two parameters, the value itself and the value type.

The xmlrpcresp class is used to encapsulate an XML-RPC response. When we
construct a class of this type, we pass one parameter, the return xmlrpcval object. If
an error is encountered, there is a different set of parameters that we can pass. For
more information about this, please refer to the official phpxmlrpc documentation:
http://phpxmlrpc.sourceforge.net/doc/.

This means that our static example methods will both return a struct value. The
returned struct value will be populated with three values—value1, value2, and
product. We return value1 and value2 so that the client can verify that nothing has
corrupted the input values during transport.

To test an XML-RPC plugin we can use the phpxmlrpc debugger, which is available
at http://phpxmlrpc.sourceforge.net/.

Chapter 10

[307]

The debugger enables us to make XML-RPC calls to remote systems and view the
responses. The path to the Joomla! XML-RPC server is identical to that of the root of
the installation plus the folder xmlrpc.

This is a screenshot of the debugger when used to list available methods on a Joomla!
installation located at 192.168.0.6 (the exact output will depend upon which XML-
RPC plugins that are enabled):

Next to each method is a Describe button. We can use this to find out more
information about a method and to generate the payload necessary to execute the
method. To execute an individual method we must change the action to Execute
method and complete the payload field as necessary.

APIs and Web Services

[308]

This screenshot depicts the debugger when used to execute the foobar.add method:

In this instance, we pass the double values 4.2 and 9.6. The response shows the
output from the XML-RPC server. The response, as specified by the signature, is a
struct. It contains three values—value1, value2, and product.

If you experience problems when building XML-RPC plugins, you
should try setting the debugger Show debug info option to More. This
will enable a more verbose output, including the RAW input
and response.

Joomla! includes an XML-RPC client, located in xmlrpc/client.php. To use
this client, debugging must be enabled in the Global Configuration. The client is
relatively simple; the phpxmlrpc debugger provides us with a far more powerful
mechanism with which to interrogate the XML-RPC server.

Chapter 10

[309]

Summary
XML is integral to many web services. It is essential if we intend to use a web
service that relies on XML that we understand how to parse and navigate a parsed
XML document.

The provided XML parsers make Joomla! especially flexible when it comes to
handling XML. In this chapter, we described how to use the JSimpleXML parser.
Before we use this parser, we should always consider any possible benefits of using
the other parsers that are easily available to us.

AJAX has become a bit of a 'buzz word' and as a result it is sometimes used
inappropriately just because we can. Before we implement any AJAX we should
always consider the impact and suitability of using it.

Two important things to consider are client support and search engine indexing.
Client browsers that do not support AJAX should be provided with an alternative
solution. Search engines cannot execute JavaScript so when they index a page they
will fail to index any data returned by AJAX requests.

LDAP is a very powerful technology. Its main use as an authentication method and
as a network management tool often means that we use it as a data source. However
LDAP is bi-directional and we can write to LDAP servers provided we have
sufficient access rights.

For networks that use LDAP directory applications, the use of easily accessible LDAP
management and interrogation tools can be invaluable.

Using email is a common task. Joomla!'s JMail class provides us with the power to
send emails. Administrators often want to enable notification within extensions so
that they are not required to continually log in to a system.

The JFTP class provides us with an additional way of accessing a file system. In
addition to using FTP with remote servers, we can use FTP locally, when enabled,
to give us better control over our Joomla! installation. We normally use the classes
located in the joomla.filesystem library when dealing with the local file system.

There are many other APIs and web services available on the Internet. Simple
integration of these is often 'lapped up' by administrators. Beyond this, we can
seamlessly use web services to improve the functionality of our extensions drastically.

Error Handling and Security
Security and graceful error handling is imperative to any good computer system.
For systems like Joomla!, which are often available on the World Wide Web, poor
security or incorrect error handling carries a high risk factor, and that risk is often
higher when using third-party extensions.

This chapter focuses on four main subjects:

Errors, Warnings, and Notices
Dealing with CGI Request Data
Access Control
Attacks

Handling errors is a common task; we will explore the different error levels, which
we use to classify our errors, and ways in which we can modify the error levels and
how they are handled.

Many security flaws in Joomla! extensions originate from inadequate processing of
input data. We will explore how we should access CGI request data and how we can
process that data to ensure that it does not pose a security risk.

We use access control to restrict, and allow, the tasks that users can perform. We will
investigate the Joomla! access control mechanisms and how we can implement them
in our extensions.

The final subject that we will look at is attacks. Attacks are malicious attempts to
break a system. There are many ways in which an attacker can go about this; we will
stick to the most common methods.

•

•

•

•

Error Handling and Security

[312]

Errors, Warnings, and Notices
When we encounter errors it is important that we take some counter action. Joomla!
provides a common error handling mechanism, which we access using the static
JError class. JError takes advantage of the phpTemplate library, in particular the
patError and patErrorManager classes. A complete description of the JError class
and all of its methods is available in the Appendix.

Error Level Error Type Class Method
1 (E_ERROR) Error JError::raiseError()

2 (E_WARNING) Warning JError::raiseWarning()

8 (E_NOTICE) Notice JError::raiseNotice()

Level E_ERROR errors get an error document (JDocumentError), set the error, and
render the document, sending the response and terminating the application. When
we invoke any of the raise methods we pass two parameters, an error code and an
error message.

The error code is a string that is used to identify the error. Error codes are rendered
using one of three templates 403.php, 404.php, and 500.php. If the error code is 403
(Access Denied) or 404 (Page could not be found), we use the 403.php and 404.php
templates respectively. These templates include some additional standard text that
describes the normal reasons for receiving a 403 or a 404 error. All other error codes
use the 500.php (Internal Server Error) template:

JError::raiseError('403', JText::_('Access Forbidden'));

Chapter 11

[313]

JError::raiseError('500', JText::_('An error has occurred.'));

Level E_ERROR errors (JError::raiseError()), are for fatal errors. When a non fatal
error occurs we can use the weaker, warning and notice levels. These two levels are
handled in the same way, but it is still useful to make the distinction between the
two; it helps aid classification of errors and the process of debugging:

JError::raiseWarning('ERROR_CODE', JText::_('Look out! There is a
 giant boxing kangaroo behind you!'));

This is perhaps not the most useful of messages and perhaps a little unlikely,
but you get the idea. Exactly how you choose to classify your errors is up to you.
Classification of errors tends to be relatively intuitive. An error that is not fatal, but
should not have occurred, is a warning. An error that is not fatal, and is more or less
expected to occur at some point is a notice.

The error code we used in the last example, ERROR_CODE, may seem a little odd. We
can specify any error code we want; the exact intricacies of how Joomla! core error
codes are going to be classified has not been fully decided. In the short-term Joomla!
core errors are using scheme error codes and SOME_ERROR_CODE.

Return Values
Using the three methods we also get a return value, a JException object. The
JException class contains all sorts of useful information about an error; including
the error level, error code, and error message. When we raise an E_ERROR level error
the object will also contain back-trace information, such as the file and line the error
occurred on.

Error Handling and Security

[314]

There are many methods in other classes that, if an error occurs, will return the
result. We can test the return value of a method to see if it is an error using the
JError::isError() method. As an example, the JController execute() method
returns an error if no method is mapped to the task we try to execute:

$result = $SomeCOntroller->execute('someTask');
if(JError::isError($result))
{
 // handle invalid task
}

Customizing Error Handling
The handling of errors is not set in stone. We can modify the way each of the levels
is handled and we can add new levels. We can choose any of the following modes
(maximum of one mode per error level):

Mode Description
Ignore Error is ignored
Echo Prints the JException message to screen
Verbose Prints the JException message and back-trace information to screen
Die Terminates the application and prints the JException message to screen
Message Adds a message to the application queue
Log Adds a log entry to the application error log
Trigger Triggers a PHP error
Callback Calls a static method in another class

To modify the error handling of an existing error level we can use the JError::
setErrorHandling() method. This example redefines the notice error to use the
Ignore mode. Some modes require a third parameter, an array of options specific to
the mode:

JError::setErrorHandling(E_NOTICE, 'Ignore');

To define a new error level we can use the JError::registerErrorLevel()
method. If the error level is already defined the method will return false:

define('MY_ERROR', 666);
if(!JError::registerErrorLevel(MY_ERROR, 'My Extension Error',
 'Message'))
{
 JError::raiseError('SOME_ERROR', JText::_('Error level already
 defined').' ['.MY_ERROR.']');
}

Chapter 11

[315]

Once we have defined a new error level, to raise an error of that level we can use the
JError::raise() method. The raise() method can be used with any of the defined
error levels, including E_ERROR, E_WARNING, and E_NOTICE:

JError::raise(MYEXT_ERROR, 'SOME_ERROR', JText::_('Look out!
 It\'s those boxing kangaroos again!'));

Dealing with CGI Request Data
It is essential that we sanitize incoming data (i.e. remove any unexpected data andincoming data (i.e. remove any unexpected data and(i.e. remove any unexpected data and
ensure the data is of an expected type). Joomla! provides us with the static class
JRequest, which eliminates the need to directly access the request hashes $_GET,
$_POST, $_FILES, $_COOKIE, and $_REQUEST. Using JRequest to its full potential we
can perform useful data preprocessing.

Preprocessing CGI Data
To access a request value we must use the static JRequest::getVar() method. In
this example we get the value of the input id:

$id = JRequest::getVar('id');

If we want to, we can define a default value; this is the value that will be returned if
the request value is not defined. In this example we use the value 0 if the request id
is not set:

$id = JRequest::getVar('id', 0);

By default JRequest::getVar() obtains data from the $_REQUEST hash. We can
specify the source hash of the data as any one of the following: GET, POST, FILES,
COOKIE, and DEFAULT. If we specify DEFAULT or an unknown source hash, the data
will be retrieved from the $_REQUEST hash. In this example we get the data from
the $_POST hash:

$id = JRequest::getVar('id', 0, 'POST');

Casting is a mechanism we can use to guarantee that a variable is of a specific type.
We have a choice of the following types:

Cast Type Description Alias Method
ALNUM Alphanumeric string; can include A-Z, a-z, and 0-9. ————

ARRAY Array. ————

BASE64 Base64 string; can include A-Z, a-z, 0-9, forward
slashes, plus signs, and equal signs. ————

BOOL / BOOLEAN Boolean value. getBool()

Error Handling and Security

[316]

Cast Type Description Alias Method

CMD

String syuitable for use as a command; can include
A-Z, a-z, 0-9, underscores, fullstops, and dashes.

getCmd()

FLOAT / DOUBLE Floating-point number. getFloat()

INT / INTEGER Whole number. getInt()

PATH File system path. ————

STRING

String; this will attempt to decode any special
characters.

getString()

WORD

String with no spaces; can include A-Z, a-z, and
underscores.

getWord()

In this example we cast the value to an integer:

$id = JRequest::getVar('id', 0, 'POST', 'INT');

The trouble with the cast type parameter is that we must specify a default value
and the hash before we can specify the type. To overcome this we can use the
alias methods described in the table. This example retrieves someValue as a
floating-point number:

$value = JRequest::getFloat('someValue');

We can use the default value and source hash parameters with the alias methods in
the same way as we do with the getVar() method.

We can apply different masks to reduce the data preprocessing. There are three
masks: JREQUEST_NOTRIM, JREQUEST_ALLOWHTML, and JREQUEST_ALLOWRAW. By
default no mask is applied. In this example we get name from the $_POST hash and
apply the JREQUEST_NOTRIM mask:

$name = JRequest::getVar('name', null, 'POST', 'STRING',
 JREQUEST_NOTRIM);

We can also use the mask when using the getString() alias method:

$name = JRequest::getString('name', null, 'POST', JREQUEST_NOTRIM);

To demonstrate the effects of the different masks, here is how four different inputs
will be parsed:

Input Value
1 <p>Paragraph link</p>
2 CSS <link type="text/css", href="http://somewhere/nasty.css" />
3 space at front of input
4 <p>Para</p>

Chapter 11

[317]

Output value (No mask)
1 Paragraph link
2 CSS
3 space at front of input
4 <p>Para</p>

Output value (mask JREQUEST_NOTRIM)
1 Paragraph link
2 CSS
3 space at front of input
4 <p>Para</p>

Output value (mask JREQUEST_ALLOWHTML)
1 <p>Paragraph <a>link</p>
2 CSS
3 space at front of input
4 <p>Para</p>

Output value (mask JREQUEST_ALLOWRAW)
1 <p>Paragraph link</p>
2 CSS <link type="text/css", href="http://somewhere/nasty.css" />
3 space at front of input
4 <p>Para</p>

You may have noticed that using the mask JREQUEST_ALLOWHTML, the JavaScript
and CSS is stripped from the data. JavaScript and CSS are removed from the data
because they present a security risk. Attacks that exploit this type of security flaw
are known as XSS (Cross Site Scripting) attacks; this is discussed in more detail later
in the chapter. If we want to retrieve the data in its original form, we must use the
JREQUEST_ALLOWRAW mask.

Escaping and Encoding Data
Escaping is the act of prefixing special characters with an escape character. In PHP
there are two configuration settings, magic_quotes_gpc and magic_quotes_runtime
that, if enabled, will automatically escape data. Joomla! always disables these.

Error Handling and Security

[318]

Data that we retrieve is never automatically escaped; it is the responsibility of our
extensions to escape data as necessary. Joomla! provides us with some useful ways of
escaping data, namely the JDatabase getEscaped() and Quote() methods and the
static JOutputFilter class.

Common escape syntax includes prefixing a backslash to special
characters and duplicating special characters. Ensure that you use the
correct escape syntax for the system with which your data interacts.

Encoding data is the act of changing data from one format to another; this is always a
lossless transition. The encoding that we examine is the encoding of special XHTML
characters. This is of particular use when dealing with data that we want to display
in a RAW state in an XHTML page and when storing data in XML.

Escaping and Quoting Database Data
If we use un-escaped data when interacting with a database, we can inadvertently
alter the meaning of a query. Imagine we have a database table #__test containing
two fields, id, a numeric ID field, and content, a text field. This is how we might
choose to build our update query.

$db =& JFactory::getDBO();
$query = false;
if($id = JRequest::getVar('id', 0, 'GET', 'INT'))
{
 $data = JRequest::getVar('content', 0, 'GET', 'STRING',
 JREQUEST_ALLOWRAW);
 $query = " UPDATE ".$db->nameQuote('#__test').
 " SET ".$db->nameQuote('content')."=".
 $db->Quote($data).
 " WHERE ". $db->nameQuote('id')."=".$id;
}

Assuming $id=123 and $data="Foo's bar", the value of $query will be:

UPDATE `#__test` SET `content`='Foo\'s bar' WHERE `id`=123

We use nameQuote() to encapsulate a named query element, for example a field, in
quotes. MySQL does not require quotes around named query elements, but it is good
practice to add them because other database servers may require them.

We use Quote() to encapsulate query string values in quotes. Quote() also performs
the getEscaped() method on the data, before encapsulating it; this escapes the data.

Chapter 11

[319]

In our example we didn't bother to escape data in $id; there are three reasons
why we didn't need to do this. We cast the value of $id to an integer when we
retrieved it from the $_GET hash. We set the default value to 0. We checked it was a
positive value.

Encode XHTML Data
When we want data to appear exactly as it was entered in an XHTML page we need
to encode the data. We do this using the PHP function htmlspecialchars(), which
encodes HTML special characters into HTML entities. In Joomla! when we use
htmlspecialchars(), we are encouraged to specify the quote style ENT_QUOTES.
This ensures that we also encode single quote characters as the HTML entity ':

$value = "Foo's value is > Bar's value";
echo htmlspecialchars($value, ENT_QUOTES);

This will produce the following:

Foo's value is > Bar's value

When we are outputting data like this, if the data is coming from an object, we can
use the JOutputFilter::objectHTMLSafe() method. This method executes the
htmlspecialchars() function on all of the public properties of the object:

$o = new JObject();
$o->set("name", "Foo's name");
$o->set("content", "Foo is > Bar");
JOutputFilter::objectHTMLSafe($o, ENT_QUOTES, 'content');
print_r($o);

JObject Object
(
 [name] => Foo's name
 [content] => Foo is > Bar
)

The last two parameters are optional. By default the second parameter, quote type, is
ENT_QUOTES. The third parameter can be a string or an array of strings that identify
properties within the object we don't want to encode.

There are other methods within JOutputFilter that we can use to encode data,
including making URIs XHTML standards compliant and replacing ampersands
with the HTML entity &.

Error Handling and Security

[320]

Regular Expressions
REs (Regular Expressions) are revered by those who know how to use them, and
considered a black art to those who don't. We can use Regular Expressions to
sanitize data, to check the format of data, and to modify data. At the heart of REs are
patterns; RE patterns are used to identify character patterns in data.

Patterns
Patterns are encapsulated with two identical characters, the pattern delimiters.
Common pattern delimiters are the forward slash /, the hash #, and the tilde ~. You
don't have to use the common pattern delimiters, but using them can make your
code more readable for other developers.

Between the pattern delimiters is where we define what it is we are looking for. If
we wanted to search for the occurrence of the term 'monkey' our pattern would look
like this: /monkey/. This example will search for 'monkey' anywhere in our data; we
can restrict this pattern further using the caret ^ and dollar $ characters. If we place
the caret ^ character at the start of the pattern, it means that the 'data must start with'
/^monkey/ (includes start of line and start of string). If we put a dollar sign at the
end of the pattern it means that the 'data must end at' /monkey$/ (includes end of
line and end of value).

We can, if we choose to, combine the caret character and the dollar character
/^monkey$/; this is the same as asking, is the data equivalent to the string 'monkey'?
In this context it is relatively useless, because we would use $data == 'monkey'.

A character class is a way of defining multiple characters that can be matched to just
one actual character. If we wanted to search for 'monkey' or 'fonkey' we can define a
character class that consists of the characters 'm' and 'f'. To do this we encapsulate the
characters in square braces /[mf]onkey/.

There are a number of shortcuts we can use to make building character classes easier.
The dash character can be used to specify a range from character to character. This
example matches 'aonkey' through 'zonkey': /[a-z]onkey/.

So far we have dealt with simple consecutively matched items, but we can use
quantifiers to duplicate a pattern. �uantifiers attach themselves to the pattern
element directly to the left. If we wanted to match monkey, but with as many 'o's as
we want we can do this: /mo+nkey/. The plus character '+' means we must have one
to many 'o's.

Chapter 11

[321]

Quantifier Description Example

+

One to many.
Matches monkey through mo...onkey.

/mo+nkey/

*

Zero to many.
Matches mnkey through mo...onkey.

/mo*nkey/

?

Optional.

Matches mnkey and monkey.

/mo?nkey/

{x} or {x,}

x number.
Matches mooonkey.

/mo{3}nkey/

{x,y}

x number to y number.
Matches monkey through mooonkey.

/mo{1,3}nkey/

We can add to the usefulness of quantifiers by surrounding a block in a pattern with
parentheses. This way we can quantify the number of times a block occurs; this
example matches 'monkeymonkeymonkey': /(monkey){3}/.

Continuing the shortcuts theme, there are certain characters that, if escaped, take on
a whole new role. If we want to search for a whole word, we can use \w+. By itself \w
is a character class that will match any word character. Word characters are letters,
digits and underscores; sometimes locale may make a difference to what constitutes
a word, for example accented characters may or may not be included.

Shortcut Description Character Class
\w Word characters Letters, digits, and underscores
\W Opposite of \w --------

\d Numbers Digits 0-9
\D Opposite of \d --------

\s Spaces Whitespace (not including new line characters)
\S Opposite of \s --------

Our pattern is case sensitive, so to allow any case we could do this /[a-zA-
Z][oO][nN][kK][eE][yY]/. That's rather messy; instead we can use pattern
modifiers, which are characters that can be placed after the pattern delimiters: /[a-
z]onkey/i. The i modifier makes the pattern case insensitive.

Modifier Effect
i Ignore case.

s

By default the period character, '.', matches anything except newline characters.
This modifier makes the period character match newline characters as well.

Error Handling and Security

[322]

Modifier Effect

m

Makes the caret ^ and dollar characters match the start and end of line
characters as well as string start and end.

x

Whitespace is ignored, unless it is in a character class. Allows comments in the
pattern; comments are signified by the hash character #. Do not use the pattern
delimiters within comments.

u

This modifier makes the pattern UTF-8 aware; this is only available with PHP
4.1.0 and above.

Matching
It's all very well knowing how to write RE patterns, but how do we use them?
PHP provides us with a selection of different functions that use REs. We'll begin
by looking at preg_match(); this function searches for matches in the subject and
returns an the number of times the pattern was matched.

echo preg_match('/\d/','h0w many d1g1t5 ar3 th3r3');

This example will output 7. Nice and simple really; if there had been no numbers in
the subject then it would have outputted 0.

Let's take another approach to preg_match(); we can return occurrences of blocks
from a pattern. We define blocks by encapsulating them in parentheses. A good
example of this is parsing a date.

$matches = array();
$pattern = '/^(\d{4})\D(\d{1,2})\D(\d{1,2})$/';
$value = '1791-12-26';
preg_match($pattern, $value, $matches);
print_r($matches);

Before you run away screaming, let's break this down into its component parts.
The pattern says: start of string, 4 digits, 1 non-digit, 1 or 2 digits, 1 non-digit, 1 or 2
digits, end of string. It's not all that complex, it just looks it. This will output:

Array
(
 [0] => 1791-12-26
 [1] => 1791
 [2] => 12
 [3] => 26
)

The first element of the array is the text that matched the full pattern. The rest of the
elements are the matching blocks.

Chapter 11

[323]

Replacing
We can use preg_replace() to replace patterns with alternative text. This is often
used for stripping out unwanted data. In this example we remove all digits.

$value = preg_replace('/\d/', '', $value);

The first parameter is the pattern, in this instance, digits. The second parameter is the
replacement string, in this instance, a null string. The final parameter is the subject.

We can take advantage of blocks in the same way as we did with preg_match().
Each matched block encapsulated in parentheses is assigned to a variable $1 through
$n. These variables are only accessible in the replacement parameter.

$pattern = '/^(\d{4})\D(\d{1,2})\D(\d{1,2})$/';
$replacement = '$1/$2/$3';
$value = '1791-12-26';
echo preg_replace($pattern,$replacement,$value);

This example will output:

1791/12/26

Access Control
Joomla!'s access control mechanisms are not as clear cut as they could be; this is due
to an ongoing development cycle that is moving away from a legacy access control
system. In the future, Joomla! will use a complete GACL (Group Access Control
Lists) access control mechanism.

The current access control mechanism uses an incomplete, abstracted
implementation of phpGACL. There are eleven user groups; these groups are
sometimes referred to as usertypes. Joomla! also maintains a set of three legacy
access groups, Public, Registered, and Special.

The legacy groups are stored in the #__groups table; theoretically this makes the
legacy access groups dynamic. There is no mechanism for administrators to amend
the legacy access groups and even if we manually add a new legacy access group
to the #__groups table, the effects are not globally reflected; we should regard the
legacy access groups as static. It is advisable not to make extensions dependent on
the legacy access groups because they will probably be removed from Joomla! at a
later date.

We should be most interested in the phpGACL groups (simply called groups or
user groups). Currently no mechanism is provided for administrators to amend
these groups, we can, however, take advantage of the powerful JAuthorization

Error Handling and Security

[324]

class that extends the gacl_api class. If we are careful we can add groups to Joomla!
without impacting the Joomla! core. In the GACL implementation we commonly
use four terms:

Name Description
ACL Access Control List Permissions list for an object
ACO Access Control Object Object to deny or allow access to
AXO Access eXtension Object Extended object to deny or allow access to
ARO Access Request Object Object requesting access

For a more complete description of GACL refer to the official phpGACL
documentation phpgacl.sourceforge.net.

To demonstrate how the user groups are initially defined, this screenshot depicts the
phpGACL administration interface with the Joomla! user groups defined:

Note that Joomla! does not include the phpGACL administration
interface and that this screenshot is intended for demonstration
purposes only.

In phpGACL, permissions are given to ARO groups and AROs, to access ACOs and
AXOs. In Joomla! we only give permissions to ARO groups, and Joomla! users can
only be a member of one group, whereas in phpGACL AROs can be members of
multiple groups

Chapter 11

[325]

These differences between Joomla! and phpGACL are due to one major factor. In
phpGACL when we check permissions, we ask the question 'does ARO X have
access to ACO Y?' In Joomla! we ask the question, 'Does ARO group X have access to
ACO Y?'. The way in which we assign permissions in Joomla! will be altered in the
future to use the same principals as phpGACL.

The three Access Object types, ACO, AXO, and ARO are all identified using two
values, section and section value. To put this into context, the user group (ARO
group) Super Administrator is identified as users > super administrator. The
section name is users, and the section value is super administrator. A permission
to manage contacts in the core contact component (ACO) is expressed as com_
contact > manage. The section name is com_contact, and the section value is manage.

Menu Item Access Control
A misconception among some Joomla! administrators is that menu access (which
uses the legacy access groups) constitutes security. Menu access is intended to define
whether or not a specific menu item should be made visible to the current user.

Joomla! always attempts to transfer menu item permissions to the related menu item
content; however, the solution is not infallible and must not be relied upon. The best
way to deal with this is to add support for permissions in our extensions. The next
section describes how to do this. We should also try to make administrators aware of
the true meaning of the menu item access level.

In cases where Joomla! determines that something should not be accessible to a user,
because of menu item access, Joomla! will return a 403 (Access Denied) error code.

Extension Access Control
Imagine we have a component called myExtension and we want to grant super
administrator's access to 'manage'. This example gives permission to ARO group
users > super administrator to ACO com_myExtension > manage.

$acl =& JFactory::getACL();
$acl->_mos_add_acl('com_myExtension', 'manage', 'users', 'super
 administrator');

Whenever we want to add permissions we have to use the above mechanism because
currently only these ARO tables are implemented in Joomla!. The absent ARO tables
are scheduled to be implemented in a later version of Joomla!.

Error Handling and Security

[326]

In the short-term, when we create extensions that use Joomla!'s implementation of
permissions, we should create a separate file with all the necessary calls to the ACL
_mos_add_acl() method (as demonstrated in the preceding example). This way
when Joomla! ultimately supports the ARO tables, we will be able to easily refactor
our code to incorporate the new implementation.

Calls to the _mos_add_acl() method must always be made prior to
any permission checks. If they are not, the extra permissions will not
have been applied in time. The best place to add the permissions is in
the root extension file (this will depend upon the extension type).

Once we have added all of our permissions we will probably want to check if the
current user has permissions. There are various ways of achieving this; we are
encouraged to use the authorize() method in the JUser class:

$user =& JFactory->getUser();

if(! $user-> authorize('com_myExtension', 'manage'))

{

 JError::raiseError(403, JText::_('Access Forbidden'));

}

If we are developing a component using the MVC architecture we use the JController
object to automatically check permissions. The example below creates the component
controller, sets the controller's ACO section, and executes the task:

$task = JRequest->getVar('task', 'view', 'GET', 'WORD');

$controller = new myExtensionController();

$controller->setAccessControl('com_myExtension');

$controller->execute($task);

When we run execute(), if the controller knows which ACO section to look at, it
will check the permissions of the current user's group. The example above checks for
permissions to ACO com_myExtension > $task.

We don't have to use the task as the section value; instead we can use the optional
second parameter in the setAccessControl() method. This example checks for
permissions to the ACO com_myExtension > manage irrespective of the task:

$task = JRequest->getVar('task', 'view', 'GET', 'WORD');

$controller = new myExtensionController();

$controller->setAccessControl('com_myExtension', 'manage');

$controller->execute($task);

Chapter 11

[327]

When dealing with more complex permissions we can use AXOs to extend ACOs.
Let's imagine we have a number of categories in our extension and we want to set
manage permissions on each category. This example grants permissions to ACO
group users > super administrator to ACO com_myExtension > manage AXO
category > some category:

$acl =& JFactory::getACL();
$acl->_mos_add_acl('com_myExtension', 'manage', 'users', 'super
 administrator', 'category', 'some category');

Unlike when we were dealing with just an ACO and ARO, we cannot use this in
conjunction with a JController subclass. This is because the JController class is unable
to deal with AXOs. Instead we should use the JUser object to check permissions:

$user =& JFactory->getUser();
if(! $user-> authorize('com_myExtension', 'manage', 'category',
 'some category'))
{
 JError::raiseError('403', JText::_('Access Forbidden'));
}

When you define your ACOs you should always use the name of your extension
as the ACO section. How you choose to define your ACO section value and your
AXOs is entirely up to you. There is a great deal of emphasis put on the flexibility
of Joomla!. As a third-party developer, you do not have to use the normal Joomla!
access control. If you choose to use a custom access control system and the Joomla!
MVC, you may want to consider overriding the authorize() method in your
JController subclasses.

Attacks
Whether or not we like to think about it, there is always the potential threat of an
attacker gaining access to our Joomla! websites. The most common way in which
security is breached in Joomla! is through third-party extension security flaws.

Due to the number of extensions that have security defects, there is an official list
of extensions that are considered insecure, available in the FAQ sections at
http://help.joomla.org.

It is very important that, as third-party extension developers, we take great care in
making our extensions as secure as we can. In this section we will investigate some
of the more common forms of attack and how we can prevent them from affecting
our extensions and we will take a look at how we can deal with users whom we
believe to be attackers.

Error Handling and Security

[328]

How to Avoid Common Attacks
The security flaws that we will investigate are some of the most likely to be exploited
because they tend to be the easiest to initiate and there is plenty of literature
explaining how to initiate them.

The attack types described here should not be considered a complete list. There
are many ways in which an attacker can attempt to exploit a system. If you are
concerned about attacks, you should consider hiring a security professional to help
evaluate security vulnerabilities in your extensions.

Using the Session Token
A session is created for every client that makes a request. Joomla! uses its own
implementation of sessions; integral to this is the JSession class. The session token,
also refered to as the 'token', is a random alphanumeric string that we can use to
validate requests made by a client. The token can change during a session.

Imagine that an attacker uses a utility to bombard a site with data; the data itself
may not be suspicious. The attacker may just be attempting to fill your database with
worthless information. If we include a hidden field in our forms with the name of the
token, we can check if the user is submitting data via a form with a valid session.

We can get the token using JUtility::getToken(). In our template, where we
render the form we want to secure, we add this:

<input type="hidden" name="<?php echo JUtility::getToken();
 ?>" value="1" />

When we call JUtility::getToken() we can optionally provide the Boolean
forceNew parameter. This will force the generation of a new token. Before doing
this we must consider the context in which we are calling the method. If there are
any other forms present on the page that also use the token we may inadvertently
prevent these from working. Components are always rendered first so are generally
safer when forcing a new token.

Now all we need to do is verify the token when we receive a request from the form
that we are trying to secure. In this example we specifically get the token from the
$_POST hash, guaranteeing that the token came via the correct method. The error
message is not very intuitive; this is purposeful, because it makes it harder for an
attacker to determine the reason why they are receiving the error.

if(!JRequest::getVar(JUtility::getToken(), false, 'POST'))
{
 JError::raiseError('403', JText::_('Request Forbidden'));
}

Chapter 11

[329]

Code Injection
Code injection occurs when code is included in input. The injected code, if not
properly sanitized, may end up being executed on a server or on a client. There
are a number of different ways in which injected code can compromise a Joomla!
installation or a system with which we are interacting.

We will take a look at the two most common forms of code injection used to attack
Joomla!: PHP and SQL code injection.

PHP Code Injection
We should use JRequest and, in some cases, REs to ensure that the input data that
we are handling is valid. Most data validation is very simple and doesn't require
much effort.

Even when data comes from an XHTML form control that is restricted to specific
values, we must still validate the data.

There is one form of PHP code injection that we don't need to worry about. By
default Joomla! always disables 'register globals'. In scripts where 'register globals'
is enabled, all URI query values are automatically converted into variables, literally
injecting variables into a script.

Imagine we are using an input value to determine which class to instantiate. If we
do not sanitize the incoming data, we run the risk of instantiating a class that could
be used to malicious effect. To overcome this we could use a predefined list of class
names to ensure the data is valid:

// define allowed classes
$allow = array('Monkey', 'Elephant', 'Lion');
// get the class name
$class = JRequest::getWord('class', 'Monkey', 'GET');
$class = ucfirst(strtolower($class));

Notice that we use the getWord() method to retrieve the value; this ensures that the
value only includes letters and underscores. We also modify the case of the value so
as to ensure it is in the same format as the expected value. Once we have defined the
expectable class names and retrieved the value we can validate the value:

if(!in_array($class, $allow))
{
 // unknown class, use default
 $class = 'Monkey';
}

Error Handling and Security

[330]

Imagine we want to execute a shell command. This type of process is potentially
very risky; some unwanted malicious commands such as rm or del could potentially
reduce our server to a gibbering wreck. In this example we define an array of
acceptable commands and use the PHP escapeshellarg() function to escape any
arguments passed to the command.

$allowCmds = array('mysqld', 'apachectl');
$cmd = JRequest::getVar('cmd', false, 'GET', 'WORD');
$arg = JRequest::getVar('arg', false, 'GET', 'WORD');
if($cmd !== false && !in_array($cmd, $allow))
{
 $cmd .= ' '.escapeshellarg($arg);
 system($cmd);
}

Using the correct escape mechanism for the system we are accessing is imperative in
preventing code injection attacks.

SQL Injection
Probably one of the most publicized vulnerabilities in PHP applications, SQL
injection is potentially fatal. It is caused by inadequate processing of data before
database queries are executed.

Joomla! provides us with the JDatabase methods getEscaped() and Quote()
specifically for avoiding S�L injection. Consider the following value a' OR name IS
NOT NULL OR name='b. If we used this value without escaping the value, we could
inadvertently give an attacker access to all the records in a table:

SELECT * FROM `#__test` WHERE `name`='a' OR name IS NOT NULL OR
 name='b'

We can overcome this using the Quote() method:

$db =& JFactory::getDBO();
$name = $db->QuotegetEscaped(JRequest('name'));

Using the getEscaped() method escapes any special characters in the passed
string. In our example the inverted comas will be escaped by prefixing them with a
backslash. Our query now becomes:

SELECT * FROM `#__test` WHERE `name`='a\' OR name IS NOT NULL OR
 name=\'b'

The Quote() method is identical to the getEscaped() method except that it also
adds quotation marks around the value. Generally we should use Quote() in
preference to getEscaped(), because this method guarantees that we are using the
correct quotation marks for the database server that is being used.

Chapter 11

[331]

Something else we can verify is the number of results returned after we submit a
query. For example, if we know that we should only get one record from a query, we
can easily verify this.

$db->setQuery($query);
$row = $db->loadAssoc();
if($db->getNumRows() !== 1)
{
 // handle unexpected query result
}

XSS (Cross Site Scripting)
XSS is the use of scripts that are executed client side that take advantage of the user's
local rights. These attacks normally take the form of JavaScript. Another, slightly less
common, form of XSS attack uses specially crafted images that execute code on the
client; a good example of this is a Microsoft security flaw that was reported in 2004
(http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx).

When we use JRequest::getVar() we automatically strip out XSS code, unless we
use the JREQUEST_ALLOWRAW mask. We generally use this mask when dealing with
large text fields that use are rendered using an editor; if we do not, valuable XHTML
formatting data will be lost.

When we use the JREQUEST_ALLOWRAW mask we need to think carefully about
how we process the data. When rendering the data remember to use the PHP
htmlspecialchars() function or the static JOutput class to make the data safe for
rendering in an XHTML page. When using the data with the database, remember to
escape the data using the database object's Quote() method.

If you want to allow your users to submit formatted data, you may want to consider
using BBCode (Bulletin Board Code). BBCode is a simple markup language that uses
a similar format to XHTML. Commonly used on forums, the language allows us to
give the user the power to format their data without the worry of XSS. There are all
sorts of BBCode tags; exactly how they are rendered may differ.

BBCode XHTML Example
[b]Bold text[/b] Bold text Bold text
[i]Italic text[/i] <i>Italic text</i> Italic text
[u]Underlined text[/u] <u>Underlined text</u> Underlined text
:)
[quote]Some quote[/quote] <div class="quote">Some quote</div> Some quote

Error Handling and Security

[332]

Joomla! does not include any BBCode-parsing libraries. Instead we must either build
our own parser or include an existing library. One such BBCode library is a class
available from http://www.phpclasses.org/browse/package/951.html created
by Leif K-Brooks and released under the PHP License. This class gives us lots of
control; it allows us to define our own BBCode tags, use HTML entity encoded data,
and import and export settings.

When we use BBCode, or a similar parsing mechanism, it is important
that if we intend to allow the data to be editable, we store the data in
its RAW state.

File System Snooping
A common error when working with files is to allow traversal of the file system.
Joomla! provides us with a number of classes for dealing with the file system. This
example imports the joomla.filesystem library and builds a path based on the
value of the CGI request file (the path must not be relative).

jimport('joomla.filesystem');
$path = JPATH_COMPONENT.DS.'files'.DS
 .JRequest('file', 'somefile.php', 'GET', 'WORD');
JPath::check($path);

When we use the JPath::check() method, if $path is considered to be snooping,
an error will be raised and the application will be terminated. Snooping paths are
identified as paths that do not start with JPATH_BASE and do not attempt to traverse
the tree using the parent directory indicator .. (two periods).

Other classes in the joomla.filesystem library include JFile, JFolder, and JArchive.
It's important to realize that none of these classes validate path parameters to
prevent snooping. This is because there are times when we expect a path to be
classified as snooping.

Dealing with Attacks
Parsing input is only one part of security handling. Another part is the evasive
action that an extension can automatically take if an attack is detected. Here are three
good ways of dealing with detected attacks; they could be used separately or in
conjunction with one another:

1. Log the user out, possibly blocking their account.
2. Maintain a log file of detected attacks.
3. Email the site administrator and inform them of the attack.

Chapter 11

[333]

Log Out and Block
If the attack has come from a logged in user we can end the user's session and
optionally block them from logging in until an administrator unblocks their
account. Logging out a user and blocking them may not be appropriate. An instance
appearing to be an attack could be a genuine mistake on the part of the user or a
misclassification. We could use a 'three strikes and you're out' approach. This way we
can reduce the chance of irritating genuine users but maintain a high level of security.

One way of implementing this would be to build a Plugin, an event handler class
(extends JPlugin) registered to the application. This modular approach to dealing
with attacks, would allow us to reuse the plugin throughout our extensions. The
UML diagram shows one design we could use.

_params is a temporary store for the Plugin parameters (JParameter object).Plugin parameters (JParameter object). parameters (JParameter object).
onAttackDetected() is the method that will be executed when an attack is detected.
&_getParams() gets the Plugin parameters (usesPlugin parameters (uses parameters (uses _params). _attackCount() gets
the number of detected attacks so far (stored in the session). _incrementAttacks()
increments the number of attacks and returns the new number of attacks. When
the user exceeds the maximum number of detected attacks _actionLogout() and
_actionBlock() are run, if they are enabled in the Plugin parameters.Plugin parameters. parameters.

Error Handling and Security

[334]

This is the definition of the parameters; this would be in the plugin XML file.

<params>
 <param name="sessionValue" type="text" size="20"
 default="detectedAttacks" label="sessionValue"
 description="Name of session value to store attack
 counter in." />
 <param name="maxAttacks" type="text" size="2" default="3"
 label="maxAttacks" description="Maximum number of
 detections per session." />
 <param name="@spacer" type="spacer" default="" label=""
 description="" />
 <param name="logout" type="radio" default="1" label="logout"
 description="Logout user.">
 <option value="0">Off</option>
 <option value="1">On</option>
 </param>
 <param name="block" type="radio" default="1" label="block"
 description="Block user.">
 <option value="0">Off</option>
 <option value="1">On</option>
 </param>
</params>

The example shows how we could implement the _logout() method. Notice we
check if the user is logged in before attempting to log them out.

/**
 * Logs the current user out.
 *
 * @access private
 * @return boolean true on success
 */
function _actionLogout()
{
 global $mainframe;
 $user =& JFactory::getUser();
 if($user->get('id') && $mainframe->logout())
 {
 return true;
 }
 return false;
}

Chapter 11

[335]

The next example shows how we could implement the _block() method. Notice we
check if the user is logged in before attempting to block them.

/**
 * If they are logged in, blocks the current user's account.
 *
 * @access private
 * @return boolean true on success
 */
function _block()
{
 $user =& JFactory::getUser();
 print_r($user);
 if($user->get('id'))
 {
 $user->set('block', '1');
 return $user->save(true);
 }
 return false;
}

To be able to use the DefenceHandler class we need to register the event with the
application. This creates a new instance of DefenceHandler and attaches it to the
application event handler.

$mainframe->registerEvent('onAttackDetected',
 'DefenceHandler');

If we detected an attack we would use the handler by triggering the event
onAttackDetected in the application ($mainframe):

$mainframe->triggerEvent('onAttackDetected');

Attack Logging
Detecting attacks can prevent individual attacks but, when we encounter a persistent
attacker, having a history of attacks can provide us with vital information. This
information can be used to determine the nature of each attack and to try to identify
the perpetrator.

Building on our previous example we can use the JLog class to build up a history of
attacks. Here's an example of how we might implement the _actionLog() method
in our DefenceHandler class.

Error Handling and Security

[336]

/**

 * Logs an Attack.
 *
 * @access private
 * @return boolean true on success
 */
function _actionLog()
{
 $user =& JFactory::getUser();
 $uri =& JFactory::getURI();
 $options = array('format'=>"{DATE}\t{TIME}\t{CIP}
 \t{USER}\t{STRIKE}\t{REQUEST}");
 $log =& JLog::getInstance($extension.'.Defences.log',
 $options);
 $entry = array(
 'REQUEST' => $uri->toString(),
 'USER' => $user->get('id'),
 'STRIKE' => $this->strikeCount()
);
 $log->addEntry($entry);
}

To use this we would need to modify the plugin XML file to include the option to
log attacks and we would need to update the onAttackDetected() method to deal
with logging.

Notify the Site Administrator
We may also want to notify the site administrator when a user exceeds the maximum
number of attacks. This time we need to add a _actionNotify() method to our
DefenceHandler class and a text field for an email address in our plugin's XML
file parameters.

/**
 * Logs an Attack.
 *
 * @access private
 * @param string email address
 * @return boolean true on success
 */
function _actionNotify($email)
{
 global $mainframe;
 $mailer =& $mainframe->getMailer();
 $mailer->setSender($email);

Chapter 11

[337]

 $mailer->setRecipient($email);
 $mailer->setSubject(JText::_('Excessive Attacks Detected'));
 $mailer->setBody(JText::_"A user has exceeded the number of
 allowed attacks. Please consult your
 error log for more details."));
 $mailer->Send();
}

This example is relatively simple. We could develop the method further by adding
a more comprehensive subject line and body. If logging is enabled we could also
include a copy of the log as an attachment (we would have to be careful if the log file
was very large).

Summary
Although we may perhaps never receive an error message from our extensions,
the JError class gives us all of the necessary tools to ensure that any errors that are
encountered can be cleanly dealt with. Using the PHP die() and exit() functions
can potentially 'break' the current users session; we should always exit cleanly. If
JError isn't up to this task, we should use $mainframe->close().

Handling input from a URI query is very easy in Joomla! and the data type casting
alone provides us with a massive form of protection against security flaws. We should
remember that we can use the JRequest alias methods to easily cast an input value.

Taking input value preprocessing one step further, we can use REs to ensure that
data is the expected format. Remember that we can also use REs to retrieve certain
parts from a data pattern. This is especially useful if one input value contains
multiple pieces of data.

When we deal with sensitive data we can restrict user access using the Joomla!
GACL access control implementation. When we are creating components using the
MVC architecture, we can use the controller to check for authorization.

Attackers are very resourceful and will go to great lengths to discover and exploit
security flaws. Remember to always sanitize incoming data and escape outgoing
data. Joomla! and PHP provide us with a plethora of utilities that, if used correctly,
can ensure that our extensions are as secure as possible.

Utilities and Useful Classes
Joomla! includes a number of useful utilities and classes that are used to perform
specific tasks. In this chapter, we will discuss the use of the most commonly used
utilities and classes.

Joomla! extensions that require date and time handling can use the JDate class to
handle date and time parsing, formatting, and time zones. In this chapter, we discuss
how to use JDate to handle all of these aspects of date and time values.

Many extensions use the file system to store important data. In addition to the PHP
file-system handling functions, we can use the joomla.filesystem library. This
library has a number of advantages over the PHP functions, including the use of
FTP, where appropriate, to overcome file-system permission problems.

We use arrays constantly in PHP, and Joomla! is no exception. The static
JArrayHelper class includes a number of very useful methods that we can use to
process arrays.

PHP only provides us with a few data structures. Joomla! adds the tree data
structure to this list. In this chapter, we investigate how we can use and extend the
Joomla! tree data structure.

Logging events can be a very useful function. We discuss the use of the JLog class to
create log files and append log entries to log files.

This list names the classes discussed in this chapter:discussed in this chapter:in this chapter:

JArchive
JArrayHelper
JDate
JFile
JFolder

•

•

•

•

•

Utilities and Useful Classes

[340]

JLog
JMail
JNode
JPath
JTree

Dates
The hardest part of handling dates is coping with different time zones and formats.
Luckily, Joomla! provides us with the JDate class that handles date formatting.
Before we start using the JDate class we need to import the relevant library:

jimport('joomla.utilities.date');

A JDate object is designed to handle a single date. This means that we must create a
new JDate object for every date. When we create a new JDate object, in its most basic
form, the object automatically attempts to determine the current date and time.

This example demonstrates how we create a new JDate object for the current date
and time:

$dateNow = new JDate();

When we create a new JDate object we can pass two optional parameters:

Date and time, which the object will parse
Time zone

The first parameter can be passed in a number of different formats.

Supported date and time formats include Unix timestamps, RFC 2822, ISO 8601, and
any format that the PHP strtotime() function is capable of parsing.

For more information about RFC 2822, ISO 8601, and strtotime()
refer to these sites respectively:
http://tools.ietf.org/html/rfc2822

http://www.iso.org/iso/en/prods-services/popstds/
datesandtime.html

http://php.net/strtotime

•

•

•

•

•

•

•

Chapter 12

[341]

These examples demonstrate the use of some of the date and time formats that are
supported by JDate when creating a new JDate object:

// Unix timestamp
$date1 = new JDate(-1417564800);

// ISO 8601
$date2 = new JDate('1925-01-30T00:00:00');

// RFC 2822
$date3 = new JDate('Fri, 30 Jan 1925 00:00:00');

// User string
$date4 = new JDate('January 30th 1925');

The time zone parameter is defined as the number of hours offset from UTC
(Coordinated Universal Time), also referred to as GMT (Greenwich Mean Time) and
Z (Zulu Time).

A UTC offset is expressed as UTC+/- the number of hours. For example: UTC+1.

In Joomla! we always handle dates and times in UTC+0 and apply time-zone offsets
when we come to display them.

This example uses the same time as the previous examples but in the UTC+1 time
zone. Adding the offset parameter corrects the time by removing 1 hour:

// ISO 8601 (UTC+1)
$date5 = new JDate('1925-01-30T01:00:00', 1);

Both RFC 2822 and ISO 8601 define a way in which we can include the offset within
a date and time string. If we pass a date and time that defines the offset and we pass
the second parameter, the second parameter will be ignored.

This RFC 2822 example is in CET (Central European Time), which has an offset of
plus 1 hour (if the optional time zone parameter were used, it would be ignored):

// RFC 2822 (CET)
$date5 = new JDate('Fri, 30 Jan 1925 01:00:00 CET');

This ISO 8601 example uses a numeric time zone designator of plus 1 hour (if the
optional time zone parameter were used, it would be ignored):

// ISO 8601
$date2 = new JDate('1925-01-30T00:00:00 +0100');

Utilities and Useful Classes

[342]

The JDate methods that we tend to use most commonly return the date and time in a
specific format. These examples detail the four predefined formats that we can easily
convert dates into:

// get date formatted in RFC 2822
$rfc822 = $date->toRFC822();

// get date formatted in ISO 8601
$iso8601 = $date->toISO8601();

// get date formatted for a MySQL datetime field
$mySQL = $date->toMySQL();

// get date as unix timestamp
$timestamp = $date->toUnix();

You may have noticed that the RFC 2822 method is called toRFC822(). No, it is not a
typo! RFC 2822 replaced RFC 822. The two terms are often used interchangeably and,
unfortunately, it is not unusual to encounter dates and times that use elements from
RFC 822 and RFC 2822. The toRFC822() method actually returns an RFC 2822 date
and time string.

The toMySQL() method is of particular interest if we are using dates and times with
the database. The string that this method returns is suitable for use with a MySQL
database. For more information, please refer to Chapter 3.

If we want to format the date differently, we can use the toFormat() method. To
specify the format we use the same format designators as the PHP strftime()
function. This table details some of the more common format designators:

Format Designator Description
a Weekday name (abbreviated)
A Weekday name
b Month name (abbreviated)
B Month name
d Day of the month (zero padded)
e Day of the month
H Hour (24 hour and zero padded)
I Hour (12 hour and zero padded)
m Month (zero padded)
M Minute (zero padded)
p 12 hour 'am' or 'pm'.
S Second (zero padded)
y Year (two digits)
Y Year (four digits)

Chapter 12

[343]

This example outputs a date in a custom format:

// custom date format
$custom = $date->toFormat('%A, %Y/%m/%d');

We don't have to supply a custom format string to the toFormat() method. If we
choose not to, the default format is %Y-%m-%d %H:%M:%S.

In most cases, we should not directly use a string to specify the format. Instead, we
should use a translated string. This guarantees that we use a format that is valid for
the current locale.

The table below describes the date and time format names and their English
(British) value:

Format Name en-GB value Example
DATE_FORMAT_LC %A, %d %B %Y Thursday, 01 January 1970
DATE_FORMAT_LC1 %A, %d %B %Y Thursday, 01 January 1970
DATE_FORMAT_LC2 %A, %d %B %Y %H:%M Thursday, 01 January 1970 00:00
DATE_FORMAT_LC3 %d %B %Y 01 January 1970
DATE_FORMAT_LC4 %d.%m.%y 01.01.70
DATE_FORMAT_JS1 y-m-d 1970-01-01

The DATE_FORMAT_JS1 format is slightly different from the other
formats. It is to be used with JavaScript, not JDate or PHP date functions.

This example demonstrates how we use DATE_FORMAT_LC2:

// LC2
$lc2 = $date->toFormat(JText::_('DATE_FORMAT_LC2'));

Notice that we use JText to translate the date format before passing it
to the JDate toFormat() method. This is what translates the format
string to the current locale format. Remember that, although the syntax
suggests it, the date format names are not PHP constants.

If we want to use a format that is not described by any of the above formats, we
should consider adding the format to the language file that our extension uses.

The last method we will discuss is the setOffset() method. This method is used to
apply an offset to the date when it is passed through the toFormat() method. To apply
the offset UTC+2 to a date and time before we display it, we would do the following:

$date->setOffset(2);

Utilities and Useful Classes

[344]

Notice that the offset is specified in hours. An offset applied in this way only affects the
resultant date and time when using the toFormat() method.

One useful thing to be aware of, when working with dates and time, is the
application requestTime. The requestTime is a date and time that is recorded by
the application when a request is made.

This example demonstrates how we can access the requestTime and output it using
the DATE_FORMAT_LC2 format:

$rDate = new JDate($mainframe->get('requestTime'));
echo $rDate->toFormat(JText::_('DATE_FORMAT_LC2'));

The final aspect that we will touch on is the use of JHTML, discussed in Chapter 8, to
output a date. If all we are trying to do is parse a date so that we can apply a format
and an offset, we can use the basic JHTML date type.

This example outputs the requestTime time using the DATE_FORMAT_LC2 format:

// get the date and time of the request
$date = $mainframe->get('requestTime');

// output the date and time
echo JHTML::_('date', $date, JText::_('DATE_FORMAT_LC2'));

The nice thing about using this is that it automatically applies the site time zone
offset to the date if we do not specify the offset ourselves.

Since users can specify the time zone in which they are located, using their
timezone parameter, we can easily apply this or the site offset. When we use the
getParam() method to get the value of a user's parameter, if the parameter is not
set, null is returned.

The date type works in such a way that if a null value is given as the offset the site
offset is used. This example demonstrates how we can apply the user's offset or the
default site offset when using the date type:

// get the date and time of the request
$date = $mainframe->get('requestTime');

// get the user's time zone
$user =& JFactory::getUser();
$usersTZ = $user->getParam('timezone');

// output the date and time
echo JHTML::_('date', $date, JText::_('DATE_FORMAT_LC2'), $usersTZ);

Chapter 12

[345]

File System
We normally store data in the database; however, we can also store data within
the file system. Joomla! provides us with the joomla.filesystem library. This
library enables us to work easily with the file system. There are four main parts of
this library:

JPath
JFolder
JFile
JArchive

Paths
The static JPath class is integral to the library. Before we jump in, we must import the
relevant library in order to use the JPath class:

jimport('joomla.filesystem.path');

We'll start by looking at the clean() method. This method is used to tidy up a
path by removing any unnecessary directory separators and ensuring all remaining
directory separators are of the correct type for the current system.

This example demonstrates how we use the clean() method:

$path = JPATH_BASE.'\foo//bar\\baz';
$cleanPath = JPath::clean($path);

The values displayed demonstrate the values associated with $path and $cleanPath
respectively (assuming JPATH_BASE is equal to /var/www/html/joomla):

$path: /var/www/html/joomla\foo//bar\\baz
ScleanPath: /var/www/html/joomla/foo/bar/baz

A similar method in the JPath class is the check() method. This method is used to
prevent snooping. For more information about this method refer to Chapter 11.

The next method we will look at is the find() method. We use this method to search
for a specific file that might be located in a number of different paths. Imagine we
want to locate the file somefile.txt and we know that it will be located in the root
of either the frontend or backend of the current component:

$paths = array(JPATH_COMPONENT, JPATH_COMPONENT_ADMINISTRATOR);
$filePath = JPath::find($paths, 'somefile.txt');

•

•

•

•

•

•

Utilities and Useful Classes

[346]

The first parameter that we pass to the method is an array of paths. The second
parameter is the name of the file that we are attempting to locate.

The $paths array is ordered by priority. This is because the file we are searching for
may exist in more than one of the defined paths. So in our example, if the file were
present in both locations, the frontend path would be returned because it has priority.

If the file is successfully found, then the path to that file is returned. If the file is not
found in any of the locations, then false is returned.

The find() method is not recursive; it does not search subfolders.

The remaining methods are all designed for handling permissions. We'll begin by
looking at the getPermissions() method.

This method is used to determine the permissions of a file or folder. When passed
a path, the method returns a string that describes the permissions in terms of Read,
Write, and Execute:

echo JPath::getPermissions($cleanPath);

This is an example of the value that might be returned:

rwxrwxr-x

If the supplied path does not exist then a string suggesting no permissions will
be returned:

In addition to getting permissions, we can set permissions. We do this using the
setPermissions() method. By default the permissions are modified to 0644 for
files and 0755 for folders. If supplied with the path to a folder, this method acts
recursively, updating the file and folder permissions for all sub-files and folders:

JPath::setPermissions($cleanPath);

In order to set different permissions to the default permissions, we can supply two
additional parameters, the first being the permissions to apply to the files, the second
being the permissions to apply to the folders.

This example uses the permissions 0664 for files and 0775 for folders:

JPath::setPermissions($cleanPath, '0664', '0775');

The setPermissions() method returns a Boolean response. If the method fails to
update any of the permissions successfully false is returned.

Chapter 12

[347]

Before we use the setPermissions() method, we can use the canChmod() method
to ensure that we have the ability to modify the mode of a path:

if (JPath::canChmod($cleanPath))
{
 JPath::setPermissions($cleanPath);
}

There is one last method that we will look at. The isOwner() method is used to
determine if the process user is the owner of a specific file:

if (JPath::isOwner($cleanPath))
{
 // Process user is the owner
}

It is important to understand that the permissions-based methods
relate to the system user that is used to execute the script. They
do not relate to the Joomla! users.

Folders
We can handle folders using the static JFolder class. Before we explore how to use
JFolder we need to import the relevant library:

jimport('joomla.filesystem.folder');

The JFolder class has a makeSafe() method that works in much the same way as
the JFile makeSafe() method. The JFolder version of this method removes unsafe
characters from a folder path. This example cleans the $folder path:

$folder = JPATH_COMPONENT.DS.'Foo&Bar';
$cleanFolder = JFolder::makeSafe($path);

The resultant value of $cleanFolder will be the same as $folder except the
ampersand will have been removed because it is deemed an unsafe character.

JFolder contains a number of common file-system commands. We are provided
with five methods that deal explicitly with folder management. The first of these is
the exists() method. This method is used to check if a folder exists and returns a
Boolean value:

if (!JFolder::exists($cleanFolder))
{
 // handle folder does not exist
}

Utilities and Useful Classes

[348]

We can use the following methods to manage a folder: copy(), move(), delete(),
and create(). It's better to use these methods than to use the normal PHP file
management functions because, if FTP is enabled, these methods will attempt to use
an FTP connection. This decreases the chance of errors due to lack of user rights.

The copy() method copies a folder to a new location. The method accepts four
parameters: path to the source folder, path to the destination folder, an optional base
path, and an optional force flag.

If a base path is provided, it will be prepended to the source and destination paths.
When the force flag is true, overwrite is enabled; by default the force flag is false.

This example force copies the foo folder to the bar folder in the frontend root of the
current component:

if (!JFolder::copy('foo', 'bar', JPATH_COMPONENT, true))
{
 // handle failed folder copy
}

The move() method relocates a folder. This method returns a Boolean value.
This example moves the folder foo to the folder bar in the frontend root of the
current component:

if (!JFolder::move('foo', 'bar', JPATH_COMPONENT))
{
 // handle failed folder move
}

The delete() method removes folders from the file system. This method returns
a Boolean value. This example deletes the folder 'foo' from the frontend root of the
current component:

if (!JFolder::delete(JPATH_COMPONENT.DS.'foo'))
{
 // handle failed folder delete
}

The last of these management-type methods is the create() method. This method
creates a new folder in the file system. This example creates the folder baz in the
frontend root of the current component:

if (!JFolder::create(JPATH_COMPONENT.DS.'baz'))
{
 // handle failed folder creation
}

Chapter 12

[349]

There is a second parameter that we can optionally provide when using the
create() method. This parameter determines the access rights of the newly
created folder; by default this is 0777. This example creates a folder with the access
rights 0775:

if (!JFolder::create(JPATH_COMPONENT.DS.'baz', 0775))
{
 // handle failed folder creation
}

Notice that the second parameter is prefixed with a 0; this ensures that the value is
treated as an octal integer. If we don't do this, we run the risk of the access rights
mode being misinterpreted. For a full description of file access rights mode in
PHP please consult the official PHP documentation: http://php.net/manual/
function.chmod.php.

The last three methods we will explore are all used to read the contents of a folder
and they are: folders() and files().

The folders() method is used to list the folders within a folder. In its most basic
usage this method returns an array of all of the direct sub-folders. This example gets
the names of all of the folders in the core Poll component:

$folder = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_poll';
$folders = JFolder::folders($folder);

The resultant array will look like this:

Array
(
 [0] => elements
 [1] => tables
 [2] => views
)

The second parameter is an optional filter. This filter is an RE filter (see Chapter 11 for
more information on REs). By default the filter is '.' (A period signifies any character).

The third parameter, also optional, is a Boolean parameter that determines if we
want a recursive listing of folders. A recursive listing means that we will be provided
with all sub-folders even if they are not direct descendants. By default this is false.
This example demonstrates the use of the method when used recursively:

$folder = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_poll';
$folders = JFolder::folders($folder, '.', true);

Utilities and Useful Classes

[350]

The resultant array will look like this:

Array
(
 [0] => elements
 [3] => poll
 [1] => tables
 [2] => views
)

The main problem with this method is that there are no indications as to which
folders are direct descendants. We can use the final parameter to over come this.

The final parameter is a Boolean value that determines if the returned array is a list
of folder names or a list of folder paths. This example demonstrates the use of the
method when used to get the full paths of the folders:

$folder = JPATH_ADMINISTRATOR.DS.'components'.DS.'com_poll';
$folders = JFolder::folders($folder, '.', true);

The resultant array will look like this:

Array
(
 [0] => /joomla/administrator/components/com_poll/elements
 [1] => /joomla/administrator/components/com_poll/tables
 [2] => /joomla/administrator/components/com_poll/views
 [3] => /joomla/administrator/components/com_poll/views/poll
)

The files() method is used to list the files within a folder. This method works in
precisely the same way as the folders() method described above.

The last method that we will investigate is the listFolderTree() method. This
method returns an array of associative arrays that model the structure of an area in
the file system. This example gets an array that describes the frontend root folder of
the current component:

$structure = JFolder::listFolderTree(JPATH_COMPONENT, '.');

The first parameter is the folder in which to start, the second parameter is the RE
filter that the name of the folders must match.

The returned array, for the component com_mycomponent, may look like this:

Array
(
 [0] => Array

Chapter 12

[351]

 (
 [id] => 1
 [parent] => 0
 [name] => files
 [fullname] => /var/www/html/joomla/components/
 com_mycomponent/views
 [relname] => /components/com_mycomponent/views
)
)

Additional parameters include the maximum recursive depth, which by default is 3,
the current depth, and the parent ID. We don't normally use the last two parameters;
these are intended for internal use when the method calls itself recursively.

Files
We can handle files using the static JFile class. Before we explore how to use JFile, we
need to import the relevant library:

jimport('joomla.filesystem.file');

We'll start with four of the more basic JFile methods, each of which is used to handle
the name of a file. The first of these is called makeSafe(). This method takes a string
and removes any unsafe characters for use as a filename. This is especially useful
when we allow users to enter a filename of their choice:

$filename = JRequest::getVar('filename');
$cleanFilename = JFile::makeSafe($filename);

The resultant value of $cleanFilename will be the same as $filename, except that
any unsafe characters will have been removed.

The parameter that we pass to the makeSafe() method must not be a
path to a file. If we do pass a path, the directory separators will be stripped.

If we are dealing with a path to a file we can use the getName() method to determine
the filename. Once we have done this, we can use the makeSafe() method to ensure
the filename is safe to use:

$fileName = JFile::getName($pathToFile);
$cleanFilename = JFile::makeSafe($filename);

If we want to determine the extension of a file, we can use the getExt() method;
this method works with a filename and with a path to a file. Along the same lines, we
can remove the extension from a filename; this also works with filenames and a path
to a file.

Utilities and Useful Classes

[352]

 This example demonstrates how we can use these methods in conjunction with
one another:

if (JFile::getExt($filename) == 'txt')
{
 echo JText::sprintf('%s is a text file',
 JFile::stripExt($filename));
}

We will now venture into common file-system commands. We are provided with
four methods that deal explicitly with file management. The first of these is the
exists() method. This method returns a Boolean response and is used to check if a
file exists:

if (!JFile::exists($pathToFile))
{
 // handle file does not exist
}

If a file exists then we can use any of the following methods to manage that file:
copy(), move(), and delete(). It's better to use these methods than to use the
normal PHP file-management functions because, if FTP is enabled, these methods
will attempt to use an FTP connection in priority to PHP functions. This decreases
the chance of error due to lack of user rights.

The copy() method copies a file to a new location. The method accepts three
parameters: the path to the source file, the path to the destination file, and an
optional base path. If a base path is provided, it will be prepended to the source and
destination paths.

The copy() method returns a Boolean response. This example copies the foo.php
file to the bar.php file in the frontend root of the current component:

if (!JFile::copy('foo.php', 'bar.php', JPATH_COMPONENT))
{
 // handle failed file copy
}

The move() method works in the same way, except that it relocates the file rather
than creating a copy of the file. This method returns a Boolean response. This
example moves the file foo.php to the file bar.php in the frontend root of the
current component:

if (!JFile::move('foo.php', 'bar.php', JPATH_COMPONENT))
{
 // handle failed file move
}

Chapter 12

[353]

The last of these management-type methods we'll look at is the delete() method.
This method removes one or more files from the file system. This method returns a
Boolean response. This example deletes the file foo.php from the frontend root of
the current component:

if (!JFile::delete(JPATH_COMPONENT.DS.'foo.php'))
{
 // handle failed delete
}

If we want to delete multiple files at once, we can pass an array of file paths to the
delete() method. This example deletes the files foo.php and bar.php from the
frontend root of the current component:

$files = array(JPATH_COMPONENT.DS.'foo.php',
 JPATH_COMPONENT.DS.'bar.php');
if (!JFile::delete($files))
{
 // handle failed delete
}

The next two methods we will look at are used to read and write data to and from
files. These methods are aptly named read() and write(). We'll start by using the
read() method to access the contents of a file:

$file = JPATH_COMPONENT.DS.'foo.php';
$contents = JFile::read($file);

The contents of the file is read into the $contents variable as a string. If the read()
method is unsuccessful, the method returns false. It is not uncommon, once a file
is successfully read, to use the explode() function to split the contents into an array
of lines:

$lines = explode("\n", $contents);

To write to a file we use a similar approach. When we call the write() method we
must provide the path to the file that we intend to write and the data that we want to
write to the file. This example appends some data to the end of the file:

$lines[] = "\n<?php echo 'This file has been updated!'; ?>"
if (!JFile::write($file, implode("\n", $lines)))
{
 // handle failed file write
}

The last method that we will look at is the upload() method. This method is
intended to move files that have been uploaded. The method is similar to the
move() method except it handles the creation of the destination path and it sets the
permissions of the uploaded file.

Utilities and Useful Classes

[354]

This example takes the uploadFile array from the FILES request hash and copies it
to its new location:

$file = JRequest::getVar('uploadFile', '', 'FILES', 'array');
if (!JFile::upload($file, JPATH_COMPONENT.DS.'files'))
{
 // handle failed upload
}

Archives
The joomla.filesystem.archive library provides us with two important things,
the static JArchive class and a number of archive adapters. JArchive allows us to
easily unpack archive files using the archive adapters. An adapter handles a specific
type of archive. This list details the core archive adapters:

BZIP2
GZIP
TAR
ZIP

Before we start using this library we must always import it:

jimport('joomla.filesystem.archive');

We will start by exploring the use of JArchive to unpack archives. To do this we need
to use the extract() method. We pass two parameters to this method: the path to
the archive file and the path to directory to which we want to extract the contents.

This example extracts an archive to the 'temp' directory in the current component:

if (!JArchive::extract($pathToArchive, $destination))
{
 // handle failed archive extraction
}

When we use the extract() method we are invoking an archive adapter that
is automatically selected based upon the file extension. This list describes the
supported archive format extensions:

.bz2

.bzip2

.gz

.gzip

•

•

•

•

•

•

•

•

Chapter 12

[355]

.tar

.tbz2

.tgz

.zip

Note that if the archive is a tarball, a compressed file that contains a tar archive, the
inner TAR file will automatically be extracted.

If we attempt to extract an unsupported archive type, a warning
will be thrown.

Arrays
Arrays are an integral part of PHP and we constantly use them when building
Joomla! extensions. PHP provides us with a number of very useful functions for
working with arrays. We can use the static JArrayHelper class to simplify other
common tasks when working with arrays.

The JArrayHelper class is located in the joomla.utilities.array library. Before
we can use the JArrayHelper class we must import the relevant library:

jimport('joomla.utilities.array');

Imagine we have a CSV file, which holds records with mathematical data:

2, 4.6
0, 0.0
1, 2.5
4, 8.2

Now imagine we want to order the data by ID (the first field) and we want the values
(second field) to be displayed as integers.

The first thing we need to do is retrieve the contents of the CSV file; we do this using
the JFile class, discussed earlier in this chapter:

jimport('joomla.filesystem.file');
if (false === ($data = JFile::read($CSV_FilePath)))
{
 // handle failed to read CSV file
}

•

•

•

•

Utilities and Useful Classes

[356]

Once we have retrieved the data we need to split it into an array of lines. We then
need to convert each line into an object. If we do not use objects, we will be unable to
use the JArrayHelper sorting method.

To create the objects, we use the toObject() method. This method creates a new
object and adds properties to the object based on the array keys. In this example,
when we use the toObject() method, the resultant objects will be of type stdClass
and have two keys—id and value:

// convert CSV data into an array of lines
$data = explode("\n", $data);

// iterate over each line
for($i = 0, $c = count($data); $i < $c; $i ++)
{
 // split the values
 $temp = explode(',', $data[$i]);

 // cast all the values to integers (always rounds down)
 JArrayHelper::toInteger($temp);

 // set the named values
 $temp['id'] = $temp[0];
 $temp ['value'] = $temp[1];

 // remove keys 0 and 1
 unset($temp[0], $temp[1]);

 // convert the array to an object
 $data[$i] = JArrayHelper::toObject($temp);
}

The first JArrayHelper method that we use in this example is toInteger(). This
method casts all of the values in the $temp array into integers.

The objects created in the above example are of type stdClass. If we want to, we can
specify a different class. This example demonstrates how we would create objects of
type JObject:

$data[$i] = JArrayHelper::toObject($temp, 'JObject');

The class that we specify must not have any constructor parameters, or all the
constructor parameters must be optional.

If we ever need to convert an object back to an array, we can use the
fromObject() method:
 $array = JArrayHelper::fromObject($object);

Chapter 12

[357]

Now that we have an array of objects we can start to play around with that array.
The first thing we'll do is sort the array by the ID of each record. We do this using the
sortObjects() method:

JArrayHelper::sortObjects($data, 'id');

By default this method sorts the data in ascending order; if we want to sort the data
in descending order, we must supply the third optional parameter set to -1:

JArrayHelper::sortObjects($data, 'id', -1);

This describes the resultant array when using all of the previous code with the
example CSV file; notice that each element is a stdClass object, all attributes of the
objects are integers, and the objects are in order of ID:

Array
(
 [0] => stdClass Object
 (
 [id] => 0
 [value] => 0
)

 [1] => stdClass Object
 (
 [id] => 1
 [value] => 2
)

 [2] => stdClass Object
 (
 [id] => 2
 [value] => 4
)

 [3] => stdClass Object
 (
 [id] => 4
 [value] => 8
)

)

The next thing that we will do is determine the total of the values. We could
do this by iterating over the array and adding each value to the total. Another
way of achieving this is by using the getColumn() method and the array_sum()
function together:

$total = array_sum(JArrayHelper::getColumn($data, 'value'));

Utilities and Useful Classes

[358]

The getColumn() method is used to retrieve a column of data from an array
structure. In order for this method to work as expected, the array must be populated
with either objects or arrays.

Imagine we have an array of values of mixed types and we want to retrieve different
values from that array casting the values to the appropriate type as we do so. To do
this we can use the getValue() method:

$array = array(12, '1.3');
$value = JArrayHelper::getValue($array, 0, '', 'ALNUM')

The first parameter is the array from which we want to retrieve the value; the array
will be passed by reference. The second parameter is the name of the array element
key the value of which we want to get.

The third and fourth parameters are both optional. The first of these is the default
value, and the last of these is the type to which we want to cast the retrieved value.
This table describes the different types that are supported:

Name Description
INT, INTEGER Whole number
FLOAT, DOUBLE Floating-point number
BOOL, BOOLEAN true or false
WORD String consisting of the letters A-Z (this is not case sensitive)
STRING String
ARRAY Array of mixed values

For a more comprehensive range of type-casting options, we can
use the JInputFilter class that supports ten different data types.
For a complete description of JInputFilter refer to the official API
documentation: http://api.joomla.org/Joomla-Framework/
Filter/JInputFilter.html.

The last method that we will explore is the toString() method. The most common
way in which we use this method is to produce a string that can be used to describe
attributes in an XHTML tag.

In this example, we create an image tag, which uses an array to populate its attributes:

$attributes = array();
$attributes['src'] = 'http://example.org/image.gif';
$attributes['class'] = 'image';
echo '';

Chapter 12

[359]

The resultant output will appear like this:

There are additional parameters that we can use with the toString() method to
modify the output. The method uses inner and outer glue. The inner glue is used
between a key and a value; the outer glue is used between key-value pairs:

echo JArrayHelper::toString($attributes, ' : ', ";\n");

This time we use a colon for the inner glue and a semicolon and a new line character
for the outer glue. The resultant output will appear like this:

src : "http://example.org/image.gif";
class : "image"

Trees
Trees are used to model hierarchical data. Joomla! provides us with the JTree and
JNode classes; we can use these to build tree data structures. Before we start using
these classes we must import the relevant library:

jimport('joomla.base.tree');

The first thing we do when creating a new tree is to build a new JTree object.
Although we don't technically require a JTree object in order to create a tree, it
ensures we can always easily access the root of the tree. There are no parameters that
we need to pass when creating a new tree:

$tree = new JTree();

When a new tree is created, we automatically create a new JNode object, which is
known as the root node. The root node is the node to which all other nodes in the
tree can trace their roots.

The first thing we normally do once we have created a tree is add some child nodes.
To do this we will use the JTree addChild() method:

$tree->addChild(new JNode());

When we use the JTree addChild() method, the child isn't necessarily added as a
direct descendant to the root node. Trees use a pointer to determine the current/
working node. When we add a new child node it is added to the present working
node's children. By default the working node is the root node.

The next diagram depicts a tree using the JNode and JTree classes. The root node is
node A—the root node never changes during the life of the tree. The working node islife of the tree. The working node istree. The working node is
node B—the working node is likely to change repeatedly during the life of the tree.life of the tree..

Utilities and Useful Classes

[360]

If we were to use the addChild() method, the new node would be added as child to
working node, in this case node B. When we create a new JTree, the root node is also
initially the working node.

Notice that the arrows between child nodes and parent nodes are bi-directional.
This is because we can navigate between nodes in both directions. The JTree
pointers are unidirectional; this means that the nodes are unaware of the
encapsulating JTree object.

If we want to create a branch of nodes, when we add a new node we can pass
another parameter. When this parameter is true, the newly added node will become
the working node.

To traverse the tree we can use the reset() and getParent() methods.
The reset() method is used to set the working node to the root node. The
getParent() method is used to set the working node to the parent node of the
present working node.

So far we have only added blank nodes. How do we store data in nodes? The
JNode class is a subclass of JObject; this means that we have access to the get() and
set() methods:

$node = new JNode();
$node->set('name', 'Child Node 1');
$tree->addChild($node);

Chapter 12

[361]

Although this makes the JNode class more useful, we can make nodes that are
designed especially for our needs. The best way for us to make use of the JTree is to
define a new JNode subclass that has additional properties:

// subclass of JNode
class myNode extends JNode
{
 // name property
 var $name = '';

 // constructor
 function __construct($name='')
 {
 $this->set('name', $name);
 parent::__construct();
 }
}

Now we can create a far more bespoke tree:

$tree->addChild(new myNode('Node 1'));
$tree->addChild(new myNode('Node 2'));

A prime example to this sort of use of the JTree class is the iLink and iLinkNode
classes. These two classes extend the JTree and JNode classes respectively. They are
used to build the menu trees that are commonly used in Joomla!.

Log Files
We are provided with the JLog class that is specifically for handling log files. In order
to use this class we must first import it:

jimport('joomla.utilities.log');

We'll start by exploring the use of JLog to handle the global error log file. The global
error log file is a PHP file normally located in the logs. A common use of this file is to
log failed login attempts.

To get a JLog object to handle the global error log file we use the getInstance()
method:

$errorLog =& JLog::getInstance();

Utilities and Useful Classes

[362]

Next we will add a new entry to the log file. New entries are appended to the end
of the log file and they are derived from associative arrays. The keys required in the
array differ dependent on the log file we are handling. For the global error log file we
can use the following keys:

DATE
TIME
LEVEL
C-IP
STATUS
COMMENT

If we do not provide values for the DATE, TIME, or C-IP keys, they are automatically
populated. We are not required to provide any key-value pairs; however, this would
make the log file relatively useless.

To add a new entry we use the addEntry() method. This example adds an example
entry to the log file:

$entry = array('status' => 'OK', 'comment' => 'Example');
$errorLog->addEntry($entry);

The great thing about this method is that if the log file doesn't exist it will be created
at this stage. When a log file is created a set of standard headers are added to the log
file. This is an example of what the headers may look like:

#<?php die('Direct Access To Log Files Not Permitted'); ?>

#Version: 1.0

#Date: 1954-06-07 12:00:00

#Fields: date time level c-ip status comment

#Software: Joomla! 1.5.0 Beta 2 [Khepri] 04-May-2007 00:00 GMT

Notice that the first line includes that common bit of PHP we use in all Joomla! PHP
files. This ensures that the log file isn't directly accessible. In order for it to work, the
log file must be a PHP file.

Entries are added beneath the header and each field is separated by a tab
character. This is an example of the entry that would be added as a result of our
previous example:

1906-12-09 12:00:00 - 192.168.0.2 OK Example

•

•

•

•

•

•

Chapter 12

[363]

Notice that the fields are in the order identified by the header and the level value is a
dash. The level value is a dash because we did not provide a value when we added
the entry.

The addEntry() method returns a Boolean response. This is because we cannot
guarantee that the entry will be added successfully. We might be unable to create the
log file or unable to write to the log file.

This is an example of how we might choose to deal with the potential problem:

if (!$errorLog->addEntry($entry))
{
 // handle a failed entry
 JError::raiseNotice('SOME_ERROR', JText::sprintf('LOGFAIL',
 $entry['comment']);
}

To test this example, modify the access rights to your error log file. If we wanted to
make the failed entry handling even more robust, we could use the JMail class to
send an email to the site administrator.

In addition to the global error log file we can use the JLog class to handle bespoke log
files. To do this we still use the getInstance() method but we must provide some
additional parameters.

The first of these is the name of the log file not including the path. If we do not
provide any more parameters the log file will be located in the same directory as the
global error file.

The second parameter is an associative array of options. JLog currently only supports
one option, format. The format option is used to determine the format in which the
log entries are stored. By default this is:

{DATE}\t{TIME}\t{LEVEL}\t{C-IP}\t{STATUS}\t{COMMENT}

When we define a custom format string we use curly braces to encapsulate entry
field names. These fields relate directly to the keys that we described earlier when
adding an entry to a log file.

The third and final parameter is the path to the log file. This defaults to the global log
file path defined in the config (config.log_path).

This example gets an instance of a JLog that will handle the mylog.php log file
located in the root of the frontend of the current component. Each entry log entry
will have three fields, DATE, TIME, and DESCRIPTION in that order:

$options = array('format' => '{DATE}\t{TIME}\t{DESCRIPTION}');
$log =& JLog::getInstance('mylog.php', $options, JPATH_COMPONENT);

Utilities and Useful Classes

[364]

We add entries to this log file using the JLog object in the same way as we did with
the previous example:

$entry = array('description' => 'Example Log Entry');
$log->addEntry($entry);

Summary
Joomla!'s powerful library is an extremely useful resource. Not only does it provide
us with common Joomla! classes, but it also provides us with some invaluable
utilities and useful classes.

Working with the file system is a common activity. Migrating to the joomla.
filesystem library is extremely easy and it provides us with far more power and
consistency than the basic PHP file-system functions.

Arrays have long been a key data type. PHP provides us with many useful
functions for handling arrays; Joomla! extends this functionality through the
JArrayHelper class.

Data structures are often used to model information. The tree structure is a very
common data structure and Joomla! provides us with a way of easily building such
a structure.

We should always bear in mind that if there isn't something appropriate within the
Joomla! library to handle a specific task, we can always turn to the other libraries
with which we are provided.

If we are still unable to find a solution we can always turn to other libraries outside
of the Joomla! sphere. A good resource for such libraries is PHP classes
(http://www.phpclasses.org/), a repository of freely available PHP classes.

Appendix
The appendix consists of three main sections:

Classes
Parameters
Configuration

There is also some official documentation available from the Joomla! help site
(http://help.joomla.org), developers site (http://dev.joomla.org), and API
site (http://api.joomla.org).

Classes
This section details a number of the core classes. Additional documentation can be
found at the official API site: http://api.joomla.org.

This reference uses standard UML notation:
 methodOrFunctionName(paramsList) : returnType

The following example describes a method called someMethod with two parameters,
anArray and xyz, which returns a string. The parameters are of type array and
Boolean respectively. The array type includes associative arrays; more information
about array parameters and return types is given in the description of each method.
The ampersand denotes that anArray will be passed by reference:

someMethod(&anArray : array, xyz : boolean) : string

The next example returns a reference (denoted by the ampersand before the method
name) to an instance of a JObject class. Methods and functions that return a reference
must use the =& assignment operator to prevent copying of the returned value.

•

•

•

Appendix

[366]

The returned object can be a subclass of JObject. The string parameter message is
optional, and if it is not specified, it will contain the default value foobar:

&anotherMethod(message : string='foobar') : JObject

This last example doesn't return a value; this is signified by the return type void. The
someParameter parameter is of type mixed. A mixed type means that the value can
be any type:

andAnotherMethod(someParameter : mixed) : void

It is important to remember that all method and property names
that begin with an underscore are to be treated as private/protected.
There is one exception to this. Methods that are named solely with an
underscore, _(), are not to be considered private. This method name
is used when a class has a method that we use frequently, for example
JText::_('translate some text').

JObject
JObject is a common base class. It provides constructor compatibility between
PHP 4 and 5, and provides some common methods. For information about using
JObject as a parent class, refer to Chapter 2.

Properties
_errors : array Object error history

Constructors

JObject() : JObject
This constructor removes the need for subclasses to use the className() style
constructor. Subclasses need only define the __construct() constructor, which,
if PHP 5 is not being used, is called by this method. Although this constructor
does not define any parameters, this does not restrict the subclasses. Multiple
parameters can still be used, all of which will be passed to the highest level
__construct() method.

__construct() : JObject

This constructor is designed to be overridden in subclasses. Overriding methods
should always call parent::__construct().

Appendix

[367]

Methods

get(property : string, default : mixed=null) : mixed
Accessor; gets the value of the requested property. If the property is not set, then the
optional default value will be returned. This method will not return a reference; in
subclasses it can be beneficial to add specific methods where a reference to a property is
more suitable. Private properties, identified by an underscore at the start of the name, can
be returned using this method.

Parameters property Name of the property to return

[default] The default value to return if the property has
not been initialized

Returns Value of property

getError(i : int=null, toString : boolean=true) : mixed
Returns an error that occurred during the execution of one of the object's methods. The
error can be an object or a string. See JError for more information about errors.

Parameters [i] Error number; by default the last error is retrieved
[toString] Return a string even if the error is an object

Returns Error object or string associated with the object

getErrors() : array
Returns a copy of the _error property.
Returns Array of errors associated with the object

getPublicProperties(assoc : boolean=false) : array
Gets the names of all the public properties of the object; this includes run-time properties,
not just class properties. Names of private properties will not be returned; private
properties are identified by an underscore at the start of the name. If assoc is true, gets an
associative array including the property values.
Parameters [assoc] Get associative array with values; default is false
Returns Array of public property names or associative array of object property values

set(property : string, value : mixed=null) : void
Mutator; sets the value of the property in the object.

Parameters property Name of the property
[value] Value of the property

Appendix

[368]

setError(error : mixed) : void
Adds an error to the object's error history.
Parameters [error] String or error object

toString() : string
Gets a string representation of the object. This method gets the name of the class.
Returns String representation of the object

JUser
extends JObject
Handles a site user. If the user is not logged in, id and gid will be zero and
usergroup will be null. For more information about dealing with users refer to
Chapter 7.

Properties
_errorMsg : string Log of errors, separated by new lines

_params : JParameter

Parameters from #__users.params field. Metadata available
from administrator/components/com_users/user.xml.

activation : string Activation string, used to verify account registration
aid : int Access group ID
block : int Access blocked. 0=not blocked, 1=blocked.
clearPW : string Clear text password, only present when changing password
email : string Email address
gid : int Group ID, relates to the legacy #__groups table
id: int User ID, relates to the #__users.id field
lastvisitDate : string Date on which the user last visited the site
name : string User's name, their actual name/nickname, not username
params : string INI parameter string, used when updating and creating users
password : string MD5-hashed password
registerDate : string Date on which the account was registered
sendEmail : int Receive system emails. 0=no, 1=yes.
username : string Username

usertype : string

User group that the user is a member of (ARO group). If the user
is not logged in this will be null.

Appendix

[369]

Constructors

__construct(identifier : int=0) : JUser
Builds a new JUser object and loads the user's details from the database.
Parameters [identifier] User's ID

Methods
authorize(acoSection : string, aco : string, axoSection : string=null,
axo : string=null) : boolean

Determines if the user is authorized to perform an action. Acts as a pass-through for
JAuthorization. This is only for GACL authorization.

Parameters

acoSection

ACO Section (the term 'section' does not
relate to content sections)

aco ACO value

[axoSection]

AXO Section (the term 'section' does not
relate to content sections)

[axo] AXO value
Returns true if authorized

bind(&array : array) : boolean
Binds an associative array to the object. There are two ways to use this: updating an
existing user and creating a new user. Create is assumed if the object property id is empty
(zero is considered empty).
When updating an existing user, array can contain any of the public properties associated
with a JUser object. If user parameters are going to be bound they must be passed in a key
named params and be in INI string format. The values are then bound to the object.
When creating a new user the username property must already be set. If password is
omitted from array a random password will be generated.
Parameters array Associative array with which to bind
Returns true on success

defParam(key : string, value : mixed) : mixed
If the user's parameter is not defined, this defines the parameter and sets the value.

Parameters key Name of the parameter
value Value of the parameter

Returns Previous value of the user's parameter

Appendix

[370]

delete() : boolean
Removes user from the Joomla! database.
Returns true on success

getError() : string
Gets the object's error log.
Returns Error log

static &getInstance(id : mixed=0) : JUser
Gets a reference to a global instance of a JUser object. If the object does not exist, it will
be created. id can be a string or an integer. If it is a string it will be assumed that it is a
username, and if it is an integer it will be assumed that it is a user's ID. To get a reference to
the current user object, use JFactory::getUser().
Parameters [id] User's ID or username
Returns Reference to a JUser object

getParam(key : string, default : mixed=null) : mixed
Gets a user's parameter from the _params property. If the parameter does not exist, the
value of default will be returned.

Parameters key Name of the parameter
[default] Default value

Returns Value of the parameter, or default value if the parameter does not exist

&getParameters() : JParameter
Gets a refernce to the user's parameters (_params property).
Returns Reference to the user's parameters

&getTable() : JTableUser
Gets a reference to a new JTableUser object loaded with the current user's details.
Returns Reference to a new JTableUser object

load(id : int) : boolean
Loads a user based on their ID. On failure, a warning will be raised.
Parameters id User ID
Returns true on success

Appendix

[371]

save(updateOnly : boolean=false) : boolean
Saves the user to the database. If updateOnly is true, then the creation of a new user will
not be permitted. If this is the case, and an attempt is made to save a new user, the method
will still return true.
Before saving the user a number of sanity checks are made, including data validation and
authorization verification. If any of these fail then the method will return false.
Parameters [updateOnly] Only save if it is an existing user
Returns true on success

setLastVisit(timestamp : string) : boolean
Updates the user's database record last visit date; note that this does not update the
lastvisitDate property of the object.
Parameters timestamp Timestamp for the last visit
Returns true on success

setParam(key : string, value : mixed) : mixed
Sets the value of a user's parameter.

Parameters key Name of the parameter
value Value of the parameter

Returns Previous value of the parameter

setParameters(data : string, path : string=null) : void
Loads an INI parameter string. path, if specified, is the path to an XML file defining the
parameters; if not specified, the default user XML file is used.

Parameters data INI parameter string
[path] XML parameter definition file path

_bind(from : mixed, ignore : string='') : boolean
Used by the bind() and load() methods to bind data to the object. from must be an
object or associative array. ignore defines a list of key/property names that should not be
bound to the object.

Parameters from Object or associative array to bind
[ignore] Properties and keys to ignore

Returns true on success

_setError(msg : string) : void
Appends msg to the object's error log.
Parameters msg Error message

Appendix

[372]

JModel
abstract, extends JObject
Base class for model classes that use the MVC implementation. For more information about
JModel refer to Chapter 4.

Properties
_db : JDatabase Reference to the database connection
_name: string Model name
_state : JObject State of the object

Constructors

__construct(config : array=array()) : JModel
Builds a new JModel object. config, an associative array, can contain the keys 'name'
and 'table_path'. 'name' is transposed to the model name; if 'name' is not
specified the name will be extracted from the name of the class. This will only work if
the name of the class is in the format optionalPrefixModelSomeName. 'table_
path' will be added to the JTable include paths. If table_path is not specified, but
JPATH_COMPONENT_ADMINISTRATOR is defined, then the path JPATH_COMPONENT_
ADMINISTRATOR.DS.'tables' will be added.
Parameters [config] Associative array of configuration options

Methods

static addIncludePath(path : string='') : array
Adds a new path to the array of paths used to find JModel classes.
Parameters [path] Path to add
Returns Paths to search for JModel subclasses

static addTablePath(path : mixed='') : void
Adds a new path to the array of paths used to find JTable classes. path can be a string, or
an array of strings. Pass through method for JTable::addIncludePath().
Parameters [path] Path or array of paths to add

&getDBO() : JDatabase
Gets a reference to a database connection.
Returns Reference to a database connection

Appendix

[373]

static &getInstance(type : string, prefix : string='') : JModel
Gets a reference to a new instance of a JModel subclass object. If the class cannot be found,
returns false.

Parameters type Name of the JTable
[prefix] Prefix of the class name, normally Model

Returns Reference to a new instance of a JModel-derived object

getName() : string
Gets the model name.
Returns Model name

getState(property : string=null) : mixed
Gets a model state property. If property is not specified, a complete copy of the model's
state object is returned.
Parameters [property] Name of state property
Returns State property or a complete copy of the model's state object

&getTable(name : string='', prefix : string='Table') : JTable
Gets an instance of a JTable subclass object. If name is not specified, then the model
name will be used. The parameters are concatenated to create the class name, in the form
$prefix.$name. If the class is not present, the paths defined in JTable will be searched for
a file named $prefix.$name.'.php' where the class should reside.

Parameters [name] Name of the JTable
[prefix] Class prefix

Returns Reference to a new instance of a JTable subclass object

setDBO(&db : JDatabase) : void
Sets the reference to the database connection.
Parameters Database connection

setState(property : string, value : mixed=null) : mixed
Sets a user state property.

Parameters property Name of state property
[value] Value of state property

Returns Previous value of state property

Appendix

[374]

_createFileName(type : string, parts : array=array()) : string
Gets the name of the file that a class should be located in. parts must include the key
name. type should always be 'table'.

Parameters type The type of resources; only accepts 'table'
[parts] Associative array of name parts

Returns Name of the file that a class should be located in

&_createTable(name : string, prefix : string='Table') : mixed
Used by getTable() to create a new instance of a JTable subclass object. Returns null or
an error on failure.

Parameters name Name of JTable
[prefix] Class prefix, normally Table or JTable

Returns Reference to a new instance of a JTable subclass object

&_getList(query : string, limitstart : int =0, limit : int=0) : array
Executes a query and gets a reference to an array of resultant objects.

Parameters query Query to execute
[limitstart] Start record
[limit] Maximum number of records

Returns Reference to an array of objects as a result of the query

_getListCount(query : string) : int
Gets the number of results obtained from query. Should be used cautiously; causes the
query to be executed. If possible, consider using $db->getNumRows() directly after &_
getList(); this prevents the query being executed twice.
Parameters [query] Query to count number of results from
Returns Number of results

JView
abstract, extends JObject
Base class for view classes that use the MVC implementation. For more
information about JModel refer to Chapter 4.

Appendix

[375]

Properties
_basePath : string Path to view base
_defaultModel : string Name of the default model

_escape : array

Array of names of functions used to escape output. Can also
contain arrays with two elements, a class name and method
name. For more information see http://php.net/manual/
function.call-user-func.php.

_layout : string Template layout, normally default
_layoutExt : string Template extension, normally php
_models : array Array of models
_name: string Name of view
_output : string Output from the template
_path : array Associative array of arrays of paths for resources
_template : string Path to template

Constructors

__construct(config : array=array()) : JView
Builds a new JView object. config is an associative array that might contain the keys
name, base_path, template_path, helper_path, and layout. name will be
transposed to the view name, unless the view name has already been defined. template_
path adds a path to the template paths. layout is the name of the template layout
(template filename prefix), normally HTML.
Parameters [config] Associative array of options.

Methods

addEscape() : void
If provided with parameters, the parameters will be used as the function and methods to
use with the escape() method. Parameters must be strings or arrays with two elements, a
class and method name.

addHelperPath(path : mixed) : void
Adds paths to search for template files. path can be a string or an array of strings.
Parameters path A path or array of paths

addTemplatePath(path : mixed) : void
Adds paths to search for template files. path can be a string or an array of strings.
Parameters path A path or array of paths

Appendix

[376]

assign(arg0 : mixed, arg1 : mixed=null) : boolean
Dynamically adds properties to the object. If arg0 is an object/array, each of the
properties/keys will be added to the object. If arg0 is a string, it will be used as the name
of the property, and arg1 will be assigned to the value. Properties will be ignored if they
start with an underscore.

Parameters arg0 Object/Array to add or a property name
[arg1] Value if arg0 is a string

Returns true on success

assignRef(key : string, &val : mixed) : boolean
Dynamically adds the property, identified by key, to the object with a reference to val. If
key starts with an underscore it will be rejected.

Parameters key Name of the property to add
val Value to add a reference to

Returns true on success

display(tpl : string=null) : mixed
Calls the loadTemplate() method and gets the rendered result. If an error occurs a
JException object will be returned. If tpl is specified, then it will be used as a suffix to the
layout with an underscore separator.
Parameters [tpl] The template suffix
Returns Rendered template on success. Error on failure.

escape(value : mixed) : mixed
Performs escape functions on value. This method can be used dynamically, by calling it
with extra parameters; extra parameters will be treated as the escape functions. For more
information see http://php.net/manual/function.call-user-func.php.
Parameters value Value to escape
Returns Escaped value

&get(method : string, model : string=null) : mixed
Gets the result of a get method, from a registered model. If the model is not defined
then the default model will be used. The method is identified as 'get'.$method. If the
specified model does not exist then the request will passed to the parent (JObject) class
JObject::get($method, $model).
Parameters method Method or property to return

[model] Model to run the method on, or default value

Returns

get accessor result. false on failure (can be ambiguous depending upon
the method being called, or the property being returned).

Appendix

[377]

getLayout() : string
Gets the view layout.
Returns View layout

&getModel(name : string=null) : JModel
Gets a JModel subclass object from the view. name is the name of the JModel class. If name
is not provided, the default model is retrieved. JView supports a one-to-many relationship
with JModels, but only one object per class.
Parameters [name] Name of model class
Returns Reference to a registered model

getName() : string
Gets the name of the view.
Returns View name

loadHelper(hlp : string=null) : string
Searches known helper paths for the specified helper.
Parameters [tpl] Template suffix
Returns Rendered template

loadTemplate(tpl : string=null) : string
Loads and renders a template. The rendered result is returned and stored in the object
output buffer. If tpl is specified, it is appended to the layout name with an underscore
separator, for example if tpl was 'item' and the template layout was 'default', the
template name would be 'default_item'.
Parameters [tpl] Template suffix
Returns Rendered template

setEscape() : void
Resets the escape callback functions and methods to use with the escape() method. If
provided with parameters, the parameters will be used as the function and methods to
use with the escape() method. Parameters must be strings or arrays with two elements,
a class and method name. For more information see http://php.net/manual/
function.call-user-func.php.

setLayout(layout : string) : string
Sets the view layout, normally default.
Parameters layout View layout
Returns Previous layout

Appendix

[378]

setLayoutExt(value : string) : string
Sets the layout extension to use.
Parameters Value JModel to associate
Returns Previous value

&setModel(&model : JModel, default : boolean=false) : JModel
Registers a JModel subclass object with the view. If default is true, the registered model
will become the default model. JView supports a one-to-many relationship with JModels,
but only one object per model class.

Parameters model JModel to associate
[default] Set as the default model

Returns Reference to the newly registered model (returns $model)

_addPath(type : string, path : mixed) : void
Adds paths to search for subclass files, normally templates. type is the type of path. To
add a template path type would need to be 'template'. path can be a string or an array
of strings.

Parameters type Type of path
path A path or array of paths

_createFileName (type : string, parts : array) : string
Gets a filename based on type and parts. type can be 'template'. parts must
contain the key 'name'.

Parameters type Type of filename
parts Filename parts

Returns Name of a file

_setPath(type : string, path : mixed) : void
Adds paths to search for files, normally templates. type is the type of path. To add
a template path type would need to be 'template'. path can be a string or an
array of strings. Using this method will prepend JPATH_COMPONENT.DS.'views'.
DS.'nameOfView'.DS.'tmpl' to template paths.

Parameters type Type of path
path A path or array of paths

JController
abstract, extends JObject
Base class for controller classes that use the MVC implementation. For more information
about JModel refer to Chapter 4.

Appendix

[379]

Properties
_acoSection : string ACO Section (relates to GACL)
_acoSectionValue : string ACO Section Value (relates to GACL)
_basePath : string Path to controller base
_doTask : string Task method that is being executed
_message : string Message to include in redirect
_messageType : string Type of message to include in redirect
_methods : array Class method names
_name: string Name of the controller
_path : array Directories in which to search for views and models
_redirect : string Redirect URI
_task : string Current or last task to be executed
_taskMap : array Task-to-method map

Constructors

__construct(config : array=array()) : JController
Builds a new JController object. config, an associative array, can contain the keys name,
base_path, default_task, model_path, and view_path. name becomes the controller
name, unless the controller name is already defined by the subclass. default_task is the
task that will be executed by default (this is not the same as the method). model_path and
view_path are the paths in which to search for JModel and JView subclasses (JPATH_
COMPONENT is prepended to the paths).
Parameters [config] An associative array of configuration options

Methods

addModelPath(path : mixed) : void
Adds paths to search for JModel subclass files. path can be a string or an array of strings.
Parameters path Path or array of paths to JModel subclass files

addViewPath(path : mixed) : void
Adds paths to search for JView subclass files. path can be a string or an array of strings.
Parameters path Paths to JView subclass files

Appendix

[380]

authorize(task : string) : boolean
If the object ACO Section is not defined authorization is automatically granted. If the object
ACO Section has been defined, it determines if the current user has the rights to complete
the specified task. If the ACO section value is not specified, task is used as the ACO
section value.
Parameters task The task to execute
Returns Returns true on authorized, false on not authorized

display(cachable : boolean=false) : void
Attempts to display. Uses JRequest (view and layout) to determine the view name and
which template layout to use. If view is not known then the controller name is used.
layout determines which template to use, normally default. If cachable is true then
the global cache object is used to get and populate the display cache.
Parameters [cachable] Use cached response

execute(task : string) : mixed
Executes the method mapped to task. If a mapped method for task does not exist, it
attempts to execute the default task. If a mapped method for the default task does not
exist, a 404 error is raised. When a mapped method is found, access rights are checked
using the authorize() method. If access is denied, a 403 error is raised.
Parameters task The task to execute
Returns Result of the executed method. Returns error if no mapped method exists.

&getModel(name : string, prefix : string='') : JModel
Gets a new instance of a JModel subclass object. If prefix is not specified, the name of the
controller concatenated with the word 'Model' is used. name is the model class name suffix.
If the class does not exist, Joomla! will attempt to load it from the model paths. If the file
where the class is expected to reside is found but the class is missing, an error will be thrown.

Parameters name Name of model (normally the entity name)
[prefix] Class prefix

Returns A new instance of a JModel subclass object; null on failure

getName() : string
Gets the name of the controller.
Returns Controller name

getTask() : string
Gets the current task or the last task that was executed.
Returns Current task or the last task that was executed

Appendix

[381]

getTasks() : array
Gets the different task methods that are available for this controller.
Returns Array of task methods

&getView(name : string='', type : string='', prefix : string='', config :
array=array()) : JView

Gets a JView subclass object. If name is not specified, the controller name is used. If prefix
is not specified, the prefix will be $controllerName.'View'. type is the view layout,
normally HTML. This method is normally called only specifying name.
$view = $SomeController->getView('Item');
This would attempt to instantiate the class SomeViewItem.

Parameters [name] View name
[type] View type; relates to the document type
[prefix] View prefix, default is View
[config] Configuration array to pass to the view

Returns JView subclass object

redirect() : boolean
If a redirect has been set, it redirects the browser and closes the application.
Returns Returns false on failure

registerDefaultTask(method : string) : void
Registers the default task method. The default task is the task that is executed when an
attempt is made to execute a task that is not mapped to a method.
Parameters method Default task method

registerTask(task : string, method : string) : void
Registers a task, with a method.

Parameters task Task name
method Method name

setAccessControl(section : string, value : string=null) : void
Sets the object authorization ACO and ACO value. This is used by the authorize method.

Parameters section ACO section
[value] ACO value

Appendix

[382]

setMessage(text : string) : void
Sets the object redirect message. This is only used if the redirect method is called.
Parameters text Redirect message

setRedirect(url : string, msg : string=null, type : string='message') :
void

Sets the object redirect options. This is only used if the redirect method is called.

Parameters url Redirect URI
[msg] Redirect message
[type] Message type

_addPath(type : string, path : mixed) : void
Adds paths to search for JModel or JView subclass files. type can be 'view' or 'model'.
path can be a string or an array of strings.

Parameters type Type of path
path Path or array of paths

_createFileName (type : string, parts : array=array()) : string
Gets a filename based on type and parts. type can be 'view' or 'model'. parts must
contain the key 'name' and if type is 'view' it can optionally contain the key 'type',
which relates to the layout.

Parameters type Type of filename
[parts] Filename parts

Returns Name of a file

&_createModel(name : string, prefix : string='') : JModel
Builds a new JModel subclass object. name is the class name suffix, normally the entity
name. prefix is the class name prefix, normally $controllerName.'View'.

Parameters name Model name (normally the entity name)
[prefix] Model class name prefix

Returns A new JModel subclass object

Appendix

[383]

&_createView(name : string, prefix : string='', type : string='', config :
array=array()) : JView

Builds a new JView subclass object. name is the class name suffix, normally the entity
name. prefix is the class name prefix, normally $controllerName.'View'. type is the
layout, normally HTML.

Parameters name View name, normally the entity name
[prefix] View class name prefix
[type] View output type
[config] Configuration array to pass to the view

Returns A new JView subclass object

_setPath(type : string, path : mixed) : void
Adds paths to search for JModel or JView subclass files. type can be view or model. path
can be a string or an array of strings. Using this method will prepend JPATH_COMPONENT.
DS.$type to each path.

Parameters type Type of path
path Path or array of paths

JTable
abstract, extends JObject
Class that handles individual database tables. JTable uses a buffering mechanism, which
allows it to handle records on an individual basis. For more information about JTable refer
to Chapter 3.

Properties
_tbl: string Table name
_tbl_key : array Primary key
_errorNum : int Error Number
_db : JDatabase Database connection

Constructors

__construct(table : string, key : string, &db : JDatabase) : JTable
Builds a new JTable object.

Parameters table Table name
key Primary Key
db Database connection

Appendix

[384]

Methods

static addIncludePath(path : mixed='') : array
Adds paths to search for JTable subclasses. path can be a string or an array of strings.
Parameters [paths] Path or array of paths to add
Returns Array of paths

bind(from : mixed, ignore : mixed=array()) : boolean
Binds a subject (normally a record) to the object. For all the public object properties, this
finds a corresponding key or property in from, and binds them to the object.

Parameters from Bind subject, object or associative array
[ignore] Fields to ignore, string or array

Returns true on success

canDelete(oid : string=null, joins : array=null) : boolean
Determines if there are any records linked to the buffered record or, iflinked to the buffered record or, ifto the buffered record or, if oid is specified,
the record identified by oid. joins identifies linked tables. joins is an optional
two-dimensional array; the inner arrays are associative, and must contain the keys name,
idfield, and joinfield. name is the linked table name, idfield is the linked table's
primary key, and joinfield is the foreign key in the linked table.

Parameters [oid] Record ID
[joins] Associative array of table join constraints

Returns true if there are no dependent records

check() : boolean
This method is used to validate the contents of the record buffer. This should be overridden
in subclasses.
Returns true on success

checkin(oid : string=null) : boolean
Checks-in the buffered record or, if oid is specified, checks-in the record identified by
oid. This sets the record's checked_out field to zero and checked_out_time to a null
date-time.
Parameters [oid] Record ID
Returns true on success

Appendix

[385]

checkout(who : id, oid : string=null) : boolean
Checks out the buffered record or, if oid is specified, checks out the record identified by
oid. This sets the record's checked_out field to who and checked_out_time to the
current date-time.

Parameters who User's ID
[oid] Record ID

Returns true on success

delete(oid : string=null) : boolean
Deletes the buffered record or, if oid is specified, deletes the record identified by oid.
Parameters [oid] Record ID
Returns true on success

&getDBO() : JDatabase
Gets the database connection object.
Returns Database connection object

getErrorNum() : int
Gets the object error number. 0 (zero) means no error.
Returns Error number

static &getInstance(type : string, prefix : string='JTable') : mixed
Gets a new JTable subclass object. type is the name of the file the class resides in and
the class name suffix, normally the entity name. prefix is the class name prefix. Core
JTable subclasses use the prefix 'JTable'; third-party JTable classes tend to use the
prefix 'Table'.

Parameters type Class name suffix and file name
[prefix] Class name prefix

Returns New JTable subclass object

getKeyName() : string
Gets the name of the primary key field.
Returns Name of the primary key

Appendix

[386]

getNextOrder(where : string='') : int
Gets the next place available in the current ordering. Using reorder() before using this
method will ensure there are no gaps in the ordering.
Parameters [where] WHERE clause
Returns Next place available in the current ordering

getTableName() : string
Gets the name of the table.
Returns Name of the table

hit(oid : string=null, log : boolean=false) : void
Increases the hit counter of the buffered record or, if oid is specified, the record identified
by oid.

Parameters [oid] Record ID
[log] Has no effect

[static] isCheckedOut(with : int=0, against : int=null) : boolean
Determines if the buffered record is checked out by any user other than the current user.
If used statically (both with and against must be specified) compares with to against.

Parameters [with] Current user's ID

[against]

Record's checked_out value (checked-out
user's ID)

Returns true if the record is checked out by any user other than the current user

load(oid : string=null) : boolean
Resets the record buffer and loads a single record into the buffer. oid is the value of the
record's primary key.
Parameters [oid] Record ID
Returns true on success

move(dirn : int, where : string='') : void
Moves a record up or down the ordering (table must have an ordering field). -1 = move up,
1 = move down.

Parameters dirn Direction to move
[where] WHERE clause

Appendix

[387]

publish(cid : array=null, publish : int=1, user_id : int=0) : boolean
Sets the publish value of records identified by cid, an array of record IDs (this only works
when the table's primary key is numeric). Although cid is optional, if it is not specified the
method will fail. If the table has a checked_out field, any records that are checked out by
other users will not be affected.

Parameters [cid] Array of record IDs
[publish] Publish value, 1 or 0
[user_id] Current user's ID

Returns true on success

reorder(where : string='') : boolean
Removes gaps in ordering.
Parameters [where] WHERE clause
Returns true on success

reset() : void
Resets the object to the initial class option values.

save(source : mixed, order_filter : string='') : boolean
Binds source to the object; source must be an object or an associative array. Checks the
buffer, stores the buffer, checks-in the record, and if order_filter is specified uses it to
determine which field must be common during the execution of the reorder() method.

Parameters source Record to save
[order_filter] Name of field by which records are ordered

Returns true on success

setDBO(&db : JDatabase) : void
Sets the JDatabase connection object.
Parameters db Database connection object

store(updateNulls : boolean=false) : boolean
Saves the record buffer to the database. If the record buffer primary key property is set, an
UPDATE will be executed, otherwise an INSERT will be executed.
Parameters [updateNulls] Update null values
Returns true on success

Appendix

[388]

setErrorNum(value : int) : void
Sets the object error number. 0 (zero) means no error.
Parameters value Error number

toXML(mapKeysToText : boolean=false) : string
Gets an XML representation of the buffered record.
Parameters [mapKeysToText] Maps foreign keys to text
Returns XML string

JError
static
Error handler. For more information about JError refer to Chapter 11.

Methods

static customErrorPage(&error : JException) : void
Gets the global instance of JDocumentError and passes it the error, then renders the page.
This removes any previous output, and terminates the script.
Parameters error JException error object
Return $error

static &getError(unset : boolean=false) : mixed
Gets the last error in the global error stack, or false if there are no errors. If unset is true,
then the error will be removed from the stack.
Parameters [unset] Remove last error from the global error stack
Returns First error in the global error stack, or false if there are no errors

static getErrorHandling(level : int) : array
Gets a copy of the associative array used to determine the handling of the specified error
level. The array contains the key mode and, optionally, the key options. If an unknown
level is passed, then null will be returned.
Parameters level Error level
Return Associative array used to determine error handling mechanism of level

static &getErrors() : array
Gets a reference to the global error stack.
Returns Reference to the global error stack

Appendix

[389]

static &handleCallback(&error : JException, options : array) : mixed
Calls a method in another class, passes error to it, and returns the result. options must
have two string elements, the class name and method name to be called. This is essentially
a pass-through method for the PHP call_user_func() function.

Parameters error JException error object
options array('classname', 'methodname')

Return Result of the executed method

static &handleDie(&error : JException, options : array) : JException
Terminates the script and outputs the JException message to screen in HTML. If $_
SERVER['HTTP_HOST'] is not set, the message will either be echoed in plain text, or if
STDERR is defined, written to STDERR.

Parameters error JException error object
options Array of options (ignored)

Return $error

static &handleEcho(&error : JException, options : array) :
JException

Outputs JException message to screen in HTML. If $_SERVER['HTTP_HOST'] is not set,
the message will either be echoed in plain text, or if STDERR is defined, written to STDERR.

Parameters error JException error object
options Array of options (ignored)

Return $error

static &handleIgnore(&error : JException, options : array) :
JException

Handle ignore error. No actions taken, returns error.

Parameters error JException error object
options Array of options (ignored)

Return $error

static &handleLog(&error : JException, options : array) : JException
Adds a log entry to the error log. A new error log is created every day in the format Y-m-
d.error.log. The entry includes the date, time, level, code, and message.

Parameters error JException error object
options Array of options (passed to JLog)

Return $error

Appendix

[390]

static &handleMessage(&error : JException, options : array) :
JException

Adds the JExcpetion message to the application message queue.

Parameters error JException error object
options Array of options (ignored)

Return $error

static &handleTrigger(&error : JException, options : array) :
JException

Triggers a PHP user-level error, warning, or notice.

Parameters error JException error object
options Array of options (ignored)

Return error

static &handleVerbose(&error : JException, options : array) :
JException

Outputs JException message, info, and backtrace to screen in HTML. If $_SERVER['HTTP_
HOST'] is not set, the message will either be echoed in plain text, or if STDERR is defined,
written to STDERR.

Parameters error JException error object
options Array of options (ignored)

Return $error

Return $error

static isError(&object : mixed) : boolean
Checks if object is an error (is of class JException or Exception).
Parameters object Object to check
Returns true if object is an error

Appendix

[391]

static &raise(level : int, code : string, msg : string, info : mixed=null,
backtrace : boolean=false) : mixed

Raises a new error of level and executes the associated error handling mechanisms.
level relates to the PHP error levels, E_NOTICE, E_WARNING, and E_ERROR. Error
handling levels and mechanisms can be altered.

Parameters level Error level
code Error code
msg Error message
[info] Additional error information
[backtrace] Include debug_backtrace() information

Returns Depends on error handling mechanism; normally a JException object

static &raiseError(code : string, msg : string, info : mixed=null) :
mixed

Raises a new error (E_ERROR) and executes the associated error handling mechanisms
(by default JError::handleCallback(), which in turn calls, JError::
customErrorPage()).

Parameters code Error code
msg Error message
[info] Additional information

Return Depends on error handling mechanism; normally a JException object

static &raiseNotice(code : string, msg : string, info : mixed=null) :
mixed

Raises a new notice (E_NOTICE) and executes the associated error handling mechanisms
(by default this is JError::handleMessage). Normally this method will display a notice
message on the resultant page

Parameters code Error code
msg Error message
[info] Additional information

Return Depends on error handling mechanism; normally a JException object

Appendix

[392]

static &raiseWarning(code : string, msg : string, info : mixed=null) :
mixed

Raises a new warning (E_WARNING) and executes the associated error handling
mechanisms (by default JError::handleMessage()). Normally this method will
display a warning message on the resultant page.

Parameters code Error code
msg Error message
[info] Additional information

Return Depends on error handling mechanism; normally a JException object

static registerErrorLevel(level : int, name : string, handler :
string='ignore') : boolean

Defines a new error level. If the level already exists it will be rejected. name describes to the
error type. handler defines the mode to use when an error of the new level is encountered
(ignore, echo, verbose, die, messages, or log). To use callback, use JError::
setErrorHandling() after registering the new level.

Parameters level New error level
name Name
[handler] Handler (mode)

Return true on success

static setErrorHandling(level : int, mode : string, options :
array='null') : mixed

Sets the error handling mechanism for level. Only levels that have already been defined
can be modified. mode specifies what will occur when an error of the specified level is
encountered (ignore, echo, verbose, die, messages, log, or callback). options,
if set, is passed to the handler method. For example, if mode was 'message', then
the JError::handleMessage() method would be called with two parameters—the
JException object and options. If 'mode' is callback, the options array must be
specified, and it must contain two string elements, a class name and a method to execute.
callback is special, because it is the only mode in which a method outside of the JError
class can be used to handle an error.
Parameters level Error level

mode Error handler
[options] Options to pass to the handler method

Return true on success; error on failure

static translateErrorLevel(level : int) : mixed
Gets the name of the error level. If the error level is not defined, false will be returned.
Parameters level Error level
Return Name of error level; false if error level is not defined

Appendix

[393]

JDocument
abstract, extends JObject
Encapsulates and caches a response during the execution of an application. This enables
us to make modifications to any part of the document irrespective of where we are in the
output process. For more information about the document please refer to Chapter 2.

Properties
_buffer : string Document rendered content buffer
_charset : string Character encoding; default encoding is UTF-8
_engine : object Rendering engine, used by core subclass JDocumentPDF
_generator : string Generator metadata
_lineEnd : string EOL character/string
_mdate : string Document modified date
_metaTags : array Metadata tags
_mime : string MIME type
_namespace : string Namespace, not used by core JDocument subclasses
_profile : string Document profile, not used by core JDocument subclasses
_script : array Embedded scripts
_scripts : array URIs to linked scripts
_style : array Embedded styles
_styleSheets : array URIs to linked Cascading Style Sheets
_tab : string Tab character/string
_type : string Document type
description : string Document description
direction : string Text direction (ltr or rtl); default is left-to-right
language : string Language setting, default is en (English)
link : string Base URI of the document
title : string Document title

Constructors

__construct(options : array=array()) : JDocument
Builds a new JDocument. Subclasses call parent::_construct($options). options
can contain the keys, lineend, charset, language, direction, tab, and link.
Parameters [options] Associative array of configuration options

Appendix

[394]

Methods

addLink(url : string) : void
Sets base URI of the document.
Parameters url Base URI

addScript(url : string, type : string='text/javascript') : void
Adds a link to a script to the document.

Parameters url Script URI
[type] MIME type

addScriptDeclaration(content : string, type : string='text/javascript') :
void

Embeds a script in the document.

Parameters content Script
[type] MIME type

addStyleSheet(url : string, type : string='text/css', media :
string=null, attribs : array=array()) : void

Links a stylesheet to the document. media is the link tag's media attribute. Common media
types include screen, handheld, print, and aural. attribs is an associative array of
link tag attributes.

Parameters url Script URI
[type] MIME type
[media] Link tag media attribute type
[attribs] Associative array of tag attributes

addStyleDeclaration(content : string, type : string='text/css') : void
Embeds styles in the document.

Parameters content Style content
[type] MIME type

getBuffer() : string
Gets the buffered contents of the document.
Returns Document contents

Appendix

[395]

getCharset() : string
Gets the character set encoding.
Returns Character set encoding

getDescription() : string
Gets the document description.
Returns Document description

getDirection() : string
Gets the text direction of the document, ltr (left-to-right) or rtl (right-to-left).
Returns Text direction

getGenerator() : string
Gets the document generator.
Returns Document generator

getHeadData() : array
Gets an associative array of header data. Must be implemented in child classes.
Returns Associative array of header data

static &getInstance (type : string='html', attributes : array=array()) :
JDocument

Gets a global instance of a JDocument subclass object, based on type (error, feed,
HTML, PDF, or RAW) and attributes. Use JFactory::getDocument() to get the
application document.

Parameters [type] JDocument type
[attributes] Associative array of options

Returns Global instance of a JDocument subclass object

getLanguage() : string
Gets the language of the document.
Returns Document language

getLink() : string
Gets the document base URI.
Returns Document base URI

Appendix

[396]

getMetaData(name : string, http_equiv : boolean=false) : string
Gets the document metadata. If the metadata is http-equiv (equivalent to an HTTP header)
then specify http_equiv as true.

Parameters name Metadata name
[http_equiv] Get HTTP header equivalent metadata

Returns Metadata

getModifiedDate() : string
Gets the document modified date.
Returns Document modified date

getTitle() : string
Gets the document title.
Returns Document title

getType() : string
Gets the document type.
Returns String representation of document type

&loadRenderer(type : string) : JDocumentRenderer
Gets a new instance of a JDocumentRenderer subclass object. type can be Atom,
RSS, Component, Head, Message, Module, or Modules. If you define your own
JDocumentRenderer class, you must include the class, before using this method.
Parameters type Renderer type
Returns Instance of a JDocumentRenderer-derived object

render(cache : boolean=false, params : array=array()) : string
Gets the rendered document. This method varies depending upon the subclass.

Parameters cache Cache document
params Associative array of options

Returns Rendered document

setBuffer(content : string) : void
Sets the buffered contents of the document.
Parameters content Document contents

Appendix

[397]

setCharset(type : string='utf-8') : void
Sets the character set encoding. This does not convert content to the new character set.
Parameters [type] Character set

setDescription(description : string) : void
Sets the document description.
Parameters description Document description

setDirection(dir : string='ltr') : void
Sets the text direction of the document, ltr (left-to-right) or rtl (right-to-left).
Parameters [dir] Text direction

setGenerator(generator : string) : void
Sets the document generator; default is Joomla! 1.5 - Open Source Content Management.
Parameters generator Generator name

setLanguage(lang : string='en') : void
Sets the language of the document.
Parameters [lang] Language

setLineEnd(style : string) : void
Sets the document EOL character string. style can be win, unix, mac, or a custom EOL
character string.
Parameters style System type or EOL string

setMetaData(name : string, content : string, http_equiv :
boolean=false) : void

Sets metadata. If the metadata is http-equiv (equivalent to an HTTP header) then specify
http_equiv as true.

Parameters name Metadata name
content Metadata content
[http_equiv] Header equivalent

setMimeEncoding(type : string='text/html') : void
Sets the document MIME encoding.
Parameters [type] MIME encoding

Appendix

[398]

setModifiedDate(date : string) : void
Sets the document modified date.
Parameters date Modified date

setTab(string : string) : void
Sets the document indentation string, e.g "\t".
Parameters string Indentation string

setTitle(title : string) : void
Sets the document title.
Parameters [title] Document title

setType(type : string) : void
Sets the document type.
Parameters type JDocument type

_getLineEnd() : string
Gets the EOL character/string.
Returns EOL character string

_getTab() : string
Gets the indentation character string.
Returns Indentation character string

JApplication
abstract, extends JObject
Base application class. The frontend and backend application classes both extend this class.
This class encapsulates the process from request to response. For more information about
the application refer to Chapter 2.

Properties
_clientId : int Client type; 0 = site, 1 = admin, 2 = installation
_router : JRouter Application router
_messageQueue : array Queued messages

Appendix

[399]

Constructors

__construct(clientId : int=0) : JApplication
Builds a new JApplication object with the specified clientId. Subclasses generally do not
require the clientId parameter.
Parameters [clientId] 0 = site, 1 = admin, 2 = installation

Methods

addCustomHeadTag(html : string) : void
Deprecated; use of this method is no longer advised.

Adds a custom HTML tag to the head if the document type is HTML. Instead use:
$document =& JFactory::getDocument();
if($document->getType() == 'html')
{
 $document->addCustomTag('<!—a custom tag-->');
}

Parameters HTML HTML to add to the head

addMetaTag(name : string, content : string, prepend : string='',
append : string='') : void

Deprecated; use of this method is no longer advised.
Adds metadata to the document. Instead use:

$document =& JFactory::getDocument();
$document->setMetadata('metaName', 'metaValue');

Parameters name Metadata name
content Metadata value
[prepend] Deprecated, no effect
[append] Deprecated, no effect

appendMetaTag(name : string, content : string) : void
Deprecated; use of this method is no longer advised.
Adds metadata to the document. Instead use:

$document=& JFactory::getDocument();
$document->setMetadata('metaName', 'metaValue');

Parameters name Metadata name
content Metadata value

Appendix

[400]

appendPathway(name : string, link : string=null) : boolean
Deprecated and created during the development of Joomla! 1.5.
Appends an item to the pathway. Instead use JPathWay:

$pathway = mainframe->getPathWay();
$pathway->addItem($name, $link);

Parameters name Item name
[link] Item link

Returns true on success

close(code : int=0) : void
Closes the application gracefully.
Parameters [code] exit() code

dispatch(component :string) : void
Dispatches the request and executes the relevant component, storing the rendered result in
the global JDocument object.
Parameters [component] Component being invoked

enqueueMessage(msg : string='', msgType : string='message') :
void

Adds a new message to the application message queue. Clears the session message queue.

Parameters msg Message
[msgType] Type of message

getBasePath(client : int=0, addTrailingSlash : boolean=true) : string
Deprecated; use of this method is no longer advised.
Gets the base path to application entry point, not including the file name. Instead use:

$basePath = JURI::base();

Parameters [client] Deprecated, no effect
[addTrailingSlash] Deprecated, no effect

Returns Path to application entry point, not including the file name

Appendix

[401]

getBlogCategoryCount() : int
Deprecated; use of this method is no longer advised.

Counts the number of menu items that are blog categories (content_blog_category).
Instead use:

$menus = &JMenu::getInstance();
$count = count($menus->getItems('type', 'content_blog_category'));

Returns Number of menu items that are blog categories

getBlogSectionCount() : int
Deprecated; use of this method is no longer advised.

Counts the number of menu items that are blog sections (content_blog_section).
Instead use:

$menus = &JMenu::getInstance();
$count = count($menus->getItems('type', 'content_blog_section'));

Returns Number of menu items that are blog sections

getCfg(varname : string) : mixed
Gets a configuration value.
Parameters varname Name of config value
Returns Configuration value

getClientId() : int
Gets the client id. 0 = site, 1 = administrator, 2 = installer.
Returns Client ID

getContentItemLinkCount() : int
Deprecated; use of this method is no longer advised.
Counts the number of menu items that are content item links (content_item_link).
Instead use:

$menus = &JMenu::getInstance();
$count = count($menus->getItems('type', 'content_item_link'));

Returns Number of menu items that are content item links

Appendix

[402]

getCustomPathway() : array
Deprecated and created during the development of Joomla! 1.5.

Instead use JPathWay:
$pathway = mainframe->getPathWay();
$customPathway = $pathway->getPathWayNames();
Returns Array of breadcrumbs

getGlobalBlogSectionCount() : int
Deprecated; use of this method is no longer advised.

Counts the number of menu items that are blog sections (content_blog_section).
Instead use:

$menus = &JMenu::getInstance();
$count = count($menus->getItems('type', 'content_blog_section'));

Returns Number of menu items that are blog sections

getHead() : string
Deprecated; use of this method is no longer advised.

Gets the document head. Instead use:
$document =& JFactory::getDocument();
$head = $document->get('head');

Returns Document head

getItemId(id : int) : int
Deprecated; use of this method is no longer advised.

Gets the menu ItemId for the specified content item. Instead use:
ContentHelper::getItemid($id, $categoryId, $sectionId);

Parameters id Content item ID
Returns Menu ItemId for the specified content item

getMessageQueue() : array
Gets a copy of the application message queue. If no application messages exist and
there are session messages, the session message queue will be moved to the application
message queue.
Returns Array of application messages

Appendix

[403]

getPageTitle() : string
Deprecated; use of this method is no longer advised.

Gets the title of the document. Instead use:
$document=& JFactory::getDocument();
$title = $document->getTitle();

Returns Menu ItemId for the specified content item

getPath(varname : string, user_option : string=null) : string
Deprecated; use of this method is no longer advised.
Determines path to a resource. varname (resource type) can be front, html, front_
html, toolbar, toolbar_html, toolbar_default, toolbar_front, admin, admin_
html, admin_functions, class, helper, com_xml, mod0_xml, mod1_xml, plg_xml,
or menu_xml. user_option refers to a user-related option, for example com_content.
Instead use:

$path = JApplicationHelper::getPath($varname, $user_option);

Parameters varname User_option type
[user_option] User option

Returns Path

&getRouter() : JRouter
Gets the application router object.
Returns Application router object

getStaticContentCount() : int
Deprecated; use of this method is no longer advised.

Counts the number of menu items that are static content (content_typed). Instead use:
$menus = &JMenu::getInstance();
$count = count($menus->getItems('type', 'content_typed'));

Returns Number of menu items that are static content

getTemplate() : string
Gets the name of the application template.
Returns Application template name

Appendix

[404]

getUser() : JUser
Deprecated; use of this method is no longer advised.
Gets the current user object. Instead use:

$user =& JFactory::getUser();

Returns User object

getUserState(key : string) : mixed
Gets a value from the user session registry.
Parameters key Name of the user session registry value
Returns Value from the user session registry

getUserStateFromRequest(key : string, request : string, default :
mixed=null, type : string='none') : string

Gets a value from the user session registry, updating with a request value if a request
value exists.

Parameters key Name of the session registry value
request Name of the request value
[default] Default value

[type]

Name of the hash from which the request
value should be retrieved

Returns Up-to-date value from the user session registry

initialise(options : array=array()) : void
Initializes the application. Prepares application language, defines date formats, and builds
the application router.
Parameters [options] Associative array of options

isAdmin() : boolean
Checks if application is administrator (client ID is 1).
Returns true if application is backend

isSite() : boolean
Checks if application is frontend (client ID is 0).
Returns true if application is frontend

Appendix

[405]

loadConfiguration(file : string) : void
Loads the application configuration and sets the database debug mode.
Parameters file Path to configuration file

loadSession(name : string) : void
Loads the session. Creates a new session, if the session does not already exist.
Parameters name Session name

login(credentials : array, options : array=array()) : mixed
Checks Joomla! credentials. credentials must include the keys username and
password. If the login fails a warning will be raised. If any onLoginUser event handlers
return false, login will be unsuccessful.

Parameters
credentials Associative array of user credentials
[options] Options to pass to the authentication plugins

Returns true on success

logout() : boolean
If a user is logged-in, logs them out
Returns true on success

prependMetaTag(name : string, content : string) : void
Deprecated; use of this method is no longer advised.

Adds metadata to the document. Instead use:
$document=& JFactory::getDocument();
$document->setMetadata('metaName', 'metaValue');

Parameters name Metadata name
content Metadata value

registerEvent(event : string, handler : string) : void
Registers an event handler with the global event dispatcher. handler must be the name of
a function or the name of a class that has a method of the same name as event.

Parameters event Name of event
handler Function or class name

render() : void
Renders the response and adds it to the static JResponse body.

Appendix

[406]

redirect(url : string, msg : string='', msgType : string='message') : void
Redirects to the specified url and, if specified, enqueues msg, ready to be served in the next
request. This method closes the application. If the headers have not been sent an HTTP 301
(Moved Permanently) response will be made, otherwise a JavaScript redirect will be used.

Parameters url Redirect URI
[msg] Optional message to enqueue
[msgType] Type of message

route() : void
Route the applictaion. Chooses the route through the application to take, based on the
request URI.

setPageTitle(title : string=null) : void
Deprecated; use of this method is no longer advised.

Sets the title of the document. Instead use:
$document =& JFactory::getDocument();
$document->setTitle($title);

Parameters [title] Document title

setUserState(key : string, value : mixed) : mixed
Sets a value in the user session registry.

Parameters key Name of the user session registry value
value Key value

Returns Value from the user session registry

triggerEvent(event : string, args : array=null) : array
Triggers an event. This will notify any registered event handlers associated with the event
that the event has occurred. args is exploded and each element is passed as individual
argument to the handler.

Parameters event Event to trigger
[args] Array of arguments to pass to the handlers

Returns Array of the resultant returns from the event handlers

&_createConfiguration(file : string) : JConfig
Loads the global configuration. The configuration file must define the class JConfig.
Parameters file Path to configuration file
Returns JConfig configuration object

Appendix

[407]

&_createRouter() : JRouter
Gets the application router. If the application router does not exist, it is created.
Returns Application router

&_createSession(name : string) : JTableSession
If a session does not exist, creates a session and adds it to the #__session table. If a
session already exists, updates the session expiry time.
Parameters name Session name
Returns Session JTable object

JURI
extends JObject
Handles URIs

Properties
_fragment : string URI fragment (internal document location)
_host : string Host
_pass : string URI Password (not the Joomla! user's password)
_path : string Path
_port : int Port number
_query : string GET query
_scheme : string URI scheme (e.g. http)
_uri : string URI
_user : string URI Username (not the Joomla! user's username)
_vars : array GET query, associative array

Constructors

__construct(uri : string=null) : JURI
Builds a new JURI object. If uri is specified, it will be parsed.
Parameters [uri] URI to parse

Methods

static base() : string
Gets the base URI for the entry point, not including the filename.
Returns Base URI

Appendix

[408]

current() : string
Gets the URI of the current location including the scheme, host, port, and path.
Returns Current URI

delVar(name : string) : void
Deletes a value from the URI query.
Parameters name Name of query value

getFragment() : string
Gets the URI fragment identifier (denoted by a hash, #).
Returns URI fragment identifier

getHost() : string
Gets the URI host name. This does not include the path to the resource.
Returns Host name or IP address

static &getInstance(uri : string='SERVER') : JURI
Gets a global instance of a JURI object. If uri is not specified, uri will be constructed based
on the current request.
Parameters [uri] URI object to get
Returns Global instance of a JURI object

getPass() : string
Gets the URI password. This is part of the scheme authorization; it is not the same as
Joomla! authorization.
Returns Scheme password

getPath() : string
Gets the URI path. This does not include the host name.
Returns URI path

getPort() : int
Gets the URI port. If it is the default port for the scheme, this may not return anything.
Returns Port number

Appendix

[409]

getQuery(toArray : boolean=false) : mixed
Gets the URI query. If toArray is false, it will return a string, otherwise it will return an
associative array.
Parameters [toArray] Get in array format
Returns URI query string

getScheme() : string
Gets the URI scheme, normally http or https.
Returns URI scheme

getUser() : string
Gets the URI username. This is part of HTTP authorization; it is not the same as Joomla!
authorization, or Joomla! user's username.
Returns Scheme username

getVar(name : string=null, default : mixed=null) : string
Gets a value from the URI query. Returns default if not set.

Parameters [name] Name of query value
[default] Default value

Returns Value from the URI query

isSSL() : boolean
Determines if the URI scheme is https.
Returns true if scheme is https

parse(uri : string) : boolean
Attempts to parse a URI, the results of which are stored in the object.
Parameters uri URI to parse
Returns true on success

setFragment(anchor : string) : void
Sets the URI fragment identifier.
Parameters anchor Fragment identifier

setHost(host : string) : void
Sets the URI host name. This does not include the path to the resource.
Parameters host Host name or IP address

Appendix

[410]

setPass(pass : string) : void
Sets the URI password. This is part of the scheme authorization; it is not the same as
Joomla! authorization.
Parameters pass Scheme password

setPath(path : string) : void
Sets the URI path.
Parameters path URI path

setPort(port : int) : void
Sets the URI port.
Parameters port Port number

setQuery(query : mixed) : void
Sets the URI query. This can be done using a query string or an associative array.
Parameters query Query string or associative array

setScheme(scheme : string) : string
Sets the URI scheme, normally http or https.
Parameters scheme Scheme to set to

setUser(user : string) : void
Sets the URI username. This is part of the scheme authorization; it is not the same as
Joomla! authorization.
Parameters user Scheme username

setVar(name : string, value : string) : string
Sets a value in the URI query. Returns the previous value.

Parameters name Name of query value
value New value

Returns Previous value

toString(parts : array=array('scheme', 'user', 'pass', 'host', 'port',
'path', 'query', 'fragment')) : string

Returns the URI in string format, including the defined parts. The default value for parts
includes all of the possible parts of the URI. Order of elements in parts is not important.
Parameters [parts] Parts to include in the URI
Returns String representation of the JURI object

Appendix

[411]

_buildQuery(params : array, akey : string=null) : string
Builds a URI query from the params associative array. akey is used internally as part of a
callback routine for array query values.

Parameters path Path to clean
[akey] Array name

Returns Cleaned path

_cleanPath(path : string) : string
Cleans the passed URI. Removes any unnecessary clutter from the path.
Parameters path URI to clean
Returns Cleaned path

JLanguage
extends JObject
Handles languages and translation.

Properties
_debug : boolean Debug mode
_default : string Default language (en-GB)
_lang : string Language name
_metadata : array Language metadata
_orphans : array Strings that failed translation (only maintained during debug)
_paths : array Array of loaded language file paths
_strings : array Associative array of translations
_used : array Array of used strings (only maintained during debug)

Constructors

__construct(lang : string=null) : JLanguage
Builds a new JLanguage object. Loads the specified language; if lang is not specified the
default language, en-GB, will be loaded.
Parameters [lang] Language to load

Appendix

[412]

Methods

exists(lang : string, basePath : string=JPATH_BASE) : boolean
Checks if a language exists in the default language folder. basePath is one level above
where the languages reside.

Parameters lang Language to look for
[basePath] Basis for building language path

Returns true if the language exists

get(property : string, default : mixed=null) : mixed
Gets metadata about the language. Common properties include name and tag.

Parameters
property Property to retrieve
[default] Default if the property is not set

Returns Value of the property

getBackwardLang() : string
Gets the backward-compatible language name. Used for legacy support.
Returns Backward-compatible language name

getDebug() : boolean
Checks if the language object is in debug mode.
Returns true if the language object is in debug mode

getDefault() : string
Gets the default language.
Returns Default language

&getInstance(lang : string) : JLanguage
Gets a global instance of JLanguage. If an instance for the specified lang does not exist, it
will be created.
Parameters lang Language to load
Returns A global instance of JLanguage

Appendix

[413]

getKnownLanguages(basePath : string=JPATH_BASE) : array
Gets a two-dimensional associative array of all the known languages. The array
contains keys named the same as the languages, which contain associative arrays of the
corresponding language metadata.
Parameters [basePath] Path on which to look for the languages folder
Returns Two-dimensional associative array languages and metadata

getLanguagePath(basePath : string=JPATH_BASE, language :
string=null) : string

Gets the path to a language. If language is not specified, the path will point to all languages.

Parameters [basePath] Basis for building language path
[language] Language name

Returns Path to a language, or all languages

getLocale() : array
Gets an array of the language locales, for example en-GB, en, english.
Returns Array of the different language locales

getMetaData(lang : string) : array
Returns an associative array containing the metadata about the specified language.
Parameters lang Language to get metadata for
Returns Associative array of metadata; returns null on failure

getName() : string
Gets the name of the language.
Returns Language Name

getOrphans() : array
Gets the orphan strings. This is an array of strings that could not be translated. This
information is only collated if the language object is in debug mode.
Returns Array of orphan (not translated) strings

getPaths(extension : string=null) : array
Gets an array of loaded language file paths. If extension is defined, only information
about language files that are specific to that extension will be returned.
Parameters [extension] Name of the extension
Returns Array of loaded language file paths

Appendix

[414]

getPdfFontName() : string
Gets the PDF font name.
Returns PDF font name

getTag() : string
Gets the language tag, for example en-GB.
Returns Language tag

getUsed() : array
Gets an array of strings that were successfully translated.
Returns Array of successfully translated strings

getWinCP() : string
Gets the Windows Code Page name.
Returns Windows Code Page name

hasKey(key : string) : boolean
Checks if a translation exists.
Parameters key Translation to look for
Returns true if translation exists

isRTL() : boolean
Checks if the language is written right-to-left.
Returns true if Language is written right-to-left

load(extension : string='joomla', basePath : string=JPATH_BASE) :
boolean

Loads a language file. extension is used to identify the extension for which we are
loading the language file, this determines where the file is located. basePath is one level
above where the languages reside. If a language fails to load, normally because the file does
not exist, or is inaccessible, the equivalent default language will be loaded. Note that the
new translations are merged with previously loaded translations.

Parameters [extension] Name of the extension
[basePath] Basis for building language path

Returns true on success

Appendix

[415]

setDebug(debug : boolean) : boolean
Turns debug on or off.
Parameters debug Turn debug on or off
Returns Previous debug value

setDefault(lang : string) : string
Sets the default language.
Parameters lang Default language
Returns Previous default language value

setLanguage(lang : string) : string
Sets the language and loads the metadata. This does not load the translations; use the
load() method to load the translations.
Parameters lang Language identifier
Returns Returns previous language

_(string : string, jsSafe : boolean=false) : string
Attempts to translate string. jsSafe, if true, will add slashes to the translated string.
If a translation cannot be found the original string will be returned. If debug is enabled,
translated strings will be encapsulated by bullet characters, strings translated from a
constant will be encapsulated in double exclamation marks, and strings that are not
translated will be encapsulated in double question marks.

Parameters string String to translate
[jsSafe] Add slashes to translated string

Returns Translated string

_load(filename : string, extension : string='unknown') : mixed
Loads a language file and returns an associative array of translations.

Parameters filename Language path and filename to load
[extension] Name of the extension

Returns Associative array of translations; false on failure

_getCallerInfo() : array
Gets back-trace information that can be used to determine where a method call originated.
Returns Back-trace information

Appendix

[416]

_parseLanguageFiles(dir : string=null) : array
Gets a two-dimensional associative array of all the languages in the path specified by dir.
The returned associative array contains keys named the same as the languages, which
contain associative arrays of the corresponding metadata.
Parameters [dir] Path to look for languages in
Returns Two-dimensional associative array of languages and metadata

_parseXMLLanguageFile(path : string) : array
Parses an individual XML language information file and returns an array of metadata.
Parameters path Path to XML language information file
Returns Associative array of metadata

_parseXMLLanguageFiles(dir : string=null) : array
Gets a two-dimensional associative array of all the XML language information files in
dir. The array contains keys named the same as the languages, which contain arrays of
metadata. Normally there will only be one XML language information file per language.
Parameters [dir] Path to XML language information files
Returns Two-dimensional associative array of languages and metadata

JLanguageHelper
static
Performs language functions that are not specific to an individual language

Methods

static detectLanguage() : string
Attempts to detect the language using the HTTP headers. If unable to detect, assumes en-GB.
Returns Detected language

static createLanguageList(actualLanguage : string, basePath :
string=JPATH_BASE, caching : boolean=true) : array

Gets an array of language options. Each element is an associative array with three keys,
name, value, and selected. This can be used to build a selection list of languages.

Parameters actualLanguage Current language
[basePath] Path in which to find known languages
[caching] Use cached response

Returns Two-dimensional array of language options

Appendix

[417]

JText
static
Translates strings to the correct language using the JLanguage class.

Methods

static printf(string : string) : int
Works like the PHP printf() function, except that string is translated. This method
accepts a variable number of parameters. The additional arguments will not be translated.
The result is outputted, and the method returns the length of the outputted string. If no
additional parameters are specified, a null string will be returned. Refer to the PHP manual
for more information: http://php.net/manual/function.printf.php.

Parameters string String to translate
(extra arguments) Multiple arguments to insert into string

Returns Length of translated string

static sprintf(string : string) : string
Works like the PHP sprintf() function, except that string is translated. This method
accepts a variable number of parameters. The additional parameters will not be translated.
If no additional parameters are specified, a null string will be returned. Refer to the PHP
manual for more information: http://php.net/manual/function.sprintf.php.

Parameters string String to translate
(extra arguments) Multiple arguments to insert into string

Returns Translated string

static _(string : string, jsSafe : boolean=false) : string
Attempts to translate string. jsSafe, if true, will add slashes to the translated string.
See the JLanguage _() method for more information.

Parameters string String to translate
[jsSafe] Add slashes

Returns Translated string

JElement
abstract, extends JObject
This class is used to aid integration of extensions into Joomla!. A core use of this class
enables the selection of bespoke parameters options when creating new menu items. The
class is used in conjunction with an XML definition of an element, and used extensively
by the JParameter class. For more information about JElement refer to the Parameters (Core
JElements) section in this Appendix.

Appendix

[418]

Properties
_name : string Element name
_parent : object Parent object that created the instance

Constructors

__construct(parent : object=null) : JElement
Builds a new JElement object and sets the parent object.
Parameters [parent] Parent object

Methods

fetchElement(name : string, value : string, &xmlElement :
JSimpleXMLElement, control_name : string) : string

Gets the rendered element. This method must be overridden in subclasses. For example,
the output could be:

<input type="text" name="controlName[name]" id="controlNamename"
 value="value" class="text_area" size="20" />

Parameters name Name and ID suffix
value Value
xmlElement JSimpleXMLElement element definition
control_name Name and ID prefix

Returns Rendered element

fetchTooltip(label : string, description : string, &xmlElement :
JSimpleXMLElement, control_name : string='', name : string='') :
string

Gets a tooltip, encapsulated in HTML label tags.

Parameters label Content and title
description Title suffix
xmlElement JSimpleXMLElement element definition
[control_name] ID prefix
[name] ID suffix

Returns HTML tooltip

Appendix

[419]

getName() : string
Gets the name of the element.
Returns Element name

render(&xmlElement : JSimpleXMLElement, value : string, control_
name : string='params') : array

Gets an array containing the rendered parts and attributes of the element. The array
contains six items in order, tooltip [0], rendered input element [1], description [2], label
[3], value [4], and name [5].

Parameters xmlElement JSimpleXMLElement element definition
value Element value
[control_name] Name of the control

Returns An array containing rendered parts and attributes of the element

JParameter
extends JRegistry
Handles INI string parameters. This class is used in conjunction with JElement subclasses
and XML files that define the nature of parameters. INI strings are used in database tables
for values that do not have a specific field. An instance of the class can be used to handle
multiple INI strings (with different XML definitions), using groups to separate each
one. When dealing with one INI string, omitting the group will always use the default
group, '_default'. For more information about JParameter refer to the Parameters (Core
JElements) section in this Appendix.

Properties

_elementPath : array Array of paths in which to find JElement subclasses (not
restricted to groups)

_elements : array Associative array of JElement objects (not restricted to groups)
_raw : string INI string

_xml : array Associative array of JSimpleXMLElement objects that define
parameters (one object per group)

Constructors

__construct(data : string, path : string='') : JParameter
Builds a new JParameter object and loads data and, if specified, the XML file.

Parameters data INI string
[path] Path to XML file

Appendix

[420]

Methods

addElemenrPath(path : mixed) : void
Adds a path, or array of paths, to search for JElement subclass files.
Parameters path Path or array of paths

bind(data : mixed, group : string=' _default') : boolean
Binds data with parameters in the specified group. data can be an associative array, an
object, or an INI string.

Parameters data Data to bind
[group] Parameter group

Returns true on success

def(key : string, value : string='', group : string= '_default') : string
If the parameter is not defined, sets the value of the parameter in the specified group.

Parameters key Parameter to get
[value] Value if not defined
[group] Parameter group

Returns Up-to-date value of the parameter

get(key : string, default : string='', group : string='_default') : string
Gets the value of a parameter in the specified group. Returns the default value if the
parameter is not set.

Parameters key Parameter to retrieve
[default] Default value to return
[group] Parameter group

Returns Value of the parameter

getGroups() : mixed
Gets an associative array of the group names and the number of parameters in each,
defined by the corresponding JSimpleXMLElement object. Groups that do not have a
JSimpleXMLElement object will not be included.

Returns

Associative array of group names and number of parameters in each.
Returns false if no XML has been successfully loaded.

Appendix

[421]

getNumParams(group : string=' _default') : mixed
Gets the number of parameters defined by the associated JSimpleXMLElement object, in the
specified group.
Parameters [group] Parameter group
Returns Number of parameters; false if no JSimpleXMLElement object exists

getParam(&node : JSimpleXMLElement, control_name :
string='params', group : string=' _default') : mixed

Gets an array of parameter details from a group. The array contains six items in order: tooltip
[0], HTML rendered string [1], description [2], label [3], value [4], and name [5].

Parameters Node JSimpleXMLElement parameter to render
[control_name] Input names
[group] Parameter group

Returns Array of parameter details from a group

getParams(name : string='params', group : string=' _default') :
mixed

Gets a two-dimensional array of all the parameters in a group. The inner arrays contain six
items in order: tooltip [0], HTML rendered string [1], description [2], label [3], value
[4], and name [5].

Parameters [name] Input names and ID prefix
[group] Parameter group

Returns Two-dimensional array of all the parameters in a group; false on failure

&loadElement(type : string, new : boolean=false) : mixed
Gets an instance of a JElement subclass object based on type. If an instance of the specified
type does not exist, it will be created. If new is true, a new instance will be created even if
there is an existing instance. JElements subclass objects are not restricted to groups.

Parameters path Path to XML file
[new] Force create new instance

Returns Instance of a JElement object; false on failure

loadSetupFile(path : string) : boolean
Builds a JSimpleXMLElement object from an XML file. The XML file can include the group
name; if it does not, the group '_default' will be assumed.
Parameters path Path to XML file
Returns true on success

Appendix

[422]

render(name : string='params', group : string=' _default') : mixed
Renders a group within the parameters and returns an HTML string.

Parameters [name] Input names and ID prefix
[group] Parameter group

Returns HTML rendered string; false on failure

renderToArray(name : string='params', group : string=' _default') :
mixed

Renders a group within the parameters and returns an array of HTML strings.

Parameters [name] Input names and ID prefix
[group] Parameter group

Returns Array of HTML rendered parameters; false on failure

set(key : string, value : string='', group : string='_default') : string
Sets the value of a parameter in the specified group.

Parameters key Parameter to set
[value] New value
[group] Parameter group

Returns Previous value of the parameter

setXML(&xml : JSimpleXMLElement) : void
Sets an XML definition; the group is extracted from the group attribute of the object.
Parameters [xml] JSimpleXMLElement object to add

JCache
abstract, extends JObject
Handles caching. Several subclasses exist for caching different items; subclasses are
sometimes referred to as JCache types. JCache uses JCacheStorage subclass objects to store
and retrieve cache data.

Properties
_handler : JCacheStorage Storage handler
_options : array Cache handling options

Appendix

[423]

Constructors

__construct(options : array) : JCache
Builds a new JCache object. The options associative array can contain the keys
language, cachebase, defaultgroup, caching, and storage. language is used
to create separate caches for different languages. cachebase is used as the path to the
base cache folder. defaultgroup is the group name used when no group is specified
in other methods. caching is a Boolean value; if true caching is enabled. Cached data
is identified by an ID and a group. The way the cache is stored differs, depending on the
chosen storage handler. storage is a string that defines the default storage handler type.
Parameters options Associative array of options

Methods

clean(group : string=null, mode : string='group') : boolean
Removes all cached items in group. If mode is 'group', removes all cached data in
group, if mode is 'notgroup', removes all cached data in other groups.

Parameters [group] Selected group
[mode] Cleaning mode

Returns true on success

gc() : boolean
Removes any redundant cached data (data that has expired).
Returns true on success

get(id : string, group : string=null) : mixed
Gets cached data. Cached data is identified by an ID and a group. Returns false if no
cached data is available.

Parameters id Cached data ID
[group] Cached data group

Returns Cached data; false if no cached data is found

static &getInstance(type : string='output', options : array=array()) :
JCache

Gets a new instance of a JCache subclass object based on type. options is passed to
the constructor.

Parameters [type] JRegistry instance identifier
[options] Options to pass to the constructor

Returns A new instance of a JCache derived object

Appendix

[424]

static getStores() : array
Gets an array of storage handler names that will operate correctly in the current environment.
Returns Array of storage handler names

remove(id : string, group : string=null) : boolean
Removes cached data, identified by id and group.

Parameters id Cached data ID
[group] Cached data group

Returns true if the data is removed

setCacheValidation() : void
Deprecated; this method no longer performs any action, and there is no replacement function
or method.

setCaching(enabled : boolean) : void
Enables and disables caching.
Parameters enabled Turn caching on or off

setLifeTime(lt : int) : void
Sets the maximum lifetime of cached items in seconds.
Parameters lt Lifetime of cached items in seconds

store(data : string, id : string, group : string=null) : boolean
Adds data to the cache, identified by id and group.

Parameters data Data to chache
id Cached data ID
[group] Cached data group

Returns true if the item is stored

&_getStorageHandler() : JCacheStorage
Gets the cache storage handler. If the handler does not exist it will be created.
Returns Cache storage object

JMail
extends PHPMailer
Sends emails.

Appendix

[425]

Constructors

JMail() : JMail
Builds a new JMail object.

Methods

addAtachment(attachment : mixed) : void
Adds one attachment if attachment is a string (filename). Adds multiple attachments if
attachment is an array (filenames).

Parameters

attachment

Attachment file path or array of attachment
file paths

addBCC(bcc : mixed) : void
Adds one blind carbon copy recipient if bcc is a string. Adds multiple blind carbon copy
recipients if bcc is an array.

Parameters

bcc

Email address string or array of email
addresses

addCC(cc : mixed) : void
Adds one carbon copy recipient if cc is a string. Adds multiple carbon copy recipients if cc
is an array.

Parameters

cc

Email address string or array of email
addresses

addRecipient(recipient : mixed) : void
Adds one recipient if recipient is a string. Adds multiple recipients if recipient is
an array.

Parameters

recipient

Email address string or array of email
addresses

addReplyTo(replyto : array) : void
Sets the reply-to email address and name. replyto can be an array of two elements
array('email@address', 'name') or an array of arrays in this format.
Parameters from Email address array

Appendix

[426]

static &getInstance(id : string='Joomla') : JMail
Gets a reference to a global instance of a JMail object. If the object does not exist it will be
created. id identifies the JMail object to return.
Parameters [id] JMail ID
Returns Reference to a global JMail object

&Send() : mixed
Sends the email.
Returns true on success, error on failure

setBody(content : string) : void
Sets the email body.
Parameters content Email body

setSender(from : mixed) : void
Sets the sender's email address and name. from can either be an array of two elements—
array('email@address', 'name')—or a string consisting of one email address

Parameters

from

Email address string or array of email
address and email name

setSubject(subject : string) : void
Sets the email subject line.
Parameters subject Email subject line

useSendmail(sendmail : string=null) : boolean
If sendmail is specified, sets the object to use the sendmail path. If sendmail is not
specified, sets the object to use the PHP mail() function.
Parameters [sendmail] Path to sendmail
Returns true if sendmail is enabled

useSMTP(auth : boolean=null, host : string=null, user : string=null,
pass : string=null) : boolean

If all parameters are specified, sets the object to use SMTP. If any of the parameters are not
specified, sets the object to use the PHP mail() function.

Parameters [auth] Use SMTP authorization
[host] SMTP host
[user] Username
[pass] Password

Returns true if SMTP is enabled

Appendix

[427]

JMailHelper
static
Performs mail functions that are not specific to an individual JMail object.

Methods

static cleanAddress(address : string) : mixed
Determines if an email address is clean. An unclean email address may include spaces,
semicolons, and commas.
Parameters address Address to clean
Returns Email address or false if the address is deemed to be unclean

static cleanBody(body : string) : string
Cleans a multi-line string for use in an email body. Removes unsafe characters and
potentially confusing MIME header strings.
Parameters body String to clean
Returns Cleaned string

static cleanLine(value : string) : string
Cleans a line for use in an email. Removes unsafe characters.
Parameters value String to clean
Returns Cleaned string

static cleanSubject(subject : string) : string
Cleans an email subject line. Removes unsafe characters and potentially confusing MIME
header strings.
Parameters subject String to clean
Returns Cleaned string

static cleanText(value : string) : string
Cleans a multi-line string for use in an email. Removes unsafe characters and potentially
confusing MIME header strings.
Parameters value String to clean
Returns Cleaned string

Appendix

[428]

static isEmailAddress(email : string) : boolean
Checks if email is a valid email address.
Parameters email Email to validate
Returns true if email is in a valid format

JFactory
static
Joomla! static factory class for accessing global objects and building new objects.

Methods

static &getACL() : JAuthorization
Gets the global authorization object. If the authorization object does not exist it will
be created.
Returns Global authorization object

static &getCache(group : string='', handler : string='callback',
storage : string=null) : JCache

Gets the global cache object. If the cache object does not exist it will be created. group is the
group to which the cache belongs.to which the cache belongs.which the cache belongs. handler is the handler to use; this can be callback,
output, page, or view. storage is the storage mechanism to use; this can be apc,
eaccelerator, file, memcache, or xcache. In most instances, it will not be necessary
to define handler or storage.

Parameters [group] Cache group
[handler] Handler type
[storage] Storage type

Returns Global cache object

static &getConfig(file : string=null, type : string='PHP') : JRegistry
Gets the global configuration object. If the object does not exist, it will be created. file is
the path, including the name, of the configuration file. type is the format of configuration
file; this currently has no effect. The parameters need only be specified the first time this
method is run.

Parameters file Path and name of the configuration file
[type] Type of configuration file

Returns Global configuration object

Appendix

[429]

static &getDBO() : JDatabase
Gets the global database object. If the database object does not exist it will be created.
Returns Global database object

static &getDocument() : JDocument
Gets the global document object. If the document object does not exist it will be created.
Returns Global document object

static &getEditor(editor : string=null) : JEditor
Gets a new instance of the specified editor. If editor is not specified, the default editor
will be used.
Parameters [editor] Type of editor
Returns A new editor object

static &getLanguage() : JLanguage
Gets the global language object. If the language object does not exist it will be created.
Returns Global language object

static &getMailer() : JMail
Gets the global mail object loaded with the site mail settings. If the mail object does not
exist it will be created.
Returns Global mail object

static &getSession(options : array=array()) : JSession
Gets the global session object. If the session does not exist it will be created. The options
associative array is the options to pass on to the session storage handler; this only needs to
be specified the first time the method is executed.
Parameters [options] Options to pass to the session storage handler
Returns Global session object

static &getTemaplate() : JTemplate
Gets the global template object. If the template object does not exist it will be created.
Returns Global template object

static &getURI(uri : string='SERVER') : JURI
Gets a global instance of the specified JURI object. If uri is not specified, the requested URI
will be used.
Parameters [uri] URI
Returns A global JURI object.

Appendix

[430]

static &getUser() : JUser
Gets the current user object.
Returns Global user object

static &getXMLParser(type : string='DOM', options : array=array()) :
object

Creates a new XML Parser object. Supported types are RSS, Atom, Simple, and DOM;
if an unrecognized type is provided, a DOM XML parser will be created. The options
associative array can contain the key rssUrl if the type is Atom or RSS. The options
associative array can contain the key lite if the type is DOM. The XML parser classes
include SimplePie, JSimpleXML, DOMIT_Document, and DOMIT_Lite_Document.

Parameters [type] Type of Parser
[options] Parser options

Returns A new XML parser object

static &_createACL() : JAuthorization
Creates the global authorization object.
Returns New global authorization object

static &_createConfig(file : string, type : string='PHP') : JRegistry
Creates the global configuration object. file is the path to the configuration file. type is
the format of the configuration file.

Parameters file Path to the configuration file
[type] Type of configuration file

Returns New global configuration object

static &_createDBO() : JDatabase
Creates the database object.
Returns New global database object

static &_createDocument() : JDocument
Creates the global document object. The document type is determined by the value of the
format request. If no format is included, HTML is assumed.
Returns New global document object

static &_createLanguage() : JLanguage
Creates the language object.
Returns New global language object

Appendix

[431]

static &_createMailer() : JMail
Creates the global mail object.
Returns New global mail object

static &_createSession(options : array=array()) : JSession
Creates the global session object. If the session has expired, it will be restarted.
Parameters [options] Session storage handler options
Returns New global session object

static &_createTemplate() : JTemplate
Creates the template object.
Returns New global template object

JRegistry
extends JObject
Handles configuration details in a hierarchy using namespaces.

Properties
_defaultNameSpace : string Namespace to use by default
_registry : array Registry data

Constructors

__construct(namespace : string='default') : JRegistry
Builds a new JRegistry object and adds the namespace, setting it as the default.
Parameters [namespace] Default namespace

Methods

static &getInstance(id : string, namespace : string='default') : JRegistry
Gets a global instance of JRegistry, identified by id. If the instance does not exist it will
be created.

Parameters id JRegistry instance ID

[namespace]

Default namespace, only used if the instance
does not exist

Returns A global instance of JRegistry

Appendix

[432]

getNameSpaces() : array
Gets the names of all the namespaces in the registry.
Returns Array of namespace names

getValue(regpath : string, default : mixed=null) : mixed
Gets a value from the registry. regpath can include multiple levels separated by periods.
If the path includes no periods, the value will be retrieved from the default namespace. If
the value is not set, the default value will be returned.

Parameters regpath Path to value
[default] Default value

Returns Value of the item identified by regpath

loadArray(array : array, namespace : string=null) : boolean
Loads an associative array into the registry namespace. The array keys must not contain
periods. If the namespace is not specified, the default namespace will be used.

Parameters array Associative array to load
[namespace] The namespace to load the array into

Returns true

loadFile(file : string, format : string='INI', namespace : string=null) :
boolean

Loads a configuration file into the registry namespace. The file parameter keys must not
contain periods. Possible formats are INI, PHP, and XML. If the namespace is not specified,
the default namespace will be used.

Parameters file File path
[format] File format
[namespace] Namespace to load the file into

Returns true

loadINI(data : string, namespace : string=null) : boolean
Loads an INI string into the registry namespace. The INI parameter keys must not contain
periods. If the namespace is not specified, the default namespace will be used.

Parameters data INI string
[namespace] The namespace to load the INI into

Returns true

Appendix

[433]

loadObject(&object : object, namespace : string=null) : boolean
Loads public properties of an object into the registry namespace. If the namespace is not
specified, the default namespace will be used.

Parameters object Object to load
[namespace] The namespace to load the object into

Returns true

loadXML(data : string, namespace : string=null) : boolean
Loads an XML string into the registry namespace. The XML parameter keys must not
contain periods. If the namespace is not specified, the default namespace will be used.

Parameters data XML string
[namespace] Namespace to load the XML into

Returns true

makeNameSpace(namespace : string) : boolean
Creates a new namespace in the registry. If the namespace already exists, it will
be overwritten.
Parameters namespace Namespace to create
Returns true

merge(&source : JRegistry) : boolean
Merges the registry data with source registry data. The source values take precedence
over existing values.
Parameters source JRegistry to merge from
Returns true on success

setValue(regpath : string, value : mixed) : mixed
Sets a value in the registry. The regpath can include multiple levels separated by periods.
If the path includes no periods, the value will be set in the default namespace. If the
regpath does not exist, it will be created.

Parameters regpath Path to value
value Value

Returns Previous value

toArray(namespace : string=null) : array
Gets an associative array representation of the registry namespace. If namespace is not
specified, the default namespace will be used.
Parameters namespace The namespace to get
Returns Array representation of the registry

Appendix

[434]

toObject(namespace : string=null) : array
Gets an object (stdClass) representation of the registry namespace. If namespace is not
specified, the default namespace will be used.
Parameters [namespace] The namespace to load the array into
Returns Object representation of the registry

toString(format : string='INI', namespace : string=null, params :
mixed) : string

Gets a string representation of the registry namespace in the specified format. Possible
formats are INI, PHP, and XML. If the namespace is not specified, the default namespace
will be used. params is passed to the format handler objectToString() method; use of
params depends upon format. Some format handlers are restricted to a maximum depth.

Parameters [format] Registry format handler name
[namespace] The namespace to get
[params] Options to pass to the format handler

Returns String representation of the registry

JSession
extends JObject
Handles a user session and stores session data in namespaces. For more information about
sessions refer to Chapter 7.

Properties
_expire : int Length of inactive time before session expires.

_security : array

Security session validation options. Can include the keys
fix_browser and fix_adress (note that fix_adress is
not a typo).

_state : string State of the session (active, expired, destroyed, or error)
_store : JSessionStorage Session storage handler

Constructors

__construct(store : string='none', options : array=array()) : JSession
Builds a new JSession object. store is the storage handler type, normally database.

Parameters [store] Storage handler type
[options] Options to pass to the storage handler

Appendix

[435]

Methods

clear(name : string, namespace : string='default') : mixed
Removes a value from the session.

Parameters name Name of value to remove
[namespace] Namespace to remove the value from

Returns Cleared value

close() : void
Closes the session gracefully.

destroy() : boolean
Resets the session removing any existing session data. This does not remove the session
cookie or session id. Equivalent to the PHP session_destroy() function.
Returns true

fork() : boolean
Creates a new session, and copies the exiting session data to the new session.
Returns true

&get(name : string, default : mixed='null', namespace :
string='default') : mixed

Gets a value from the session. If the value is not set, default is returned.

Parameters name Name of the value to retrieve
[default] Default value
[namespace] Namespace to retrieve the value from

Returns Value from the session

getExpire() : int
Gets the number of inactive minutes to wait before the session expires.
Returns Session lifetime in minutes

getId() : string
Gets the ID of the session. Returns null if the session has been destroyed.
Returns Session ID

Appendix

[436]

static &getInstance(handler : string, options : array) : JSession
Gets the global instance of JSession. If it doesn't already exist it will be created.

Parameters handler Storage handler type
options Options to pass to the storage handler

Returns Global session object

getName() : string
Gets the name of the session. Returns null if the session has been destroyed.
Returns Session name

getState() : string
Gets the state of the session (active, expired, destroyed, or error).
Returns State of the session

getStores() : array
Gets the names of session storage handlers that work in the current environment.
Returns Array of session storage handler names

getToken(forceNew : boolean=false) : string
Gets the session token. The token is a random alphanumeric string that can be used to
increase security of requests.
Parameters [forceNew] Create a new token
Returns Token string

has(name : string, namespace : string='default') : boolean
Checks if a value is set in the session.

Parameters name Name of value to check
[namespace] Namespace to check the value in

Returns true if the value is set in the session

hasToken(tCheck : string, forceExpire : boolean=true) : boolean
Compares the session token with tCheck. If the tokens do not match and forceExpire is
true, the session will be expired.

Parameters tCheck Token to check session against
forceExpire Expire session if invalid token

Returns true if tokens match

Appendix

[437]

isNew() : boolean
Dtermines if the session was created during this request.
Returns true if the session was created during this request

restart() : boolean
Restarts the session. This will remove any existing session data.
Returns true

set(name : string, value : mixed, namespace : string='default') : mixed
Sets a value in the session.

Parameters name Name of value to set
value Value
[namespace] Namespace to set the value in

Returns Previous value

_createId() : string
Creates a new session ID.
Returns A new session ID

_createToken() : string
Creates a new token.
Returns New token string

_setCounter() : boolean
Increments the session counter. Must only be invoked once per request.
Returns true

_setOptions(&options : array) : boolean
Sets session options. The options associative array can include the keys name, id,
expire, and security.
Parameters options Session options
Returns true

_setTimers() : boolean
Sets the session timers. Includes the session start time, the last request time, and the current
request time.
Returns true

Appendix

[438]

_start() : boolean
Starts the session. Continues a previous session or creates a new session. Equivalent to the
PHP session_start() function.
Returns true

_validate(restart : boolean=false) : boolean
Validates the session. If the session has exceeded the maximum expiry time, the session
state will be changed to expired. Checks the client address and client browser match the
security array, if they are defined in the security array.
Parameters [restart] Restart the session if the session state is not active
Returns true if the session is valid

JRoute
static, extends JObject
Handles internal URIs.

Methods

static _(url : string, xhtml : boolean=true , ssl : int=0) : string
Converts a URI into a Search Engine-Friendly (SEF) URI. This method should be used for
all internal URIs. No processing will be performed if we are in the administrative area.
xhtml determines if ampersands should be encoded as HTML special character &.

Parameters url URI to convert
xhtml Make URI XHTML standard
ssl URI is SSL

Returns Converted URI

JMenu
extends JObject
Handles menus and menu items.

Properties
_active : int ID of the current menu item
_default : int ID of the default homepage menu item
_items : array Array of menu items (stdClass objects)

Appendix

[439]

Constructors

__construct() : JMenu
Builds a new JMenu object and loads all of the published menu items for every menu.

Methods

authorize(id : int, accessid : int=0) : boolean
Checks the user group has rights to view the menu item.

Parameters id Menu item ID
[accessed] Legacy group ID

Returns true if authorized to view the menu item

&getActive() : boolean
Gets the current menu item. Gets the default menu item if the current item is not set.
Returns Active menu item; returns null on failure

&getDefault() : object
Gets the default menu item (homepage).
Returns Default menu item object

static &getInstance() : JMenu
Gets the global instance of JMenu, creating it if it does not exist.
Returns Global instance of JMenu

&getItem(id : int) : object
Gets a menu item based on id. If the menu item does not exist, returns null.
Parameters id Menu item ID
Returns Menu item object

Appendix

[440]

getItems(attribute : string, value : string, firstonly : boolean=false) :
mixed

Gets an active menu item or an array of menu items. Returned active menu item attributes
must match the specified attribute and value. If firstonly is true, only gets the first
matching menu item.

Parameters attribute Attribute to check
value Value to check attribute against
[firstonly] Only get the first matching menu item

Returns A menu item or an array of menu items

getMenu() : JParameter
Gets a copy of all the menu items.
Returns Array of menu items

&getParams(id : int) : JParameter
Gets the parameters of the specified menu item. If the menu item does not exist, or is not
published, returns an empty JParameter object.
Parameters id Menu item ID

Returns

JParameter object populated with the parameters from the specified
menu item

&setActive(id : int) : boolean
Sets the active menu item.
Parameters id Menu item ID
Returns true on success

setDefault(id : int) : boolean
Sets the default menu item (homepage).
Returns true on success

_load() : mixed
Loads published menu items from the #__menu table and returns them as an array of
stdClass objects in published order. This method uses caching; if changes are made to the
#__menu table records after this method has been called once, the changes will not be
reflected if the method is used a second time.
Returns Array of published menu items; false on failure

Appendix

[441]

JPathway
extends JObject
Handles breadcrumbs. This class is used to model the breadcrumb trail, which is used in
most templates as a way of describing a user's current position within a Joomla! site. For
more information about the breadcrumb trail refer to Chapter 9.

Properties
_count : int Number of breadcrumbs
_pathway : array Array of breadcrumbs

Methods

addItem(name : string, link : string='') : boolean
Adds a breadcrumb to the end of the trail.

Parameters name Name of breadcrumb
[link] Breadcrumb URI

Returns true on success

getPathWay() : array
Gets an array of the breadcrumbs. Breadcrumbs are represented as stdClass objects with
two properties, name and link.
Returns Array of breadcrumbs in order of display

getPathWayNames() : array
Gets an array of breadcrumb names.
Returns Array of breadcrumb names in order

setItemName(id : int, name : string) : boolean
Sets the name of a breadcrumb. id refers to the breadcrumb number; breadcrumbs are
numbered from zero.

Parameters
id Breadcrumb number
name Breadcrumb name

Returns true on success

Appendix

[442]

_makeItem(name : string, link : string) : object
Builds a new menu item and returns it.

Parameters name Name of new breadcrumb
link Breadcrumb URI

Returns New breadcrumb object (stdClass)

JDatabase
abstract, extends JObject
Handles a database connection. There are two core subclasses (sometimes called drivers
or adapters), JDatabaseMySQL and JDatabaseMySQLi. Additional subclasses, enabling
support of other database servers, are intended to be added later. For more information
about JDatabase refer to Chapter 3.

Properties
_cursor : mixed Result of last mysql_query() call
_debug : int Debug mode; 0 = disabled, 1 = enabled
_errorMsg : string Error message from last query
_errorNum : int Error number from last query
_hasQuoted : boolean There are specific fieldnames to be quoted
_limit : int Maximum number of records to return from a query
_log : array Query history (only maintained if debug is enabled)
_nameQuote : string Named S�L element quotes (tables, fields, databases)
_nullDate : string Null date string
_offset : int Record offset
_quoted : array Array of values that should be quoted
_resource : mixed Database resource
_sql : string Current query
_table_prefix : string Database table prefix, normally 'jos_'

_ticker : int

Number of queries executed (only maintained if debug
is enabled)

_utf : boolean Supports UTF-8
name : string Database driver name

Appendix

[443]

Constructors

__construct(options: array) : JDatabase
Builds a new JDatabase object and prepares the internal properties. Subclasses also connect
to the specified database. options normally includes the keys: host, user, password,
database, prefix, and select.
Parameters options Database options

Destructors

__destruct() : boolean
Runs when the object is destroyed. Ensures the database connection is closed cleanly.
Returns true on success

Methods
addQuoted(quoted : mixed) : void

Adds a new value that should always be encapsulated in quotes. quoted can be a string or
an array of strings.
Parameters quoted String or array of values to quote

BeginTrans() : void
Emulates ADOdb functionality.
This method must be overridden in subclasses. If you intend to use this, please ensure the
database driver supports it.

CommitTrans() : string
Emulates ADOdb functionality.
This method must be overridden in subclasses. If you intend to use this, please ensure the
database driver supports it.

connected() : boolean
Determines if the database connection is alive.
Returns true if currently connected to the database

debug(debug : int) : void
Sets debug mode; 0 = disabled, 1 = enabled.
Parameters debug Debug mode

Appendix

[444]

ErrorMsg() : string
Emulates ADOdb functionality.
Gets the error message from the last query. If no error was encountered, the error message
will be an empty string.
Returns Error message from the last query

ErrorNo() : int
Emulates ADOdb functionality.
Error number from the last query. If no error was encountered, the error number will be zero.
Returns Error number from the last query

Execute(query : string) : mixed
Emulates ADOdb functionality.
Executes query. If the query is a SELECT query, the results will be returned in a JRecordSet
object. If the query is not a SELECT query, an empty JRecordSet will be returned on success.
If the query fails, false will be returned.
Parameters query Query to execute.
Returns JRecordSet object; false on failure

explain() : string
Explains the current query.
Returns XHTML string describing the active query.

GenID(foo1 : string=null, foo2 : int=null) : mixed
Emulates ADOdb functionality.
Gets a sequence ID for databases that are sequence aware (sequences are used with
databases that allow multiple connections, to reduce the chance of errors). If you are
creating an application that relies on sequences, ensure that the JDatabase subclass object
supports GenID() fully. Subclasses must implement this method to enable GenID()
support. JDatabaseMySQL and JDatabaseMySQLi do not support GenID(); using
GenID() with these databases will always return 0.

Parameters foo1 Sequence name
foo2 Start ID

Returns Sequence ID; normally an integer, but sometimes a string

getAffectedRows() : int
Gets the total number of records that were affected by the last query.
Returns Number of records that were affected by the last query

Appendix

[445]

GetCol(query : string) : array
Emulates ADOdb functionality.
Executes query and returns an array of the first column from the resultant records.
Parameters query Query to execute
Returns Array of first column from records

getCollation() : string
Gets the database collation. This method is not infallible for MySQL databases; MySQL
allows the collation to be set at four different levels, server, database, table, and column.
This method returns the collation used by #__content.fulltext; it is possible that the
collation may differ elsewhere in the database. This method only works if the database
supports UTF-8.
Returns Collation name

static getConnectors() : array
Gets an array of the names of database drivers supported in the current environment.
Returns Array of available driver names

getEscaped(text : string) : string
Escapes a string for use as a value in a query.
Parameters text String to escape
Returns Escaped string

getErrorMsg(escaped : boolean=false) : string
Gets the error message from the last query. If no error was encountered returns an
empty string.
Parameters [escaped] Escape the message with slashes
Returns Error message from the last query

getErrorNum() : int
Gets the error number from the last query. If no error was encountered, returns 0 (zero).
Returns Error number from the last query

static &getInstance(options : array=array()) : JDatabase
Gets a global instance of JDatabase, creating it if it does not already exist. An instance exists
for every different set of options. The options array normally contains the keys defined in
the constructor options array and the key driver. driver determines the subclass that is
instantiated, available core drivers are MySQL and MySQLi.
Parameters options Database options
Returns A global instance of JDatabase

Appendix

[446]

getNullDate() : string
Gets a null date string specific to the current database driver.
Returns Null date-time string

getNumRows(cur : resource=null) : mixed
Gets the number of records that were returned in the last query. If cur is specified, it will
determine the number of rows that were returned for the corresponding query. This only
works if the query was a SELECT, SHOW, DESCRIBE, or EXPLAIN query.
Parameters [cur] Database resource
Returns Number of records that were returned in the last query; false on failure

GetOne(query : string) : string
Emulates ADOdb functionality.
Executes query and returns the value in the first field in the first record.
Parameters query Query to execute
Returns Value in the first field in the first record of the results

getPrefix() : string
Gets the database table prefix, normally jos_.
Returns Database table prefix

getQuery() : mixed
Gets the active query.
Returns Active query

GetRow(query : string) : array
Emulates ADOdb functionality.
Executes query and gets the first record as an array.
Parameters query Query to execute
Returns First record as an array

getTableCreate(tables : array) : array
Gets an associative array of table creation queries for the tables named in tables.
Parameters tables Array of table names
Returns Associative array of table creation queries

Appendix

[447]

getTableFields(tables : array) : array
Gets an associative array of table fields and types. For example, a table called jos_test
with two fields might return this:

Array
(
 [jos_test] => Array
 (
 [id] => int
 [name] => varchar
)
)

Parameters tables Array of table names
Returns Associative array of tables and table fields

getTableList() : array
Gets the names of the tables in the database.
Returns Array of table names

getUTFSupport() : boolean
Determines if the database supports UTF-8.
Returns true if the database supports UTF-8

getVersion() : string
Gets the database server version.
Returns Database server version

hasUTF() : boolean
Determines if the database supports UTF-8. You should use getUTFSupport() in
preference to this method, which returns a cached value of hasUTF().
Returns true if the database supports UTF-8

insertid() : int
If the last query was an INSERT query on a table with an auto-increment primary key, this
method gets the ID inserted as a result of the last query. If it was not anID inserted as a result of the last query. If it was not an inserted as a result of the last query. If it was not an INSERT query,
zero will be returned.
Returns Inserted ID from the last query

Appendix

[448]

insertObject(table : string, &object : object, keyName : string=null) :
boolean

Treats object as a new record and attempts to insert it into the specified table. If keyName
(primary key fieldname) is specified, the object will be updated with the record primary
key value; this is for use with tables with auto-increment primary keys only.

Parameters table Table name
object Record object
[keyName] Primary key

Returns true on success

isQuoted(fieldname : string) : boolean
Determines if fieldname is amongst the fieldnames to be encapsulated in quotes. If no
values have been specified to be quoted, returns true.
Parameters fieldname Fieldname to check
Returns true if the fieldname should be encapsulated in quotes

loadAssoc() : array
Executes the current query and gets the first record as an associative array.
Returns First record from query as an associative array

loadAssocList(key : string='') : array
Executes the current query and gets a two-dimensional array of records. Each inner array
represents a record as an associative array. If key is specified (primary key fieldname) the
returned array will be associative, using the record primary key as array key.
Parameters [key] Primary key
Returns Two-dimensional array of records

loadObject() : object
Executes the current query and returns the first record as an object (stdClass).
Returns First record from query as an object

loadObjectList(key : string='') : array
Executes the current query and returns an array of record objects. Each object represents a
record. If key is specified (primary key fieldname) the returned array will be associative,
using the record primary key as array key.
Parameters [key] Primary key
Returns Array or associative array of record objects

Appendix

[449]

loadResult() : string
Executes the current query and gets the value in the first field of the first record.
Returns Value in the first field of the first record

loadResultArray(numinarray : int= 0) : array
Executes the current query and gets an array of the specified column/field number from
the resultant records.
Parameters [numinarray] Column/Field number
Returns Array of column from records

loadRow() : array
Executes the current query and returns the first record as an array.
Returns First record from query as an array

loadRowList(key : int='') : array
Executes the current query and returns a two-dimensional array of records. Each inner
array represents a record as an array. If key is specified (primary key field number), the
returned array will be associative, using the record primary key as array key.
Parameters [key] Primary key
Returns Two-dimensional array of records

nameQuote(s : string) : string
Encapsulates a string in quotes. This is for strings that are named SQL elements (tables,
fields, databases), not values.
Parameters s String to encapsulate
Returns Quote encapsulated string

PageExecute(sql : string, nrows : int, page : int, inputarr :
boolean=false, sec2cache : int=0) : JRecordSet

Emulates ADOdb functionality.
Executes query and returns the results in a JRecordSet object. nrows and page are used to
determine the offset and limit.

Parameters sql Query to execute
nrows Number of records per page
page Results page (pagination)
[inputarr] Ignored; emulation purposes only
[secs2cache] Ignored; emulation purposes only

Returns JRecordSet object

Appendix

[450]

query() : mixed
Executes the current query. If the query is successful and is a SELECT, SHOW, DESCRIBE, or
EXPLAIN query, a resource will be returned. If the query is successful, and is not one of the
above query types, true will be returned. If the query fails, false will be returned.
Returns Database resource or true on success; false on failure

queryBatch(abort_on_error : boolean=true, p_transaction_safe :
boolean=false) : mixed

Executes a batch of queries. If abort_on_error is true the batch process will stop if an
error occurs. If p_transaction_safe is true then all the queries will only be applied if
they are all successful.

Parameters [abort_on_error] Stop batch process on error
[p_transaction_safe] Perform as transaction

Returns true on success; false or the failed resource on failure

Quote(text : string) : string
Emulates ADOdb functionality.
Encapsulates text in quotes and escapes text. Use this to make query values safe.
Parameters text String to encapsulate in quotes and escape
Returns Quoted string

replacePrefix(sql : string, prefix : string='#__') : string
Substitutes occurrences of prefix in sql with the database table prefix.

Parameters sql Query
prefix Database table prefix to replace

Returns �uery with correct table prefixes

RollbackTrans() : string
Emulates ADOdb functionality.
This method must be overridden in subclasses. If you intend to use this, please ensure the
database driver supports it.

stderr(showSQL : boolean=false) : string
Gets an error report of the last error. If showSQL is true, the SQL is included in the report.
Parameters [showSQL] Display query
Returns Error report

Appendix

[451]

SelectLimit(query : string, count : int, offset : int=0) : JRecordSet
Emulates ADOdb functionality.
Executes query and returns the results in a JRecordSet object. offset and limit are used
for pagination; in MySQL databases, this relates directly to the LIMIT clause.

Parameters query Query to execute
count Maximum number of records
[offset] Start record

Returns JRecordSet object

setUTF() : void
Prepares the database connection for UTF-8 strings.

setQuery(sql : string, offset : int=0, limit : int=0, prefix : string='#__')
: void

Sets the next query to execute. offset and limit are used for pagination; in MySQL this
relates directly to the LIMIT clause. If you use offset or limit, then your SQL must not
contain a LIMIT clause. prefix is the string that is replaced in the SQL by the database
table prefix; it would be unusual to change this from the default #__.

Parameters sql Query
[offset] Start record
[limit] Maximum number of records
[prefix] Table prefix to substitue

static test() : boolean
Determines if the driver (subclass) is compatible with the current environment.
Returns true of the driver is compatible with the current environment

updateObject(table : string, &object : object, keyName : string,
updateNulls : boolean=true) : boolean

Treats object as an updated record and attempts to update the specified table from the
record. If updateNulls is true, object properties that are null will still be used to update
the record in the table.

Parameters table Table name
object Record object
keyName Primary key
[updateNulls] Update values even if they are null

Returns true on success

Appendix

[452]

Parameters (Core JElements)
We can use the XML tag param to define different parameters. Every param tag must
include the following attributes:

Attribute Description
description Description of the parameter
label Human-readable name of the input; this will always be translated by JText
name Name of the input
type Type of parameter; this relates to JElement subclasses
default The default value (this does not work for all elements)

This is an example of a param tag:

<param name="title" type="text" default="My Title" label="Title"
description="Title of page" size="30" />

When we define the type we are informing Joomla! which JElement subclass to use to
render the parameter. There are a number of core JElement subclasses available to us,
each of which has its own set of attributes that modify the rendered output.

The following tables describe the parameter types from the core that we can use.
Any attributes that are optional are encapsulated in square braces. Remember that
when we use the param tag we also need to include the attributes defined in the
previous table.

category
Displays a drop-down selection box of published categories. The first option in the
selection box is always – Select Category -; this option has a value of 0.

Parameters class CSS Style

[section]

Section ID or component name if using
component-specific categories. If not specified,
all content categories are displayed.

editors
Displays a drop-down selection box of all the published editors. The first option in the
selection box is always – Select Editor -; this option has a value of 0.

Appendix

[453]

filelist
Displays a drop-down selection box of files in a specified directory. Can optionally include
the options – Do not use – and – Use default –; these options have the values -1 and
null respectively.

Parameters

[directory]

Directory where the files are located, relative to
the root of Joomla!

[exclude] RE file exclusion, applied after filter
[filter] RE filter to apply to file names
[hide_default] Hide the 'use default' option; Boolean
[hide_none] Hide the 'do not use' option; Boolean
[stripExt] Remove extensions from the file list; Boolean

folderlist
Displays a drop-down selection box of folders in a specified directory. Can optionally
include the options – Do not use – and – Use default –; these options have the values
-1 and null respectively.

Parameters

[directory]

Directory where the folders are located, relative
to the root of Joomla!

[exclude] RE folder exclusion, applied after filter
[filter] RE filter to apply to folder names
[hide_default] Hide the 'use default' option; Boolean
[hide_none] Hide the 'do not use' option; Boolean
[stripExt] Remove extensions from the folder list; Boolean

helpsites
Displays a drop-down selection box of the different Joomla! help sites. The help sites are
defined in the core administrator/help/helpsites-15.xml file.

hidden
A hidden field. We cannot define a value here; this type is used in conjunction with an INI
string in which the value will be defined.
Parameters [class] CSS Style

imagelist
Displays a drop-down selection box of image files in a specified directory. Can optionally
include the options – Do not use – and – Use default –; these options have the values
-1 and null respectively.

Parameters [directory] Directory where the folders are located, relative
to the root of Joomla!

[exclude] RE file exclusion, applied after filter
[hide_default] Hide the 'use default' option; Boolean
[hide_none] Hide the 'do not use' option; Boolean
[stripExt] Remove extensions from the file list; Boolean

Appendix

[454]

languages
Displays a drop-down selection box of known languages from a specific client.

Parameters

client

JPATH_ suffix where a language folder is
located. Normally BASE or ADMINISTRATOR.

list
Displays a drop-down selection box of specified options. Options are defined by sub-tags
called option. Each option tag includes a value attribute and the encapsulated content is
the name.
Parameters [class] CSS Style

menu
Displays a drop-down selection box of the different menus. The first option is always
– Select Menu – with a value of null.

menuitem
Displays a drop-down selection box of the different menu items grouped by menu. The
first option is always – Select Item – with a value of null.
Parameters [state] Published state of the menu items

password
Displays a password text box.

Parameters [class] CSS Style.

[size]

Character width of the password box; this is not
the same as the maximum number of characters.

radio
Displays a selection of radio buttons. Options are defined by sub-tags called option. Each
option tag includes a value attribute and the encapsulated content is the name. The first
option is selected by default. We normally use radio buttons for show and hide options:

<param name="show" type="radio" label="Hide/Show" description="Hide
 or Show">
 <option value="0">Hide</option>
 <option value="1">Show</option>
</param>

Parameters [class] CSS Style

section
Displays a drop-down selection box of published sections. The first option in the selection
box is always – Select Section -; this option has a value of 0.

Appendix

[455]

spacer
Adds a horizontal rule.

sql
Displays a drop-down selection box of items. The items are determined by executing the
query attribute against the database. The query must return two fields, one called id and
one called value. Use the AS alias clause in your S�L to set names of returned fields.
Parameters query Query to execute

text
Displays a text box.

Parameters [class] CSS Style

[size]

Character width of the text box; this is not the
same as the maximum number of characters

textarea
Displays a text box.

Parameters [class] CSS Style
cols Number of columns
rows Number of rows

timezones
Displays a drop-down selection box of different time zones. Values are identified as plus
or minus hours from UTC (Universal Time Code); UTC is the same as GMT (Greenwich
Mean Time), and Z (Zulu Time).

Configuration
The site settings are located in the config namespace within the registry. Most of
these settings originate from the configuration.php file. This table details the
values we expect to be present in the config namespace:

Name Description
absolute_path Full path to the Joomla! installation, for example /www/joomla

cache_handler

Mechanism with which to handle caching; Joomla! supports APC,
EAccelerator, Memcache, and File

cachetime Cache life expectancy in seconds
caching Caching enabled; 1 = enabled, 0 = disabled
db Database name
dbprefix Database table prefix

Appendix

[456]

Name Description
dbtype Database driver
debug Site debug status; 1 = enabled, 0 = disabled
debug_db Database debug status; 1 = enabled, 0 = disabled
debug_lang Language debug status; 1 = enabled, 0 = disabled
editor Default editor

error_reporting Error reporting level; -1 = system default, 0 = none, 7 = simple,
2047 = maximum

feed_limit Number of content feed items to display
feed_summary Display full text in feeds; 1 = true, 0 = false
fromname Mail email address alias, see mailfrom
ftp_enable FTP access enabled; 1 = true, 0 = false
ftp_host FTP host, normally 127.0.0.1
ftp_pass FTP account password
ftp_port FTP port, normally 21
ftp_root FTP path to Joomla! installation
ftp_user FTP account username
gzip GZIP compression enabled; 1 = true, 0 = false
helpurl Joomla! help site
host Host name
lang Default language name
lang_administrator Default backend language tag
lang_site Default frontend language tag
language Default language tag
lifetime Session lifetime in minutes
list_limit Default length of lists (pagination) in the backend
live_site URI to the site
log_path Path to the site LOG files

mailer Email sending mechanism; Joomla! supports: PHP mail, sendmail,
and SMTP

mailfrom Default email sender address

memcache_settings Settings for Memcache (serialized PHP data); Memcache is a PHP
caching system

MetaAuthor Global option to show the author's meta tag when viewing a
content item; 1 = true, 0 = false

MetaDesc Site metadata-description-tag content
MetaKeys Site metadata keys tag content
MetaTitle Display the site metadata title tag; 1 = show, 0 = hide

Appendix

[457]

Name Description
offline Site offline; 1 = true, 0 = false
offline_message This site is down for maintenance. Please check back again soon.
offset Time zone hours offset from UTC (also known as GMT and Z)
password Database account password
secret Secret site word (random alphanumeric string)
sef SEF enabled; 1 = true, 0 = false
sef_rewrite Apache SEF mod_rewrite enabled; 1 = true, 0 = false
sendmail /usr/sbin/sendmail

session_handler Session storage handling mechanism; Joomla! supports: APC,
database EAccelerator, and Memcache

sitename Name of the Joomla! installation
smtpauth SMTP requires authorization; 1 = true, 0 = false
smtphost SMTP host, normally localhost
smtppass SMTP account password
smtpuser SMTP account username
tmp_path Temporary directory; used for archive extraction
user Database account username
xmlrpc_server XMLRPC support; 1 = enabled, 0 = disabled

Index
A
access control

about 323
extension access control 325
GACL access control mechanism 323
GACL implementing, terms used 324
menu item access control 325

AJAX
about 284
request 286 - 289
response 284
response, document types 284

API 277
application, Joomla!

application object, accessing 18
JAdministrator 17
JSite 17

application message queue 243
Application Programming Interface. See API
arrays

about 355
different types 358

assets
files 189
files, dealing with 189
folder, creating 190

Asynchronous JavaScript and XML. See
AJAX

attacks
about 327
block() method, implementing 335
code injection 329
common attacks, avoiding 328
dealing with 332
file system snooping 332

logging 335, 336
logout() method, implementing 334, 335
parameters, defining 334
site administrator, notifying 336, 337
user, blocking 333
user, logging out 333
XSS 331

authentication plugins
about 142
onAuthenticate event 142, 143
properties 142
status property, constants 143

B
backend component

location 66
structure 67

backend module 116
display position 119

behavior, grouped types 196
calendar 199
caption 199
combobox 199
formvalidation 199
keepalive 200
modal 198
mootools 199
switcher 199
tooltip 198
uploader 199

browser
browser list, known to Joomla! 187
features 186
features, checking using hasFeature()

method 185

[460]

JBrowser method 188
quirks 186
quirks, list 187

C
CGI request data

database data, escaping 318
database data, quoting 318
dealing with 315
encoding 318
escaping 317
preprocessing 315 - 317
preprocessing, JRequest class used 315
Regular Expressions 320
XHTML data, encoding 319

classes
JApplication class 398
JArchive class 354
JArrayHelper class 355
JCache class 422
JController class 378
JDatabase class 442
JDate class 340
JDocument class 393
JElement class 95, 417
JError class 312, 388
JException class 313
JFactory class 428
JFiles class 351
JFolder class 347
JLanguage class 411
JLanguageHelper class 416
JLDAP class 290
Jloader class 157
JLog class 361
JMail class 294, 424
JMailHelper class 296, 427
JMenu class 438
JModel class 372
JNode class 359
JObject class 366
JObject class, inheriting from 28, 29
JObservable class 136
JOutputFilter class 318
JPagination class 224
JParameter class 96, 161, 419

JPath class 345
JPathway class 441
JPlugin class, extending 137
JRegistry class 174, 431
JRequest class 315
JRoute class 438
JSession class 434
JTable 52
JTable class 383
JText class 417
JTree class 359
JURI class 407
JUser class 368
JView class 374
naming conventions 27

code injection
about 329
PHP code injection, types 329
SQL code injection, types 330
types 329

common attacks, avoiding
session token, using 328

component backend
about 214
admin form 215, 216
submenu 222, 223
submenu, modifying 222
toolbar 216

components
about 65
backend component 65
building 82
configuration, dealing with 93
designing 65
elements 65, 95
frontend component 65
help files 99, 100
identifying 66
MVC 65
MVC structure 67
packaging 102
parameters 95

components, designing
component configuration, dealing with 93
components, packaging 102
document types, rendering 87
help files, using 99

[461]

routing 100 - 102
sandbox, setting up 65

components, packaging
install files 111
installing 111
queries 111
S�L install files 110
S�L uninstall files 110
uninstall files 112
uninstalling 112
XML manifest file 103
XML manifest file, tags 105
XML manifest file elements 103, 104

content plugins
$row object 144
$row object, attributes 144
about 144
implementing 144
onAfterDisplayContent event 145
onAfterDisplayTitle event 145
onBeforeDisplayContent event 145
onPrepareContent event 144
onPreparecontent event 145

controller
building 78
 multiple controllers, dealing with 83
task methods 80

cross site scripting. See XSS
CRUD

existing record, updating 56
record, creating 54
record, deleting 57
record, loading 55
table buffer, updating 54

D
database

about 41
accessing, JDatabase object, using 41
extending 42

database, extending
fields 42
multilingual requirements, dealing with 45
schema conventions 42
schema example 44
table prefix 42

database, querying
ADObd, using 51
query writing rules 46
results, processing methods 47

development tools
J!Code 14
J!Dump 14

directory structure 24
Distinguished Name 292
DN. See Distinguished Name
document

about 17
breadcrumb 259
CSS 262
CSS, adding methods 262
custom header tags 263
document object, accessing 18
JavaScript 261
JavaScript, adding methods 261
metadata 263
metadata methods 263
modifying 258
page title 259
pathway 259, 260
types 17

document types
feed 87
feed, building 88
feed view, creating 87
feed view, linking 89
pdf 90
pdf, modifying 90
raw 91
rendering 87

E
editors-xtd plugins

about 148
button, adding to editor content 148, 149
OnCustomEditorButton event 148
onCustomEditorButton event 150

editors plugins
about 146
onDisplay event 147
onGetContent event 147
onGetInsertMethod event 147

[462]

onInit event 147
onSave event 148
onSetContent event 148

email
about 294
recipients,ways of adding 295
sending 295

error handling
about 311
customizing 314
modes 314
notices 313
return values 313
warnings 313

errors
about 312
identifying, error code used 312

events
about 136
dispatching 136
handling 138 - 140
handling, functions used 138
handling, observer pattern used 136
JEventDispatcher object 136
results, handling 141
triggering 137
uses 137

extension access control 325 - 327
extension design

assets 189
browser 185
getInstance() methods, building 169
getInstance() methods, using 169
helpers 168
registry, using 174
session 184, 185
supporting classes 167
user 177
user parameters 178

extensions, types
components 10
languages 11
modules 10
plugins 10
plugins, types 11
templates 11
tools 11

F
factory patterns

about 30
implementing, JFactory class used 31

fields
checked_out_time checked_out field 43
checked out field 43
date field 44
hits field 43
ordering field 43
parameter field 43
published field 43

fields, manipulating
checking out records, checkout() method

used 59
handling parameter, JParameter class

used 61, 62
incrementing hits, hits() method used 59
ordering items, reorder() method used 60
publishing data, publish() method used 59
storing dates, JDate class used 62

file system
archive format extensions 354
archives 354
files 351
folders 347
folders, copying 348
folders, creating 348
folders, managing 348
folders, relocating 348
folders, removing 348
paths 345
paths, cleaning 345
paths, searching file 345

File Transfer Protocol See FTP
frontend component

location 66
structure 67

frontend module 116
display position 119

FTP
about 297
JFTP methods 297, 298

[463]

G
getInstance() methods

about 169
declaring 170
implementing 170 - 172
reasons for implementing 173
uses 169, 170

grid, grouped types 200
grouped types, joomla.html library

behavior 196 - 198
email 200
grid 200
grid, uses 200
image 203
list 204
list, uses 205
menu 208
select 209

groups, plugins. See also plugins
about 142
authentication plugins 142
content plugins 144
editors-xtd plugins 148
editors plugins 146
search plugins 151
system plugins 152
user plugins 152
XML-RPC plugins 155

H
helpers

about 121, 168
class, defining 122
getItem() method, creating 122
getItem() method,implementing 123
 uses 124

I
itemized data

about 224
category filter, applying 236
category filter dropdown selection box,

adding 234
custom dropdown section filter,

constructing 237

filtering 231
filtering options 231
filters, uses 237
ordering 228 - 231
pagination 224
published state filter, applying 233
published state filter, implementing

232 - 234
retrieving, getData() method used 227
search filter, implementing 238
searching 231

iterative templates
about 213, 214

J
JApplication class

constructors 399
methods 399
properties 398

JArchive class
about 354
extract() method 354

JArrayHelper class
about 355
getColumn() method 358
getValue() method 358
sortObjects() method 357
toInteger() method 356
toObject() method 356
toString() method 358

JavaScript effect
mootools 268

JCache class
constructors 423
methods 423
properties 422

JController class
constructors 379
methods 379
properties 379

JDatabase class
constructors 443
destructors 443
methods 443
properties 442

[464]

JDate class
about 340
date format, handling 340 - 344
JDate object 340
JDate object, creating 340
methods, handling 342, 343

JDocument class
constructors 393
methods 394
properties 393

JElement class
about 95
constructors 418
extending 96
JElementMenus class 96
JElementMenus class, building 97
JElementMenus class, implementing 97, 98
JElementMenus class, using 98, 99
methods 418
properties 418
using 98

JError class
methods 388

JFactory class
methods 428

JFile class
about 351
copy() method 352
delete() method 353
exists() method 352
getExt() method 351
getName() method 351
makeSafe() method 351
move() method 352
read() method 353
upload() method 353
write() method 353

JFolder class
about 347
copy() method 348
create() method 348
delete() method 348
exists() method 347
files() method 350
folders() method 349
listFolderTree() method 350
makeSafe() method 347

move() method 348
JLanguage class

constructors 411
methods 412
properties 411

JLanguageHelper class
methods 416

JLog class
about 361
addEntry() method 362, 363
exploring, to handle global error log file 361
getInstance() method 361

JMail class
about 294
constructors 425
JMail object, accessing 294
methods 425

JMailHelper class
methods 427

JMenu class
constructors 439
methods 439
properties 438

JModel
search, implementing 239, 240

JModel class
constructors 372
methods 372
properties 372

JObject class
constructors 366
methods 367
properties 366

Joomla!
access control 323
Access Objects types 325
ADOdb emulating 51
API 277
application 17
attacks 327
browser list 187
CGI request data, dealing with 315
classes 27, 339, 365
coding standards, phpDocumentor 36 - 38
component backend 214
component HTML layouts, building 212
components 65

[465]

components XML metadata files 248
configuration 455
core database 41
database 41
database, extending 42
database, querying 46
development tools 13
directory structure 24
document 17
document, modifying 258
document types 17
error handling 311
errors 312
extension manager 12
extensions, common functions 7
extension types 9
factory patterns 30
file system 345
history 8
itemized data 224
JavaScript effects, using 268
JDate class 340
JED 12
JError class 312
JLDAP class 290
JLog class 361
JMail class 294
JMailHelper class 296
JNode class 360
joomla.filesystem library 345
joomla.html library 193
JoomlaCode.org 13
JPagination class 224
JRegistry class 174
JRequest class 315
JTable class 52
JTree class 359
libraries 26
menu item parameters, using 257
module design 115
modules 115
mootools 268
MVC 68
output, rendering 193
overview 7
parameters 452
parameters, types 252

patterns 30
PEAR coding standards, used 36
plugins 133
predefined constants 32
redirects 245 - 248
request 18
requirements 9
security 311
sessions 31
templates 212, 213
translating 264
URI structure 22
utilities 339
web service, building 301
XML parsers 278

Joomla!, multilingual support
Unicode character set, using 34
UTF-8 encoding, using 34
UTF-8 string handling 34

Joomla!, requirements
JSAS 9
XAMPP 9

joomla.filesystem library
parts 345

joomla.html library
about 193
basic types 193
basic types, description 195
behavior, grouped types 196
calender, types 196
date, types 195
email, grouped types 200
grid, grouped types 200
grouped types 194
iframe, types 195
image, grouped types 203
image, types 195
importing 194
link, types 195
list, grouped types 204
menu, grouped types 208
select, grouped types 209
tooltip, types 196

JoomlaCode.org
tools 13

JPagination class
attribute, using 225

[466]

attributes 224
getState() method 226
getTotal() method 225

JPane
about 268

JParameter class
about 96
constructors 419
def() method 161
get() method 161
methods 161, 420
properties 419
set() method 161

JPath class
about 345
canChmod() method 347
check() method 345
clean() method 345
find() method 345
getPermissions() method 346
isOwner() method 347
setPermissions() method 346

JPathway class
methods 441
properties 441

JPlugin class
parameters, accessing 161

JRegistry class
about 174
constructors 431
INI file, loading 175
methods 431
PHP class, exporting settings to 176
properties 431
registry tree 176
registry values, saving and loading 175

JRoute class
methods 438

JSession class
constructors 434
methods 435
properties 434

JTable
about 52
check() method, overriding 52
constructor, defining 52
CRUD 54

fields, manipulating 58
public properties, defining 52
subclasses, creating 52, 53

JTable class
constructors 383
methods 384
properties 383

JText class
methods 417

JTree class
about 359
addChild() method 359
getParent() method 360
reset() method 360

JURI class
constructors 407
methods 407
properties 407

JUser class
constructors 369
methods 369
properties 368

JView class
constructors 375
methods 375
properties 375

L
LDAP

about 290
Distinguished Name 292
JLDAP class 290
LDAP objects, searching 293
LDAP server, binding 292
LDAP server, connecting 291
LDAP server, interrogating 291
Organization Units 292

libraries
about 26
base libraries 26
importing 26

LightWeight Directory Application
Protocol. See LDAP

listeners
about 138
class, building 139

[467]

registering 138
log files 361

M
menu item access control 325
menu parameters, categories

advanced parameters 255, 256
component parameters 253
state parameters 253
system parameters 252
system parameters, list 257
URL parameters 254, 255

Model View Controller. See MVC
module

about 115
components, working with 118
designing 115
helpers 121
packaging 127
parameters 120
standalone modules 117
templates 124

module, packaging
XML manifest file 127
XML manifest file, tags 128

module design
backend module, installing process 116
backend module display positions 119
blank module, creating 115
frontend module, installing process 115, 116
frontend module display positions 119
module, packaging 127
modules, executing 116
module settings 120
sandbox, setting up 115
standalone modules 117
translating 126

module layouts. See templates
mootools

about 268
Fx.Slide effect 271 - 275
pane 268
pane, elements 268
pane, implementing 268
pane, types 268
tooltips 269

tooltips, modifying 270
tooltips, types 269, 270

multilingual support
strings, translating 34

MVC
about 68
backend structure 67
component building 82 - 86
component root file, altering 85
controller 69
controller, building 78 - 81
controller, implementing 83
design pattern 68
design pattern, parts 68
frontend structure 67
getInstance() method, implementing 84, 85
getmethods, implementing 72
model 69
model, building 70 - 74
 multiple controllers, dealing with 83
structure 67
view 69
view, building 75 - 77
view, implementing for html document

type 75

O
Organization Units 292
OUs. See Organization Units

P
page, customizing

about 243
application message queue 243, 244
document, modifying 258
JavaScript effects, using 268
translating 264

pagination
about 224
footer 224

parameters
about 95, 120
accessing 121
groups 120
menu item, creating 253
menu item parameters, using 257, 258

[468]

menu parameters 252
menu parameters, categories 252
predefined types 95
simple parameters, adding 120
types 252

parsing 278 - 282
pathway, handling

JPathway object, used 259 - 261
patterns, Joomla!

Design patterns 30
iterator patterns 30

PHP
arrays 355

phpDocumentor, coding standards 36 - 38
plugins. See also group, plugins

about 133
designing 133
element 135
element names 135
events 136
events, handling 138 - 140
events handling, observer pattern used 133
groups 134, 141
language files, loading 159
listeners 138
listeners, registering 138
loading 155, 156
loading from group foobar 155
myimport() function, creating 157
myimport() function, using 157
packaging 161
parameters 160
sandbox, setting up 134
settings, dealing with 160
simple parameters, adding 160
translating 159
translation files, creating 159
using, as libraries 156

plugins, packaging
file naming conflicts 165
XML manifest file 162
XML manifest file, tags 162

predefined constants
about 32
date constants 33
path constants 32

Q
query value

format 22
Itemid 22
option 22
task 22

R
redirects

about 245
common uses 247
 component XML metadata files 248
layout XML metadata files 250
need for 245

Regular Expressions
about 320
matching 322
pattern delimiters 320
pattern duplicating, quantifiers used 320,

321
pattern modifiers 321
patterns 320
patterns, shorcuts 321
replacing 323

request
backend request 18
frontend request 18
methods 29
process 18
working with 29

results, processing methods
loadAssoc() method 48
loadAssocList() method 49
loadObject() method 49
loadObjectList() method 50
loadResult() method 48
loadResultArray() method 48
loadRow() method 50
loadRowList() method 51

S
schema example

table 44
search plugins

about 151

[469]

onSearchAreas event 151
onSearchAreas event, triggering 151
onSearch event 151

security 311
sessions 31, 32
string handling

PHP string functions 35
strings, translating

JText class, methods 34
JText class, used 34

system plugins
about 152
events 152
onAfterDispatch event 152
onAfterInitialise event 152
onAfterRender event 152
onAfterRoute event 152

T
templates

about 124, 212
handling 125
iterative templates 213
media 126
rules 212

translating
translating text 264
translations, debugging 267
translations, defining 265, 266

tree
about 359
creating 359
root node 359

U
URI

JRoute method, advantages 23
outputting, JRoute method,using 23
query element 22
query value 22
structure 22

user
about 177
attributes 177
JUser object, accessing 178
parameter attributes 178

user parameters
about 178
accessing 178
common design issue, dealing with 179
exploring 180 - 183
user time zone, determining 178
user timezone value, modifying 178
ways of implementing 179

user plugins
about 152
onAfterDeleteUser event 154
onAfterStoreUser event 153
onBeforeDeleteUser event 154
onBeforeStoreUser event 153
onLoginFailure event 154
onLoginUser event 154
onLogoutUser event 154

W
web services

about 277
email 294

web sevices APIs
about 299
list 299
Yahoo! Search, creating 299
Yahoo! Search API 299

X
XML

about 277
data, interrogating 279
document, constucting 277
editing 282
loading from a file 278
parsing 278
parsing, JSimpleXML parser used 279
saving 283
XML declaration 277

XML-RPC plugins
about 155, 301
add() method, implementing 305
array, building and returning 303
array,keys used 304
compound data types 302
foobar, creating 302, 303

[470]

onGetWebServices event 155
parts, event handler 155
parts, static class 155
simple data types 302
subtract() method, implementing 305
variables global, declaring 303

XML manifest file, tags
administration 105
author 105, 128, 162
authorEmail 105, 128, 162
authorUrl 105, 128, 163
copyright 105
copyright) 128, 163
description 106, 128, 163
filename 106, 129, 163
files 106, 129, 163
folder 106, 129, 163
install 106
install (root tag) 105, 128, 162
installfile 107
language 107, 129, 163

languages 107, 129, 164
license 107
lincense 129, 164
media 107, 130, 164
menu 108
name 108, 130, 164
param 108, 130, 164
params 108, 130, 164
queries 108
query 109
sql 109
submenu 109
uninstall 109
uninstallfile 109
 version 109, 164
versionVersion 130

XML parsers
about 278
JSimpleXML parser 278
types 278

XSS 331

Thank you for buying
Mastering Joomla! 1.5 Extension
and Framework Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to
that project. Therefore by purchasing Mastering Joomla! 1.5 Extension and Framework
Development, Packt will have given some of the money received to the Joomla! project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

	Mastering Joomla! 1.5 Extension and Framework Development
	Table of Contents
	Preface
	Chapter 1: Introduction to Joomla!
	Overview
	History
	Requirements
	Extension Types and Their Uses
	Components
	Modules
	Plugins
	Languages
	Templates
	Tools

	Extension Manager
	JED and JoomlaCode.org
	Development Tools
	J!Code
	J!Dump

	Summary

	Chapter 2: Getting Started
	The Application and Document
	Request to Response
	The Process

	URI Structure
	Directory Structure
	Libraries
	A Quick Lesson in Classes
	Inheriting from JObject

	Working with the Request
	The Factory
	The Session
	Predefined Constants
	Multilingual Support
	UTF-8 String Handling

	Coding Standards
	phpDocumentor

	Summary

	Chapter 3: The Database
	The Core Database
	Extending the Database
	Table Prefix
	Schema Conventions
	Common Fields
	Schema Example

	Dealing with Multilingual requirements

	Querying the Database
	Writing Queries
	Getting Results
	loadResult() : string
	loadResultArray(numinarray : int=0) : array
	loadAssoc() : array
	loadAssocList(key : string='') : array
	loadObject() : stdClass
	loadObjectList(key : string='') : array
	loadRow() : array
	loadRowList(key : int) : array

	Using ADOdb

	JTable
	CRUD
	Manipulating Common Fields
	Publishing
	Hits
	Checking Out
	Ordering
	Parameter Fields
	Date Fields

	Summary

	Chapter 4: Component Design
	Setting up a Sandbox
	The Structure
	The MVC
	Building a Model
	Building a View
	Building a Controller
	Building an MVC Component

	Rendering Other Document Types
	Feed
	PDF
	Raw

	Dealing with Component Configuration
	Elements and Parameters
	Extending JElement
	Using Custom JElement Classes

	Help Files
	Routing
	Packaging
	XML Manifest File
	SQL Install and Uninstall Files and Queries
	Install and Uninstall Files

	Summary

	Chapter 5: Module Design
	Setting Up a Sandbox
	First Steps
	Standalone Modules
	Modules and Components Working Together
	Frontend and Backend Module Display Positions

	Module Settings (Parameters)
	Helpers
	Layouts (Templates)
	Media

	Translating
	Packaging
	XML Manifest File

	Summary

	Chapter 6: Plugin Design
	Setting Up a Sandbox
	Events
	Listeners
	Registering Listeners
	Handling Events

	Plugin Groups
	Authentication
	Content
	Editors
	Editors-xtd
	Search
	System
	User
	XML-RPC

	Loading Plugins
	Using Plugins as Libraries (in Lieu of Library Extensions)
	Translating Plugins
	Dealing with Plugin Settings (Parameters)
	Packaging
	XML Manifest File
	File Naming Conflicts

	Summary

	Chapter 7: Extension Design
	Supporting Classes
	Helpers
	Using and Building getInstance() Methods
	Using the Registry
	Saving and Loading Registry Values

	The User
	User Parameters

	The Session
	The Browser
	Assets
	Summary

	Chapter 8: Rendering Output
	The joomla.html Library
	Behavior
	Email
	Grid
	Image
	List
	Menu
	Select

	Building Component HTML Layouts (Templates)
	Iterative Templates

	Component Backend
	Admin Form
	Toolbar
	Sub-Menu

	Itemized Data
	Pagination
	Ordering
	Filtering and Searching

	Summary

	Chapter 9: Customizing the Page
	Application Message Queue
	Redirects
	Component XML Metadata Files and Menu Parameters

	Using Menu Item Parameters
	Modifying the Document
	Page Title
	Pathway/Breadcrumb
	JavaScript
	CSS
	Metadata
	Custom Header Tags

	Translating
	Translating Text
	Defining Translations
	Debugging Translations

	Using JavaScript Effects
	JPane
	Tooltips
	Fx.Slide

	Summary

	Chapter 10: APIs and Web Services
	XML
	Parsing
	Editing
	Saving

	AJAX
	Response
	Request

	LDAP
	Email
	File Transfer Protocol
	Web Services
	Building a Web Service (XML-RPC Plugin)
	Summary

	Chapter 11: Error Handling and Security
	Errors, Warnings, and Notices
	Return Values
	Customizing Error Handling

	Dealing with CGI Request Data
	Preprocessing CGI Data
	Escaping and Encoding Data
	Escaping and Quoting Database Data
	Encode XHTML Data

	Regular Expressions
	Patterns
	Matching
	Replacing

	Access Control
	Menu Item Access Control
	Extension Access Control

	Attacks
	How to Avoid Common Attacks
	Using the Session Token
	Code Injection
	XSS (Cross Site Scripting)
	File System Snooping

	Dealing with Attacks
	Log Out and Block
	Attack Logging
	Notify the Site Administrator

	Summary

	Chapter 12: Utilities and Useful Classes
	Dates
	File System
	Paths
	Folders
	Files
	Archives

	Arrays
	Trees
	Log Files
	Summary

	Appendix
	Classes
	JObject
	Properties
	Constructors
	Methods

	JUser
	Properties
	Constructors
	Methods

	JModel
	Properties
	Constructors
	Methods

	JView
	Properties
	Constructors
	Methods

	JController
	Properties
	Constructors
	Methods

	JTable
	Properties
	Constructors
	Methods

	JError
	Methods

	JDocument
	Properties
	Constructors
	Methods

	JApplication
	Properties
	Constructors
	Methods

	JURI
	Properties
	Constructors
	Methods

	JLanguage
	Properties
	Constructors
	Methods

	JLanguageHelper
	Methods

	JText
	Methods

	JElement
	Properties
	Constructors
	Methods

	JParameter
	Properties
	Constructors
	Methods

	JCache
	Properties
	Constructors
	Methods

	JMail
	Constructors
	Methods

	JMailHelper
	Methods

	JFactory
	Methods

	JRegistry
	Properties
	Constructors
	Methods

	JSession
	Properties
	Constructors
	Methods

	JRoute
	Methods

	JMenu
	Properties
	Constructors
	Methods

	JPathway
	Properties
	Methods

	JDatabase
	Properties
	Constructors
	Methods

	Parameters (Core JElements)
	Configuration

	Index

