THE EXPERT'S VOICE®

Beginning

PHP 5 and
MySQL 5

From Novice to Professional

SECOND EDITION

W. Jason Gilmore

Apress

Beginning PHP
and MySQL 5

From Novice to Professional,
Second Edition

W. Jason Gilmore

Apress’

Beginning PHP and MySQL 5: From Novice to Professional, Second Edition
Copyright © 2006 by W. Jason Gilmore

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-552-7
ISBN-10 (pbk): 1-59059-552-1

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matthew Moodie

Technical Reviewer: Matthew Wade

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Managers: Laura Cheu, Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Bill McManus

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Susan Glinert Stevens

Proofreader: Nancy Sixsmith

Indexer: John Collin

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

This book is dedicated to the memory of Dr. Giovanni “Nino” Sanzi (1929-2004).
Addio, caro amico.

Contents at a Glance

About the AUTNOTo XXVii
About the Technical ReVIEWEro e Xxix
ACKNOWIBAgMENTS ...t i e e XXXi
INtrodUCHION e Xxxiii
CHAPTER 1 AnIntroductiontoPHPo 1
CHAPTER 2 Installing and Configuring Apache and PHP 9
CHAPTER3 PHPBaSiCS........ccovuiriiiiiii i 43
CHAPTER 4 FUNCLIONSot e 91
CHAPTER B AITaYSottt ettt 103
CHAPTER6 Object-Oriented PHP ..., 133
CHAPTER7 Advanced OOP Featurescccoviiiiiiinnnns. 157
CHAPTER 8 Error and Exception Handling 177
CHAPTER9 Strings and Regular Expressions 191
CHAPTER 10 Working with the File and Operating System 229
CHAPTER 11 PEAR e 259
CHAPTER12 DateandTimeccoiiiiiiiiiiiiiiiiiiiiinnns, 271
CHAPTER 13 Forms and Navigational Cues 303
CHAPTER 14 Authentication i, 325
CHAPTER 15 Handling File Uploadscocoiiiiiiiiiinnns, 345
CHAPTER 16 Networkingccooiiiiiiiiiiiii i 359
CHAPTER 17 PHPandLDAPooiiiii e 399
CHAPTER 18 SessionHandlersccooiiiiiiiiiiiiiiianns 425
CHAPTER 19 TemplatingwithSmarty 447
CHAPTER20 Web Servicesoviiiiiiniiiiiii i, 473
CHAPTER 21 Secure PHP Programmingcccoviiiennnnnns. 515
CHAPTER 22 SQLitecoviii i e 535

CHAPTER 23 IntroducingPDO ... 555

Vi

CONTENTS AT A GLANCE

CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
CHAPTER 30
CHAPTER 31
CHAPTER 32
CHAPTER 33
CHAPTER 34
CHAPTER 35
CHAPTER 36
CHAPTER 37

Introducing MySQL i 573
Installing and Configuring MySQL 581
The Many MySQL Clients ...t 607
MySQL Storage Engines and Datatypes 631
Securing MySQL 661
PHP’s MySQL Extensionccoiiiiiiiiinnnn.n. 689
PHP’s mysqli Extension ..., 719
Stored Routines ..o 745
MySQL THQQErSovieii e 767
VWS L 779
Practical Database Queries 793
Indexes and Searching.......................ooi 817
Transactions ...t 831
Importing and ExportingData 845
... 859

Contents

Aboutthe AUTNOr o e XXVii
About the Technical REVIBWETottt e e XXiX
ACKNOWIBAgMENTS ...t i e e XXXi
IMtrOAUCTION .ottt e e Xxxiii
CHAPTER 1 AnIntroductiontoPHP 1
HiStOry ..o e 1

PHP 4 . e 2

PHP 5 e 3

General Language Features 4

Practicality. ... e 5

PO . o 5

Possibility. 6

PriCE . o e 7

SUMMANY .ottt e e e 7

CHAPTER 2 Installing and Configuring Apache and PHP 9
Installation ... i 9

Obtaining the Distributionso il 9

The Installation Process. ..o i i, 11

Testing Your Installation.t 16

Customizing the Unix Buildcooiiiiiiiii ., 17

Customizing the Windows Buildcovviinnt, 18

CommonPitfalls ... 18

Viewing and Downloading the Documentation 19

Configurationuui i e 19

Managing PHP’s Configuration Directives 20

PHP’s Configuration Directivesccoiiiieiia..t. 22

QUMM .ottt i i e e e e e 42

vii

viii

CONTENTS

CHAPTER 3

PHPBasiCscooi i 43
Escapingto PHP i 43
Default Syntax. ... e 44
ShOM-TagS. . .ot e e 44
ST £ P 45
ASP-Style. ... e 45
Embedding Multiple Code BIOCKSc.vvvvviviiennns. 45
CommeNts ... e 46
Single-line C++ Syntax 46
Shell Syntax. e 46
Multiple-Line CSyntax..........coviiii et 46
OUEPUL e e e 47
DI . et e e 47
BCNO) . . et e 48
PN, .o e e 49
SPHNT(). ..o 50
DatatyPeS ..o e 50
Scalar Datatypes.t e e 50
Compound Datatypes.ovveiir it i 52
Special Datatypes. ... o.v v e 53
Type Castingooeiit i i 54
Type Juggling . ..o e 55
Type-Related Functions............... ..ot 56
Type ldentifier Functionst 57
[BNEITIErS o ettt 57
Variables ...t e 58
Variable Declaration............... ...t 58
Variable SCOPe ... e e 60
PHP’s Superglobal Variablesl 63
Variable Variables...............co i 67
Constants 68
EXPresSiONS ... e 68
OperaNdS . .ot e 69
L]0 T 1] £ 69
String Interpolation ... 75
Double Quotes. ..o e 75
Single QUOLESt e 76

[(2T 0 77

CHAPTER 4

CHAPTER 5

CONTENTS
Control Structuresoovii i e 78
Execution Control Statements.................. 78
Conditional Statements ..., 79
Looping Statements 81
File Inclusion Statements.................. ...t 86
QUMM .. e e e e e 89
Functions 91
Invokinga Function ... e 91
Creatinga Function ...ttt 92
Passing Arguments by Value...................ociiiiaaL. 92
Passing Arguments by Reference............................ 93
Default ArgumentValues. ..., 94
Optional Arguments e 94
Returning Values from a Function............................ 95
Nesting Functions. ... e 96
Recursive Functions. ... 97
Variable Functions ...t 99
Function Librariescooiiiiii i e 100
SUMMAIY .. i e i e e 101
ArTaYS ... 103
What Is an Array? ..o e e e 104
OUtpULEING ArTaYS .ottt e i i e 105
Creating an Array ... i i i 106
Testingforan Arrayceiiiiii i e 108
Adding and Removing Array Elements 109
Locating Array Elementsol 111
Traversing Arraysoveii i i e 112
Determining Array Size and UniqUENesSccvvevneeinnnns. 116
SOMING AITaYS oot i e 118
Merging, Slicing, Splicing, and Dissecting Arrays 124
Other Useful Array Functions 129

SUMMAIY .. i e i e i e 131

ix

X

CONTENTS

CHAPTER 6

CHAPTER 7

Object-Oriented PHP 133
The Benefitsof O0P ... 134
Encapsulation ... 134
INheritance. ... 134
Polymorphism 135
Key O0P ConCepts ...oovviniii it i e 135
ClasSeS. . o vt e 135
0] 1=T £ 136
Fields .o 137
Propertiesovi e 140
-1) S 140
Constants. ... 143
Methods.o 143
Type HINting ... e 147
Constructors and Destructorsc.coviiiiiiiiiiin.n 148
Constructorscoveeii i e 148
DESITUCTOrS .ottt e e 151
Static Class Members ...t 152
The instanceof Keyword ...t 153
Helper FUNctions ...t i 153
Autoloading Objects ... 155
QUMM ottt i e e e i e 156
Advanced OOP Features 157
Advanced OO0P Features Not Supported by PHP 157
Object Cloningo e 158
Cloning Example. ... 158
The __clone()Method ..., 160
INNEMTANCE e e 161
ClassInheritance ... 162
Inheritance and Constructorsooiiitt, 164
INterfaces ..ot 165
Implementing a Single Interface...................oiiill 167
Implementing Multiple Interfaces........................... 168

ADSTraCt ClasSSeS ... oottt e 168

CHAPTER 8

CHAPTER 9

CONTENTS

RefleCtion e 169
Writing the ReflectionClass Class........................... 170
Writing the ReflectionMethod Class 172
Writing the ReflectionParameter Class. 174
Writing the ReflectionProperty Class 175
Other Reflection Applicationsoit. 176

QUMM ottt i e e e i e 176

Error and ExceptionHandling 177

Configuration DireCtivesovviiii i 177

Error Loggingo v e e 180

ExceptionHandling ... 183
Why Exception HandlingIsHandy. 183
PHP’s Exception-Handling Implementation................... 185

QUMM ottt i e e e i e 189

Strings and Regular Expressions 191

Complex (Curly) Offset Syntaxccooiviiiiiiiiiiinn, 191

Regular EXpressionsc.coiviii it cie e 192
Regular Expression Syntax (POSIX).................coovvuenn, 193
PHP’s Regular Expression Functions (POSIX Extended)......... 195
Regular Expression Syntax (Perl Style)....................... 198

Other String-Specific Functions ...t 205
Determining the LengthofaString 205
Comparing TWo Stringso vt 206
Manipulating String Case...........covvii i 208
Converting Stringstoand fromHTML 209
Alternatives for Regular Expression Functions 214
Padding and StrippingaString.............cooiii i, 222
Counting Charactersand Wordsccovvieevnnnn... 224

Taking Advantage of PEAR: Validate_US 226
Installing Validate_US. ... 226
UsingValidate_US ... 227

SUMMAIY .. i e i e i e 227

Xi

Xii

CONTENTS
CHAPTER 10 Working with the File and Operating System 229
Learning About Files and Directorieso... 230
Parsing Directory Paths il 230
FileTypesand Links.ccoiiiii i 232
Calculating File, Directory, and Disk Sizes 235
Access and Modification Timesccooviuenn. 238

File Ownership and Permissionsoevvivieennennnnns. 239
File 1/ 242
The ConceptofaResource..........ccovviniiiiieneinn... 242
NeWINeg .o e 242
End-of-File. ... 242
Opening and Closing aFilecoovviiiiia... 242
ReadingfromakFile 244
Moving the File Pointer ... 249
WritingtoaFile. ... 250
Reading Directory Contents.cccviiiiiiiiin.t, 251
Executing Shell Commandscccviiiviiiie i, 252
PHP’s Built-in System Commands 252
System-Level Program Executionccoinat. 254
Sanitizingthelnput............o 254
PHP’s Program Execution Functions. 255
SUMMANY ..t e e e e 258
CHAPTER 11 PEARo e 259
Popular PEARPAcKagesc.ooeiiiiiiiiiiiiieninenns 259
Converting Numeral Formats.c.ooaet. 261
Installing and Updating PEAR, 262
Installing PEAR e 262
PEAR and Hosting Companies...............cccoiviivinn.. 263
Updating PEAR i e 264
Using the PEAR Package Managerccvviivvnnn.. 264
Viewing Installed Packages..............ccooiviiiiniinn, 264
Learning More About an Installed Package................... 265
InstallingaPackage............ccoviieiiiiiiii e, 266
UsingaPackage...........coovviiiiiiiiii i 267
UpgradingaPackage............cccoviiiiiiiniinnnn.. 268
UninstallingaPackage...............coooviiiieiinnnn.. 269
DowngradingaPackagecooviiiiiiiiiiiea, 269

SUMMIAIY ottt i e e i i e 270

CONTENTS

CHAPTER 12 DateandTime, 27
The Unix Timestamp e i e 271
PHP’s Date and Time Library ...t 272
Date FU ..o e 279

Displaying the Localized Dateand Time 279
Displaying the Web Page’s Most Recent Modification Date 283
Determining the Number Days in the Current Month........... 283
Calculating the Date X Days from the Present Date 284
CreatingaCalendarc.coiiiiiiiii et 285
PHP 5.1 e 288
Date Fundamentals ... 289
The Date Constructor............cooiii i 289
Accessorsand Mutatorsciii i 290
Validators. 293
Manipulation Methods ..., 294
QUMM ottt i e e e i e 301

CHAPTER 13 Forms and Navigational Cues 303

PHPand Web FOrms ...t i 303
ASimple Example. ... e 304
Passing Form Datatoa Function 306
Working with Multivalued Form Components 307
Generating FormswithPHP.L. 308
AutoselectingFormsDatat 310
PHP, Web Forms, and JavaScript...................cooui.. 311

Navigational CUEScoviiiiii i i 313
User-Friendly URLS. . ..o 313
Breadcrumb Trails ... 317
Creating Custom Error Handlers............................ 321

SUMMIAIY .ttt i i e i i e 323

CHAPTER 14 Authentication ... 325
HTTP Authentication Conceptsccvivviiiiiininns. 325
PHP Authentication ... 326

Authentication Variables i, 327

Authentication Methodologies....................coiii... 328

xiii

Xiv CONTENTS

CHAPTER 15

CHAPTER 16

User Login Administrationccooiiiiiiieiinennn.. 337
Password Designationccoiiiii i, 337
Testing Password Guessability with the CrackLib Library 339
One-Time URLs and Password Recovery..................... 3M

Handling FileUploads 345

Uploading Files via the HTTP Protocol 345

Handling Uploads with PHPo ot 346
PHP’s File Upload/Resource Directives 346
The $_FILESAITayoveiii i 348
PHP’s File-Upload Functions ..., 349
Upload Error Messagesovvvevviien e, 350
File-Upload Examples.ccoiiiiiiii i 351

Taking Advantage of PEAR; HTTP_Upload 355
Installing HTTP_Uploadt 355
Learning More About an Uploaded File 355
Moving an Uploaded File to the Final Destination.............. 356
Uploading Multiple Files. ..., 357

QUMM ottt i e e e i e 358

Networking i 359

DNS, Services, and SErversc.ovvvviiiiiiii i 360
DNS e 360
SBIVICES .+ v vttt e 364
Establishing Socket Connections 365

Mail . . e 367
Configuration Directives.oovvvi it 367
Sending a Plain-TextE-Mail 369
Sending an E-Mail with Additional Headers................... 369
Sending an E-Mail to Multiple Recipients 369
Sending an HTML-Formatted E-Mail 370
Sending an Attachment ... 371

IMAP, POP3,and NNTP 372
Requirements ...t 373
Establishing and Closing a Connection 374

Learning More About Mailboxesand Mail 375

CHAPTER 17

CONTENTS

Retrieving Messagescooviviiiiiii i 378
Composing aMesSage.vvvvevrr it 386
SendingaMessageoov vt e e 387
Mailbox Administration.o it 388
Message Administration i, 389
I BAMS ... i i e 390
Stream Wrappers and Contextscovvnet. 390
Stream Filters ... 391
Common Networking Tasksccvieiiieiiniiiiienenns 393
PINgiNg @aServerovi v e 394
APOrtScannercviii i e 395
Subnet Converter ... 395
Testing User Bandwidth. oot t. 397
SUMMAIY .. i e i e e 398
PHPandLDAP 399
AnIntroductiontoLDAP 400
Learning More AbOUtLDAP ... 400
Using LDAPfrom PHP 401
Connectingtothe LDAP Server.............coovviviinnn.. 401
Bindingtothe LDAP Server.oovieiviiiieinnnnns 402
Closing the LDAP Server Connection 403
Retrieving LDAPData...............ccoiiiii i, 404
Working with Entry Values. ...t 405
Counting Retrieved Entries ...t 407
Retrieving Attributes.o 407
Sorting and Comparing LDAP Entries.................cvvtt. 410
Working with Entries ... 412
Deallocating Memoryccoiiiiii e 415
Inserting LDAPData..............c.coiiiiiii e 415
Updating LDAPData..............ccooiiiiiii it 417
Deleting LDAPDataccooiiiiiii e 417
Configuration Functions.............ccoiiiiiiiii it 418
Character Encodingcvvriii i 420
Working with the Distinguished Name....................... a1
ErrorHandling. ... 422

SUMMAIY .. i e i e e 423

Xv

Xvi CONTENTS

CHAPTER 18

CHAPTER 19

SessionHandlersl. 425
What Is Session Handling? ..., 425
COOKIES ..ttt e e e e e 426
URL REWIItING . .. v vttt it et ee 426
The Session-Handling Processovvvvvviivinnnnn.ns 426
Configuration Directivesccoiiiiiii i 427
T] =T o] 432
Starting a Session. ...t 432
Destroying @ Sessionccoviii i 433
Retrieving and Setting the SessionID 434
Creating and Deleting Session Variables..................... 434
Encoding and Decoding SessionData 435
Practical Session-Handling Examplesccovvvennt. 437
AULO-LOgIN. ... e e 437
Recently Viewed Document Index........................... 439
Creating Custom Session Handlerscoovviivinnnnnnn, aM
Tying Custom Session Functions into PHP’s Logic............. 442
Custom MySQL-Based Session Handlers 442
SUMMANY .t e e 445
TemplatingwithSmarty 447
What’s a Templating Engine? 447
Introducing Smarty ... 449
InstallingSmarty ... e 450
USINg SMamyov i i i i e 452
Smarty’s Presentational Logiccci i, 454
Comments.covirii 454
Variable Modifiers. ..o 454
Control Structures. ... e e 457
Statementso 462
Creating Configuration Filescccoiviiiiiiiiiin.n, 465
config_load ... e 465
Referencing Configuration Variables 466
Using CSS in Conjunction withSmarty 467
CaChing ...t e e 468
Working with the Cache Lifetime 468
Eliminating Processing Overhead with is_cached() 469
Creating Multiple Caches per Template...................... 470
Some Final Words About Caching.................covvvennt. a7

SUMMIAIY .ttt i i e e i i e a7

CHAPTER 20

CHAPTER 21

CHAPTER 22

CONTENTS

Web Services ... 473
Why WeED ServiCes? . ..vvvitt i it i eaees 474
Real Simple Syndication il 476
RSS Syntax ... e 478
MagpieRSS e 479
SImpleXML .. e 486
SimpleXML Functions. ... i 486
SimpleXMLMethods.ovvve i 488
SOAP 491
NUSOAP . . e e 492
PHP 5°s SOAP Extensionc.oviiiviiinnnnann 502
Using a C# Client with a PHP Web Service 512
SUMMANY .ot e e e 514
Secure PHP Programming 515
Configuring PHP Securelyovviieiiriiiiiennenns 516
SafeMode. ... 516
Other Security-Related Configuration Parameters 518
Hiding Configuration Detailsccviiiiiiiniont. 520
Hiding Apacheand PHP, 520
Hiding Sensitive Data ... 522
Take Heed of the Document Root..................coovuit 523
Denying Access to Certain File Extensions 523
Sanitizing UserDataccviiiii i 524
File Deletion. ..ot e e 524
Cross-Site Scripting 524
Sanitizing User Input: The Solution. 526
Data Encryption ... e 528
PHP’s Encryption Functions. ..., 528
Mhash 529
110] 1 531
SUMMaAIY .. i e i e e e 532
SALite ... 535
Introductionto SQLite 535
Installing SQLite 536

Using the SQLite Command-Line Interface 536

Xvii

xviii CONTENTS

CHAPTER 23

CHAPTER 24

PHP’s SQLite Library ... 537
SQLite Directives. oo e 537
OpeningaConnectioncccoiiiiiiiiiiii i, 538
Creatinga TableinMemoryccviviiiiiieninnnn.. 539
Closing a Connectionc.covt it 539
Queryinga Databaseccoiiiiiiiiii 540
Parsing Result Sets. ... 541
Retrieving Result Set Details...................l 544
Manipulating the Result Set Pointer......................... 546
Learning More About Table Schemas 548
Working with BinaryDataoooiaiat. 549
Creating and Overriding SQLite Functions.................... 550
Creating Aggregate Functions...............coovieivnnn... 551

SUMMAIY .. i e i e e 553

IntroducingPDO 555

Another Database Abstraction Layer? 556

USINg PDO ..\t i e e i e 557
INstalling PDO e e e e 558
PDO’s Database Supportcoviiiii i 558
Connecting to a Database Server and Selecting a Database. 559
Getting and Setting Attributes...............o ol 561
ErrorHandling. ... 562
Query Execution ... 562
Prepared Statements.............. o i, 564
Retrieving Data ...t 567
Setting Bound Columns i i 571
Transactionsooviii i e e e 572

SUMMAIY .. i e i e e 572

IntroducingMySQL ...l 573

What Makes MySQL So Popular?cccoiiiiiiinin.., 573
Flexibility oo 574
POWET . . e 574
Flexible Licensing Options..........ccviviiiiiiinn, 576
A (Hyper) Active User Community...........ccvvvvininnn.nn 577

MYSQL 4 577

CHAPTER 25

CHAPTER 26

CONTENTS

Prominent MySQL USErSovevirii i 579
craigslisto e 579
Yahoo! Finance ... 580
Wikipedia. ..o e 580

SUMMAIY .. i e i e e 580

Installing and ConfiguringMySQL 581

PHP and MySQL Licensing ISSUEScovvieiiieiininnnnt. 581
0 P 582
WindoWsS . ..o 582

Downloading MySQL ... 583

Installing MySQL ..o e 584
0 P 584
Windows ... e 588

Set the MySQL Administrator Password 591

Starting and StoppingMySQL i 591
Controlling the Daemon Manually........................... 592
Starting and Stopping MySQL Automatically.................. 594

Configuring and Optimizing MySQLottt 596
mysgld_safe ... 597
Configuration and Optimization Parameters 597
ThemycenfFile..........ooiiiiii i 602

SUMMAIY .. i e i e e 605

The Many MySQL Clients 607

Standard Client Options ... 607

Connection OptioNS oo v v e e 608

General Optionsoiiii e e 609

01127 | 610
Key mysql Optionsovv v 610
Using mysql in Interactive Mode............................ 612
Viewing Configuration Variables and System Status 614
Using mysqlin BatchMode.......................oiatt. 616
Useful mysgl TipS . ..o v e e e 616

Mysqladmino e 619

mysgladmin Commandsc.ceviitiiiiiiiiiea 619

Xix

XX

CONTENTS

CHAPTER 27

The Other Utilities ..o e 621
MYSQIAUMP ..o e 621
MYSQISNOW ... e 621
MysSaINOICOPY . ..o v e 622
mysglimport ... e 623
MYISAMCHK i e i 623
MysqIChecK e 624

Third-Party Client Programs ..., 624
MySQL Administrator. ... 624
PhpMYAdMIN. ... 626
MySQL QUEry BrOWSEro vt it e it i i 627
Navicat. ... e 629

QUMM ottt i e e e i e 630

MySQL Storage Engines and Datatypes 631

Storage ENginesoviie i e 631
INNODB . ..o e 632
MYISAM .. e 633
MEMORY ...t e 635
MERGE.ot e i 636
BDB . e 637
FEDERATEDttt et 637
ARCHIVE. i e e e 638
OV e 639
EXAMPLE e 640
BLACKHOLE.t e e 640
Storage Engine FAQ ... 640

Datatypes and Attributes ... 642
Datatypes. . ..o e 642
Datatype Attributes.cco i 648

Working with Databases and Tables 651
Working with Databasescooiiit. 651
Workingwith Tables. ...t 653
Altering a Table Structure ..., 656
The INFORMATION_SCHEMA. 656

SUMMIAIY .ttt i e e i i e 659

CONTENTS

CHAPTER 28 SecuringMySQL .. 661
What You Should Do First ...t 661
Securingthe mysgld Daemon ..., 662
The MySQL Access Privilege Systemocoviiint.. 663

How the Privilege System Worksccovinitn, 663
Where Is Access Information Stored?. 665
User and Privilege Managementcccvvvieenn. 675
CREATEUSER ..o e 675
DROPUSER . ..o e i 676
RENAMEUSER ... e 676
The GRANT and REVOKE Commands........................ 676
Reviewing Privileges. 682
Limiting User ReSoUrcesoevvuiiiiiiiiiieinnnenns. 682
Secure MySQL Connectionsc.coivviiiiiiiiinnnanans. 683
Grant Oplions ... 683
SSL OPtiONS. . v 685
Starting the SSL-Enabled MySQL Server..................... 686
Connecting Using an SSL-Enabled Client 686
Storing SSL Options inthe my.cnfFile....................... 686
SUMMANY ..t e e e 687

CHAPTER 29 PHP’s MySQL Extension 689

PrerequIsitesoovvii i e e 689
Enabling the MySQL Extensionon Linux 689
Enabling the MySQL Extension on Windows 690
User Privileges ... 690
Sample Datat 690

PHP’s MySQL Commandsc.ooviiivneiieiiinnannns. 690
Establishing and Closing a Connection 691
Storing Connection Information in a Separate File 693
Securing Your Connection Information....................... 693

ChoosingaDatabaseccoiiiiiiiin i 694

Querying MySQLcii 694

Retrieving and DisplayingDatat 696

InsertingData ... 699

ModifyingData ...t e 701

XXi

XXii

CONTENTS

CHAPTER 30

CHAPTER 31

DeletingData ... e e 704
Rows Selected and Rows Affectedcoiitt. 705
Retrieving Database and Table Information 706
Retrieving Field Information ...t 708
Viewing Table Properties. ..o, 712
Retrieving Error Information 713
Helper FUNCLioNSo e i 715
SUMMAIY .. i e i e e 718
PHP’s mysqli Extension 719
PrereqUISItes ... e 720
Enabling the mysqli Extensionon Unix....................... 720
Enabling the mysqli Extension on Windows. 720
Sample Data ... 721
Using the mysqli Extension ..., 721
Connecting to the MySQL Serverccovvivivnnn... 721
Connection Error Reporting 722
Selecting a MySQL Databasecoiiviin.t. 725
Closing a MySQL Connectioncovvivvinivnnnn.. 725
QUBTIES vttt et e e e e e 726
Query Execution ... 726
Recuperating Query Memory............coo i, 728
Readyingthe Result Set............. ...t 728
Parsing Results. ... e 730
Multiple QUENIES ... oot e 733
Prepared Statements.............. i, 735
Database Transactionsccoviiiiiiiii e M
SUMMAIY .. i e i e e e 743
StoredRoutinesooii 745
Should You Use Stored Routines?ccoovviviinn... 745
Stored Routine Advantages............ccviiiiiiiinnt. 746
Stored Routine Disadvantagesc.covvviviinnnnt. 746
How MySQL Implements Stored Routines 747
Stored Routine Privilege Tablesccovinitt. 747
Creatinga Stored Routineovviiiiiiiiinnn, 749

Declaring and Setting Variables 751

CHAPTER 32

CHAPTER 33

CONTENTS

Executinga Stored Routine, 753
Multistatement Stored Routines 753
Calling a Routine from Within Another Routine................ 761
Modifying a Stored Routine, 761
Deleting a Stored Routing ..., 762
Viewing a Routine’s Statuso, 762
Viewing a Routine’s Creation Syntax 763
Conditionsand Handlerscociiiiiiinn... 764
Integrating Routines into Web Applications 764
Creating the Employee Bonus Interface...................... 764
Retrieving Multiple Rows........... .ot 765
SUMMAIY ..t i e i e e e 766
MySQL Triggersccooviiiiiiiiiiiiiiaeaen. . 767
Introducing Triggersc.oviei i e i i 767
Why Use Triggers?ooveiiii i 768
Taking Action BeforeanEvent, 768
Taking Action AfteranEvent..................., 768
Before Triggers vs. After Triggers.covvevviineninn... 769
MySQL’s Trigger SUpport e 770
Creating @ Trigger. .. ov i et 771
Viewing Existing Triggers. 772
Modifying a Triggercovvviii i i i 774
Deleting aTrigger......cooveiiire i i ieen 774
Cascading Trggers.ovvvi i i eeas 775
Integrating Triggers into Web Applications 776
QUMM ottt i e e e i e 778
VieWS ... 779
Introducing VIEWSoioiiii e e 780
MySQL’s View SUpportcooii i e 780
Creating and Executing Views.ccovviieinnnnn.. 781
Viewing View Informationo Ll 786
Modifyinga View. ... 788
DeletingaView. ...t 788
Updating Views e i 788
Incorporating Views into Web Applications 789

SUMMIAIY ottt i e e i i e 791

XXiii

XXiv

CONTENTS
CHAPTER 34 Practical Database Queries 793
Sample Data ...t e 794
Creating Tabular Qutput with PEARol 794
Installing HTML_Table ...t 795
Creatinga Simple Table............ccoveiiiiiii it 795
Creating More Readable Row Qutput........................ 797
Creating a Table from Database Data 798
Generalizing the Output Process.cocvvvviennnnn... 799
Sorting Qutputoo e 802
Creating Paged Output ..ot e 803
Listing Page Numbers ...t 806
SUDQUEIES . . ot e 808
Performing Comparisons with Subqueries 809
Determining Existence with Subqueries 809
Database Maintenance with Subqueries..................... 811
Using SubquerieswithPHPcciiiiiinatt, 811
01 T 812
CUrSOrBasiCsovve it i e e e 812
Creating @ Cursorv vt e it 813
0pening @ CUISOr ..ottt e et 813
USiNg @ CUISOr. .. oottt e et e 813
ClosSiNg @ CUISOr . v vttt et i et it i eeas 815
Using Cursors withPHPt 815
SUMMAIY .. i e i e e 815
CHAPTER 35 Indexes and Searching 817
Database Indexing ... e 817
Primary Key Indexes.coiiiii i 818
Unique INdeXeSo oot e e e 819
Normal INdeXeS o.vv it e e e e 820
Full-TextIndexescoveiiiiii i 822
Indexing Best Practices, 825
Forms-Based Searchesccooviiiiiiiiiiiiiinnnans. 826
Performinga SimpleSearch ..., 826
Extending Search Capabilities.............................. 827
Performing a Full-Text Searchccoiiii.t, 829

QUMM ottt i e e e i e 830

CONTENTS

CHAPTER 36 Transactionsiiiiiin... 831
What's a Transaction?c.ccoviiiiiiiiiiiiiie s 831

MySQL’s Transactional Capabilities 832

System Requirements ... 832

Table Creation. ..o 833

InnoDB Configuration Parameters........................... 833

ASample Projectot e e 836

Sample Datat 836

Executing an Example Transaction.......................... 837

Backing Up and Restoring InnoDB Tables 839

USagE TIPS, . oottt e e e e 839

Building Transactional Applications withPHP 840

The Swap MeetRevisitedccviviiiiiiiii i, 840

QUMM ottt i e e e i e 843

CHAPTER 37 Importing and ExportingData 845
Sample Table ...t e 845

Attaining a Happy Mediumo 846

Exporting Data ... e 846
SELECTINTOOUTFILE . ..o 847

ImportingDatacoiiiii e 850

Importing Data with LOAD DATAINFILE. 850

Importing with mysglimport.o il 853

Loading Table DatawithPHP 856

SUMMIAIY .ttt i i e e i i e 857

INDEX .. e 859

XXV

About the Author

W. JASON GILMORE has developed countless PHP and MySQL applications
over the past seven years, and has dozens of articles to his credit on this
and other topics pertinent to Internet application development. He
has had articles featured in, among others, Linux Magazine and
Developer.com, and adopted for use within United Nations and Ford
Foundation educational programs. Jason is the author of three books,
including most recently the best-selling Beginning PHP and MySQL:
From Novice to Professional, and, with coauthor Robert Treat, Beginning PHP and PostgreSQL 8:
From Novice to Professional. These days Jason splits his time between running Apress’s Open
Source program, experimenting with spatially enabled Web applications, and starting more
home remodeling projects than he could possibly complete. Contact Jason at wj@wjgilmore. com,
and be sure to visit his Web site at http://www.wjgilmore.com.

Xxvii

About the Technical Reviewer

MATT WADE is a database analyst by day and a freelance PHP developer
by night. He has extensive experience with database technologies ranging
from Microsoft SQL Server to MySQL. Matt is also an accomplished
systems administrator and has experience with all flavors of Windows
and FreeBSD.

Matt resides in Florida with his wife Michelle and three children,
Matthew, Jonathan, and Amanda. He spends his (little) spare time fiddling
with his aquariums, doing something at church, or just trying to catch
a few winks. Matt is the founder of Codewalkers.com, which is a resource for PHP developers.

XXix

Acknowledgments

Writing abook is an enormous undertaking, and although the author’s name is the one
appearing on the cover, this book would not have been possible without the efforts of numerous
individuals.

I'd like to thank Gary Cornell for yet another opportunity to write for the greatest computer
book publisher on the planet. Assistant Publisher Dominic Shakeshaft offered unwavering support
and encouragement throughout the project. Project Managers Beth Christmas and Laura Cheu
demonstrated their skills for otherworldly patience and schedule wrangling while I muddled
through this project. Matt Wade’s keen eye for detail resulted in vastly improved code and
helped fill in more than a few blanks regarding some of PHP’s and MySQL’s undocumented
features. Bill McManus diligently turned my often incoherent ramblings into a far more read-
able format. Editor Matt Moodie saved what’s left of my sanity by helping out on late-stage
chapter reviews. Designer-extraordinaire Kurt Krames produced yet another beautiful cover.
Of course, thank you to all of the other members of the staff who do such a tremendous job not
only on this but all of the Apress books.

A sincere thank you is also in order for the PHP and MySQL developer communities who
have worked so tirelessly over the years to advance these two truly special technologies.

Last but certainly not least, I'd like to thank my family and friends just for being there, and
for dragging me away from the laptop on occasion.

Any errors in this book are mine and mine alone.

XXXi

Introduction

M ost great programming books sway far more toward the realm of the practical than of the
academic. Although I have no illusions regarding my place among the great technical authors
of our time, it is always my goal to write with this point in mind, producing material that you
can apply to your own situation. Given the size of this book, it’s probably apparent that I attempt
to squeeze out every last drop of such practicality from the subject matter. That said, if you're
interested in gaining practical and comprehensive insight into the PHP programming language
and MySQL database server, and how these prominent technologies can be used together to
create dynamic, database-driven Web applications, this book is for you.

In the 18 months since the first edition of this book was published, the PHP and MySQL
communities have continued to work feverishly to advance the capabilities of these two prom-
inent technologies. Accordingly, this revision could not have come without the addition of a
substantial amount of new material, to the tune of more than 100 additional pages. In total,
seven new chapters have been added. Three of these chapters are devoted to PHP-specific topics,
including the PHP Extension and Application Repository (PEAR), date and time functionality,
and the PHP Data Objects (PDO) extension. Four additional chapters cover PHP 5’s mysqli
extension, and MySQL 5’s new stored routine, trigger, and view functionality. Furthermore, all
existing chapters have been carefully revised, and in some cases heavily modified, to both update
and improve upon the first edition material.

Ifyou're new to PHP, I heartily recommend beginning with Chapter 1, because first gaining
fundamental knowledge of PHP will be of considerable benefit to you when reading later chapters.
If you know PHP but are new to MySQL, consider beginning with Chapter 24. Intermediate and
advanced readers are invited to jump around as necessary; after all, this isn’t a romance novel.
Regardless of your reading strategy, I've attempted to compartmentalize the material found in
each chapter so that you can quickly learn each topic without necessarily having to master
other chapters beyond those that concentrate on the technology fundamentals.

Furthermore, novice and seasoned PHP and MySQL developers alike have something to
gain from this book, as I've intentionally organized it in a hybrid format of both tutorial and
reference. I appreciate the fact that you have traded hard-earned cash for this book, and there-
fore I have strived to present the material in a fashion that will prove useful not only the first few
times you peruse it, but far into the future.

Download the Gode

Experimenting with the code found in this book is the most efficient way to best understand the
concepts presented within. For your convenience, a ZIP file containing all of the examples can
be downloaded from http://www.apress.com.

XXXiii

XXXiv INTRODUCTION

Contact Me!

I love reader e-mail, and invite you to contact me with comments, suggestions, and questions.
Feel free to e-mail me at wj@wjgilmore.com. Also be sure to regularly check http://waw.
wjgilmore.com for links to my latest projects and articles.

CHAPTER 1

An Introduction to PHP

This chapter serves to better acquaint you with the basics of PHP, offering insight into its
roots, popularity, and users. This information sets the stage for a discussion of PHP’s feature
set, including the new features in PHP 5. By the conclusion of this chapter, you’ll learn:

* How a Canadian developer’s Web page hit counter spawned one of the world’s most
popular scripting languages

* What PHP’s developers have done to once again reinvent the language, making version 5 the
best yet released

* Which features of PHP attract both new and expert programmers alike

History

The origins of PHP date back to 1995, when an independent software development contractor
named Rasmus Lerdorf developed a Perl/CGI script that enabled him to know how many visitors
were reading his online résumé. His script performed two tasks: logging visitor information,
and displaying the count of visitors to the Web page. Because the Web as we know it today was
still young at that time, tools such as these were nonexistent, and they prompted e-mails inquiring
about Lerdorf’s scripts. Lerdorf thus began giving away his toolset, dubbed Personal Home
Page (PHP).

The clamor for the PHP toolset prompted Lerdorf to continue developing the language,
perhaps the most notable early change coming when he added a feature for converting data
entered in an HTML form into symbolic variables, encouraging exportation into other systems.
To accomplish this, he opted to continue development in C code rather than Perl. Ongoing
additions to the PHP toolset culminated in November 1997 with the release of PHP 2.0, or
Personal Home Page—Form Interpreter (PHP-FI). As a result of PHP’s rising popularity, the 2.0
release was accompanied by a number of enhancements and improvements from program-
mers worldwide.

The new PHP release was extremely popular, and a core team of developers soon joined
Lerdorf. They kept the original concept of incorporating code directly alongside HTML and
rewrote the parsing engine, giving birth to PHP 3.0. By the June 1998 release of version 3.0,
more than 50,000 users were using PHP to enhance their Web pages.

CHAPTER 1 AN INTRODUCTION TO PHP

Note 1997 also saw the change of the words underlying the PHP abbreviation from Personal Home Page
to the recursive acronym Hypertext Preprocessor.

Development continued at a hectic pace over the next two years, with hundreds of functions
being added and the user count growing in leaps and bounds. At the beginning of 1999, Netcraft
(http://www.netcraft.com/) reported a conservative estimate of a user base surpassing
1,000,000, making PHP one of the most popular scripting languages in the world. Its popularity
surpassed even the greatest expectations of the developers, as it soon became apparent that
users intended to use PHP to power far larger applications than was originally anticipated. Two
core developers, Zeev Suraski and Andi Gutmans, took the initiative to completely rethink the
way PHP operated, culminating in a rewriting of the PHP parser, dubbed the Zend scripting
engine. The result of this work was found in the PHP 4 release.

Note In addition to leading development of the Zend engine and playing a major role in steering the overall
development of the PHP language, Zend Technologies Ltd. (http://www.zend.com/), based in Israel,
offers a host of tools for developing and deploying PHP. These include Zend Studio, Zend Encoder, and Zend
Optimizer, among others. Check out the Zend Web site for more information.

PHP 4

On May 22, 2000, roughly 18 months after the first official announcement of the new development
effort, PHP 4.0 was released. Many considered the release of PHP 4 to be the language’s official
debut within the enterprise development scene, an opinion backed by the language’s meteoric rise
in popularity. Just a few months after the major release, Netcraft (http://www.netcraft.com/)
estimated that PHP had been installed on more than 3.6 million domains.

Features

PHP 4 included several enterprise-level improvements, including the following:

¢ Improved resource handling: One of version 3.X’s primary drawbacks was scalability.
This was largely because the designers underestimated how much the language would
be used for large-scale applications. The language wasn’t originally intended to run
enterprise-class Web sites, and subsequent attempts to do so caused the developers to
rethink much of the language’s mechanics. The result was vastly improved resource-
handling functionality in version 4.

* Object-oriented support: Version 4 incorporated a degree of object-oriented functionality,
although it was largely considered an unexceptional implementation. Nonetheless, the new
features played an important role in attracting users used to working with traditional
object-oriented programming (OOP) languages. Standard class and object development
methodologies were made available, in addition to object overloading, and run-time
class information. A much more comprehensive OOP implementation has been made
available in version 5, and is introduced in Chapter 5.

CHAPTER 1 AN INTRODUCTION TO PHP

* Native session-handling support: HTTP session handling, available to version 3.X users
through the third-party package PHPLIB (http://phplib.sourceforge.net), was natively
incorporated into version 4. This feature offers developers a means for tracking user
activity and preferences with unparalleled efficiency and ease. Chapter 15 covers PHP’s
session-handling capabilities.

* Encryption: The MCrypt (http://mcrypt.sourceforge.net) library was incorporated
into the default distribution, offering users both full and hash encryption using encryption
algorithms including Blowfish, MD5, SHA1, and TripleDES, among others. Chapter 18
delves into PHP’s encryption capabilities.

* ISAPI support: ISAPI support offered users the ability to use PHP in conjunction with
Microsoft’s IIS Web server as an ISAPI module, greatly increasing its performance and
security.

* Native COM/DCOM support: Another bonus for Windows users is PHP 4’s ability to
access and instantiate COM objects. This functionality opened up a wide range of
interoperability with Windows applications.

* Native Java support: In another boost to PHP’s interoperability, support for binding to
Java objects from a PHP application was made available in version 4.0.

* Perl Compatible Regular Expressions (PCRE) library: The Perl language has long been
heralded as the reigning royalty of the string parsing kingdom. The developers knew that
powerful regular expression functionality would play a major role in the widespread
acceptance of PHP, and opted to simply incorporate Perl’s functionality rather than
reproduce it, rolling the PCRE library package into PHP’s default distribution (as of
version 4.2.0). Chapter 9 introduces this important feature in great detail, and offers a
general introduction to the often confusing regular expression syntax.

In addition to these features, literally hundreds of functions were added to version 4, greatly
enhancing the language’s capabilities. Throughout the course of this book, much of this func-
tionality is discussed, as it remains equally important in the version 5 release.

Drawbacks

PHP 4 represented a gigantic leap forward in the language’s maturity. The new functionality,
power, and scalability offered by the new version swayed an enormous number of burgeoning
and expert developers alike, resulting in its firm establishment among the Web scripting behe-
moths. Yet maintaining user adoration in the language business is a difficult task; programmers
often hold a “what have you done for me lately?” mindset. The PHP development team kept
this notion close in mind, because it wasn’t too long before it set out upon another monumental
task, one that could establish the language as the 800-pound gorilla of the Web scripting world:
PHP 5.

PHP 5

Version 5 is yet another watershed in the evolution of the PHP language. Although previous
major releases had enormous numbers of new library additions, version 5 contains improve-
ments over existing functionality and adds several features commonly associated with mature
programming language architectures:

CHAPTER 1 AN INTRODUCTION TO PHP

¢ Vastly improved object-oriented capabilities: Improvements to PHP’s object-oriented
architecture is version 5’s most visible feature. Version 5 includes numerous functional
additions such as explicit constructors and destructors, object cloning, class abstraction,
variable scope, interfaces, and a major improvement regarding how PHP handles object
management. Chapters 6 and 7 offer thorough introductions to this topic.

* Try/catch exception handling: Devising custom error-handling strategies within structural
programming languages is, ironically, error-prone and inconsistent. To remedy this
problem, version 5 now supports exception handling. Long a mainstay of error manage-
ment in many languages, C++, C#, Python, and Java included, exception handling offers
an excellent means for standardizing your error-reporting logic. This new and convenient
methodology is introduced in Chapter 8.

¢ Improved string handling: Prior versions of PHP have treated strings as arrays by default,
a practice indicative of the language’s traditional loose-knit attitude toward datatypes.
This strategy has been tweaked in version 5, in which a specialized string offset syntax
has been introduced, and the previous methodology has been deprecated. The new
features, changes, and effects offered by this new syntax are discussed in Chapter 9.

¢ Improved XML and Web Services support: XML support is now based on the libxmI2
library, and a new and rather promising extension for parsing and manipulating XML,
known as SimpleXML, has been introduced. In addition, a SOAP extension is now avail-
able. In Chapter 20, these two new extensions are introduced, along with a number of
slick third-party Web Services extensions.

» Native support for SQLite: Always keen on choice, the developers have added support
for the powerful yet compact SQLite database server (http://www.sqlite.org/). SQLite
offers a convenient solution for developers looking for many of the features found
in some of the heavyweight database products without incurring the accompanying
administrative overhead. PHP’s support for this powerful database engine is introduced
in Chapter 22.

A host of other improvements and additions are offered in version 5, many of which are
introduced, as relevant, throughout the book.

With the release of version 5, PHP’s prevalence is at a historical high. At press time, PHP
has been installed on almost 19 million domains (Netcraft, http://www.netcraft.com/). According
to E-Soft, Inc. (http://www.securityspace.com/), PHP is by far the most popular Apache module,
available on almost 54 percent of all Apache installations.

So far, this chapter has discussed only version-specific features of the language. Each version
shares a common set of characteristics that play a very important role in attracting and retaining a
large user base. In the next section, you'll learn about these foundational features.

General Language Features

Every user has his or her own specific reason for using PHP to implement a mission-critical
application, although one could argue that such motives tend to fall into four key categories:
practicality, power, possibility, and price.

CHAPTER 1 AN INTRODUCTION TO PHP

Practicality

From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s
original intention was not to design an entirely new language, but to resolve a problem that
had no readily available solution. Furthermore, much of PHP’s early evolution was not the
result of the explicit intention to improve the language itself, but rather to increase its utility to
the user. The result is a minimalist language, both in terms of what is required of the user and
in terms of the language’s syntactical requirements. For starters, a useful PHP script can consist of
as little as one line; unlike C, there is no need for the mandatory inclusion of libraries. For example,
the following represents a complete PHP script, the purpose of which is to output the current
date, in this case one formatted like September 23, 2005:

<?php echo date("F j, Y");?>

Another example of the language’s penchant for compactness is its ability to nest functions.
For example, you can effect numerous changes to a value on the same line by stacking functions
in a particular order, in the following case producing a pseudorandom string of five alphanu-
meric characters, a3jh8 for instance:

$randomString = substr(mds(microtime()), 0, 5);

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or
destroy a variable, although you are not prevented from doing so. PHP handles such matters
internally, creating variables on the fly as they are called in a script, and employing a best-guess
formula for automatically typecasting variables. For instance, PHP considers the following set
of statements to be perfectly valid:

<?php
$number = "5"; # $number is a string
$sum = 15 + $number; # Add an integer and string to produce integer
$sum = "twenty"; # Overwrite $sum with a string.

>

PHP will also automatically destroy variables and return resources to the system when the
script completes. In these and in many other respects, by attempting to handle many of the
administrative aspects of programming internally, PHP allows the developer to concentrate
almost exclusively on the final goal, namely a working application.

Power

The earlier introduction to PHP 5 alluded to the fact that the new version is more qualitative
than quantitative in comparison to previous versions. Previous major versions were accom-
panied by enormous additions to PHP’s default libraries, to the tune of several hundred new
functions per release. Presently, 113 libraries are available, collectively containing well over
1,000 functions. Although you're likely aware of PHP’s ability to interface with databases,
manipulate form information, and create pages dynamically, you might not know that PHP
can also do the following:

CHAPTER 1 AN INTRODUCTION TO PHP

¢ Create and manipulate Macromedia Flash, image, and Portable Document Format
(PDF) files

¢ Evaluate a password for guessability by comparing it to language dictionaries and easily
broken patterns

e Communicate with the Lightweight Directory Access Protocol (LDAP)

» Parse even the most complex of strings using both the POSIX and Perl-based regular
expression libraries

¢ Authenticate users against login credentials stored in flat files, databases, and even
Microsoft’s Active Directory

¢ Communicate with a wide variety of protocols, including IMAP, POP3, NNTP, and DNS,
among others

* Communicate with a wide array of credit-card processing solutions

Of course, the coming chapters cover as many of these and other interesting and useful
features of PHP as possible.

Possibility

PHP developers are rarely bound to any single implementation solution. On the contrary, a
user is typically fraught with choices offered by the language. For example, consider PHP’s
array of database support options. Native support is offered for over 25 database products,
including Adabas D, dBase, Empress, FilePro, FrontBase, Hyperwave, IBM DB2, Informix,
Ingres, Interbase, mSQL, direct MS-SQL, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase,
Unix dbm, and Velocis. In addition, abstraction layer functions are available for accessing
Berkeley DB-style databases. Finally, two database abstraction layers are available, one called
the dbx module, and another via PEAR, titled the PEAR DB.

PHP’s powerful string-parsing capabilities is another feature indicative of the possibility
offered to users. In addition to more than 85 string-manipulation functions, both POSIX- and
Perl-based regular expression formats are supported. This flexibility offers users of differing
skill sets the opportunity not only to immediately begin performing complex string operations
but also to quickly port programs of similar functionality (such as Perl and Python) over to PHP.

Do you prefer a language that embraces functional programming? How about one that
embraces the object-oriented paradigm? PHP offers comprehensive support for both. Although
PHP was originally a solely functional language, the developers soon came to realize the
importance of offering the popular OOP paradigm, and took the steps to implement an
extensive solution.

The recurring theme here is that PHP allows you to quickly capitalize on your current skill
set with very little time investment. The examples set forth here are but a small sampling of this
strategy, which can be found repeatedly throughout the language.

CHAPTER 1 AN INTRODUCTION TO PHP

Price

Since its inception, PHP has been without usage, modification, and redistribution restrictions.
In recent years, software meeting such open licensing qualifications has been referred to as
open-source software. Open-source software and the Internet go together like bread and
butter. Open-source projects like Sendmail, Bind, Linux, and Apache all play enormousroles in
the ongoing operations of the Internet at large. Although the fact that open-source software is
freely available for use has been the characteristic most promoted by the media, several other
characteristics are equally important if not more so:

» Free of licensing restrictions imposed by most commercial products: Open-source
software users are freed of the vast majority of licensing restrictions one would expect of
commercial counterparts. Although some discrepancies do exist among license variants,
users are largely free to modify, redistribute, and integrate the software into other products.

* Open development and auditing process: Although there have been some incidents,
open-source software has long enjoyed a stellar security record. Such high standards are
aresult of the open development and auditing process. Because the source code is freely
available for anyone to examine, security holes and potential problems are rapidly found
and fixed. This advantage was perhaps best summarized by open-source advocate
Eric S. Raymond, who wrote, “Given enough eyeballs, all bugs are shallow.”

* Participation is encouraged: Development teams are not limited to a particular organi-
zation. Anyone who has the interest and the ability is free to join the project. The absence
of member restrictions greatly enhances the talent pool for a given project, ultimately
contributing to a higher-quality product.

Summary

This chapter has provided a bit of foreshadowing about this wonderful language to which much
of this book is devoted. We looked first at PHP’s history, before outlining version 4 and 5’s core
features, setting the stage for later chapters.

In Chapter 2, prepare to get your hands dirty, as you'll delve into the PHP installation and
configuration process. Although readers often liken most such chapters to scratching nails on
a chalkboard, you can gain much from learning more about this process. Much like a professional
cyclist or race car driver, the programmer with hands-on knowledge of the tweaking and main-
tenance process often holds an advantage over those without, by virtue of a better understanding
of both the software’s behaviors and quirks. So grab a snack and cozy up to your keyboard; it’s
time to build.

CHAPTER 2

Installing and Configuring
Apache and PHP

In this chapter, you'll learn how to install and configure PHP, and in the process learn how to
install the Apache Web server. If you don’t already have a working Apache/PHP server at your
disposal, the material covered here will prove invaluable for working with the examples in later
chapters, not to mention for carrying out your own experiments. Specifically, in this chapter,

you will learn about:

* Howto install Apache and PHP as an Apache server module on both the Unix and Windows
platforms

* How to test your installation to ensure that all of the components are properly working
e Common installation pitfalls and their resolutions

* The purpose, scope, and default values of many of PHP’s most commonly used configu-
ration directives

e Various ways in which you can modify PHP’s configuration directives

Installation

In this section, you'll carry out all of the steps required to install an operational Apache/PHP
server. By its conclusion, you'll be able to execute PHP scripts and view the results in a browser.

Obtaining the Distributions

Before beginning the installation, you'll need to download the source code. This section provides
instructions regarding how to do so.

Downloading Apache

Apache’s popularity and open source license have prompted practically all Unix developers to
package the software with their respective distribution. Because of Apache’s rapid release
schedule, however, you should consult the Apache Web site and download the latest version.
At the time of this writing, the following page offers a listing of 260 mirrors located in 53 different
countries:

10

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

http://www.apache.org/mirrors/

Navigate to this page and choose a suitable mirror by clicking on the appropriate link. The
resulting page will consist of all projects found under the Apache Software Foundation umbrella.
Choose the httpd link. This will take you to the page that includes links to the most recent
Apache releases and various related projects and utilities. The distribution is available in
two formats:

* Source: If your target server platform is a Unix variant, consider downloading the source
code. Although there is certainly nothing wrong with using one of the convenient binary
versions, the extra time invested in learning how to compile from source will provide
you with greater configuration flexibility. If your target platform is Windows, and you’d
like to compile from source, note that a separate source package intended for the Win32
platform is available for download. However, note that this chapter does not discuss
the Win32 source installation process. Instead, this chapter focuses on the much more
commonplace (and recommended) binary installer.

¢ Binary: At the time of this writing, binaries are available for 15 operating systems. If your
target server platform is Windows, consider downloading the relevant binary version.
For other platforms, consider compiling from source, because of the greater flexibility it
provides in the long run.

Note At the time of this writing, a Win32 binary version of Apache 2 with SSL support was not available,
although it’s possible that by the time you read this, the situation has changed. However, if it still is not available and
you require SSL support on Windows, you’ll need to build from source.

So, which Apache version should you download? Although Apache 2 was released more
than three years ago, version 1.X remains in widespread use. In fact, it seems that the majority
of shared-server ISPs have yet to migrate to version 2.X. The reluctance to upgrade doesn’t
have anything to do with issues regarding version 2.X, but rather is a testament to the amazing
stability and power of version 1.X. For standard use, the external differences between the two
versions are practically undetectable; therefore, consider going with Apache 2, to take advan-
tage of its enhanced stability. In fact, if you plan to run Apache on Windows for either development
or deployment purposes, it is recommended that you choose version 2, because it is a complete
rewrite of the previous Windows distribution and is significantly more stable than its predecessor.

Downloading PHP

Although PHP comes bundled with most Linux distributions nowadays, you should download
the latest stable version from the PHP Web site. To decrease download time, choose from more
than 100 official mirrors residing in over 50 countries, a list of which is available here: http://
www.php.net/mirrors.php.

Once you've chosen the closest mirror, navigate to the downloads page and choose one of
the three available distributions:

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

* Source: If Unix is your target server platform, or if you plan to compile from source for
the Windows platform, choose this distribution format. Building from source on Windows
isn’t recommended, and isn’t discussed in this book. Unless your situation warrants
very special circumstances, chances are that the prebuilt Windows binary will suit your
needs just fine. This distribution is compressed in bz2 and gz formats. Keep in mind that
their contents are identical; the different compression formats are just there for your
convenience.

* Windows zip package: This binary includes both the CGI binary and various server module
versions. If you plan to use PHP in conjunction with Apache on Windows, you should
download this distribution, because it’s the focus of the later installation instructions.

* Windows installer: This CGI-only binary offers a convenient Windows installer interface
for installing and configuring PHP, and support for automatically configuring the IIS,
PWS, and Xitami servers. Although you could use this version in conjunction with Apache,
itis not recommended. Instead, use the Windows zip package version.

If you are interested in playing with the very latest PHP development snapshots, you can
download both source and binary versions at http://snaps.php.net/. Keep in mind that some
of the versions made available via this Web site are not intended for production use.

The Installation Process

Because PHP is the primary focus of this chapter, not the Apache server, any significant discussion
of the many features made available to you during the Apache build process is beyond the scope of
this chapter. For additional information regarding these features, take some time to peruse the
Apache documentation, or pick up a copy of Pro Apache, Third Edition by Peter Wainwright
(Apress, 2004).

Note Licensing conflicts between PHP and MySQL have resulted in the removal of the MySQL libraries
from PHP 5. Therefore, to use PHP 5 and MySQL together, you need to take the necessary steps to make the
MySQL libraries available to PHP 5. This matter is discussed in further detail in Chapter 25. Additionally, be
sure to review this chapter for information regarding the licensing scenarios involved in using PHP and MySQL
together.

Installing Apache and PHP on Linux/Unix

This section guides you through the process of building Apache and PHP from source, targeting the
Unix platform. You need a respectable ANSI-C compiler and build system, two items that are
commonplace on the vast majority of distributions available today. In addition, PHP requires
the Flex (http://www.gnu.org/software/flex/flex.html) and Bison (http://www.gnu.org/
software/bison/bison.html) packages, while Apache requires atleast Perl version 5.003. Again,
all three items are prevalent on most, if not all, modern Unix platforms. Finally, you need root
access to the target server to complete the build process.

1

12 CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Before beginning the installation process, for sake of convenience, consider moving both
packages to a common location, /usr/src/ for example. The installation process follows:

1.

Unzip and untar Apache and PHP:

%>gunzip httpd-2 X XX.tar.gz
%>tar xvf httpd-2 X XX.tar
%>gunzip php-XX.tar.gz
%>tar xvf php-XX.tar

Configure and build Apache. At a minimum, you'll want to pass two options. The first
option, --enable-so, tells Apache to enable the ability to load shared modules. The
second, --with-mpm=worker, tells Apache to use a threaded multiprocessing module
known as worker. Based on your particular needs, you might also consider using the
multiprocessing module prefork. See the Apache documentation for more information
regarding this important matter.

%>cd httpd-2_X XX
%>./configure --enable-so --with-mpm=worker [other options]
%>make

Install Apache:
%>make install

Configure, build, and install PHP (see the section “Customizing the Unix Build” or
“Customizing the Windows Build,” depending on your operating system, for infor-
mation regarding modifying installation defaults and incorporating third-party
extensions into PHP):

%>cd ../php-X_XX

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs [other options]
%>make

%>make install

Caution The Unix version of PHP relies on several utilities in order to compile correctly, and the configu-
ration process will fail if they are not present on the server. Most notably, these packages include the Bison
parser generator, the Flex lexical analysis generator, the GCC compiler collection, and the m4 macro processor.
Unfortunately, numerous distributions fail to install these automatically, necessitating manual addition of the
packages at the time the operating system is installed, or prior to installation of PHP. Therefore, if errors
regarding any of these packages occur, keep in mind that this is fairly typical, and take the steps necessary
to install them on your system.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

5. Copy the php.ini-dist file toits defaultlocation and rename it php.ini. The php.ini file
contains hundreds of directives that are responsible for tweaking PHP’s behavior. The
later section “Configuration” examines php.ini’s purpose and contents in detail. Note
that you can place this configuration file anywhere you please, but if you choose a non-
default location, then you also need to configure PHP using the --with-config-file-
path option. Also note that there is another default configuration file at your disposal,
php.ini-recommended. This file sets various nonstandard settings and is intended to
better secure and optimize your installation, although this configuration may not be
fully compatible with some of the legacy applications. Consider using this file in lieu of
php.ini-dist.

%>cp php.ini-recommended /usr/local/lib/php.ini

6. Open the httpd. conf file and verify that the following lines exist. (The httpd. conf file is
located at APACHE_INSTALL_DIR/conf/httpd.conf.) If they don't exist, go ahead and add
them. Consider adding each alongside the other LoadModule and AddType entries,
respectively.

LoadModule php5 module modules/libphp5.so
AddType application/x-httpd-php .php

Believe it or not, that’s it! Restart the Apache server with the following command:
%>/usr/local/apache2/bin/apachectl restart

Now proceed to the section “Testing Your Installation.”

Tip The AddType directive found in Step 6 binds a MIME type to a particular extension or extensions. The
.php extension is only a suggestion; you can use any extension you’d like, including .html, . php5, or even
. jason. In addition, you can designate multiple extensions simply by including them all on the line, each
separated by a space. While some users prefer to use PHP in conjunction with the . html extension, keep in
mind that doing so will ultimately cause the file to be passed to PHP for parsing every single time an HTML file
is requested. Some people may consider this convenient, but it will come at the cost of a performance decrease.

Installing Apache and PHP on Windows

Whereas previous Windows-based versions of Apache weren’t optimized for the Windows
platform, the Win32 version of Apache 2 was completely rewritten to take advantage of Windows
platform-specific features. Even if you don’t plan to deploy your application on Windows, it
nonetheless makes for a great localized testing environment for those users who prefer it over
other platforms. The installation process follows:

13

14

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

10.

. Start the Apache installer by double-clicking the apache X.X.XX-win32-x86-no_ssl.msi

icon.

The installation process begins with a welcome screen. Take a moment to read the
screen and then click Next.

The License Agreement is displayed next. Carefully read through the license. Assuming
that you agree with the license stipulations, click Next.

A screen containing various items pertinent to the Apache server is displayed next. Take
a moment to read through this information and then click Next.

You will be prompted for various items pertinent to the server’s operation, including the
Network Domain, Server Name, and Administrator’s Email Address. If you know this
information, fill it in now; otherwise, just use localhost for the first two items, and put
in any e-mail address for the last. You can always change this information later in the
httpd. conf file. You'll also be prompted as to whether Apache should run as a service
for all users or only for the current user. If you want Apache to automatically start with
the operating system, which is recommended, then choose to install Apache as a service for
all users. When you're finished, click Next.

You are prompted for a Setup Type: Typical or Custom. Unless there is a specific reason
you don’t want the Apache documentation installed, choose Typical and click Next.
Otherwise, choose Custom, click Next, and, on the next screen, uncheck the Apache
Documentation option.

You're prompted for the Destination folder. By default, this is C: \Program Files\Apache
Group. Consider changing this to C:\, which will create an installation directory
C:\Apache2\. Regardless of what you choose, keep in mind that the latter is used here
for the sake of convention. Click Next.

Click Install to complete the installation. That'’s it for Apache. Next you'll install PHP.

Unzip the PHP package, placing the contents into C: \php5\. You're free to choose

any installation directory you please, but avoid choosing a path that contains spaces.
Regardless, the installation directory C:\php5\ will be used throughout this chapter for
consistency.

Make the php5ts.dll file available to Apache. This is most easily accomplished simply
by adding the PHP installation directory path to the Windows Path. To do so, navigate to
Start » Settings » Control Panel » System, choose the Advanced tab, and click the
Environment Variables button. In the Environment Variables dialog box, scroll through
the System variables pane until you find Path. Double-click this line and, in the Edit
System Variable dialog box, append C:\php5 to the path, as is depicted in Figure 2-1.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

System Properties) A |
System Restore I Automatic Updates I Femote |
Environment ¥ariables A |
r~User variables For Administrator
‘ariable | Walue |
INCLUDE C:\Program FilesiMicrosoft Wisual Studio ...
LIE C:\Program FilesiMicrosoft Wisual Studio ...
TEMP Ci\Documents and SettingstAdministrat, .,
TP Ci\Documents and SettingstAdministrat, .,
Edit System Yariable A |
~System variab Variable name: I Path
Vatiable Yariable value: I C:irubybing C:iphps
MUMBER._CF
o5
Path Ok | Cancel |
PATHEXT
PROCESSOR_fi.., xG86 =l
Mew Edit | Delete |

[8]4 | Cancel | J

Figure 2-1. Modifying the Windows Path

11. Navigate to C:\apache2\conf and open httpd. conf for editing.

12. Add the following three lines to the httpd.conf file. Consider adding them directly
below the block of LoadModule entries located in the bottom of the Global Environment
section.

LoadModule php5 module c:/php5/php5apache2.dll
AddType application/x-httpd-php .php
PHPIniDir "C:\php5"

Tip The AddType directive found in Step 12 binds a MIME type to a particular extension or extensions. The
.php extension is only a suggestion; you can use any extension you’d like, including .html, . php5, or even
. jason. In addition, you can designate multiple extensions simply by including them all on the line, each
separated by a space. While some users prefer to use PHP in conjunction with the . html extension, keep in
mind that doing so will ultimately cause the file to be passed to PHP for parsing every single time an HTML file
is requested. Some people may consider this convenient, but it will come at the cost of a performance decrease.

15

16

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

13.

14.

15.

Rename the php.ini-dist file php.ini and save it to the C: \php5 directory. The php.ini
file contains hundreds of directives that are responsible for tweaking PHP’s behavior. The
later section “Configuration” examines php.ini’s purpose and contents in detail. Note
that you can place this configuration file anywhere you please, but if you choose a nonde-
fault location, then you also need to configure PHP using the --with-config-file-path
option. Also note that there is another default configuration file at your disposal,
php.ini-recommended. This file sets various nonstandard settings, and is intended to
better secure and optimize your installation, although this configuration may not be
fully compatible with some of the legacy applications. Consider using this file in lieu
of php.ini-dist.

If you're using Windows NT, 2000, or XP, navigate to Start » Settings » Control Panel »
Administrative Tools » Services.

Locate Apache in the list, and make sure that it is started. If it is not started, highlight the
label and click Start the service, located to the left of the label. If it is started, highlight
the label and click Restart the service, so that the changes made to the httpd. conf file
take effect. Next, right-click Apache and choose Properties. Ensure that the startup type
is set to Automatic. If you're still using Windows 95/98, you need to start Apache man-
ually via the shortcut provided on the Start menu.

Testing Your Installation

The best way to verify your PHP installation is by attempting to execute a PHP script. Open a
text editor and add the following lines to a new file. Then save that file within Apache’s htdocs
directory as phpinfo.php:

<?php

>

phpinfo();

Now open a browser and access this file by typing the appropriate URL:

http://localhost/phpinfo.php

If all goes well, you should see output similar to that shown in Figure 2-2.

Tip The phpinfo() function offers a plethora of useful information pertinent to your PHP installation.

CHAPTER 2

INSTALLING AND CONFIGURING APACHE AND PHP

System

Windows MT IBM-T30 5.1 build

2600

Build Date

Mar 31 2005 02:44:34

Configure Command

czeript fnologo configure.js "--enable-snapshot-build”

"--with-gd=shared"

Server API Apache 2.0 Handler
Virtual Directory Support enahled
Configuration File {php.ini} Path COUNINDOWS\php.ini
PHP API 20031224

PHP Extension 20041030

Zend Extension 220040412

Debug Build no

Thread Safety enahled

IPvG Support enahled

Registered PHP Streams php, file, hitp, ftp, compress zlib
Registered Stream Socket tcp, udp

Transports

This program makes use ofthe Zend Scripting Language Engine:
Zend Engine v2.0.4-dey, Copyright {c) 1998-2004 Zend Technologies

Powered By

Figure 2-2. Output from PHP's phpinfo() function

Help! ’'m Getting an Error!

Assuming that you encountered no noticeable errors during the build process, you may not be
seeing the cool phpinfo() output due to one or more of the following reasons:

* Apache was not started or restarted after the build process was complete.

* A typing error was introduced into the code in the phpinfo.php file. If a parse error message
isresulting in the browser input, then this is almost certainly the case.

* Something went awry during the build process. Consider rebuilding (reinstalling on
Windows), carefully monitoring for errors. If you're running Linux/Unix, don’t forget to
execute a make clean from within each of the respective distribution directories before
reconfiguring and rebuilding.

Customizing the Unix Build

Although the base PHP installation is sufficient for most beginning users, chances are you’'ll

soon want to make adjustments to the default configuration settings and possibly experiment
with some of the third-party extensions that are not built into the distribution by default. You
can view a complete list of configuration flags (there are over 200) by executing the following:

%>./configure --help

17

18

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

To make adjustments to the build process, you just need to add one or more of these argu-
ments to PHP’s configure command, including a value assignment if necessary. For example,
suppose you want to enable PHP’s FTP functionality, a feature not enabled by default. Just
modify the configuration step of the PHP build process like so:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs --enable-ftp

As another example, suppose you want to enable PHP’s Java extension. Just change Step 4
to read:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs \
>--enable-java=[IDK-INSTALL-DIR]

One common point of confusion among beginners is to assume that simply including
additional flags will automatically make this functionality available via PHP. This is not necessarily
the case. Keep in mind that you also need to install the software that is ultimately responsible
for enabling the extension support. In the case of the Java example, you need the Java Develop-
ment Kit (JDK).

Customizing the Windows Build

A total of 45 extensions come with PHP’s Windows distribution, all of which are located in the
INSTALL_DIR\ext\ directory. However, to actually use any of these extensions, you need to
uncomment the appropriate line within the php. ini file. For example, if you’d like to enable
PHP’s IMAP extension, you need to make two minor adjustments to your php.ini file:

1. Open the php.ini file, located in the Windows directory. To determine which directory
that is, see installation Step 13 of the “Installing Apache and PHP on Windows” section.
Locate the extension_dir directive and assign it C: \php5\ext\. If you installed PHP in
another directory, modify this path accordingly.

2. Locate theline ;extension=php imap.dll. Uncomment this line by removing the preceding
semicolon. Save and close the file.

3. Restart Apache, and the extension is ready for use from within PHP. Keep in mind that
some extensions require further modifications to the PHP file before they can be used
properly. See the “Configuration” section for a discussion of the php.ini file.

Common Pitfalls

It’s common to experience some initial problems bringing your first PHP-enabled page online.
The more commonplace issues are discussed in this section:

* Changes made to Apache’s configuration file do not take effect until it has been restarted.
Therefore, be sure to restart Apache after adding the necessary PHP-specific lines to the
file.

¢ When you modify the Apache configuration file, you may accidentally introduce an
invalid character, causing Apache to fail upon an attempt to restart. If Apache will not
start, go back and review your changes.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

* Verify that the file ends in the PHP-specific extension as specified in the httpd. conf file.
For example, if you've defined only . php as the recognizable extension, don’t try to embed
PHP code in an . html file.

* Make sure that you've delimited the PHP code within the file. Neglecting to do this will
cause the code to output to the browser.

* You've created a file named index.php and are trying unsuccessfully to call it as you
would a default directory index. Remember that by default, Apache only recognizes
index.html in this fashion. Therefore, you need to add index.php to Apache’s
DirectoryIndex directive.

Viewing and Downloading the Documentation

Both the Apache and PHP projects offer truly exemplary documentation, covering practically
every aspect of the respective technology in lucid detail. You can view the latest respective
versions online via http://httpd.apache.org/ and http://www.php.net/, or download alocal
version to your local machine and read it there.

Downloading the Apache Manual

Each Apache distribution comes packaged with the latest versions of the documentation in
XML and HTML formats and in six languages (English, French, German, Japanese, Korean, and
Russian). The documentation is located in the directory docs, found in the installation root
directory.

Should you need to upgrade your local version, require an alternative format such as PDF
or Microsoft Help (CHM), or need to browse it online, proceed to the following Web site:

http://httpd.apache.org/docs-project/

Downloading the PHP Manual

The PHP documentation is available in 24 languages, and in a variety of formats, including a
single HTML page, multiple HTML pages, Microsoft HTML Help (CHM) format, and extended
HTML Help format. These versions are generated from Docbook-based master files, which can
be retrieved from the PHP project’s CVS server should you wish to convert to another format.
The documentation is located in the directory manual, found in the installation root directory.

Should you need to upgrade your local version, or retrieve an alternative format, navigate
to the following page and click the appropriate link:

http://www.php.net/docs.php

Configuration

If you’ve made it this far, congratulations! You have an operating Apache and PHP server at
your disposal. However, you'll probably need to make at least a few other run-time changes to
get the software working to your satisfaction. The vast majority of these changes are handled
through Apache’s httpd. conf file and PHP’s php. ini file. Each file contains a myriad of config-
uration directives that collectively control the behavior of each product. For the remainder of

19

20

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

this chapter, we’ll focus on PHP’s most commonly used configuration directives, introducing
the purpose, scope, and default value of each.

Managing PHP’s Configuration Directives

Before you delve into the specifics of each directive, this section demonstrates the various ways
in which these directives can be manipulated, including through the php.ini file, the httpd. conf
and .htaccess files, and directly through a PHP script.

The php.ini File

The PHP distribution comes with two configuration templates, php.ini-dist and
php.ini-recommended. The “Installation” section suggested that you use the latter, because
many of the parameters found within it have already been set to their suggested settings.
Taking this advice will likely save you a good deal of initial time and effort securing and
tweaking your installation, because there are almost 240 distinct configuration parameters in
this file. Although the default values go a long way toward helping you to quickly deploy PHP,
you'll probably want to make additional adjustments to PHP’s behavior, so you'll need to learn
abit more about this file and its many configuration parameters. The upcoming section “PHP’s
Configuration Directives” presents a comprehensive introduction to many of these parame-
ters, explaining the purpose, scope, and range of each.

The php.ini file is PHP’s global configuration file, much like httpd. conf is to Apache, or
my.cnf (my.ini on Windows) is to MySQL. This file addresses 12 different aspects of PHP’s
behavior:

¢ Language Options

» Safe Mode

» Syntax Highlighting

* Miscellaneous

¢ Resource Limits

¢ Error Handling and Logging
¢ Data Handling

» Paths and Directories
* File Uploads

¢ Fopen Wrappers

e Dynamic Extensions
* Module Settings

Each of the listed items is introduced along with its respective parameters in the “PHP’s
Configuration Directives” section. Before you are introduced to them, however, take a moment
to review the php.ini file’s general syntactical characteristics. The php.ini file is a simple text

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

file, consisting solely of comments and parameter = key assignment pairs. Here’s a sample
snippet from the file:

5

; Safe Mode

5

safe_mode = Off

Lines beginning with a semicolon are comments; the parameter safe_mode is assigned the
value Off.

Tip Once you're comfortable with a configuration parameter’s purpose, consider deleting the accompanying
comments to streamline the file’s contents, thereby decreasing later editing time.

Exactly when changes take effect depends on how you installed PHP. If PHP is installed as
a CGI binary, the php.ini file is reread every time PHP is invoked, thus making changes instan-
taneous. If PHP is installed as an Apache module, then php.ini is only read in once, when the
Apache daemon is first started. Therefore, if PHP is installed in the latter fashion, you must
restart Apache before any of the changes take effect.

The Apache httpd.conf and .htaccess Files

When PHP is running as an Apache module, you can modify many of the directives through
either the httpd.conf file or the .htaccess file. This is accomplished by prefixing the name =
value pair with one of the following keywords:

* php_value: Sets the value of the specified directive.
» php_flag: Sets the value of the specified Boolean directive.

* php_admin_value: Sets the value of the specified directive. This differs from php_value in
that it cannot be used within an .htaccess file and cannot be overridden within virtual
hosts or .htaccess.

» php_admin_flag: Sets the value of the specified directive. This differs from php_value in
that it cannot be used within an .htaccess file and cannot be overridden within virtual
hosts or .htaccess.

Within the Executing Script

The third, and most localized, means for manipulating PHP’s configuration variables is via the
ini_set() function. For example, suppose you want to modify PHP’s maximum execution time
for a given script. Just embed the following command into the top of the script:

ini_set("max_execution_time","60");

21

22

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Configuration Directive Scope

Can configuration directives be modified anywhere? Good question. The answer is no, for a
variety of reasons, mostly security related. Each directive is assigned a scope, and the directive
can be modified only within that scope. In total, there are four scopes:

e PHP_INI_PERDIR: Directive can be modified within the php.ini, httpd.conf, or .htaccess
files

e PHP_INI_SYSTEM: Directive can be modified within the php.ini and httpd.conf files
e PHP_INI_USER: Directive can be modified within user scripts

e PHP_INI_ALL: Directive can be modified anywhere

PHP’s Configuration Directives

The following sections introduce many of PHP’s core configuration directives. In addition to a
general definition, each section includes the configuration directive’s scope and default value.
Because you'll probably spend the majority of your time working with these variables from
within php.ini, the directives are introduced as they appear in this file.

Note that the directives introduced in this section are largely relevant solely to PHP’s
general behavior; directives pertinent to extensions, or to topics in which considerable atten-
tion is given later in the book, are not introduced in this section, but rather are introduced in
the appropriate chapter. For example, MySQL’s configuration directives are introduced in
Chapter 25.

Language Options

The directives located in this initial section determine some of the language’s most basic
behavior. You'll definitely want to take a few moments to become acquainted with these
configuration possibilities.

engine (On, Off)
Scope: PHP_INI ALL; Default value: On

This parameter is simply responsible for determining whether the PHP engine is available.
Turning it off prevents you from using PHP at all. Obviously, you should leave this enabled if
you plan to use PHP.

zend.zel_compatibility_mode (On, Off)
Scope: PHP_INI_ALL; Default value: Off

Even at press time, some 18 months after PHP 5.0 released, PHP 4.Xis still in widespread use. One
of the reasons for the protracted upgrade cycle is due to some incompatibilities between PHP 4

and 5. However, many developers aren’t aware that enabling the zend.ze1 compatibility mode

directive allows PHP 4 applications to run without issue in version 5. Therefore, if you’d like to
use a PHP 4-specific application on a PHP 5-driven server, look to this directive.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

short_open_tag (On, Off)
Scope: PHP_INI ALL; Default value: On

PHP script components are enclosed within escape syntax. There are four different escape
formats, the shortest of which is known as short open tags, which looks like this:

<?
echo "Some PHP statement";
>

You may recognize that this syntax is shared with XML, which could cause issues in certain
environments. Thus, a means for disabling this particular format has been provided. When
short_open_tag is enabled (On), short tags are allowed; when disabled (0ff), they are not.

asp_tags (On, Off)
Scope: PHP_INI ALL; Default value: Off

PHP supports ASP-style script delimiters, which look like this:

<%
echo "Some PHP statement";
%>

If you're coming from an ASP background and prefer to continue using this delimiter
syntax, you can do so by enabling this tag.

precision (integer)

Scope: PHP_INI ALL; Default value: 12

PHP supports a wide variety of data types, including floating-point numbers. The precision
parameter specifies the number of significant digits displayed in a floating-point number
representation. Note that this value is set to 14 digits on Win32 systems and to 12 digits on
Unix.

y2k_compliance (On, Off)
Scope: PHP_INI ALL; Default value: Off

Who can forget the Y2K scare of just a few years ago? Superhuman efforts were undertaken to
eliminate the problems posed by non-Y2K-compliant software, and although it’s very unlikely,
some users may be using wildly outdated, noncompliant browsers. If for some bizarre reason
you're sure that a number of your site’s users fall into this group, then disable the y2k compliance
parameter; otherwise, it should be enabled.

output_buffering ((On, Off) or (integer))
Scope: PHP_INI SYSTEM; Default value: Off

Anybody with even minimal PHP experience is likely quite familiar with the following two
messages:

23

24

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

"Cannot add header information - headers already sent”
"Oops, php_set cookie called after header has been sent"

These messages occur when a script attempts to modify a header after it has already been
sent back to the requesting user. Most commonly, they are the result of the programmer
attempting to send a cookie to the user after some output has already been sent back to the
browser, which is impossible to accomplish because the header (not seen by the user, but used
by the browser) will always precede that output. PHP version 4.0 offered a solution to this annoying
problem by introducing the concept of output buffering. When enabled, output buffering tells
PHP to send all output at once, after the script has been completed. This way, any subsequent
changes to the header can be made throughout the script, because it hasn’t yet been sent.
Enabling the output_buffering directive turns output buffering on. Alternatively, you can limit
the size of the output buffer (thereby implicitly enabling output buffering) by setting it to the
maximum number of bytes you’d like this buffer to contain.

If you do not plan to use output buffering, you should disable this directive, because it will
hinder performance slightly. Of course, the easiest solution to the header issue is simply to pass
the information before any other content whenever possible.

output_handler (string)
Scope: PHP_INI ALL; Default value: Null

This interesting directive tells PHP to pass all output through a function before returning it to
the requesting user. For example, suppose you want to compress all output before returning it
to the browser, a feature supported by all mainstream HTTP/1.1-compliant browsers. You can
assign output_handler like so:

output_handler = "ob_gzhandler"

ob_gzhandler() is PHP’s compression-handler function, located in PHP’s output control
library. Keep in mind that you cannot simultaneously set output_handler to ob_gzhandler()
and enable z1ib.output_compression (discussed next).

zlib.output_compression ((On, Off) or (integer))

Scope: PHP_INI SYSTEM; Default value: Off

Compressing output before it is returned to the browser can save bandwidth and time. This
HTTP/1.1 feature is supported by most modern browsers, and can be safely used in most appli-
cations. You enable automatic output compression by setting z1ib.output _compression to On.
In addition, you can simultaneously enable output compression and set a compression buffer
size (in bytes) by assigning z1ib.output_compression an integer value.

zlib.output_handler (string)
Scope: PHP_INI SYSTEM; Default value: Null

The z1ib.output_handler specifies a particular compression library if the z1ib library is not
available.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

implicit_flush (On, Off)
Scope: PHP_INI SYSTEM; Default value: Off

Enabling implicit flush results in automatically clearing, or flushing, the output buffer of its
contents after each call to print() or echo(), and completion of each embedded HTML block.
This might be useful in an instance where the server requires an unusually long period of time
to compile results or perform certain calculations. In such cases, you can use this feature to

output status updates to the user rather than just wait until the server completes the procedure.

unserialize_callback_func (string)

Scope: PHP_INI ALL; Default value: Null

This directive allows you to control the response of the unserializer when a request is made to
instantiate an undefined class. For most users, this directive is irrelevant, because PHP already
outputs a warning in such instances, if PHP’s error reporting is tuned to the appropriate level.

serialize_precision (integer)

Scope: PHP_INI ALL; Default value: 100

The serialize precision directive determines the number of digits stored after the floating
point when doubles and floats are serialized. Setting this to an appropriate value ensures that
the precision is not potentially lost when the numbers are later unserialized.

allow_call_time_pass_reference (On, Off)

Scope: PHP_INI SYSTEM; Default value: On

Function arguments can be passed in two ways: by value and by reference. Exactly how each
argument is passed to a function at function call time can be specified in the function defini-
tion, which is the recommended means for doing so. However, you can force all arguments to
be passed by reference at function call time by enabling allow call time pass reference.

The discussion of PHP functions in Chapter 4 addresses how functional arguments can be
passed both by value and by reference, and the implications of doing so.

Safe Mode

When you deploy PHP in a multiuser environment, such as that found on an ISP’s shared
server, you might want to limit its functionality. As you might imagine, offering all users full
reign over all PHP’s functions could open up the possibility for exploiting or damaging server
resources and files. As a safeguard for using PHP on shared servers, PHP can be run in a restricted,
or safe, mode.

Enabling safe mode has a great many implications, including the automatic disabling of
quite a few functions and various features deemed to be potentially insecure and thus possibly
damaging if they are misused within alocal script. A small sampling of these disabled functions
and features includes parse_ini_file(), chmod(), chown(), chgrp(), exec(), system(), and
backtick operators. Enabling safe mode also ensures that the owner of the executing script
matches the owner of any file or directory targeted by that script.

25

26

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

In addition, enabling safe mode opens up the possibility for activating a number of other
restrictions via other PHP configuration directives, each of which is introduced in this section.

safe_mode (On, Off)
Scope: PHP_INI SYSTEM; Default value: Off

Enabling the safe mode directive results in PHP being run under the aforementioned
constraints.

safe_mode_gid (On, Off)
Scope: PHP_INI SYSTEM; Default value: Off

When safe mode is enabled, an enabled safe_mode_gid enforces a GID (group ID) check when
opening files. When safe_mode_gidis disabled, a more restrictive UID (user ID) checkis enforced.

safe_mode_include_dir (string)
Scope: PHP_INI SYSTEM; Default value: Null
The safe_mode_include dir provides a safe haven from the UID/GID checks enforced when

safe_mode and potentially safe_mode_gid are enabled. UID/GID checks are ignored when files
are opened from the assigned directory.

safe_mode_exec_dir (string)
Scope: PHP_INI SYSTEM; Default value: Null
When safe mode is enabled, the safe_mode_exec_dir parameter restricts execution of executa-

bles via the exec() function to the assigned directory. For examples, if you want to restrict
execution to functions found in /usr/local/bin, you use this directive:

safe_mode exec_dir = "/usr/local/bin"

safe_mode_allowed_env_vars (string)

Scope: PHP_INI SYSTEM; Default value: PHP

When safe mode is enabled, you can restrict which operating system-level environment vari-
ables users can modify through PHP scripts with the safe_mode_allowed env vars directive.

For example, setting this directive as follows limits modification to only those variables with a
PHP_ or MYSQL _prefix:

safe _mode_allowed env vars = "PHP_,MYSQL "

Keep in mind that leaving this directive blank means that the user can modify any environ-
ment variable.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

safe_mode_protected_env_vars (string)
Scope: PHP_INI SYSTEM; Default value: LD_LIBRARY PATH
The safe_mode protected env vars directive offers a means for explicitly preventing certain

environment variables from being modified. For example, if you want to prevent the user from
modifying the PATH and LD _LIBRARY_ PATH variables, you use this directive:

safe_mode protected env _vars = "PATH, LD LIBRARY_ PATH"

open_basedir (string)

Scope: PHP_INI SYSTEM; Default value: Null

Much like Apache’s DocumentRoot, PHP’s open_basedir directive can establish a base directory
to which all file operations will be restricted. This prevents users from entering otherwise
restricted areas of the server. For example, suppose all Web material is located within the direc-
tory /home/www. To prevent users from viewing and potentially manipulating files like /etc/
passwd via a few simple PHP commands, consider setting open_basedir like this:

open_basedir = "/home/www/"

Note that the influence exercised by this directive is not dependent upon the safe_mode
directive.

disable_functions (string)
Scope: PHP_INI SYSTEM; Default value: Null
In certain environments, you may want to completely disallow the use of certain default

functions, such as exec() and system(). Such functions can be disabled by assigning them to
the disable functions parameter, like this:

disable functions = "exec, system";

Note that the influence exercised by this directive is not dependent upon the safe_mode
directive.

disable_classes (string)

Scope: PHP_INI SYSTEM; Default value: Null

Given the new functionality offered by PHP’s embrace of the object-oriented paradigm, it
likely won'’t be too long before you’re using large sets of class libraries. There may be certain
classes found within these libraries that you’d rather not make available, however. You can
prevent the use of these classes via the disable classes directive. For example, if you want to
disable two particular classes, named administrator and janitor, you use the following:

disable classes = "administrator, janitor"

Note that the influence exercised by this directive is not dependent upon the safe_mode
directive.

27

28

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

ignore_user_abort (Off, On)

Scope: PHP_INI ALL; Default value: On

How many times have you browsed to a particular page, only to exit or close the browser before
the page completely loads? Often such behavior is harmless. However, what if the server was in
the midst of updating important user profile information, or completing a commercial trans-

action? Enabling ignore_user abort causes the server to ignore session termination caused by
a user- or browser-initiated interruption.

Syntax Highlighting

PHP can display and highlight source code. You can enable this feature either by assigning the
PHP script the extension .phps (this is the default extension and, as you'll soon learn, can be
modified) or via the show_source() or highlight file() function. To begin using the .phps
extension, you need to add the following line to httpd.conf:

AddType application/x-httpd-php-source .phps

You can control the color of strings, comments, keywords, the background, default text,
and HTML components of the highlighted source through the following six directives. Each
can be assigned an RGB, hexadecimal, or keyword representation of each color. For example,
the color we commonly refer to as “black” can be represented as rgb(0,0,0), #000000, or black,
respectively.

highlight.string (string)
Scope: PHP_INI_ALL; Default value: #DD0000

highlight.comment (string)
Scope: PHP_INI_ALL; Default value: #FF9900

highlight.keyword (string)
Scope: PHP_INI_ALL; Default value: #007700

highlight.bg (string)
Scope: PHP_INI_ALL; Default value: #FFFFFF

highlight.default (string)
Scope: PHP_INI_ALL; Default value: #00008B

highlight.html (string)
Scope: PHP_INI ALL; Default value: #000000

Miscellaneous

The Miscellaneous category consists of a single directive, expose_php.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

expose_php (On, Off)
Scope: PHP_INI SYSTEM; Default value: On

Each scrap of information that a potential attacker can gather about a Web server increases the
chances that he will successfully compromise it. One simple way to obtain key information
about server characteristics is via the server signature. For example, Apache will broadcast the
following information within each response header by default:

Apache/2.0.44 (Unix) DAV/2 PHP/5.0.0-dev Server at www.example.com Port 80

Disabling expose_php prevents the Web server signature (if enabled) from broadcasting
the fact that PHP is installed. Although you need to take other steps to ensure sufficient server
protection, obscuring server properties such as this one is nonetheless heartily recommended.

Note You can disable Apache’s broadcast of its server signature by setting ServerSignature to Off in
the httpd. conf file.

Resource Limits

Although version 5 features numerous advances in PHP’s resource-handling capabilities, you
must still be careful to ensure that scripts do not monopolize server resources as a result of
either programmer- or user-initiated actions. Three particular areas where such overconsumption
is prevalent are script execution time, script input processing time, and memory. Each can be
controlled via the following three directives.

max_execution_time (integer)

Scope: PHP_INI ALL; Default value: 30

The max_execution time parameter places an upper limit on the amount of time, in seconds,
that a PHP script can execute. Setting this parameter to 0 disables any maximum limit. Note

that any time consumed by an external program executed by PHP commands, such as exec()
and system(), does not count toward this limit.

max_input_time (integer)
Scope: PHP_INI ALL; Default value: 60
The max_input time parameter places a limit on the amount of time, in seconds, that a PHP

script devotes to parsing request data. This parameter is particularly important when you
upload large files using PHP’s file upload feature, which is discussed in Chapter 15.

memory_limit (integer)M
Scope: PHP_INI ALL; Default value: 8M

The memory 1imit parameter determines the maximum amount of memory, in megabytes, that
can be allocated to a PHP script.

29

30

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Error Handling and Logging

PHP offers a convenient and flexible means for reporting and logging errors, warnings, and
notices generated by PHP at compile time, run time, and as a result of some user action. The
developer has control over the reporting sensitivity, whether and how this information is
displayed to the browser, and whether the information is logged to either a file or the system
log (syslog on Unix, event log on Windows). The next 15 directives control this behavior.

error_reporting (string)
Scope: PHP_INI ALL; Default value: Null

The error_reporting directive determines PHP’s level of error-reporting sensitivity. There
are 12 assigned error levels, each unique in terms of its pertinence to the functioning of the
application or server. These levels are defined in Table 2-1.

You can set error_reporting to any single level, or a combination of these levels, using
Boolean operators. For example, suppose you wanted to report just errors. You’d use this
setting:

error_reporting = E_ERROR|E_CORE_ERROR|E_COMPILE ERROR|E_USER_ERROR

If you wanted to track all errors, except for user-generated warnings and notices, you'd use
this setting:

error reporting = E_ALL & ~E_USER_WARNING & ~E_USER_NOTICE

During the application development and initial deployment stages, you should turn sensi-
tivity to the highestlevel, or E_ALL. However, once all major bugs have been dealt with,consider
turning the sensitivity down a bit.

Table 2-1. PHP’s Error-Reporting Levels

Name Description

E ALL Report all errors and warnings

E_ERROR Report fatal run-time errors

E_WARNING Report nonfatal run-time errors

E_PARSE Report compile-time parse errors

E_NOTICE Report run-time notices, like uninitialized variables
E_STRICT PHP version portability suggestions

E_CORE_ERROR
E_CORE_WARNING
E_COMPILE_ERROR
E_COMPILE_WARNING
E_USER_ERROR
E_USER_WARNING
E_USER_NOTICE

Report fatal errors occurring during PHP’s startup
Report nonfatal errors occurring during PHP’s startup
Report fatal compile-time errors

Report nonfatal compile-time errors

Report user-generated fatal error messages

Report user-generated nonfatal error messages

Report user-generated notices

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

display_errors (On, Off)
Scope: PHP_INI ALL; Default value: On

When display errorsisenabled, all errors of at least the level specified by error_reporting are
output. Consider enabling this parameter during the development stage. When your applica-
tion is deployed, all errors should be logged instead, accomplished by enabling log_errors and
specifying the destination of the log, using error log.

display_startup_errors (On, Off)
Scope: PHP_INI ALL; Default value: Off

Disabling display startup errors prevents errors specific to PHP’s startup procedure from
being displayed to the user.

log_errors (On, Off)
Scope: PHP_INI ALL; Default value: Off

Error messages can prove invaluable in determining potential issues that arise during the
execution of your PHP application. Enabling log errors tells PHP that these errors should be
logged, either to a particular file or to the syslog. The exact destination is determined by another
parameter, error log.

log errors_max_len (integer)
Scope: PHP_INI ALL; Default value: 1024

This parameter determines the maximum length of a single log message, in bytes. Setting this
parameter to 0 results in no maximum imposed limit.

ignore_repeated_errors (On, Off)

Scope: PHP_INI ALL; Default value: Off

If you're reviewing the log regularly, there really is no need to note errors that repeatedly occur
on the same line of the same file. Disabling this parameter prevents such repeated errors from
being logged.

ignore_repeated_source (On, Off)
Scope: PHP_INI ALL; Default value: Off
Disabling this variant on the ignore repeated errors parameter will disregard the source of

the errors when ignoring repeated errors. This means that only a maximum of one instance of
each error message can be logged.

31

32

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

report_memleaks (On, Off)
Scope: PHP_INI ALL; Default value: Off
This parameter, only relevant when PHP is compiled in debug mode, determines whether

memory leaks are displayed or logged. In addition to the debug mode constraint, an error level
of at least E_WARNING must be in effect.

track_errors (On, Off)
Scope: PHP_INI ALL; Default value: Off
Enabling track errors causes PHP to store the most recent error message in the variable

$php_error msg. The scope of this variable is limited to the particular script in which the error
occurs.

html_errors (On, Off)
Scope: PHP_INI SYSTEM; Default value: On

PHP encloses error messages within HTML tags by default. Sometimes, you might not want
PHP to do this, so a means for disabling this behavior is offered via the html errors parameter.

docref_root (string)

Scope: PHP_INI ALL; Default value: Null

If html errors is enabled, PHP includes a link to a detailed description of any error, found in
the official manual. However, rather than linking to the official Web site, you should point the

user to a local copy of the manual. The location of the local manual is determined by the path
specified by docref root.

docref_ext (string)
Scope: PHP_INI ALL; Default value: Null

The docref ext parameter informs PHP of the local manual’s page extensions when used to
provide additional information about errors (see docref root).

error_prepend_string (string)
Scope: PHP_INI ALL; Default value: Null

If you want to pass additional information to the user before outputting an error, you can
prepend a string (including formatting tags) to the automatically generated error output by
using the error prepend string parameter.

error_append_string (string)
Scope: PHP_INI_ALL; Default value: Null
If you want to pass additional information to the user after outputting an error, you can

append a string (including formatting tags) to the automatically generated error output by
using the error append_string parameter.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

error_log (string)

Scope: PHP_INI ALL; Default value: Null

If log_errors is enabled, the error log directive specifies the message destination. PHP supports
logging to both a specific file and the operating system syslog. On Windows, setting error log
to syslog results in messages being logged to the event log.

Data Handling

The parameters introduced in this section affect the way that PHP handles external variables;
that is, variables passed into the script via some outside source. GET, POST, cookies, the oper-
ating system, and the server are all possible candidates for providing external data. Other
parameters located in this section determine PHP’s default character set, PHP’s default MIME
type, and whether external files will be automatically prepended or appended to PHP’s
returned output.

arg_separator.output (string)
Scope: PHP_INI_ALL; Default value: &

PHP is capable of automatically generating URLSs, and uses the standard ampersand (&) to
separate input variables. However, if you need to override this convention, you can do so by
using the arg_separator.output directive.

arg_separator.input (string)
Scope: PHP_INI_ALL; Default value: &

The ampersand (8) is the standard character used to separate input variables passed in via the
POST or GET method. Although unlikely, should you need to override this convention within
your PHP applications, you can do so by using the arg_separator. input directive.

variables_order (string)
Scope: PHP_INI ALL; Default value: Null

The variables_order directive determines the order in which the ENVIRONMENT, GET, POST,
COOKIE, and SERVER variables are parsed. While seemingly irrelevant, is register globals is
enabled (not recommended), the ordering of these values could result in unexpected results
due to later variables overwriting those parsed earlier in the process.

register_globals (On, Off)
Scope: PHP_INI SYSTEM; Default value: Off

If you have used PHP before version 4, the mere mention of this directive is enough to evoke
gnashing of the teeth and pulling of the hair. In version 4.2.0 this directive was disabled by
default, forcing many long-time PHP users to entirely rethink (and in some cases rewrite) their
Web application development methodology. This change, although done at a cost of considerable
confusion, ultimately serves the best interests of developers in terms of greater application
security. If you're new to all of this, what’s the big deal?

33

34

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Historically, all external variables were automatically registered in the global scope. That
is, any incoming variable of the types COOKIE, ENVIRONMENT, GET, POST and SERVER were made
available globally. Because they were available globally, they were also globally modifiable.
Although this might seem convenient to some people, it also introduced a security deficiency,
because variables intended to be managed solely by using a cookie could also potentially be
modified via the URL. For example, suppose that a session identifier uniquely identifying the
user is communicated across pages via a cookie. Nobody but that user should see the data that
is ultimately mapped to the user identified by that session identifier. A user could open the
cookie, copy the session identifier, and paste it onto the end of the URL, like this:

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

The user could then e-mail this link to some other user. If there are no other security
restrictions in place (IP identification, for example), this second user will be able to see the
otherwise confidential data. Disabling the register_globals directive prevents such behavior
from occurring. While these external variables remain in the global scope, each must be referred
to in conjunction with its type. For example, the sessionid variable used in the previous example
would instead be referred to solely as:

$ COOKIE['sessionid']

Any attempt to modify this parameter using any other means (GET or POST, for
example) causes a new variable in the global scope of that means ($_GET['sessionid'] or
$_POST['sessionid']). In Chapter 3, the section “PHP’s Superglobal Variables” offers a thor-
ough introduction to external variables of the COOKIE, ENVIRONMENT, GET, POST, and SERVER types.

Although disabling register globals is unequivocally a good idea, it isn’t the only factor
you should keep in mind when you secure an application. Chapter 21 offers more information
about PHP application security.

register_long arrays (On, Off)
Scope: PHP_INI SYSTEM; Default value: Off

This directive determines whether to continue registering the various input arrays
(ENVIRONMENT, GET, POST, COOKIE, SYSTEM) using the deprecated syntax, such as HTTP_* VARS.
Disabling this directive is recommended for performance reasons.

register_argc_argv (On, Off)
Scope: PHP_INI SYSTEM; Default value: On

Passing in variable information via the GET method is analogous to passing arguments to an
executable. Many languages process such arguments in terms of argc and argv. argc is the
argument count, and argyv is an indexed array containing the arguments. If you would like to
declare variables $argc and $argv and mimic this functionality, enable register argc argv.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

post_max_size (integer)M

Scope: PHP_INI SYSTEM; Default value: 84

Of the two methods for passing data between requests, POST is better equipped to transport
large amounts, such as what might be sent via a Web form. However, for both security and
performance reasons, you might wish to place an upper ceiling on exactly how much data can
be sent via this method to a PHP script; this can be accomplished using post_max_size.

Note Quotes, both of the single and double variety, have long played a special role in programming.
Because they are commonly used both as string delimiters and in written language, you need a way to differ-
entiate between the two in programming, to eliminate confusion. The solution is simple: Escape any quote
mark not intended to delimit the string. If you don’t do this, unexpected errors could occur. Consider the following:

$sentence = "John said, "I love racing cars!"";

Which quote mark is intended to delimit the string, and which are used to delimit John’s utterance? PHP
doesn’t know, unless certain quote marks are escaped, like this:

$sentence = "John said, \"I love racing cars!\"";

Escaping nondelimiting quote marks is known as enabling magic quotes. This process could be done either
automatically, by enabling the directive magic_quotes_gpc (introduced in this section), or manually, by
using the functions addslashes () and stripslashes(). The latter strategy is recommended, because it
enables you to wield total control over the application, although in those cases where you’re trying to use an
application in which the automatic escaping of quotations is expected, you'll need to enable this behavior
accordingly.

Three parameters determine how PHP behaves in this regard: magic_quotes_gpc, magic_quotes_runtime,
and magic_quotes_sybase.

magic_quotes_gpc (On, Off)
Scope: PHP_INI_SYSTEM; Default value: On
This parameter determines whether magic quotes are enabled for data transmitted via the GET,

POST, and Cookie methodologies. When enabled, all single and double quotes, backslashes,
and null characters are automatically escaped with a backslash.

magic_quotes_runtime (On, Off)
Scope: PHP_INI ALL; Default value: Off

Enabling this parameter results in the automatic escaping (using a backslash) of any quote
marks located within data returned from an external resource, such as a database or text file.

35

36

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

magic_quotes_sybase (On, Off)
Scope: PHP_INI ALL; Default value: Off

This parameter is only of interestif magic_quotes runtimeis enabled. Ifmagic_quotes sybaseis
enabled, all data returned from an external resource will be escaped using a single quote rather
than a backslash. This is useful when the data is being returned from a Sybase database, which
employs a rather unorthodox requirement of escaping special characters with a single quote
rather than a backslash.

auto_prepend._file (string)

Scope: PHP_INI SYSTEM; Default value: Null

Creating page header templates or including code libraries before a PHP script is executed is
most commonly done using the include() or require() function. You can automate this process
and forego the inclusion of these functions within your scripts by assigning the file name and
corresponding path to the auto_prepend file directive.

auto_append file (string)
Scope: PHP_INI SYSTEM; Default value: Null

Automatically inserting footer templates after a PHP script is executed is most commonly done
using the include() or require() function. You can automate this process and forego the inclusion
of these functions within your scripts by assigning the template file name and corresponding path
to the auto_append_file directive.

default_mimetype (string)
Scope: PHP_INI ALL; Default value: SAPI_DEFAULT MIMETYPE

MIME types offer a standard means for classifying file types on the Internet. You can serve any
of these file types via PHP applications, the most common of which is text/html. If you're using
PHP in other fashions, however, such as a content generator for WML (Wireless Markup Language)
applications, you need to adjust the MIME type accordingly. You can do so by modifying the
default_mimetype directive.

default_charset (string)
Scope: PHP_INI ALL; Default value: SAPI_DEFAULT CHARSET

As of version 4.0b4, PHP outputs a character encoding in the Content-type header. By default
this is set to is0-8859-1, which supports languages such as English, Spanish, German, Italian,
and Portuguese, among others. If your application is geared toward languages such as Japanese,
Chinese, or Hebrew, however, the default charset directive allows you to update this character set
setting accordingly.

always_populate_raw_post_data (On, Off)
Scope: PHP_INI PERDIR; Default value: On

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Enabling the always_populate raw post data directive causes PHP to assign a string consisting
of POSTed name/value pairs to the variable $HTTP_RAW_POST_DATA, even if the form variable has
no corresponding value. For example, suppose this directive is enabled and you create a form
consisting of two text fields, one for the user’s name and another for the user’s e-mail address.
In the resulting form action, you execute just one command:

echo $HTTP_RAW POST DATA;

Filling out neither field and clicking the Submit button results in the following output:

name=&email=

Filling out both fields and clicking the Submit button produces output similar to the following:

name=jason&email=jason%40example.com

Paths and Directories

This section introduces directives that determine PHP’s default path settings. These paths are
used for including libraries and extensions, as well as for determining user Web directories and
Web document roots.

include_path (string)
Scope: PHP_INI_ALL; Default value: PHP_INCLUDE PATH
The path to which this parameter is set serves as the base path used by functions such as

include(), require(), and fopen with path(). You can specify multiple directories by separating
each with a semicolon, as shown in the following example:

include_path=".:/usr/local/include/php;/home/php"

By default, this parameter is set to the path defined by the environment variable
PHP_INCLUDE_PATH.

Note that on Windows, backward slashes are used in lieu of forward slashes, and the drive
letter prefaces the path. For example:

include_path=".;C:\php5\includes"
doc_root (string)

Scope: PHP_INI_SYSTEM; Default value: Null

This parameter determines the default from which all PHP scripts will be served. This parameter
is used only if it is not empty.

37

38

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

user_dir (string)

Scope: PHP_INI SYSTEM; Default value: Null

The user dir directive specifies the absolute directory PHP uses when opening files using the
/~username convention. For example, when user_dir is set to /home/users and a user attempts
to open the file ~/gilmore/collections/books.txt, PHP knows that the absolute path is /home/
users/gilmore/collections/books.txt.

extension_dir (string)

Scope: PHP_INI SYSTEM; Default value: PHP_EXTENSION DIR

The extension_dir directive tells PHP where its loadable extensions (modules) are located. By
default, this is set to ./, which means that the loadable extensions are located in the same
directory as the executing script. In the Windows environment, if extension_dir is not set, it
will default to C: \PHP-INSTALLATION-DIRECTORY\ext\. In the Unix environment, the exact loca-
tion of this directory depends on several factors, although it’s quite likely that the location will
be PHP-INSTALLATION-DIRECTORY/1ib/php/extensions/no-debug-zts-RELEASE-BUILD-DATE/.

enable_dl (On, Off)
Scope: PHP_INI SYSTEM; Default value: On

The enable d1() function allows a user to load a PHP extension at run time; that is, during a
script’s execution.

File Uploads

PHP supports the uploading and subsequent administrative processing of both text and binary
files via the POST method. Three directives are available for maintaining this functionality,
each of which is introduced in this section.

Tip PHP’s file upload functionality is introduced in Chapter 15.

file_uploads (On, Off)
Scope: PHP_INI_SYSTEM; Default value: On

The file _uploads directive determines whether PHP’s file uploading feature is enabled.

upload_tmp_dir (string)
Scope: PHP_INI_SYSTEM; Default value: Null
When files are first uploaded to the server, most operating systems place them in a staging, or

temporary, directory. You can specify this directory for files uploaded via PHP by using the
upload tmp dir directive.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

upload_max filesize (integer)M
Scope: PHP_INI SYSTEM; Default value: 2M

The upload max_filesize directive sets an upper limit, in megabytes, on the size of a file
processed using PHP’s upload mechanism.

fopen Wrappers

This section contains five directives pertinent to the access and manipulation of remote files.

allow_url_fopen (On, Off)
Scope: PHP_INI_ALL; Default value: On
Enabling allow_url fopen allows PHP to treat remote files almost as if they were local. When

enabled, a PHP script can access and modify files residing on remote servers, if the files have
the correct permissions.

from (string)
Scope: PHP_INI ALL; Default value: Null
The from directive is perhaps misleading in its title in that it actually determines the password,

rather than the identity, of the anonymous user used to perform FTP connections. Therefore,
if from is set like this:

from = "jason@example.com"
the username anonymous and password jason@example.com will be passed to the server when

authentication is requested.

user_agent (string)
Scope: PHP_INI ALL; Default value: Null

PHP always sends a content header along with its processed output, including a user agent
attribute. This directive determines the value of that attribute.

default_socket_timeout (integer)
Scope: PHP_INI ALL; Default value: 60

This directive determines the timeout value of a socket-based stream, in seconds.

auto_detect_line_endings (On, Off)
Scope: PHP_INI ALL; Default value: Off

One never-ending source of developer frustration is derived from the end-of-line (EOL)
character, because of the varying syntax employed by different operating systems. Enabling
auto_detect line endings determines whether the data read by fgets() and file() uses
Macintosh, MS-DOS, or Unix file conventions.

39

40

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Dynamic Extensions

The Dynamic Extensions section contains a single directive, extension.

extension (string)
Scope: PHP_INI ALL; Default value: Null

The extension directive is used to dynamically load a particular module. On the Win32 operating
system, a module might be loaded like this:

extension = php_java.dll
On Unix, it would be loaded like this:
extension = php_java.so

Keep in mind that on either operating system, simply uncommenting or adding this line
doesn’t necessarily enable the relevant extension. You'll also need to ensure that the appro-
priate software is installed on the operating system. For example, to enable Java support, you
also need to install the JDK.

Module Settings

The directives found in this section affect the behavior of PHP’s interaction with various oper-
ating system functions and nondefault extensions, such as Java and various database servers.
This section introduces only a few directives, but numerous others are presented in later
chapters.

syslog

It’s possible to use your operating system logging facility to log PHP run-time information and
errors. One directive is available for tweaking that behavior, and it’s defined in this section.

define_syslog variables (On, Off)
Scope: PHP_INI ALL; Default value: Off

This directive specifies whether or not syslog variables such as $L0G_PID and $L0G_CRON should
be automatically defined. For performance reasons, disabling this directive is recommended.

Mail
PHP’smail() function offers a convenient means for sending e-mail messages via PHP scripts.
Four directives are available for determining PHP’s behavior in this respect.

SMTP (string)
Scope: PHP_INI_ALL; Default value: localhost
The SMTP directive, applicable only for Win32 operating systems, determines the DNS name

or IP address of the SMTP server that PHP should use when sending mail. Linux/Unix users
should look to the sendmail path directive in order to configure PHP’s mail feature.

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

smtp_port (int)

Scope: PHP_INI ALL; Default value: 25

The smtp_port directive, applicable only for Win32 operating systems, specifies the port that
PHP should use when sending mail via the server designated by the SMTP directive.

sendmail_from (string)
Scope: PHP_INI ALL; Default value: Null
The sendmail from directive, applicable only for Win32 operating systems, designates the

sender identity when PHP is used to initiate the delivery of e-mail.

sendmail_path (string)

Scope: PHP_INI_SYSTEM; Default value: DEFAULT SENDMAIL PATH

The sendmail path directive, applicable only for Unix operating systems, is primarily used to
pass additional options to the sendmail daemon, although it could also be used to determine
the location of sendmail when installed in a nonstandard directory.

Java

PHP can instantiate Java classes via its Java extension. The following four directives determine
PHP’s behavior in this respect. Note that it’s also possible to run PHP as a Java servlet via the
Java Servlet API, although this topic isn’t discussed in this book. Check out the PHP manual for
more information.

java.class.path (string)

Scope: PHP_INI_ALL; Default value: Null

The java.class.path directory specifies the location where your Java classes are stored.
java.home (string)

Scope: PHP_INI ALL; Default value: Null

The java.home directive specifies the location of the JDK binary directory.
java.library (string)

Scope: PHP_INI ALL; Default value: JAVALIB

The java.library directive specifies the location of the Java Virtual Machine JVM).
java.library.path (string)

Scope: PHP_INI_ALL; Default value: Null

The java.library.path directive specifies the location of PHP’s Java extension.

4

42

CHAPTER 2 INSTALLING AND CONFIGURING APACHE AND PHP

Summary

This chapter provided you with the information you need to establish an operational Apache/PHP
server, and valuable insight regarding PHP’s run-time configuration options and capabilities.
This was a major step, because you'll now be able to use this platform to test examples throughout
the remainder of the book.

In the next chapter, you'll learn all about the basic syntactical properties of the PHP
language. By its conclusion, you'll be able to create simplistic yet quite useful scripts. This
material sets the stage for subsequent chapters, where you’ll gain the knowledge required to
start building some really cool applications.

CHAPTER 3

PHP Basics

Only two chapters into the book and we’ve already covered quite a bit of ground regarding
the PHP language. By now, you are familiar with the language’s background and history, and
have delved deep into the installation and configuration concepts and procedures. This mate-
rial has set the stage for what will form the crux of much of the remaining material found in this
book: creating powerful PHP applications. This chapter initiates this discussion, introducing a
great number of the language’s foundational features. Specifically, chapter topics include:

* How to delimit PHP code, which provides the parsing engine with a means for determining
which areas of the script should be parsed and executed, and which should be ignored

* Anintroduction to commenting code using the various methodologies borrowed from
the Unix shell scripting, C, and C++ languages

* How to output data using the echo(), print(), printf(), and sprintf() statements
* Adiscussion of PHP’s datatypes, variables, operators, and statements

* Athorough dissertation of PHP’s key control structures and statements, including
if-else-elseif, while, foreach, include, require, break, continue, and declare

By the conclusion of this chapter, you'll possess not only the knowledge necessary to
create basic but useful PHP applications, but also an understanding of what’s required to make
the most of the material covered in later chapters.

Escaping to PHP

One of PHP’s advantages is that you can embed PHP code directly into static HTML pages. For
the code to do anything, the page must be passed to the PHP engine for interpretation. It would
be highly inefficient for the interpreter to consider every line as a potential PHP command,
however. Therefore, the parser needs some means to immediately determine which areas of
the page are PHP-enabled. This is logically accomplished by delimiting the PHP code. There
are four delimitation variants, all of which are introduced in this section.

43

CHAPTER 3 PHP BASICS

Default Syntax
The default delimiter syntax opens with <?php and concludes with ?>, like this:

<h3>Welcome!</h3>
<?php
print "<p>This is a PHP example.</p>";
?>
<p>Some static information found here...</p>

If you save this code as test.php and call it from a PHP-enabled Web server, output such
as that shown in Figure 3-1 follows.

a http:/ /localhost /book2 /chp3/firstexample.php - Microsoft Internet Explorer E E |EI|1|
File Edit View Favorites Tools Help | ﬂ'
Address Ii tkp:{flocalhost bookzichp3jfirstexample., j

Welcome!
Thiz 15 a PHP example.
Some static information found here...
@ Daone ’_ ’_ ’_ |\:) Local intranet: 4

Figure 3-1. Sample PHP Output

Short-Tags

For the less-motivated, an even shorter delimiter syntax is available. Known as short-tags, this
syntax foregoes the php reference required in the default syntax. However, to use this feature,
you need to enable PHP’s short_open_tag directive. An example follows:

<?

print "This is another PHP example.";
>

CHAPTER 3 PHP BASICS

Caution Although short-tag delimiters are convenient, keep in mind that they clash with XML, and thus
XHTML, syntax. Therefore for conformance reasons you should use the default syntax.

Typically, information is displayed using print or echo statements. When short-tags syntax is
enabled, you can omit these statements using an output variation known as short-circuit syntax:

<?="This is another PHP example.";?>
This is functionally equivalent to both of the following variations:

<? print "This is another PHP example."; ?>
<?php print "This is another PHP example.";?>

Script

Historically, certain editors, Microsoft’s FrontPage editor in particular, have had problems
dealing with escape syntax such as that employed by PHP. Therefore, support for another
mainstream delimiter variant, <script>, was incorporated into PHP:

<script language="php">
print "This is another PHP example.";
</script>

Tip Microsoft's FrontPage editor also recognizes ASP-style delimiter syntax, introduced next.

ASP-Style

Microsoft ASP pages employ a similar strategy, delimiting static from dynamic syntax by using
a predefined character pattern, opening dynamic syntax with <% and concluding with %>. If
you're coming from an ASP background and prefer to continue using this syntax, PHP supports
it. Here’s an example:

<%
print "This is another PHP example.";
%>

Embedding Multiple Code Blocks

You can escape to and from PHP as many times as required throughout a given page. For
instance, the following example is perfectly acceptable:

45

46 CHAPTER 3 PHP BASICS

<html>
<head>
<title><?php echo "Welcome to my site!";?></title>
</head>
<body>
<?php
$date = "May 18, 2003";
>
<h3>Today's date is <?=$date;?></h3>
</body>
</html>

Note that any variables declared in a prior code block are “remembered” for later blocks,
as was the case with the $date variable in this example.

Comments

Whether for your own benefit or for that of a programmer later tasked with maintaining your
code, the importance of thoroughly commenting your code cannot be overstated. PHP offers
several syntactical variations, each of which is introduced in this section.

Single-line C++ Syntax

Comments often require no more than a single line. Because of its brevity, there is no need to
delimit the comment’s conclusion, because the newline (\n) character fills this need quite
nicely. PHP supports C++ single-line comment syntax, which is prefaced with a double-slash (//),
like this:

<?php

// Title: My PHP program

// Author: Jason

print "This is a PHP program";
?>

Shell Syntax

PHP also supports an alternative to the C++-style single-line syntax, known as shell syntax,
which is prefaced with a hash mark (#). Revisiting the previous example:

<?php

Title: My PHP program

Author: Jason

print "This is a PHP program";
>

Multiple-line C Syntax

It’s often convenient to include somewhat more verbose functional descriptions or other
explanatory notes within code, which logically warrant numerous lines. Although you could

CHAPTER 3 PHP BASICS

preface each line with C++ or shell-style delimiters, PHP also offers a multiple-line variant that
both opens and closes the comment. Consider the following multiline comment:

<?php
/*
Title: My PHP Program
Author: Jason
Date: October 10, 2005
*/

?>

Multiline commentary syntax is particularly useful when generating documentation from
code, because it offers a definitive means for distinguishing between disparate comments, a
convenience not easily possible using single-line syntax.

Output

Most Web applications involve a high degree of interactivity. Well-written scripts are constantly
communicating with users, via both tool interfaces and request responses. PHP offers a number of
means for displaying information, each of which is discussed in this section.

print()
boolean print (argument)

The print() statement is responsible for providing user feedback, and it is capable of displaying
both raw strings and variables. All of the following are plausible print() statements:

<?php
print("<p>I love the summertime.</p>");
?>

<?php

$season = "summertime";

print "<p>I love the $season.</p>";
7>

<?php
print "<p>I love the
summertime.</p>";

7>

<?php

$season = "summertime";

print "<p>I love the ".$season."</p>";
7>

All these statements produce identical output:

47

48

CHAPTER 3 PHP BASICS

I love the summertime.

While the first three variations are likely quite easy to understand, the last one might not
be so straightforward. In this last variation, three strings were concatenated together using a
period, which when used in this context is known as the concatenation operator. This practice
is commonly employed when concatenating variables, constants, and static strings together.
You'll see this strategy used repeatedly throughout the entire book.

Note Although the official syntax calls for the use of parentheses to enclose the argument, you have the
option of omitting them. Many programmers tend to choose this option, simply because the target argument
is equally apparent without them.

echo()

void echo (string argumenti [, ...string argumentN])

The echo() statement operates similarly to print(), except for two differences. First, it cannot
be used as part of a complex expression because it returns void, whereas print() returns a
Boolean. Second, echo() is capable of outputting multiple strings. The utility of this particular
trait is questionable; using it seems to be a matter of preference more than anything else.
Nonetheless, it’s available should you feel the need. Here’s an example:

<?php
$heavyweight = "Lennox Lewis";
$lightweight = "Floyd Mayweather";

echo $heavyweight, " and ", $lightweight, " are great fighters.";

2>

This code produces the following:

Lennox Lewis and Floyd Mayweather are great fighters.

Tip Which is faster, echo() or print()? The fact that they are functionally interchangeable leaves many
pondering this question. The answer is that the echo() function is a tad faster, because it returns nothing,
whereas print() returns a Boolean value informing the caller whether or not the statement was successfully
output. It's rather unlikely that you’ll notice any speed difference, however, so you can consider the usage
decision to be one of stylistic concern.

CHAPTER 3 PHP BASICS 49

printf()
boolean printf (string format [, mixed args])

The printf() function is functionally identical to print(), outputting the arguments specified
in args, except that the output is formatted according to format. The format parameter allows
you to wield considerable control over the output data, be it in terms of alignment, precision,
type, or position. The argument consists of up to five components, which should appear in
format in the following order:

» Padding specifier: This optional component determines which character will be used to
pad the outcome to the correct string size. The default is a space character. An alternative
character is specified by preceding it with a single quotation.

* Alignment specifier: This optional component determines whether the outcome should
be left- or right-justified. The default is right-justified; you can set the alignment to left
with a negative sign.

¢ Width specifier: This optional component determines the minimum number of characters
that should be output by the function.

* Precision specifier: This optional component determines the number of decimal digits
that should be displayed. This component affects only data of type float.

* Typespecifier: This component determines how the argument will be cast. The supported
type specifiers are listed in Table 3-1.

Table 3-1. Supported Type Specifiers

Type Description

%b Argument considered an integer; presented as a binary number

%e Argument considered an integer; presented as a character corresponding to that
ASCII value

%d Argument considered an integer; presented as a signed decimal number

%t Argument considered a floating-point number; presented as a floating-point
number

%0 Argument considered an integer; presented as an octal number

%s Argument considered a string; presented as a string

%u Argument considered an integer; presented as an unsigned decimal number

%X Argument considered an integer; presented as a lowercase hexadecimal number

%X Argument considered an integer; presented as an uppercase hexadecimal number

Consider a few examples:

50

CHAPTER 3 PHP BASICS

printf("$%01.2f", 43.2); // $43.20
printf("%d beer %s", 100, "bottles"); // 100 beer bottles
printf("%15s", "Some text"); // Some text

Sometimes it’s convenient to change the output order of the arguments, or repeat the
output of a particular argument, without explicitly repeating it in the argument list. This is
done by making reference to the argument in accordance with its position. For example, %2$
indicates the argument located in the second position of the argument list, while %3$ indicates
the third. However, when placed within the format string, the dollar sign must be escaped, like
this: %2\$. Two examples follow:

printf("The %2\$s likes to %1\$s", "bark", "dog");

// The dog likes to bark

printf("The %1\$s says: %2\$s, %2\$s.", "dog", "bark");
// The dog says: bark, bark.

sprintf()
string sprintf (string format [, mixed arguments])

The sprintf() function is functionally identical to printf(), except that the output is assigned
to a string rather than output directly to standard output. An example follows:

$cost = sprintf("$%01.2f", 43.2); // $cost = $43.20

Datatypes

A datatype is the generic name assigned to any set of data sharing a common set of character-
istics. Common datatypes include strings, integers, floats, and Booleans. PHP has long offered a
rich set of datatypes, and has further increased this yield in version 5. This section offers an
introduction to these datatypes, which can be broken into three categories: scalar, compound,
and special.

Scalar Datatypes

Scalar datatypes are capable of containing a single item of information. Several datatypes fall
under this category, including Boolean, integer, float, and string.

Boolean

The Boolean datatype is named after George Boole (1815-1864), a mathematician who is
considered to be one of the founding fathers of information theory. A Boolean variable repre-
sents truth, supporting only two values: TRUE or FALSE (case insensitive). Alternatively, you can
use zero to represent FALSE, and any nonzero value to represent TRUE. A few examples follow:

$alive = false; # $alive is false.
$alive = 1; # $alive is true.
$alive = -1; # $alive is true.
$alive = 5; # $alive is true.

$alive = 0; # $alive is false.

CHAPTER 3 PHP BASICS

Integer

An integer is quite simply a whole number, or one that does not contain fractional parts. Decimal
(base 10), octal (base 8), and hexadecimal (base 16) numbers all fall under this category. Several
examples follow:

42 # decimal
-678900 # decimal
0755 # octal

OxC4E # hexadecimal

The maximum supported integer size is platform-dependent, although this is typically
positive or negative 231. If you attempt to surpass this limit within a PHP script, the number will
be automatically converted to a float. An example follows:

<?php
$val = 45678945939390393678976;

echo $val + 5;
?>

This is the result:

4.567894593939E+022

Float

Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you to
specify numbers that contain fractional parts. Floats are used to represent monetary values,
weights, distances, and a whole host of other representations in which a simple integer value
won'’t suffice. PHP’s floats can be specified in a variety of ways, each of which is exemplified
here:

4.5678
4.0
8.7e4
1.23E+11

String

Simply put, a string is a sequence of characters treated as a contiguous group. Such groups are
typically delimited by single or double quotes, although PHP also supports another delimitation
methodology, which is introduced in the later section “String Interpolation.” The ramifications
of all three delimitation methods are also discussed in that section.

The following are all examples of valid strings:

"whoop-de-do"
"subway\n'
"123$%"789"

51

52

CHAPTER 3 PHP BASICS

Historically, PHP treated strings in the same fashion as arrays (see the next section,
“Compound Datatypes,” for more information about arrays), allowing for specific characters
to be accessed via array offset notation. For example, consider the following string:

$color = "maroon";

You could retrieve and display a particular character of the string by treating the string as
an array, like this:

echo $color[2]; // outputs 'r

Although this is convenient, it can lead to some confusion, and thus PHP 5 introduces
specialized string offset functionality, which Chapter 9 covers in some detail. Additionally,
Chapter 9 is devoted to a thorough presentation of many of PHP’s valuable string and regular
expression functions.

Compound Datatypes

Compound datatypes allow for multiple items of the same type to be aggregated under a single
representative entity. The array and the object fall into this category.

Array

It’s often useful to aggregate a series of similar items together, arranging and referencing them
in some specific way. These data structures, known as arrays, are formally defined as an indexed
collection of data values. Each member of the array index (also known as the key) references a
corresponding value, and can be a simple numerical reference to the value’s position in the
series, or it could have some direct correlation to the value. For example, if you were interested
in creating a list of U.S. states, you could use a numerically indexed array, like so:

$state[0] = "Alabama";
$state[1] = "Alaska";
$state[2] = "Arizona";

$state[49] = "Wyoming";

But what if the project required correlating U.S. states to their capitals? Rather than base
the keys on a numerical index, you might instead use an associative index, like this:

$state["Alabama"] = "Montgomery";
$state["Alaska"] = "Juneau";
$state["Arizona"] = "Phoenix";

$state["Wyoming"] = "Cheyenne";

A formal introduction to the concept of arrays in provided Chapter 5, so don’t worry too
much about the matter if you don’t completely understand these concepts right now. Just keep
in mind that the array datatype is indeed supported by the PHP language.

CHAPTER 3 PHP BASICS

Note PHP also supports arrays consisting of several dimensions, better known as multidimensional arrays.
This concept is introduced in Chapter 5.

Object

The other compound datatype supported by PHP is the object. The object is a central concept
of the object-oriented programming paradigm. If you're new to object-oriented programming,
don’t worry, because Chapters 6 and 7 are devoted to a complete introduction to the matter.
Unlike the other datatypes contained in the PHP language, an object must be explicitly
declared. This declaration of an object’s characteristics and behavior takes place within something
called a class. Here’s a general example of class declaration and subsequent object instantiation:

class appliance {
private $power;
function setPower($status) {
$this->power = $status;
}
}

$blender = new appliance;

A class definition creates several attributes and functions pertinent to a data structure, in
this case a data structure named appliance. So far, appliance isn’t very functional. There is only
one attribute: power. This attribute can be modified by using the method setPower ().

Remember, however, that a class definition is a template and cannot itself be manipulated.
Instead, objects are created based on this template. This is accomplished via the new keyword.
Therefore, in the last line of the previous listing, an object of class appliance named blender
is created.

The blender object’s power attribute can then be set by making use of the method
setPower():

$blender->setPower("on");

Improvements to PHP’s object-oriented development model are a highlight of PHP 5.
Chapters 6 and 7 are devoted to thorough coverage of this important feature.

Special Datatypes

Special datatypes encompass those types serving some sort of niche purpose, which makes it
impossible to group them in any other type category. The resource and null datatypes fall
under this category.

Resource

PHP is often used to interact with some external data source: databases, files, and network
streams all come to mind. Typically this interaction takes place through handles, which are
named at the time a connection to that resource is successfully initiated. These handles remain

53

54

CHAPTER 3 PHP BASICS

the main point of reference for that resource until communication is completed, at which time
the handle is destroyed. These handles are of the resource datatype.

Not all functions return resources; only those that are responsible for binding a resource
to a variable found within the PHP script do. Examples of such functions include fopen(),
mysqli connect(), and pdf new(). For example, $1ink is of type resource in the following
example:

$th = fopen("/home/jason/books.txt", "r");

Variables of type resource don’t actually hold a value; rather, they hold a pointer to the
opened resource connection. In fact, if you try to output the contents, you'll see a reference to
aresource ID number.

Null

Null, a term meaning “nothing,” has long been a concept that has perplexed beginning
programmers. Null does not mean blank space, nor does it mean zero; it means no value, or
nothing. In PHP, a value is considered to be null if:

¢ It has not been set to any predefined value.
¢ It has been specifically assigned the value Null.
¢ It has been erased using the function unset ().

The null datatype recognizes only one value, Null:

<?php

$default = Null;
>
Type Casting

Forcing a variable to behave as a type other than the one originally intended for it is known as
type casting. A variable can be evaluated once as a different type by casting it to another. This is
accomplished by placing the intended type in front of the variable to be cast. A type can be cast
by inserting one of the casts shown in Table 3-2 in front of the variable.

Table 3-2. Type Casting Operators

Cast Operators Conversion
(array) Array
(bool) or (boolean) Boolean
(int) or (integer) Integer
(object) Object
(real) or (double) or (float) Float

(string) String

CHAPTER 3 PHP BASICS

Let’s consider several examples. Suppose you’d like to cast an integer as a double:

$variable1l = 13;
$variable2 = (double) $variable1l; // $variable2 is assigned the value 13.0

Although $variable1 originally held the integer value 13, the double cast temporarily
converted the type to double (and in turn, 13 became 13.0). This value was then assigned to
$variable2.

Now consider the opposite scenario. Type casting a value of type double to type integer
has an effect that you might not expect:

$variablel = 4.7;
$variable2 = 5;
$variable3 = (int) $variable1l + $variable2; // $variable3 = 9

The decimal was truncated from the double. Note that the double will be rounded down
every time, regardless of the decimal value.

You can also cast a datatype to be a member of an array. The value being cast simply
becomes the first element of the array:

$variablel = 1114;
$array1l = (array) $variablei;
print $array1i[o]; // The value 1114 is output.

Note that this shouldn’t be considered standard practice for adding items to an array,
because this only seems to work for the very first member of a newly created array. If it is cast
against an existing array, that array will be wiped out, leaving only the newly cast value in the
first position.

What happens if you cast a string datatype to that of an integer? Let’s find out:

$sentence = "This is a sentence";
echo (int) $sentence; // returns 0

That isn’t very practical. How about the opposite procedure, casting an integer to a string?
In light of PHP’s loosely typed design, it will simply return the integer value unmodified. However,
as you'll see in the next section, PHP will sometimes take the initiative and cast a type to best
fit the requirements of a given situation.

One final example: any datatype can be cast as an object. The result is that the variable
becomes an attribute of the object, the attribute having the name scalar:

$model = "Toyota";
$new obj = (object) $model;

The value can then be referenced as follows:

print $new obj->scalar; // returns "Toyota"

Type Juggling
Because of PHP’s lax attitude toward type definitions, variables are sometimes automatically
cast to best fit the circumstances in which they are referenced. Consider the following snippet:

55

56

CHAPTER 3 PHP BASICS

<?php
$total = 5;
$count = "15";
$total += $count; // $total = 20;

>

The outcome is the expected one; $total is assigned 20, converting the $count variable
from a string to an integer in order to do so. Here’s another example:

<?php

$total = "45 fire engines"”;

$incoming = 10;

$total = $incoming + $total; // $total = 55
2>

Because the original $total string begins with an integer value, this value is used in the
calculation. However, if it begins with anything other than a numerical representation, the
value is zero. Consider another example:

<?php

$total = "1.0";

if ($total) echo "The total count is positive";
>

In this example, a string is converted to Boolean type in order to evaluate the if statement.
This is indeed common practice in PHP programming, something you’ll see on a regular basis,
and is useful if you prefer streamlined code.

Consider one last, particularly interesting, example. If a string used in a mathematical
calculation includes a ., e, or E, it will be evaluated as a float:

<?php
$vall = "1.2e3";
$val2 = 2;

echo $vali * $val2; // outputs 2400
>

Type-Related Functions

A few functions are available for both verifying and converting datatypes, and those are
covered in this section.

settype()
boolean settype (mixed var, string type)

The settype() function converts a variable, specified by var, to the type specified by type.
Seven possible type values are available: array, boolean, float, integer, null, object, and
string. If the conversion is successful, TRUE is returned; otherwise, FALSE is returned.

CHAPTER 3 PHP BASICS

gettype()
string gettype (mixed var)

The gettype() function returns the type of the variable specified by var. In total, eight possible
return values are available: array, boolean, double, integer, object, resource, string, and
unknown type.

Type Identifier Functions

A number of functions are available for determining a variable’s type, including is_array(),
is bool(), is float(), is_integer(), is null(), is numeric(), is object(), is_resource(),
is scalar(),and is_string().Because all of these functions follow the same naming conven-
tion, arguments, and return values, their introduction is consolidated to a single general form,
presented here.

is_name()
boolean is name (mixed var)

All of these functions are grouped under a single heading, because each ultimately accomplishes
the same task. Each determines whether a variable, specified by var, satisfies a particular
condition specified by the function name. If var is indeed of that type, TRUE is returned; other-
wise, FALSE is returned. An example follows:

<?php
$item = 43;
echo "The variable \$item is of type array: ".is array($item)."
";
echo "The variable \$item is of type integer: ".is integer($item)."
";
echo "The variable \$item is numeric: ".is _numeric($item)."
";

7>

This code returns the following:

The variable $item is of type array:
The variable $item is of type integer: 1
The variable $item is numeric: 1

Note that in the case of a falsehood, nothing is returned. You might also be wondering
about the backslash preceding $item. Given the dollar sign’s special purpose of identifying a
variable, there must be a way to tell the interpreter to treat it as a normal character, should you
want to output it to the screen. Delimiting the dollar sign with a backslash will accomplish this.

Identifiers

Identifier is a general term applied to variables, functions, and various other user-defined
objects. There are several properties that PHP identifiers must abide by:

57

58

CHAPTER 3 PHP BASICS

¢ Anidentifier can consist of one or more characters and must begin with a letter or an
underscore. Furthermore, identifiers can consist of only letters, numbers, underscore
characters, and other ASCII characters from 127 through 255. Consider a few examples:

Valid Invalid

my function This&that
Size Icounter
_someword 4ward

» Identifiers are case-sensitive. Therefore, a variable named $recipe is different from a
variable named $Recipe, $rEciPe, or $recipk.

» Identifiers can be any length. This is advantageous, because it enables a programmer to
accurately describe the identifier’s purpose via the identifier name.

* Anidentifier name can’t be identical to any of PHP’s predefined keywords. You can find
a complete list of these keywords in the PHP manual appendix.

Variables

Although variables have been used within numerous examples found in this chapter, the concept
has yet to be formally introduced. This section does so, starting with a definition. Simply put, a
variableis a symbol that can store different values at different times. For example, suppose you
create a Web-based calculator capable of performing mathematical tasks. Of course, the user
will want to plug in values of his choosing; therefore, the program must be able to dynamically
store those values and perform calculations accordingly. At the same time, the programmer
requires a user-friendly means for referring to these value-holders within the application. The
variable accomplishes both tasks.

Given the importance of this programming concept, it would be wise to explicitly lay the
groundwork as to how variables are declared and manipulated. In this section, these rules are
examined in detail.

Note A variable is a named memory location that contains data and may be manipulated throughout the
execution of the program.

Variable Declaration

Avariable always begins with a dollar sign, $, which is then followed by the variable name. Vari-
able names follow the same naming rules as identifiers. That is, a variable name can begin with
either a letter or an underscore, and can consist of letters, underscores, numbers, or other
ASCII characters ranging from 127 through 255. The following are all valid variables:

CHAPTER 3 PHP BASICS 59

$color
$operating_system
$ some variable
$model

Note that variables are case-sensitive. For instance, the following variables bear absolutely
no relation to one another:

$color
$Color
$COLOR

Interestingly, variables do not have to be explicitly declared in PHP, as they do in Perl.
Rather, variables can be declared and assigned values simultaneously. Nonetheless, just because
you can do something doesn’t mean you should. Good programming practice dictates that all
variables should be declared prior to use, preferably with an accompanying comment.

Once you've declared your variables, you can begin assigning values to them. Two methodol-
ogies are available for variable assignment: by value and by reference. Both are introduced next.

Value Assignment

Assignment by value simply involves copying the value of the assigned expression to the variable
assignee. This is the most common type of assignment. A few examples follow:

$color = "red";

$number = 12;

$age = 12;

$sum = 12 + "15"; /* $sum = 27 */

Keep in mind that each of these variables possesses a copy of the expression assigned to it.
For example, $number and $age each possess their own unique copy of the value 12. If you'd
rather that two variables point to the same copy of a value, you need to assign by reference,
introduced next.

Reference Assignment

PHP 4 introduced the ability to assign variables by reference, which essentially means that you
can create a variable that refers to the same content as another variable does. Therefore, a
change to any variable referencing a particular item of variable content will be reflected among
all other variables referencing that same content. You can assign variables by reference by
appending an ampersand (&) to the equal sign. Let’s consider an example:

<?php
$valuel = "Hello";
$value2 =& $valuel; /* $valuel and $value2 both equal "Hello". */

$value2 = "Goodbye"; /* $valuel and $value2 both equal "Goodbye". */
>

An alternative reference-assignment syntax is also supported, which involves appending
the ampersand to the front of the variable being referenced. The following example adheres to
this new syntax:

60

CHAPTER 3 PHP BASICS

<?php
$valuel = "Hello";
$value2 = &$valuel; /* $valuel and $value2 both equal "Hello". */

$value2 = "Goodbye"; /* $valuel and $value2 both equal "Goodbye". */
2>

References also play an important role in both function arguments and return values, as
well as in object-oriented programming. Chapters 4 and 6 cover these features, respectively.

Variable Scope

However you declare your variables (by value or by reference), you can declare variables
anywhere in a PHP script. The location of the declaration greatly influences the realm in which
a variable can be accessed, however. This accessibility domain is known as its scope.

PHP variables can be one of four scope types:

¢ Local variables
¢ Function parameters
¢ Global variables

e Static variables

Local Variables

A variable declared in a function is considered local. That is, it can be referenced only in that
function. Any assignment outside of that function will be considered to be an entirely different
variable from the one contained in the function. Note that when you exit the function in which
alocal variable has been declared, that variable and its corresponding value are destroyed.

Local variables are helpful because they eliminate the possibility of unexpected side effects,
which can result from globally accessible variables that are modified, intentionally or not.
Consider this listing:

$x = 4;
function assignx () {
$x = 0;
print "\ $x inside function is $x.
";
}
assignx();
print "\ $x outside of function is $x.
";

Executing this listing results in:

$x inside function is o.
$x outside of function is 4.

As you can see, two different values for $x are output. This is because the $x located inside
the assignx() function is local. Modifying the value of the local $x has no bearing on any values
located outside of the function. On the same note, modifying the $x located outside of the function
has no bearing on any variables contained in assignx().

CHAPTER 3 PHP BASICS

Function Parameters

As in many other programming languages, in PHP, any function that accepts arguments must
declare those arguments in the function header. Although those arguments accept values that
come from outside of the function, they are no longer accessible once the function has exited.

Note This section applies only to parameters passed by value, and not to those passed by reference.
Parameters passed by reference will indeed be affected by any changes made to the parameter from within
the function. If you don’t know what this means, don’t worry about it, because Chapter 4 addresses the topic
in some detail.

Function parameters are declared after the function name and inside parentheses. They
are declared much like a typical variable would be:

// multiply a value by 10 and return it to the caller
function x10 ($value) {

$value = $value * 10;

return $value;

Keep in mind that although you can access and manipulate any function parameter in the
function in which it is declared, it is destroyed when the function execution ends.

Global Variables

In contrast to local variables, a global variable can be accessed in any part of the program. To

modify a global variable, however, it must be explicitly declared to be global in the function in
which it is to be modified. This is accomplished, conveniently enough, by placing the keyword
GLOBAL in front of the variable that should be recognized as global. Placing this keyword in front

of an already existing variable tells PHP to use the variable having that name. Consider an example:

$somevar = 15;

function addit() {
GLOBAL $somevar;
$somevar++;
print "Somevar is $somevar";

}
addit();

The displayed value of $somevar would be 16. However, if you were to omit this line,
GLOBAL $somevar;

the variable $somevar would be assigned the value 1, because $somevar would then be considered
local within the addit() function. This local declaration would be implicitly set to 0, and then
incremented by 1 to display the value 1.

61

62

CHAPTER 3 PHP BASICS

An alternative method for declaring a variable to be global is to use PHP’s $GLOBALS array,
formally introduced in the next section. Reconsidering the preceding example, you can use this
array to declare the variable $somevar to be global:

$somevar = 15;

function addit() {
$GLOBALS["somevar" J++;

}

addit();
print "Somevar is ".$GLOBALS["somevar"];

This returns the following:

Somevar is 16

Regardless of the method you choose to convert a variable to global scope, be aware that
the global scope has long been a cause of grief among programmers due to unexpected results
that may arise from its careless use. Therefore, although global variables can be extremely
useful, be prudent when using them.

Static Variables

The final type of variable scoping to discuss is known as static. In contrast to the variables
declared as function parameters, which are destroyed on the function’s exit, a static variable
does not lose its value when the function exits, and will still hold that value if the function is
called again. You can declare a variable as static simply by placing the keyword STATIC in front
of the variable name:

STATIC $somevar;
Consider an example:

function keep track() {
STATIC $count = 0;
$count++;
print $count;
print "
";

}

keep track();
keep track();
keep track();

What would you expect the outcome of this script to be? If the variable $count were not
designated to be static (thus making $count alocal variable), the outcome would be as follows:

CHAPTER 3 PHP BASICS

However, because $count is static, it retains its previous value each time the function is
executed. Therefore, the outcome is:

Static scoping is particularly useful for recursive functions. Recursive functions are a
powerful programming concept in which a function repeatedly calls itself until a particular
condition is met. Recursive functions are covered in detail in Chapter 4.

PHP’s Superglobal Variables

PHP offers a number of useful predefined variables, which are accessible from anywhere
within the executing script and provide you with a substantial amount of environment-specific
information. You can sift through these variables to retrieve details about the current user
session, the user’s operating environment, the local operating environment, and more. PHP
creates some of the variables, while the availability and value of many of the other variables are
specific to the operating system and Web server. Therefore, rather than attempt to assemble a
comprehensive list of all possible predefined variables and their possible values, the following
code will output all predefined variables pertinent to any given Web server and the script’s
execution environment:

foreach ($ SERVER as $var => $value) {
echo "$var => $value
";

}

This returns a list of variables similar to the following. Take a moment to peruse the listing
produced by this code as executed on a Windows server. You'll see some of these variables
again in the examples that follow.

HTTP_ACCEPT => */*

HTTP_ACCEPT_LANGUAGE => en-us

HTTP_ACCEPT_ENCODING => gzip, deflate

HTTP_USER_AGENT => Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;)
HTTP_HOST => localhost

HTTP_CONNECTION => Keep-Alive

PATH => C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;

SystemRoot => C:\WINDOWS

COMSPEC => C:\WINDOWS\system32\cmd.exe

PATHEXT => .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE; . WSF; . WSH

63

64

CHAPTER 3 PHP BASICS

WINDIR => C:\WINDOWS

SERVER_SIGNATURE => Apache/2.0.54 (Win32) PHP/5.1.b2 Server at localhost Port 80
SERVER_SOFTWARE => Apache/2.0.54 (Win32) PHP/5.1.0b2
SERVER_NAME => localhost

SERVER_ADDR => 127.0.0.1

SERVER_PORT => 80

REMOTE_ADDR => 127.0.0.1

DOCUMENT _ROOT => C:/Apache2/htdocs

SERVER_ADMIN => wj@wjgilmore.com

SCRIPT_FILENAME => C:/Apache2/htdocs/pmnp/3/globals.php
REMOTE_PORT => 1393

GATEWAY INTERFACE => CGI/1.1

SERVER_PROTOCOL => HTTP/1.1

REQUEST METHOD => GET

QUERY_STRING =>

REQUEST URI => /pmnp/3/globals.php

SCRIPT_NAME => /pmnp/3/globals.php

PHP_SELF => /pmnp/3/globals.php

As you can see, quite a bit of information is available—some useful, some not so useful.
You can display just one of these variables simply by treating it as a regular variable. For example,
use this to display the user’s IP address:

print "Hi! Your IP address is: $ SERVER['REMOTE_ADDR']";

This returns a numerical IP address, such as 192.0.34.166.
You can also gain information regarding the user’s browser and operating system.
Consider the following one-liner:

print "Your browser is: $ SERVER['HTTP_USER AGENT']";

This returns information similar to the following:

Your browser is: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR
1.0.3705)

This example illustrates only one of PHP’s nine predefined variable arrays. The rest of this
section is devoted to introducing the purpose and contents of each.

Note To use the predefined variable arrays, the configuration parameter track_vars must be enabled
in the php.ini file. As of PHP 4.03, track_vars is always enabled.

CHAPTER 3 PHP BASICS

$_SERVER

The $_SERVER superglobal contains information created by the Web server, and offers a bevy of
information regarding the server and client configuration and the current request environment.
Although the value and number of variables found in $_SERVER varies by server, you can typically
expect to find those defined in the CGI 1.1 specification (available at the National Center for
Supercomputing Applications, at http://hoohoo.ncsa.uiuc.edu/cgi/env.html). You'll likely
find all of these variables to be quite useful in your applications, some of which include:

e $ SERVER["HTTP_REFERER']: The URL of the page that referred the user to the current
location.

$_SERVER['REMOTE_ADDR']: The client’s IP address.

$ SERVER['REQUEST URI']: The path component of the URL. For example, if the URL
is http://www.example.com/blog/apache/index.html, then the URIis /blog/apache/
index.html.

$ SERVER['HTTP_USER_AGENT']: The client’s user agent, which typically offers information
about both the operating system and browser.

$_GET

The $_GET superglobal contains information pertinent to any parameters passed using the GET
method. If the URL http://www.example.com/index.html?cat=apache&id=157 was requested,
you could access the following variables by using the $_GET superglobal:

$ GET['cat'] = "apache"
$ GET['id'] = "157"

The $_GET superglobal, by default, is the only way that you can access variables passed via
the GET method. You cannot reference GET variables like this: $cat, $id. See Chapter 21 for an
explanation of why this is the recommended means for accessing GET information.

$_POST

The $_POST superglobal contains information pertinent to any parameters passed using the
POST method. Consider the following form, used to solicit subscriber information:

<form action="subscribe.php" method="post">
<p>
Email address:

<input type="text" name="email" size="20" maxlength="50" value="" />
</p>
<p>
Password:

<input type="password" name="pswd" size="20" maxlength="15" value="" />
</p>
<p>
<input type="submit" name="subscribe" value="subscribe!" />
</p>
</form>

65

66

CHAPTER 3 PHP BASICS

The following POST variables will be made available via the target subscribe. php script:

$ _POST['email'] = "jason@example.com";
$ _POST['pswd'] = "rainyday";
$ _POST['subscribe'] = "subscribe!";

Like $ GET, the $_POST superglobal is by default the only way to access POST variables.
You cannot reference POST variables like this: $email, $pswd, $subscribe.

$_COOKIE

The $_COOKIE superglobal stores information passed into the script through HTTP cookies.
Such cookies are typically set by a previously executed PHP script through the PHP function
setcookie(). For example, suppose that you use setcookie() to store a cookie named example.com
with the value ab2213. You could later retrieve that value by calling $_COOKIE["example.com"].
Chapter 18 introduces PHP’s cookie-handling functionality in detail.

$_FILES

The $_FILES superglobal contains information regarding data uploaded to the server via the
POST method. This superglobal is a tad different from the others in that it is a two-dimensional
array containing five elements. The first subscript refers to the name of the form’s file-upload
form element; the second is one of five predefined subscripts that describe a particular
attribute of the uploaded file:

e § FILES['upload-name']['name']: The name of the file as uploaded from the client to
the server.

$ FILES['upload-name']['type']: The MIME type of the uploaded file. Whether this
variable is assigned depends on the browser capabilities.

e § FILES['upload-name']['size']: The byte size of the uploaded file.

$ FILES['upload-name']['tmp name']: Once uploaded, the file will be assigned a tempo-
rary name before it is moved to its final location.

$ _FILES['upload-name']['error']: Anupload status code. Despite the name, this variable
will be populated even in the case of success. There are five possible values:

* UPLOAD_ERR_OK: The file was successfully uploaded.

* UPLOAD_ERR_INI SIZE: The file size exceeds the maximum size imposed by the
upload max_filesize directive.

* UPLOAD_ERR_FORM_SIZE: The file size exceeds the maximum size imposed by an optional
MAX_FILE SIZE hidden form-field parameter.

* UPLOAD_ERR_PARTIAL: The file was only partially uploaded.
* UPLOAD_ERR_NO_FILE: A file was not specified in the upload form prompt.

Chapter 15 is devoted to a complete introduction of PHP’s file-upload functionality.

CHAPTER 3 PHP BASICS 67

$_ENV

The $_ENV superglobal offers information regarding the PHP parser’s underlying server environ-
ment. Some of the variables found in this array include:

e $ ENV['HOSTNAME']: The server host name

e $ ENV['SHELL']: The system shell

$_REQUEST

The $ REQUEST superglobal is a catch-all of sorts, recording variables passed to a script via any
input method, specifically GET, POST, and Cookie. The order of these variables doesn’t depend
on the order in which they appear in the sending script, but rather depends on the order spec-
ified by the variables order configuration directive. Although it may be tempting, do not use
this superglobal to handle variables, because it is insecure. See Chapter 21 for an explanation.

$_SESSION

The $ SESSION superglobal contains information regarding all session variables. Registering
session information allows you the convenience of referring to it throughout your entire Web
site, without the hassle of explicitly passing the data via GET or POST. Chapter 18 is devoted to
PHP’s formidable session-handling feature.

$GLOBALS

The $GLOBALS superglobal array can be thought of as the superglobal superset, and contains a
comprehensive listing of all variables found in the global scope. You can view a dump of all
variables found in $GLOBALS by executing the following:

print '<pre>';
print_r($GLOBALS);
PRINT '</pre>';

Variable Variables

On occasion, you may want to use a variable whose contents can be treated dynamically as a
variable in itself. Consider this typical variable assignment:

$recipe = "spaghetti";

Interestingly, you can then treat the value spaghetti as a variable by placing a second
dollar sign in front of the original variable name and again assigning another value:

$$recipe = "& meatballs";

This in effect assigns & meatballs to a variable named spaghetti.
Therefore, the following two snippets of code produce the same result:

print $recipe $spaghetti;
print $recipe ${$recipe};

The result of both is the string spaghetti & meatballs.

68

CHAPTER 3 PHP BASICS

Constants

A constant is a value that cannot be modified throughout the execution of a program. Constants
are particularly useful when working with values that definitely will not require modification,
such as pi (3.141592) or the number of feet in a mile (5,280). Once a constant has been defined,
it cannot be changed (or redefined) at any other point of the program. Constants are defined
using the define() function.

define()

boolean define (string name, mixed value [, bool case insensitive])

The define() function defines a constant, specified by name, assigning it the value value. If the
optional parameter case-insensitive is included and assigned TRUE, subsequent references to
the constant will be case insensitive. Consider the following example, in which the mathematical
constant PI is defined:

define("PI", 3.141592);
The constant is subsequently used in the following listing:

print "The value of pi is ".PI.".
";
$pi2 = 2 * PI;
print "Pi doubled equals $pi2.";

This code produces the following results:

The value of pi is 3.141592.
Pi doubled equals 6.283184.

There are several points to note regarding the previous listing. The first is that constant
references are not prefaced with a dollar sign. The second is that you can’t redefine or undefine
the constant once it has been defined (for example, 2*PI); if you need to produce a value based
on the constant, the value must be stored in another variable. Finally, constants are global;
they can be referenced anywhere in your script.

Expressions

An expression is a phrase representing a particular action in a program. All expressions consist
of at least one operand and one or more operators. A few examples follow:

$a = 5; // assign integer value 5 to the variable $a
$a = "5"; // assign string value "5" to the variable $a
$sum = 50 + $some_int; // assign sum of 50 + $some_int to $sum
$wine = "Zinfandel"; // assign "Zinfandel" to the variable $wine

$inventory++; // increment the variable $inventory by 1

CHAPTER 3 PHP BASICS

Operands

Operands are the inputs of an expression. You might already be familiar with the manipulation
and use of operands not only through everyday mathematical calculations, but also through
prior programming experience. Some examples of operands follow:

$a++; // $a is the operand
$sum = $vall + val2; // $sum, $vall and $val2 are operands

Operators

An operator is a symbol that specifies a particular action in an expression. Many operators may
be familiar to you. Regardless, you should remember that PHP’s automatic type conversion
will convert types based on the type of operator placed between the two operands, which is not
always the case in other programming languages.

The precedence and associativity of operators are significant characteristics of a program-
ming language. Both concepts are introduced in this section. Table 3-3 contains a complete
listing of all operators, ordered from highest to lowest precedence.

Table 3-3. Operator Precedence, Associativity, and Purpose

Operator Associativity Purpose

new NA Object instantiation

() NA Expression subgrouping

[] Right Index enclosure

b~ -- Right Boolean NOT, bitwise NOT, increment, decrement

@ Right Error suppression

/I *% Left Division, multiplication, modulus

+ - Left Addition, subtraction, concatenation

K> Left Shift left, shift right (bitwise)

< K= > >= NA Less than, less than or equal to, greater than,
greater than or equal to

== l= === & NA Is equal to, is not equal to, is identical to, is not
equal to

&~ Left Bitwise AND, bitwise XOR, bitwise OR

&& || Left Boolean AND, Boolean OR

?2: Right Ternary operator

= += *= /= = %=8= Right Assignment operators

|= "= <<= >>=

AND XOR OR Left Boolean AND, Boolean XOR, Boolean OR

, Left Expression separation; example:

$days = array(1=>"Monday", 2=>"Tuesday")

69

70

CHAPTER 3 PHP BASICS

Operator Precedence

Operator precedence is a characteristic of operators that determines the order in which they
evaluate the operands surrounding them. PHP follows the standard precedence rules used in
elementary school math class. Consider a few examples:

$total _cost = $cost + $cost * 0.06;
This is the same as writing
$total cost = $cost + ($cost * 0.06);

because the multiplication operator has higher precedence than the addition operator.

Operator Associativity

The associativity characteristic of an operator specifies how operations of the same precedence
(i.e., having the same precedence value, as displayed in Table 3-3) are evaluated as they are
executed. Associativity can be performed in two directions, left to right or right to left. Left-to-
right associativity means that the various operations making up the expression are evaluated
from left to right. Consider the following example:

$value = 3 * 4 * 5 * 7 * 2;
The preceding example is the same as:
$value = ((((3 * 4) *5) *7) * 2);

This expression results in the value 840, because the multiplication (*) operator is left-to-right
associative.

In contrast, right-to-left associativity evaluates operators of the same precedence from
right to left:

$c =55
print $value = $a = $b = $c;

The preceding example is the same as:

$c = 5;
$value = ($a = ($b = $0));

When this expression is evaluated, variables $value, $a, $b, and $c will all contain the value 5,
because the assignment operator (=) has right-to-left associativity.

Arithmetic Operators

The arithmetic operators, listed in Table 3-4, perform various mathematical operations and
will probably be used frequently in many of your PHP programs. Fortunately, they are easy to use.

CHAPTER 3 PHP BASICS

Table 3-4. Arithmetic Operators

Example Label QOutcome

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a divided by $b

Incidentally, PHP provides a vast assortment of predefined mathematical functions,
capable of performing base conversions and calculating logarithms, square roots, geometric
values, and more. Check the manual for an updated list of these functions.

Assignment Operators

The assignment operators assign a data value to a variable. The simplest form of assignment
operator just assigns some value, while others (known as shortcut assignment operators)
perform some other operation before making the assignment. Table 3-5 lists examples using
this type of operator.

Table 3-5. Assignment Operators

Example Label Outcome

$a =5 Assignment $a equals 5

$a += 5 Addition-assignment $a equals $a plus 5

$a *= 5 Multiplication-assignment $a equals $a multiplied by 5

$a /=5 Division-assignment $a equals $a divided by 5

$a .= 5 Concatenation-assignment $a equals $a concatenated with 5
String Operators

PHP’s string operators (see Table 3-6) provide a convenient way in which to concatenate
strings together. There are two such operators, including the concatenation operator (.) and
the concatenation assignment operator (.=), discussed in the previous section.

Note To concatenate means to combine two or more objects together to form one single entity.

7

72

CHAPTER 3 PHP BASICS

Table 3-6. String Operators

Example Label Outcome
$a = "abc"."def"; Concatenation $a is assigned the string “abcdef”
$a .= "ghijkl"; Concatenation-assignment $a equals its current value

concatenated with “ghijkl”

Here is an example involving string operators:

// %$a contains the string value "Spaghetti & Meatballs";
$a = "Spaghetti" . "& Meatballs";

$a .= " are delicious";
// %$a contains the value "Spaghetti & Meatballs are delicious."

The two concatenation operators are hardly the extent of PHP’s string-handling capabilities.
Read Chapter 9 for a complete accounting of this functionality.

Increment and Decrement Operators

The increment (++) and decrement (- -) operators listed in Table 3-7 present a minor convenience in
terms of code clarity, providing shortened means by which you can add 1 to or subtract 1 from
the current value of a variable.

Table 3-7. Increment and Decrement Operators

Example Label Outcome
++$a, $a++ Increment Increment $a by 1
--%a, $a-- Decrement Decrement $a by 1

These operators can be placed on either side of a variable, and the side on which they are
placed provides a slightly different effect. Consider the outcomes of the following examples:

$inv = 15; /* Assign integer value 15 to $inv. */
$oldInv = $inv--; /* Assign $oldInv the value of $inv, then decrement $inv.*/
$origInv = ++%inv; /*Increment $inv, then assign the new $inv value to $origInv.*/

Asyou can see, the order in which the increment and decrement operators are used has an
important effect on the value of a variable. Prefixing the operand with one of these operators is
known as a preincrement and predecrement operation, while postfixing the operand is known
as a postincrement and postdecrement operation.

Logical Operators

Much like the arithmetic operators, logical operators (see Table 3-8) will probably play a major
role in many of your PHP applications, providing a way to make decisions based on the values

CHAPTER 3 PHP BASICS

of multiple variables. Logical operators make it possible to direct the flow of a program, and are
used frequently with control structures, such as the if conditional and the while and for loops.

Table 3-8. Logical Operators

Example Label Outcome

$a & $b And True if both $a and $b are true
$a AND $b And True if both $a and $b are true
$a || $b Or True if either $a or $b is true

$a OR $b Or True if either $a or $b is true
1$a Not True if $a is not true

NOT $a Not True if $a is not true

$a XOR $b Exclusive Or True if only $a or only $b is true

Logical operators are also commonly used to provide details about the outcome of other
operations, particularly those that return a value:

file exists("filename.txt") OR print "File does not exist!";
One of two outcomes will occur:
¢ The file filename.txt exists

e The sentence “File does not exist!” will be output

Equality Operators

Equality operators (see Table 3-9) are used to compare two values, testing for equivalence.

Table 3-9. Equality Operators

Example Label Outcome

$a == $b Is equal to True if $a and $b are equivalent

$a 1= $b Is not equal to True if $a is not equal to $b

$a === $b Is identical to True if $a and $b are equivalent, and $a and $b have the
same type

Itis a common mistake for even experienced programmers to attempt to test for equality
using just one equal sign (for example, $a = $b). Keep in mind that this will result in the assign-
ment of the contents of $b to $a, and will not produce the expected results.

73

74

CHAPTER 3 PHP BASICS

Comparison Operators

Comparison operators (see Table 3-10), like logical operators, provide a method by which to
direct program flow through examination of the comparative values of two or more variables.

Table 3-10. Comparison Operators

Example Label Outcome

$a < $b Less than True if $a is less than $b

$a > $b Greater than True if $a is greater than $b

$a <= $b Less than or equal to True if $a is less than or equal to $b

$a >= $b Greater than or equal to True if $a is greater than or equal to $b
($a ==12) 2 5: -1 Ternary If $a equals 12, return value is 5;

otherwise, return value is -1

Note that the comparison operators should be used only for comparing numerical values.
Although you may be tempted to compare strings with these operators, you will most likely not
arrive at the expected outcome if you do so. There is a substantial set of predefined functions
that compare string values, which are discussed in detail in Chapter 9.

Bitwise Operators

Bitwise operators examine and manipulate integer values on the level of individual bits that
make up the integer value (thus the name). To fully understand this concept, you need at least
an introductory knowledge of the binary representation of decimal integers. Table 3-11 presents a
few decimal integers and their corresponding binary representations.

Table 3-11. Binary Representations

Decimal Integer Binary Representation

2 10

5 101

10 1010

12 1100

145 10010001

1,452,012 101100010011111101100

The bitwise operators listed in Table 3-12 are variations on some of the logical operators,
but can result in drastically different outcomes.

Table 3-12. Bitwise Operators

CHAPTER 3 PHP BASICS 75

Example Label Outcome

$a & $b And And together each bit contained in $a and $b

$a | $b Or Or together each bit contained in $a and $b

$a "~ $b Xor Exclusive-or together each bit contained in $a and $b
~ $b Not Negate each bitin $b

$a << $b Shift left $a will receive the value of $b shifted left two bits

$a >> $b Shift right $a will receive the value of $b shifted right two bits

If you are interested in learning more about binary encoding, bitwise operators, and why
they are important, check out Randall Hyde’s massive online reference, “The Art of Assembly
Language Programming,” available at http://webster.cs.ucr.edu/. It’s easily one of the best

resources available on the Web.

String Interpolation

To offer developers the maximum flexibility when working with string values, PHP offers a means
for both literal and figurative interpretation. For example, consider the following string:

The $animal jumped over the wall.\n

You might assume that $animal is a variable and that \n is a newline character, and there-
fore both should be interpreted accordingly. However, what if you want to output the string
exactly as it is written, or perhaps you want the newline to be rendered, but want the variable
to display in its literal form ($animal), or vice versa? All of these variations are possible in PHP,
depending on how the strings are enclosed and whether certain key characters are escaped
through a predefined sequence. These topics are the focus of this section.

Double Quotes

Strings enclosed in double quotes are the most commonly used in most PHP scripts, because
they offer the most flexibility. This is because both variables and escape sequences will be
parsed accordingly. Consider the following example:

<?php
$sport = "boxing";

echo "Jason's favorite sport is $sport."”;

2>

This example returns:

Jason's favorite sport is boxing.

76

CHAPTER 3 PHP BASICS

Escape sequences are also parsed. Consider this example:

<?php
$output = "This is one line.\nAnd this is another line.";
echo $output;

>

This returns the following within the browser source:

This is one line.
And this is another line.

It’s worth reiterating that this output is found in the browser source rather than in the
browser window. Newline characters of this fashion are ignored by the browser window. However,
ifyou view the source, you'll see that the output in fact appears on two separate lines. The same
idea holds true if the data were output to a text file.

In addition to the newline character, PHP recognizes a number of special escape sequences,
all of which are listed in Table 3-13.

Table 3-13. Recognized Escape Sequences

Sequence Description

\n Newline character

\1 Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\" Double quote
\[0-7]{1,3} Octal notation
\x[0-9A-Fa-f]{1,2} Hexadecimal notation
Single Quotes

Enclosing a string within single quotes is useful when the string should be interpreted exactly
as stated. This means that both variables and escape sequences will not be interpreted when
the string is parsed. For example, consider the following single-quoted string:

echo 'This string will $print exactly as it\'s \n declared.';

This produces:

This string will $print exactly as it's \n declared.

CHAPTER 3 PHP BASICS

Note that the single quote located in “it’s” was escaped. Omitting the backslash escape
character will result in a syntax error, unless the magic_quotes_gpc configuration directive is
enabled. Consider another example:

echo 'This is another string.\\';
This produces:
This is another string.\

In this example, the backslash appearing at the conclusion of the string had to be escaped
itself, otherwise the PHP parser would have understood that the trailing single quote was to be
escaped. However, if the backslash were to appear anywhere else within the string, there would
be no need to escape it.

Heredoc

Heredoc syntax offers a convenient means for outputting large amounts of text. Rather than
delimiting strings with double or single quotes, two identical identifiers are employed. An
example follows:

<?php

$website = "http://www.romatermini.it";

echo <<<EXCERPT

<p>Rome's central train station, known as Roma Termini,
was built in 1867. Because it had fallen into severe disrepair in the late 20th
century, the government knew that considerable resources were required to
rehabilitate the station prior to the 50-year <i>Giubileo</i>.</p>

EXCERPT;

>

Several points are worth noting regarding this example:

» The opening and closing identifiers, in the case of this example, EXCERPT, must be identical.
You can choose any identifier you please, but they must exactly match. The only constraint
is that the identifier must consist of solely alphanumeric characters and underscores,
and must not begin with a digit or underscore.

* The opening identifier must be preceded with three left-angle brackets, <<<.

* Heredoc syntax follows the same parsing rules as strings enclosed in double quotes.
That is, both variables and escape sequences are parsed. The only difference is that
double quotes do not need to be escaped.

* The closing identifier must begin at the very beginning of a line. It cannot be preceded
with spaces, or any other extraneous character. This is a commonly recurring point of
confusion among users, so take special care to make sure your heredoc string conforms
to this annoying requirement. Furthermore, the presence of any spaces following the
opening or closing identifier will produce a syntax error.

Heredoc syntax is particularly useful when you need to manipulate a substantial amount
of material but do not want to put up with the hassle of escaping quotes.

77

78

CHAPTER 3 PHP BASICS

Control Structures

Control structures determine the flow of code within an application, defining execution char-
acteristics like whether and how many times a particular code statement will execute, as well
as when a code block will relinquish execution control. These structures also offer a simple
means to introduce entirely new sections of code (via file-inclusion statements) into a currently
executing script. In this section, you’ll learn about all such control structures available to the
PHP language.

Execution Control Statements

The return and declare statements offer fine-tuned means for controlling when a particular
code block begins and ends, respectively.

declare()
declare (directive) statement

The declare() statement is used to determine the execution frequency of a specified block of
code. Only one directive is currently supported: the tick. PHP defines a tick as an event occurring
upon the execution of a certain number of low-level statements by the PHP parser. You might
use a tick for benchmarking code, debugging, simple multitasking, or any other task in which
control over the execution of low-level statements is required.

The event is defined within a function and is registered as a tick event via the
register tick function() function. The event can subsequently be unregistered via the
unregister tick function() function. Both functions are introduced next. The event
frequency is specified by setting the declare function’s directive accordingly, like this: ticks=N,
where N is the number of low-level statements occurring between invocations of the event.

register_tick_function()

void register tick function (callback function [, mixed arg])

The register tick function() function registers the function specified by function as a tick event.

unregister_tick_function()
void unregister tick function (string function)

The unregister tick function() function unregisters the previously registered function specified
by function.

return()

The return() statement is typically used within a function body, returning outcome to the
function caller. If return() is called from the global scope, script execution ends immediately.
If it is called from within a script that has been included using include() or require(), then

CHAPTER 3 PHP BASICS

control is returned to the file caller. Enclosing its argument in parentheses is optional. An
example follows:

function cubed($value) {
return $value * $value * value;

}

Calling this function will return the following result to the caller:

$answer = cubed(3); // $answer = 27

Conditional Statements

Conditional statements make it possible for your computer program to respond accordingly to
a wide variety of inputs, using logic to discern between various conditions based on input
value. This functionality is so basic to the creation of computer software that it shouldn’t come
as a surprise that a variety of conditional statements are a staple of all mainstream programming
languages, PHP included.

if
The if conditional is one of the most commonplace constructs of any mainstream program-
ming language, offering a convenient means for conditional code execution. The syntax is:

if (expression) {
statement

}

Considering an example, suppose you wanted a congratulatory message displayed if the
user guesses a predetermined secret number:

<?php
$secretNumber = 453;
if ($_POST['guess'] == $secretNumber) {
echo "<p>Congratulations!</p>";

}

>

The hopelessly lazy can forego the use of brackets when the conditional body consists of
only a single statement. Here’s a revision of the previous example:

<?php

$secretNumber = 453;

if ($_POST['guess'] == $secretNumber) echo"<p>Congratulations!</p>";
>

79

80

CHAPTER 3 PHP BASICS

Note Alternative enclosure syntax is available for the if, while, for, foreach, and switch control
structures. This involves replacing the opening bracket with a colon (:) and replacing the closing bracket with
endif;, endwhile;, endfor;, endforeach;, and endswitch;, respectively. There has been discussion
regarding deprecating this syntax in a future release, although it is likely to remain valid for the foreseeable
future.

else

The problem with the previous example is that output is only offered for the user who correctly
guesses the secret number. All other users are left destitute, completely snubbed for reasons
presumably linked to their lack of psychic power. What if you wanted to provide a tailored
response no matter the outcome? To do so, you would need a way to handle those not meeting
the if conditional requirements, a function handily offered by way of the else statement.
Here’s a revision of the previous example, this time offering a response in both cases:

<?php
$secretNumber = 453;
if ($_POST['guess'] == $secretNumber) {
echo "<p>Congratulations!!</p>";
} else {
echo "<p>Sorry!</p>";
}

>

Like if, the else statement brackets can be skipped if only a single code statement is
enclosed.

elseif

The if-else combination works nicely in an “either-or” situation; that is, a situation in which
only two possible outcomes are available. What if several outcomes are possible? You would
need a means for considering each possible outcome, which is accomplished with the elseif
statement. Let’s revise the secret-number example again, this time offering a message if the
user’s guess is relatively close (within 10) of the secret number:

<?php

$secretNumber = 453;

$_POST['guess'] = 442;

if ($_POST['guess'] == $secretNumber) {
echo "<p>Congratulations!</p>";

} elseif (abs ($ POST['guess'] - $secretNumber) < 10) {
echo "<p>You're getting closel</p>";

} else {
echo "<p>Sorry!</p>";

}

2>

CHAPTER 3 PHP BASICS 81

Like all conditionals, elseif supports the elimination of bracketing when only a single
statement is enclosed.

switch

You can think of the switch statement as a variant of the if-else combination, often used
when you need to compare a variable against a large number of values:

<?php
switch($category) {

case "news":
print "<p>What's happening around the World</p>";
break;

case "weather":
print "<p>Your weekly forecast</p>";
break;

case "sports":
print "<p>Latest sports highlights</p>";
break;

default:
print "<p>Welcome to my Web site</p>";

}

>

Note the presence of the break statement at the conclusion of each case block. If a break
statement isn’t present, all subsequent case blocks will execute until a break statement is
located. As an illustration of this behavior, let’s assume that the break statements were removed
from the preceding example, and that $category was set to weather. You’d get the following
results:

Your weekly forecast
Latest sports highlights
Welcome to my Web site

Looping Statements

Although varied approaches exist, looping statements are a fixture in every widespread program-
ming language. This isn’t a surprise, because looping mechanisms offer a simple means for
accomplishing a commonplace task in programming: repeating a sequence of instructions
until a specific condition is satisfied. PHP offers several such mechanisms, none of which
should come as a surprise if you're familiar with other programming languages.

while

The while statement specifies a condition that must be met before execution of its embedded
code is terminated. Its syntax is:

82

CHAPTER 3 PHP BASICS

while (expression) {
statements

}

In the following example, $count is initialized to the value 1. The value of $count is then
squared, and output. The $count variable is then incremented by 1, and the loop is repeated
until the value of $count reaches 5.

<?php
$count = 1;
while ($count < 5) {
echo "$count squared = ".pow($count,2). "
";
$count++;

>

The output looks like this:

1 squared = 1
2 squared
3 squared = 9
4 squared = 16

Like all other control structures, multiple conditional expressions may also be embedded
into the while statement. For instance, the following while block evaluates either until it reaches
the end-of-file or until five lines have been read and output:

<?php
$linecount = 1;
$th = fopen("sports.txt","r");
while (!feof($fth) &% $linecount<=5) {
$line = fgets($fth, 4096);
echo $line. "
";
$1linecount++;

}

>

Given these conditionals, a maximum of five lines will be output from the sports.txt file,
regardless of its size.

do...while
The do. . .while looping conditional is a variant of while, but it verifies the loop conditional at

the conclusion of the block rather than at the beginning. Its syntax is:

do {
statements
} while (expression);

CHAPTER 3 PHP BASICS

Bothwhile and do...while are similar in function; the only real difference is that the code
embedded within a while statement possibly could never be executed, whereas the code
embedded within a do. . .while statement will always execute at least once. Consider the
following example:

<?php
$count = 11;
do {
echo "$count squared = ".pow($count,2). "
";
} while ($count < 10);
>

The outcome is:

11 squared = 121

Despite the fact that 11 is out of bounds of the while conditional, the embedded code will
execute once, because the conditional is not evaluated until the conclusion!

for

The for statement offers a somewhat more complex looping mechanism than does while. Its
syntax is:

for (expressionl; expression2; expression3) {
statements

}

There are a few rules to keep in mind when using PHP’s for loops:
» The first expression, expressioni, is evaluated by default at the first iteration of the loop.

* Thesecond expression, expressionz, is evaluated at the beginning of each iteration. This
expression determines whether looping will continue.

» The third expression, expression3, is evaluated at the conclusion of each loop.

* Any of the expressions can be empty, their purpose substituted by logic embedded
within the for block.

With these rules in mind, consider the following examples, all of which display a partial
kilometer/mile equivalency chart:

// Example One
for ($kilometers = 1; $kilometers <= 5; $kilometers++) {
echo "$kilometers kilometers = ".$kilometers*0.62140.

miles.
";

}

83

CHAPTER 3 PHP BASICS

// Example Two
for ($kilometers = 1; ; $kilometers++) {
if ($kilometers > 5) break;
echo "$kilometers kilometers = ".$kilometers*0.62140. " miles.
";

}

// Example Three
$kilometers = 1;
for (55) {
// if $kilometers > 5 break out of the for loop.
if ($kilometers > 5) break;
echo "$kilometers kilometers = ".$kilometers*0.62140. " miles.
";
$kilometers++;

The results for all three examples follow:

1 kilometers = 0.6214 miles
2 kilometers = 1.2428 miles
3 kilometers = 1.8642 miles
4 kilometers = 2.4856 miles
5 kilometers = 3.107 miles

foreach

The foreach looping construct syntax is adept at looping through arrays, pulling each key/value
pair from the array until all items have been retrieved, or some other internal conditional has
been met. Two syntax variations are available, each of which is presented with an example.

The first syntax variant strips each value from the array, moving the pointer closer to the
end with each iteration. Its syntax is:

foreach (array expr as $value) {

statement
}
Consider an example. Suppose you wanted to output an array of links:
<?php

$links = array("www.apress.com","www.php.net","www.apache.org");
echo "Online Resources:
";
foreach($links as $link) {
echo "$link
";
}

2>

CHAPTER 3 PHP BASICS

This would result in:

Online Resources:

The Official Apache Web site

The Apress corporate Web site

The Official PHP Web site

The second variation is well-suited for working with both the key and value of an array.
The syntax follows:

foreach (array expr as $key => $value) {
statement

}

Revising the previous example, suppose that the $1inks array contained both a link and
corresponding link title:

$links = array("The Official Apache Web site" => "www.apache.org",
"The Apress corporate Web site" => "www.apress.com",
"The Official PHP Web site" => "www.php.net");

Each array item consists of both a key and a corresponding value. The foreach statement
can easily peel each key/value pair from the array, like this:

echo "Online Resources:
";
foreach($links as $title => $link) {
echo "$title
";

}

The result would be that each link is embedded under its respective title, like this:

Online Resources:

The Official Apache Web site

The Apress corporate Web site

The Official PHP Web site

There are many other variations on this method of key/value retrieval, all of which are
introduced in Chapter 5.

break

Encountering a break statement will immediately end execution of a do. . .while, for, foreach,
switch, orwhile block. For example, the following for loop will terminate if a prime number is
pseudo-randomly happened upon:

85

86 CHAPTER 3 PHP BASICS

<?php
$primes = array(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47);
for($count = 1; $count++; $count < 1000) {
$randomNumber = rand(1,50);
if (in_array($randomNumber,$primes)) {

break;
} else {
echo "<p>Non-prime number encountered: $randomNumber</p>";
}
}
>

Sample output follows:

Non-prime number encountered: 48
Non-prime number encountered: 42
Prime number encountered: 17

continue

The continue statement causes execution of the current loop iteration to end and commence
at the beginning of the next iteration. For example, execution of the following while body will
recommence if $usernames[$x] is found to have the value “missing”:

<?php
$usernames = array("grace","doris","gary","nate","

for ($x=0; $x < count($usernames); $x++) {
if ($usernames[$x] == "missing") continue;
echo "Staff member: $usernames[$x]
";

missing","tom");

>

This results in the following output:

Staff member: grace
Staff member: doris
Staff member: gary
Staff member: nate
Staff member: tom

File Inclusion Statements

Efficient programmers are always thinking in terms of ensuring reusability and modularity.
The most prevalent means for ensuring such is by isolating functional components into separate
files, and then reassembling those files as needed. PHP offers four statements for including
such files into applications, each of which is introduced in this section.

CHAPTER 3 PHP BASICS

include()
include (/path/to/filename)

The include() statement will evaluate and include a file into the location where it is called.
Including a file produces the same result as copying the data from the file specified into the
location in which the statement appears.

Like the print and echo statements, you have the option of omitting the parentheses when
using include(). For example, if you wanted to include a series of predefined functions and
configuration variables, you could place them into a separate file (called init. php, for example),
and then include that file within the top of each PHP script, like this:

<?php
include "/usr/local/lib/php/wjgilmore/init.php";
/* the script continues here */

7>

You can also execute include() statements conditionally. For example, if an include()
statement is placed in an if statement, the file will be included only if the if statement in
which it is enclosed evaluates to true. One quirk regarding the use of include() in a conditional
is that it must be enclosed in statement block curly brackets or in the alternative statement
enclosure. Consider the difference in syntax between the following two code snippets. The first
presents incorrect use of conditional include() statements due to the lack of proper block
enclosures:

<?php
if (expression)
include ('filename');
else
include ('another filename');
>

The next snippet presents the correct use of conditional include() statements by properly
enclosing the blocks in curly brackets:

<?php
if (expression) {
include ('filename');
} else {
include ('another filename');

}

>

One misconception about the include() statement is the belief that, because the included
code will be embedded in a PHP execution block, the PHP escape tags aren’t required. However,
this is not so; the delimiters must always be included. Therefore, you could not just place a PHP
command in a file and expect it to parse correctly, such as the one found here:

print "this is an invalid include file";

Instead, any PHP statements must be enclosed with the correct escape tags, as shown here:

87

88

CHAPTER 3 PHP BASICS

<?php
print "this is an invalid include file";
>

Tip Any code found within an included file will inherit the variable scope of the location of its caller.

Interestingly, all include() statements support the inclusion of files residing on remote
servers by prefacing include()’s argument with a supported URL. If the resident server is PHP-
enabled, any variables found within the included file can be parsed by passing the necessary
key/value pairs as would be done in a GET request, like this:

include "http://www.wjgilmore.com/index.html?background=blue";

Two requirements must be satisfied before the inclusion of remote files is possible. First,
the allow_url fopen configuration directive must be enabled. Second, the URL wrapper must
be supported. The latter requirement is discussed in further detail in Chapter 16.

include_once()
include_once (filename)

The include_once() function has the same purpose as include(), except that it first verifies
whether or not the file has already been included. If it has been, include_once() will not execute.
Otherwise, it will include the file as necessary. Other than this difference, include_once() operates
in exactly the same way as include().

The same quirk pertinent to enclosing include() within conditional statements also applies
to include_once().

require()
require (filename)

For the most part, require() operates like include(), including a template into the file in which
the require() call is located.

There are two important differences between require() and include(). First, the file will
beincluded in the script in which the require() construct appears, regardless of where require()
islocated. For instance, if require() were placed within an if statement that evaluated to false,
the file would be included anyway!

Tip A URL can be used with require() only if allow_url fopen is enabled, which by default it is.

CHAPTER 3 PHP BASICS

The second important difference is that script execution will stop if a require() fails, whereas
it may continue in the case of an include(). One possible explanation for the failure of a
require() statement is an incorrectly referenced target path.

require_once()
require once (insertion file)

As your site grows, you may find yourself redundantly including certain files. Although this
might not always be a problem, sometimes you will not want modified variables in the included
file to be overwritten by a later inclusion of the same file. Another problem that arises is the
clashing of function names should they exist in the inclusion file. You can solve these problems
with the require_once() function.

The require_once() function ensures that the inclusion file is included only once in your
script. After require_once() is encountered, any subsequent attempts to include the same file
will be ignored.

Other than the verification procedure of require_once(), all other aspects of the function
are the same as for require().

Summary

Although the material presented here is not as glamorous as the material in later chapters, it is
invaluable to your success as a PHP programmer, because all subsequent functionality is based
on these building blocks. This will soon become apparent.

The next chapter is devoted to the construction and invocation of functions, reusable
chunks of code intended to perform a specific task. This material starts you down the path
necessary to begin building modular, reusable PHP applications.

89

CHAPTER 4

Functions

Even in trivial applications, repetitive processes are likely to exist. For nontrivial applications,
such repetition is a given. For example, in an e-commerce application, you might need to query
a customer’s profile information numerous times: at login, at checkout, and when verifying a
shipping address. However, repeating the profile querying process throughout the application
would be not only error-prone, but also a nightmare to maintain. What happens if a new field
has been added to the customer’s profile? You might need to sift through each page of the
application, modifying the query as necessary, likely introducing errors in the process.

Thankfully, the concept of embodying these repetitive processes within a named section
of code, and then invoking this name as necessary, has long been a key component of any
respectable computer language. These sections of code are known as functions, and they grant
you the convenience of a singular point of modification if the embodied process requires changes
in the future, which greatly reduces both the possibility of programming errors and maintenance
overhead. In this chapter, you'll learn all about PHP functions, including how to create and invoke
them, pass input, return both single and multiple values to the caller, and create and include
function libraries. Additionally, you'll learn about both recursive and variable functions.

Invoking a Function

More than 1,000 standard functions are built into the standard PHP distribution, many of
which you’ll see throughout this book. You can invoke the function you want simply by speci-
fying the function name, assuming that the function has been made available either through the
library’s compilation into the installed distribution or via the include() or require() statement.
For example, suppose you want to raise 5 to the third power. You could invoke PHP’s pow()
function like this:

<?php
$value = pow(5,3); // returns 125
echo $value;

>

If you simply want to output the function outcome, you can forego assigning the value to
a variable, like this:

<?php
echo pow(5,3);
>

91

92

CHAPTER 4 FUNCTIONS

If you want to output function outcome within a larger string, you need to concatenate it
like this:

echo "Five raised to the third power equals ".pow(5,3).".";

Creating a Function

Although PHP’s vast assortment of function libraries is a tremendous benefit to any programmer
who is seeking to avoid reinventing the programmatic wheel, sooner or later you'll need to go
beyond what is offered in the standard distribution, which means you’ll need to create custom
functions or even entire function libraries. To do so, you'll need to define a function using a
predefined syntactical pattern, like so:

function function name (parameters) {
function-body
}

For example, consider the following function, generate footer(), which outputs a
page footer:

function generate footer() {
echo "<p>Copyright © 2006 W. Jason Gilmore</p>";

}

Once it is defined, you can then call this function as you would any other. For example:
<?php

generate footer();
>

This yields the following result:

<p>Copyright © 2005 W. Jason Gilmore</p>

Passing Arguments by Value

You'll often find it useful to pass data into a function. As an example, let’s create a function that
calculates an item’s total cost by determining its sales tax and then adding that amount to
the price:

function salestax($price,$tax) {
$total = $price + ($price * $tax);
echo "Total cost: $total”;

This function accepts two parameters, aptly named $price and $tax, which are used in the
calculation. Although these parameters are intended to be floats, because of PHP’s loose typing,
nothing prevents you from passing in variables of any data type, but the outcome might not be

CHAPTER 4 FUNCTIONS

as one would expect. In addition, you're allowed to define as few or as many parameters as you
deem necessary; there are no language-imposed constraints in this regard.

Once you define the function, you can then invoke it, as was demonstrated in the previous
section. For example, the salestax() function would be called like so:

salestax(15.00,.075);

Of course, you're not bound to passing static values into the function. You can pass variables
like this:

<?php
$pricetag = 15.00;
$salestax = .075;
salestax($pricetag, $salestax);
>

When you pass an argument in this manner, it’s called passing by value. This means that
any changes made to those values within the scope of the function are ignored outside of the
function. If you want these changes to be reflected outside of the function’s scope, you can
pass the argument by reference, introduced next.

Note Note that you don’t necessarily need to define the function before it’s invoked, because PHP reads
the entire script into the engine before execution. Therefore, you could actually call salestax() before it is
defined, although such haphazard practice is not recommended

Passing Arguments by Reference

On occasion, you may want any changes made to an argument within a function to be reflected
outside of the function’s scope. Passing the argument by reference accomplishes this need.
Passing an argument by reference is done by appending an ampersand to the front of the
argument. An example follows:

<?php
$cost = 20.00;
$tax = 0.05;
function calculate cost(8$cost, $tax)
{
// Modify the $cost variable
$cost = $cost + ($cost * $tax);
// Perform some random change to the $tax variable.
$tax += 4;
}
calculate _cost($cost,$tax);
echo "Tax is: ". $tax*100."
";
echo "Cost is: $". $cost."
";
7>

93

94

CHAPTER 4 FUNCTIONS

Here’s the result:

Tax is 5%
Cost is $21

Note that the value of $tax remains the same, although $cost has changed.

Default Argument Values

Default values can be assigned to input arguments, which will be automatically assigned to the
argument if no other value is provided. To revise the sales tax example, suppose that the majority of
your sales are to take place in Franklin County, located in the great state of Ohio. You could
then assign $tax the default value of 5.75 percent, like this:

function salestax($price,$tax=.0575) {
$total = $price + ($price * $tax);
echo "Total cost: $total”;

Keep in mind that you can still pass $tax another taxation rate; 5.75 percent will be used
only if salestax() is invoked like this:

$price = 15.47;
salestax($price);

Note that default argument values must be constant expressions; you cannot assign
nonconstant values such as function calls or variables.

Optional Arguments

You can designate certain arguments as optional by placing them at the end of the list and
assigning them a default value of nothing, like so:

function salestax($price,$tax="") {
$total = $price + ($price * $tax);
echo "Total cost: $total”;

This allows you to call salestax() without the second parameter if there is no sales tax:
salestax(42.00);

This returns the following:

Total cost: $42.00

CHAPTER 4 FUNCTIONS

If multiple optional arguments are specified, you can selectively choose which ones are
passed along. Consider this example:

function calculate($price,$price2="",$price3="") {
echo $price + $price2 + $price3;

}

You can then call calculate(), passing along just $price and $price3, like so:
calculate(10,"",3);

This returns the following value:

13

Returning Values from a Function

Often, simply relying on a function to do something is insufficient; a script’s outcome might
depend on a function’s outcome, or on changes in data resulting from its execution. Yet variable
scoping prevents information from easily being passed from a function body back to its caller,
so how can we accomplish this? You can pass data back to the caller by way of the return keyword.

return()

The return() statement returns any ensuing value back to the function caller, returning program
control back to the caller’s scope in the process. If return() is called from within the global
scope, the script execution is terminated. Revising the salestax() function again, suppose you
don’t want to immediately echo the sales total back to the user upon calculation, but rather
want to return the value to the calling block:

function salestax($price,$tax=.0575) {
$total = $price + ($price * $tax);
return $total;

Alternatively, you could return the calculation directly without even assigning it to $total,
like this:

function salestax($price,$tax=.0575) {
return $price + ($price * $tax);

}
Here’s an example of how you would call this function:
<?php
$price = 6.50;
$total = salestax($price);

2>

95

96

CHAPTER 4 FUNCTIONS

Returning Multiple Values

It’s often quite convenient to return multiple values from a function. For example, suppose
that you'd like to create a function that retrieves user data from a database, say the user’s
name, e-mail address, and phone number, and returns it to the caller. Accomplishing this is
much easier than you might think, with the help of a very useful language construct, 1ist().
The 1ist() construct offers a convenient means for retrieving values from an array, like so:

<?php

$colors = array("red","blue","green");

list($red,$blue,$green) = $colors; // $red="red", $blue="blue", $green="green"
2>

Building on this example, you can imagine how the three prerequisite values might be
returned from a function using 1ist():

<?php
function retrieve user profile() {
$user[] = "Jason";
$user[] = "jason@example.com";
$user[] = "English";
return $user;

}

list($name,$email, $language) = retrieve user profile();

echo "Name: $name, email: $email, preferred language: $language";
>

Executing this script returns:

Name: Jason, email: jason@example.com, preferred language: English

This concept is useful and will be used repeatedly throughout this book.

Nesting Functions

PHP supports the practice of nesting functions, or defining and invoking functions within
functions. For example, a dollar-to-pound conversion function, convert_pound(), could be
both defined and invoked entirely within the salestax() function, like this:

function salestax($price,$tax) {
function convert pound($dollars, $conversion=1.6) {
return $dollars * $conversion;
}
$total = $price + ($price * $tax);
echo "Total cost in dollars: $total. Cost in British pounds:
.convert_pound($total);

CHAPTER 4 FUNCTIONS

Note that PHP does not restrict the scope of a nested function. For example, you could still
call convert pound() outside of salestax(), like this:

salestax(15.00,.075);
echo convert pound(15);

Recursive Functions

Recursive functions, or functions that call themselves, offer considerable practical value to the
programmer and are used to divide an otherwise complex problem into a simple case, reiterating
that case until the problem is resolved.

Practically every introductory recursion example involves factorial computation. Yawn.
Let’s do something a tad more practical and create a loan payment calculator. Specifically, the
following example uses recursion to create a payment schedule, telling you the principal and
interest amounts required of each payment installment to repay the loan. The recursive function,
amortizationTable(), is introduced in Listing 4-1. It takes as input four arguments:
$paymentNum, which identifies the payment number, $periodicPayment, which carries the total
monthly payment, $balance, which indicates the remaining loan balance, and $monthlyInterest,
which determines the monthly interest percentage rate. These items are designated or deter-
mined in the script listed in Listing 4-2, titled mortgage. php.

Listing 4-1. The Payment Calculator Function, amortizationTable()

function amortizationTable($paymentNum, $periodicPayment, $balance,
$monthlyInterest) {
$paymentInterest = round($balance * $monthlyInterest,2);
$paymentPrincipal = round($periodicPayment - $paymentInterest,2);
$newBalance = round($balance - $paymentPrincipal,2);
print "<tr>
<td>$paymentNum</td>
<td>\$".number format($balance,2)."</td>
<td>\$".number format($periodicPayment,2)."</td>
<td>\$".number format($paymentInterest,2)."</td>
<td>\$".number format($paymentPrincipal,2)."</td>
</tr>";
If balance not yet zero, recursively call amortizationTable()
if ($newBalance > 0) {

$paymentNum++;
amortizationTable($paymentNum, $periodicPayment, $newBalance,
$monthlyInterest);
} else {
exit;

}
} #end amortizationTable()

After setting pertinent variables and performing a few preliminary calculations, Listing 4-2
invokes the amortizationTable() function. Because this function calls itself recursively, all

97

98

CHAPTER 4 FUNCTIONS

amortization table calculations will be performed internal to this function; once complete,
control is returned to the caller.

Listing 4-2. A Payment Schedule Calculator Using Recursion (mortgage.php)

<?php
Loan balance
$balance = 200000.00;

Loan interest rate
$interestRate = .0575;

Monthly interest rate
$monthlyInterest = .0575 / 12;

Term length of the loan, in years.
$termLength = 30;

Number of payments per year.
$paymentsPerYear = 12;

Payment iteration
$paymentNumber = 1;

Perform preliminary calculations

$totalPayments = $termLength * $paymentsPerYear;

$intCalc = 1 + $interestRate / $paymentsPerYear;

$periodicPayment = $balance * pow($intCalc,$totalPayments) * ($intCalc - 1) /
(pow($intCalc,$totalPayments) - 1);

$periodicPayment = round($periodicPayment,2);

Create table

echo "<table width="'50%" align='center' border='1'>";

print "<tr>
<th>Payment Number</th><th>Balance</th>
<th>Payment</th><th>Interest</th><th>Principal</th>
</tr>";

Call recursive function
amortizationTable($paymentNumber, $periodicPayment, $balance, $monthlyInterest);

Close table
print "</table>";
2>

Figure 4-1 shows sample output, based on monthly payments made on a 30-year fixed

loan of $200,000.00 at 6.25 percent interest. For reasons of space conservation, just the first 10

payment iterations are listed.

CHAPTER 4 FUNCTIONS

| Payment Number | Balance | Payment |Iuterest | Principal
[[f200000 00 [$166082 |[$95833 ([$702.48
[[199.297 52 [$1.66082 |[$954.96 ([$70535
E [f198,59167 [$1.66082 [§95158 ([$709.23
l4 [197.88244 ([$1.66082 |[$943.18 ([$712.64
E [$197,169.80 [$1.66082 |[$94477 [$716.05
6 [19645375 [$1.66082 |[§94134 ([$719.47
[[f19573428 [$1.66082 |[$937.89 (872293
2 [19501135 [$1.66082 |[§93442 ([$726.40
[o [194,284 95 [$1.66082 |[$93094 ([$729.87
[10 [§193,55508 [$1.66082 |[$92745 ([$73336

Figure 4-1. Sample output from mortgage.php

Employing a recursive strategy often results in significant code savings and promotes
reusability. Although recursive functions are not always the optimal solution, they are often a
welcome addition to any language’s repertoire.

Variable Functions

One of PHP’s most attractive traits is its syntactical clarity. On occasion, however, taking a
somewhat more abstract programmatic route can eliminate a great deal of coding overhead.
For example, consider a scenario in which several data-retrieval functions have been created:
retrieveUser(), retrieveNews(), and retrieveWeather(), where the name of each function
implies its purpose. In order to trigger a given function, you could use a URL parameter and an
if conditional statement, like this:

<?php
if ($trigger == "retrieveUser") {
retrieveUser($rowid);
} else if ($trigger == "retrieveNews") {

retrieveNews ($rowid);
} else if ($trigger == "retrieveWeather") {
retrieveleather($rowid);

>
This code allows you to pass along URLs like this:

http://www.example.com/content/index.php?trigger=retrievelser8rowid=5

The index. php file will then use $trigger to determine which function should be executed.
Although this works just fine, it is tedious, particularly if a large number of retrieval functions
are required. An alternative, much shorter means for accomplishing the same goal is through
variable functions. A variable function is a function whose name is also evaluated before execution,
meaning that its exact name is not known until execution time. Variable functions are prefaced
with a dollar sign, just like regular variables, like this:

$function();

99

100

CHAPTER 4 FUNCTIONS

Using variable functions, let’s revisit the previous example:

<?php
$trigger($rowid);
2>

Although variable functions are at times convenient, keep in mind that they do present
certain security risks. Most notably, an attacker could execute any function in PHP’s repertoire
simply by modifying the variable used to declare the function name. For example, consider the
ramifications of modifying the $trigger variable in the previous example to contain the value
exec and modifying the $rowid variable to contain rm -rf /. PHP’s exec() command will
happily attempt to execute its argument on the system level. The command rm -rf / will
attempt to recursively delete all files, starting at the root-level directory. The results could be
catastrophic. Therefore, as always, be sure to sanitize all user information; you never know
what will be attempted next.

Function Libraries

Great programmers are lazy, and lazy programmers think in terms of reusability. Functions
form the crux of such efforts, and are often collectively assembled into libraries and subsequently
repeatedly reused within similar applications. PHP libraries are created via the simple aggregation
of function definitions in a single file, like this:

<?php

function local tax($grossIncome, $taxRate) {
// function body here

}

function state tax($grossIncome, $taxRate) {
// function body here

}

function medicare($grossIncome, $medicareRate) {
// function body here

}

>

Save this library, preferably using a naming convention that will clearly denote its purpose, like
taxes.library.php. You can then insert this function into scripts using include(), include once(),
require(), or require_once(), each of which was introduced in Chapter 3. (Alternatively, you
could use PHP’s auto_prepend configuration directive to automate the task of file insertion for
you.) For example, assuming that you titled this library taxation.library.php, you could include it
into a script like this:

<?php
require_once("taxation.library.php");
>

Once included, any of the three functions found in this library can be invoked as needed.

CHAPTER 4 FUNCTIONS

Summary

This chapter concentrated on one of the basic building blocks of modern-day programming
languages: reusability through functional programming. You learned how to create and invoke
functions, pass information to and from the function block, nest functions, and create both
recursive and variable functions. Finally, you learned how to aggregate functions together as
libraries and include them into the script as needed.

The next chapter introduces PHP’s array functionality, covering the language’s vast array
of management capabilities and introducing PHP 5’s new array-handling features.

101

CHAPTER 5

Arrays

Rogrammers spend a considerable amount of time working with sets of related data. Some
examples of data sets include the names of all employees at a corporation; all the U.S. presidents
and their corresponding birth dates; and the years between 1900 and 1975. In fact, working
with data sets is so prevalent, it is not surprising that a means for managing these groups within
code is acommon feature across all mainstream programming languages. This means typically
centers on the compound datatype array, which offers an ideal way to store, manipulate, sort,
and retrieve data sets. PHP’s solution is no different, supporting the array datatype, in addition
to an accompanying host of behaviors and functions directed toward array manipulation. In
this chapter, you'll learn all about the array-based features and functions supported by PHP.

This chapter introduces numerous functions that are used to work with arrays. Rather
than present them in alphabetical order, this chapter presents them in the context of how you
would use them to do the following:

¢ QOutputting arrays

¢ (Creating arrays

* Testing for an array

* Adding and removing array elements

* Locating array elements

¢ Traversing arrays

* Determining array size and element uniqueness
¢ Sorting arrays

* Merging, slicing, splicing, and dissecting arrays

This presentation of the functions by category should be much more useful than an alpha-
betical listing when you need to reference this chapter later to find a viable solution to some
future problem. But before beginning this overview, let’s take a moment to formally define an

array and review some fundamental concepts regarding how PHP regards this important datatype.

103

104

CHAPTER 5 ARRAYS

What Is an Array?

An array is traditionally defined as a group of items that share certain characteristics, such as
similarity (car models, baseball teams, types of fruit, etc.) and type (all strings or integers, for
instance), and each is distinguished by a special identifier, known as a key. The preceding
sentence uses the word traditionally because you can disregard this definition and group
entirely unrelated entities together in an array structure. PHP takes this a step further, fore-
going the requirement that the items even share the same datatype. For example, an array
might contain items like state names, ZIP codes, exam scores, or playing card suits.

Each entity consists of two items: the aforementioned key and a value. The key serves as
the lookup facility for retrieving its counterpart, the value. These keys can be numerical or
associative. Numerical keys bear no real relation to the value other than the value’s position in
the array. As an example, the array could consist of an alphabetically sorted list of state names,
with key 0 representing “Alabama”, and key 49 representing “Wyoming”. Using PHP syntax,
this might look as follows:

$states = array (0 => "Alabama", "1" => "Alaska"..."49" => "Wyoming");
Using numerical indexing, you could reference the first state like so:

$states[0]

Note PHP’s numerically indexed arrays begin with position 0, not 1.

Alternatively, an associative key bears some relation to the value other than its array position.
Mapping arrays associatively is particularly convenient when using numerical index values just
doesn’t make sense. For instance, you might want to create an array that maps state abbreviations
to their names, like this: OH/Ohio, PA/Pennsylvania, and NY/New York. Using PHP syntax, this
might look like the following:

$states = array ("OH" => "Ohio", "PA" => "Pennsylvania", "NY" => "New York")
You could then reference “Ohio” like so:
$states["OH"]

Arrays consisting solely of atomic entities are referred to as being single-dimensional. It’s
also possible to create arrays of arrays, known as multidimensional arrays. For example, you
could use a multidimensional array to store U.S. state information. Using PHP syntax, it might
look like this:

$states = array (
"Ohio" => array ("population" => "11,353,140", "capital" => "Columbus"),
"Nebraska" => array("population" => "1,711,263", "capital" => "Omaha")

CHAPTER 5 ARRAYS

You could then reference Ohio’s population like so:
$states["Ohio"]["population”]

This would return the following value:

11,353,140

In addition to offering a means for creating and populating an array, the language must
also offer a means for traversing it. As you'll learn throughout this chapter, PHP offers many
ways to traverse an array. Regardless of which way you use, keep in mind that all rely on the use
of a central feature known as an array pointer. The array pointer acts like a bookmark, telling
you the position of the array that you're presently examining. You won'’t work with the array
pointer directly, but instead will traverse the array using either built-in language features or
functions. Still, it’s useful to understand this basic concept.

Outputting Arrays

Although it might not necessarily make sense to learn how to output an array before even
knowing how to create one in PHP, the print_r() function is so heavily used throughout this
chapter, and indeed, throughout the general development process, that it merits first mention
in this chapter.

print_r()
boolean print r(mixed variable [, boolean return])

The print_r() function takes as input any variable and sends its contents to standard output,
returning TRUE on success and FALSE otherwise. This in itself isn’t particularly exciting, until
you take into account that it will organize an array’s contents (as well as an object’s) into a very
readable format before displaying them. For example, suppose you wanted to view the contents of
an associative array consisting of states and their corresponding state capitals. You could call
print_r() like this:

print_r($states);
This returns the following:
Array ([Ohio] => Columbus [Iowa] => Des Moines [Arizona] => Phoenix)

The optional parameter return modifies the function’s behavior, causing it to return the
output to the caller, rather than sending it to standard output. Therefore, if you want to return
the contents of the preceding $states array, you just set return to TRUE:

$stateCapitals = print r($states, TRUE);

This function is used repeatedly throughout this chapter as a simple means for displaying
the results of the example at hand.

105

106

CHAPTER 5 ARRAYS

Tip The print_r() function isn’t the only way to output an array, but rather offers a convenient means
for doing so. You're free to output arrays using a looping conditional, such as while or for; in fact, using
these sorts of loops is required to implement many application features. We’ll return to this method repeatedly
throughout this and later chapters.

Creating an Array

Unlike other array implementations found in many other languages, PHP doesn’t require that
you assign a size to an array at creation time. In fact, because it’s aloosely typed language, PHP
doesn’t even require that you declare the array before you use it. Despite the lack of restriction,
PHP offers both formal and informal array declaration methodologies. Each has its advantages,
and both are worth learning. Each is introduced in this section, beginning with the informal variety.

Individual elements of a PHP array are referenced by denoting the element between a pair
of square brackets. Because there is no size limitation on the array, you can create the array
simply by making reference to it, like this:

$state[0] = "Delaware";
You can then display the first element of the array $state like this:
echo $state[0];
You can then add additional values by mapping each new value to an array index, like this:

$state[1] = "Pennsylvania”;
$state[2] = "New Jersey”;

$state[49] = "Hawaii";

Interestingly, if you assume the index value is numerical and ascending, you can choose to
omit the index value at creation time:

$state[] = "Pennsylvania”;
$state[] = "New Jersey";

$state[] = "Hawaii";

Creating associative arrays in this fashion is equally trivial, except that the associative
index reference is always required. The following example creates an array that matches U.S.
state names with their date of entry into the Union:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["New Jersey"] = "December 18, 1787";

$state["Hawaii"] = "August 21, 1959";

CHAPTER 5 ARRAYS

The array() function, discussed next, is a functionally identical yet somewhat more
formal means for creating arrays.

array()
array array([item1 [,item2 ... [,itemN]]])

The array() function takes as its input zero or more items and returns an array consisting of
these input elements. Here is an example of using array() to create an indexed array:

$languages = array ("English", "Gaelic", "Spanish");
// $languages[0] = "English", $languages[1] = "Gaelic", $languages[2] = "Spanish"

You can also use array() to create an associative array, like this:

$languages = array ("Spain" => "Spanish",
"Ireland" => "Gaelic",
"United States" => "English");
// $languages["Spain"] = "Spanish"
// $languages["Ireland"] = "Gaelic"
// $languages["United States"] = "English"

list()
void list(mixed...)

The list() function is similar to array(), though it’s used to make simultaneous variable
assignments from values extracted from an array in just one operation. This construct can be
particularly useful when you’re extracting information from a database or file. For example,
suppose you wanted to format and output information read from a text file. Each line of the file
contains user information, including name, occupation, and favorite color, with each item
delimited by a vertical bar. A typical line would look similar to the following:

Nino Sanzi|Professional Golfer|green

Using 1ist(), a simple loop could read each line, assign each piece of data to a variable,
and format and display the data as needed. Here’s how you could use 1ist () to make multiple
variable assignments simultaneously:

// While the EOF hasn't been reached, get next line
while ($line = fgets ($user file, 4096)) {
// use explode() to separate each piece of data.
list ($name, $occupation, $color) = explode ("|", $line);
// format and output the data
print "Name: $name
";
print "Occupation: $occupation
";
print "Favorite color: $color
";

107

108

CHAPTER 5 ARRAYS

Each line would in turn be read and formatted similar to this:

Name: Nino Sanzi
Occupation: Professional Golfer
Favorite Color: green

Reviewing the example, 1ist() depends on the function explode() to split each line into
three elements, which explode() does by using the vertical bar as the element delimiter. (The
explode() function is formally introduced in Chapter 9.) These elements are then assigned
to $name, $occupation, and $color. At that point, it’s just a matter of formatting for display to
the browser.

range()
array range(int Iow, int high [,int step])

The range() function provides an easy way to quickly create and fill an array consisting of a
range of low and high integer values. An array containing all integer values in this range is returned.
As an example, suppose you need an array consisting of all possible face values of a die:

$die = range(0,6);
// Same as specifying $die = array(o,1,2,3,4,5,6)

The optional step parameter offers a convenient means for determining the increment
between members of the range. For example, if you want an array consisting of all even values
between 0 and 20, you could use a step value of 2:

$even = range(0,20,2);
// $even = array(0,2,4,6,8,10,12,14,16,18,20);

The range() function can also be used for character sequences. For example, suppose you
wanted to create an array consisting of the letters A through F:

$le‘tter5 — Iange("A","F");
// $letters = array("A,","B","C","D","E","F");

Testing for an Array

When you incorporate arrays into your application, you’ll sometimes need to know whether a
particular variable is an array. A built-in function, is_array(), is available for accomplishing
this task.

is_array()

boolean is array(mixed variable)

The is_array() function determines whether variable is an array, returning TRUE if it is and
FALSE otherwise. Note that even an array consisting of a single value will still be considered an
array. An example follows:

CHAPTER 5 ARRAYS

$states = array("Florida");

$state = "Ohio";

echo "\$states is an array: ".is_array($states)."
";
echo "\$state is an array: ".is array($state)."
";

The following are the results:

$states is an array: 1
$state is an array:

Adding and Removing Array Elements

PHP provides a number of functions for both growing and shrinking an array. Some of these
functions are provided as a convenience to programmers who wish to mimic various queue
implementations (FIFO, LIFO, and so on), as reflected by their names (push, pop, shift, and

unshift). This section introduces these functions and offers several usage examples.

Note A traditional queue is a data structure in which the elements are removed in the same order in which
they were entered, known as first-in-first-out, or FIFO. In contrast, a stack is a data structure in which the
elements are removed in the order opposite to that in which they were entered, known as last-in-first-out,
or LIFO.

$arrayname|]

This isn’t a function, but a language feature. You can add array elements simply by executing
the assignment, like so:

$states["Ohio"] = "March 1, 1803";
In the case of a numerical index, you can append a new element like this:
$state[] = "Ohio";

Sometimes, however, you'll require a somewhat more sophisticated means for adding
array elements (and subtracting array elements, a feature not readily available in the fashion
described for adding elements). These functions are introduced throughout the remainder of
this section.

array_push()

int array push(array target array, mixed variable [, mixed variable...])

The array push() function adds variable onto the end of the target array, returning TRUE on
success and FALSE otherwise. You can push multiple variables onto the array simultaneously,
by passing these variables into the function as input parameters. An example follows:

109

110

CHAPTER 5 ARRAYS

$states = array("Ohio","New York");

array push($states,"California","Texas");
// $states = array("Ohio","New York","California","Texas");

array_pop()
mixed array pop(array target array)

The array pop() function returns the last element from target_array, resetting the array
pointer upon completion. An example follows:

non

$states = array("Ohio","New York","California","Texas");
$state = array pop($states); // $state = "Texas"

array_shift()
mixed array shift(array target array)

The array_shift() function is similar to array pop(), except that it returns the first array item
found on the target array rather than the last. As a result, if numerical keys are used, all corre-
sponding values will be shifted down, whereas arrays using associative keys will not be affected.
An example follows:

non

$states = array("Ohio","New York","California","Texas");
$state = array shift($states);

// $states = array("New York","California","Texas")

// $state = "Ohio"

Like array pop(), array_shift() also resets the pointer after completion.

array_unshift()
int array unshift(array target array, mixed variable [, mixed variable...])

The array unshift() function is similar to array push(), except that it adds elements to the
front of the array rather than to the end. All preexisting numerical keys are modified to reflect
their new position in the array, but associative keys aren’t affected. An example follows:

$states = array("Ohio","New York");

array unshift($states,"California”,"Texas");

non non

// $states = array("California","Texas","Ohio","New York");

array_pad()
array array pad(array target, integer length, mixed pad value)

The array pad() function modifies the target array, increasing its size to the length specified
by length. This is done by padding the array with the value specified by pad_value. If pad value
is positive, the array will be padded to the right side (the end); if it is negative, the array will be

CHAPTER 5 ARRAYS

padded to the left (the beginning). If 1ength is equal to or less than the current target size, no
action will be taken. An example follows:

$states = array("Alaska","Hawaii");
$states = array pad($states,4,"New colony?");
$states = array("Alaska","Hawaii","New colony?","New colony?");

Locating Array Elements

The ability to efficiently sift through data is absolutely crucial in today’s information-driven
society. This section introduces several functions that enable you to sift through arrays in order
to locate items of interest efficiently.

in_array()

boolean in array(mixed needle, array haystack [,boolean strict])

The in_array() function searches the haystack array for needle, returning TRUE if found, and
FALSE otherwise. The optional third parameter, strict, forces in_array() to also consider type.
An example follows:

$grades = array(100,94.7,67,89,100);
if (in_array("100",$grades)) echo "Sally studied for the test!";
if (in_array("100",$grades,1)) echo "Joe studied for the test!";

This returns:

Sally studied for the test!

This string was output only once, because the second test required that the datatypes
match. Because the second test compared an integer with a string, the test failed.

array_keys()
array array keys(array target array [, mixed search valuel)

Thearray keys() function returns an array consisting of all keys located in the array target array.
If the optional search_value parameter is included, only keys matching that value will be
returned. An example follows:

$state["Delaware"] = "December 7, 1787";

$state["Pennsylvania"] = "December 12, 1787";

$state["New Jersey"] = "December 18, 1787";

$keys = array keys($state);

print_r($keys);

// Array ([0] => Delaware [1] => Pennsylvania [2] => New Jersey)

m

112

CHAPTER 5 ARRAYS

array_key_exists()
boolean array key exists(mixed key, array target array)

The function array key exists() returns TRUE if the supplied key is found in the array
target array, and returns FALSE otherwise. An example follows:

$state["Delaware"] = "December 7, 1787";

$state["Pennsylvania"] = "December 12, 1787";

$state["Ohio"] = "March 1, 1803";

if (array_key exists("Ohio", $state)) echo "Ohio joined the Union on $state[Ohio]";

The result is:

Ohio joined the Union on March 1, 1803

array_values()
array array values(array target array)

The array values() function returns all values located in the array target array, automatically
providing numeric indexes for the returned array. For example:

$population = array("Ohio" => "11,421,267", "Iowa" => "2,936,760");
$popvalues = array values($population);

print_r($popvalues);

// Array ([0] => 11,421,267 [1] => 2,936,760)

array_search()
mixed array search(mixed needle, array haystack [, boolean strict])

The array search() function searches the array haystack for the value needle, returning its key
if located, and FALSE otherwise. For example:

$state["Ohio"] = "March 1";

$state["Delaware"] = "December 7";

$state["Pennsylvania”] = "December 12";

$founded = array search("December 7", $state);

if ($founded) echo "The state $founded was founded on $state[$founded]";

Traversing Arrays

The need to travel across an array and retrieve various keys, values, or both is common, so it’s not
a surprise that PHP offers numerous functions suited to this need. Many of these functions do
double duty, both retrieving the key or value residing at the current pointer location, and moving
the pointer to the next appropriate location. These functions are introduced in this section.

CHAPTER 5 ARRAYS

key()

mixed key(array input array)

The key() function returns the key element located at the current pointer position of
input_array. Consider the following example:

$capitals = array("Ohio" => "Columbus", "Iowa" => "Des Moines",
"Arizona" => "Phoenix");
echo "<p>Can you name the capitals of these states?</p>";
while($key = key($capitals)) {
echo $key."
";
next($capitals);

This returns:

Ohio
Towa
Arizona

Note that key () does not advance the pointer with each call. Rather, you use the next()
function, whose sole purpose is to accomplish this task. This function is formally introduced
later in this section.

reset()
mixed reset(array input array)

The reset () function serves to set the input_array pointer back to the beginning of the array.
This function is commonly used when you need to review or manipulate an array multiple
times within a script, or when sorting has completed.

each()
array each(array input array)

The each() function returns the current key/value pair from the input_array and advances the
pointer one position. The returned array consists of four keys, with keys 0 and key containing
the key name, and keys 1 and value containing the corresponding data. If the pointer is residing
at the end of the array before executing each(), FALSE is returned.

current()

mixed current(array target array)

The current() function returns the array value residing at the current pointer position of the
target array. Note that unlike the next(), prev(), and end() functions, current() does not
move the pointer. An example follows:

113

114

CHAPTER 5 ARRAYS

$fruits = array("apple", "orange", "banana");
$fruit = current($fruits); // returns "apple"
$fruit = next($fruits); // returns "orange"
$fruit = prev($fruits); // returns "apple"

end()

mixed end(array target array)

The end() function moves the pointer to the last position of the target_array, returning the last
element. An example follows:

$fruits = array("apple", "orange", "banana");
$fruit = current($fruits); // returns "apple"
$fruit = end($fruits); // returns "banana"

next()
mixed next(array target array)

The next () function returns the array value residing at the position immediately following that
of the current array pointer. An example follows:

$fruits = array("apple", "orange", "banana");
$fruit = next($fruits); // returns "orange"
$fruit = next($fruits); // returns "banana"

prev()
mixed prev(array target array)

The prev() function returns the array value residing at the location preceding the current
pointer location, or FALSE if the pointer resides at the first position in the array.

array_walk()
boolean array walk(array input_array, callback function [, mixed userdata])

The array_walk() function will pass each element of input_array to the user-defined function.
This is useful when you need to perform a particular action based on each array element. Note
that if you intend to actually modify the array key/value pairs, you'll need to pass each key/value
to the function as a reference.

The user-defined function must take two parameters as input: The first represents the
array’s current value, and the second represents the current key. If the optional userdata
parameter is present in the call to array walk(), then its value will be passed as a third param-
eter to the user-defined function.

You are probably scratching your head, wondering how this function could possibly be of
any use. Perhaps one of the most effective examples involves the sanity-checking of user-supplied
form data. Suppose the user was asked to provide six keywords that he thought best describe
the state in which he lives. That form source code might look like that shown in Listing 5-1.

CHAPTER 5 ARRAYS

Listing 5-1. Using an Array in a Form

<form action="submitdata.php" method="post">
<p>
Provide up to six keywords that you believe best describe the state in
which you live:
</p>
<p>Keyword 1:

<input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
<p>Keyword 2:

<input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
<p>Keyword 3:

<input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
<p>Keyword 4:

<input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
<p>Keyword 5:

<input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
<p>Keyword 6:

<input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>

<p><input type="submit" value="Submit!"></p>
</form>

This form information is then sent to some script, referred to as submitdata.php in the
form. This script should sanitize user data, then insert it into a database for later review. Using
array walk(), you can easily sanitize the keywords using a function stored in a form validation
class:

<?php
function sanitize data(&$value, $key) {
$value = strip tags($value);

}

array walk($ POST['keyword'],"sanitize data");
>

The result is that each value in the array is run through the strip tags() function, which
results in any HTML and PHP tags being deleted from the value. Of course, additional input
checking would be necessary, but this should suffice to illustrate the utility of array walk().

Note If you're not familiar with PHP’s form-handling capabilities, see Chapter 12.

array_reverse()

array array reverse(array target [, boolean preserve keys])

115

116

CHAPTER 5 ARRAYS

The array reverse() function reverses the element order of the target array. If the optional
preserve keys parameter is set to TRUE, the key mappings are maintained. Otherwise, each
newly rearranged value will assume the key of the value previously presiding at that position:

non non

$states = array("Delaware","Pennsylvania”,"New Jersey");
print_r(array reverse($states));
// Array ([0] => New Jersey [1] => Pennsylvania [2] => Delaware)

Contrast this behavior with that resulting from enabling preserve keys:

non non

$states = array("Delaware","Pennsylvania”,"New Jersey");
print_r(array reverse($states,1));
// Array ([2] => New Jersey [1] => Pennsylvania [0] => Delaware)

Arrays with associative keys are not affected by preserve_keys; key mappings are always
preserved in this case.

array_flip()
array array flip(array target array)

The array flip() function reverses the roles of the keys and their corresponding values in the
array target_array. An example follows:

non non

$state = array("Delaware","Pennsylvania","New Jersey");

$state = array flip($state);

print_r($state);

// Array ([Delaware] => 0 [Pennsylvania] => 1 [New Jersey] => 2)

Determining Array Size and Uniqueness

A few functions are available for determining the number of total and unique array values.
These functions are introduced in this section.

count()

integer count(array input array [, int mode])

The count () function returns the total number of values found in the input_array. If the
optional mode parameter is enabled (set to 1), the array will be counted recursively, a feature
useful when counting all elements of a multidimensional array. The first example counts the
total number of vegetables found in the $garden array:

$garden = array("cabbage", "peppers", "turnips", "carrots");
echo count($garden);

CHAPTER 5 ARRAYS

This returns:

The next example counts both the scalar values and arrays found in $locations:

$locations = array("Italy","Amsterdam",array("Boston","Des Moines"),"Miami");
echo count($locations,1);

This returns:

You may be scratching your head at this outcome, because there appears to be only five
elements in the array. The array entity holding “Boston” and “Des Moines” is counted as an
item, just as its contents are.

Note The sizeof() function is an alias of count (). It is functionally identical.

array_count_values()
array array count values(array input array)

The array _count values() function returns an array consisting of associative key/value pairs.
Each key represents a value found in the input_array, and its corresponding value denotes the
frequency of that key’s appearance (as a value) in the input_array. An example follows:

$states = array("Ohio","Iowa","Arizona","Iowa","Ohio");
$stateFrequency = array count values($states);
print _r($stateFrequency);

This returns:

Array ([Ohio] => 2 [Iowa] => 2 [Arizona] => 1)

117

118

CHAPTER 5 ARRAYS

array_unique()

array array unique(array input array)

The array unique() function removes all duplicate values found in input_array, returning an
array consisting of solely unique values. An example follows:

$states = array("Ohio","Iowa","Arizona","Iowa","Ohio");

$uniqueStates = array unique($states);
print_r($uniqueStates);

This returns:

Array ([0] => Ohio [1] => Towa [2] => Arizona)

Sorting Arrays

To be sure, data sorting is a central topic of computer science. Anybody who’s taken an entry-
level programming class is well aware of sorting algorithms such as bubble, heap, shell, and
quick. This subject rears its head so often during daily programming tasks that the process of
sorting data is as common as creating an if conditional or a while loop. PHP facilitates the
process by offering a multitude of useful functions capable of sorting arrays in a variety of
manners. Those functions are introduced in this section.

Tip By default, PHP’s sorting functions sort in accordance with the rules as specified by the English
language. If you need to sort in another language, say French or German, you’ll need to modify this default
behavior by setting your locale using the setlocale() function.

sort()

void sort(array target array [, int sort flags])

The sort() function sorts the target array, ordering elements from lowest to highest value.
Note that it doesn’t return the sorted array. Instead, it sorts the array “in place,” returning
nothing, regardless of outcome. The optional sort_flags parameter modifies the function’s
default behavior in accordance with its assigned value:

e SORT_NUMERIC: Sort items numerically. This is useful when sorting integers or floats.

* SORT_REGULAR: Sort items by their ASCII value. This means that B will come before a, for
instance. A quick search online will produce several ASCII tables, so one isn’t reproduced
in this book.

CHAPTER 5 ARRAYS

e SORT_STRING: Sort items in a fashion that might better correspond with how a human
might perceive the correct order. See natsort() for further information about this matter,
introduced later in this section.

Consider an example. Suppose you wanted to sort exam grades from lowest to highest:

$grades = array(42,57,98,100,100,43,78,12);
sort($grades);
print_r($grades);

The outcome looks like this:

Array ([0] => 12 [1] => 42 [2] => 43 [3] => 57 [4] => 78 [5] => 98
[6] => 100 [7] => 100)

It’s important to note that key/value associations are not maintained. Consider the
following example:

$states = array("OH" => "Ohio", "CA" => "California", "MD" => "Maryland");
sort($states);
print r($states);

Here’s the output:

Array ([0] => California [1] => Maryland [2] => Ohio)

To maintain these associations, use asort (), introduced later in this section.

natsort()

void natsort(array target array)

The natsort() function is intended to offer a sorting mechanism comparable to the mechanisms
that people normally use. The PHP manual offers an excellent example, borrowed here, of what
our innate sorting strategies entail. Consider the following items: picture1. jpg, picture2.jpg,
picture10.jpg, picture20.jpg. Sorting these items using typical algorithms results in the
following ordering:

picturel.jpg, picture1o.jpg, picture2.jpg, picture20.jpg

Certainly not what you might have expected, right? The natsort() function resolves this
dilemma, sorting the target array in the order you would expect, like so:

119

120

CHAPTER 5 ARRAYS

picturel.jpg, picture2.jpg, picture1o.jpg, picture20.jpg

natcasesort()
void natcasesort(array target array)

The function natcasesort() is functionally identical to natsort(), except that it is case insensitive.
Returning to the file-sorting dilemma raised in the natsort () section, suppose that the pictures
were named like this: Picture1.JPG, picture2. jpg, PICTUREL0. jpg, picture20. jpg. The natsort()
function would do its best, sorting these items like so:

PICTURE10.jpg, Picture1.JPG, picture2.jpg, picture20.jpg

The natcasesort() function resolves this idiosyncrasy, sorting as you might expect:

Picturel.jpg, PICTURE10.jpg, picture2.jpg, picture20.jpg

rsort()
void rsort(array target array [, int sort flags])

The rsort() function isidentical to sort (), except that it sorts array items in reverse (descending)
order. An example follows:

$states = array("Ohio","Florida", "Massachusetts","Montana");

sort($states);

print_r($states)

// Array ([0] => Ohio [1] => Montana [2] => Massachusetts [3] => Florida)

If the optional sort_flags parameter is included, then the exact sorting behavior is
determined by its value, as explained in the sort() section.
asort()
void asort(array target array [,integer sort flags])

The asort() function is identical to sort(), sorting the target array in ascending order, except
that the key/value correspondence is maintained. Consider an array that contains the states in
the order in which they joined the Union:

CHAPTER 5 ARRAYS 121

$state[0] = "Delaware";
$state[1] = "Pennsylvania";
$state[2] = "New Jersey";

Sorting this array using sort() causes the associative correlation to be lost, which is probably
abad idea. Sorting using sort() produces the following ordering:

Array ([0] => Delaware [1] => New Jersey [2] => Pennsylvania)

However, sorting with asort () produces:

Array ([0] => Delaware [2] => New Jersey [1] => Pennsylvania)

If you use the optional sort_flags parameter, the exact sorting behavior is determined by
its value, as described in the sort() section.
array_multisort()
boolean array multisort(array array [, mixed arg [, mixed arg2...]])

The array multisort() function can sort several arrays at once, and can sort multidimensional
arrays in a number of fashions, returning TRUE on success and FALSE otherwise. It takes as input
one or more arrays, each of which can be followed by flags that determine sorting behavior.
There are two categories of sorting flags: order and type. Each flag is described in Table 5-1.

Table 5-1. array_multisort() Flags

Flag Type Purpose

SORT_ASC Order Sort in ascending order
SORT_DESC Order Sort in descending order
SORT_REGULAR Type Compare items normally
SORT_NUMERIC Type Compare items numerically
SORT_STRING Type Compare items as strings

Consider an example. Suppose that you want to sort the surname column of a multidimen-
sional array consisting of staff information. To ensure that the entire name (given-name surname)
is sorted properly, you would then sort by the given name:

122 CHAPTER 5 ARRAYS

<?php
$staff["givenname"][0] = "Jason";
$staff["givenname"][1] = "Manny";
$staff["givenname"][2] = "Gary";
$staff["givenname"][3] = "James";
$staff["surname"][0] = "Gilmore";
$staff["surname"][1] = "Champy";
$staff["surname"][2] = "Grisold";
$staff["surname"][3] = "Gilmore";

$res = array multisort($staff["surname"],SORT STRING,SORT ASC,
$staff["givenname"],SORT STRING,SORT ASC);

print_r($staff);
>

This returns the following:

Array ([givenname] => Array ([0] => Manny [1] => James [2] => Jason [3] => Gary)

[surname] => Array ([0] => Champy [1] => Gilmore [2] =>
Gilmore [3] => Grisold))

arsort()
void arsort(array array [, int sort flags])

Like asort(), arsort() maintains key/value correlation. However, it sorts the array in reverse
order. An example follows:

$states = array("Delaware","Pennsylvania”,
arsort($states);
print_r($states);

// Array ([1] => Pennsylvania [2] => New Jersey [0] => Delaware)

New Jersey");

If the optional sort_flags parameter is included, the exact sorting behavior is determined
by its value, as described in the sort() section.

ksort()

integer ksort(array array [,int sort flags])

The ksort () function sorts the input array array by its keys, returning TRUE on success and
FALSE otherwise. If the optional sort flags parameter is included, then the exact sorting
behavior is determined by its value, as described in the sort() section. Keep in mind that the
behavior will be applied to key sorting but not to value sorting.

CHAPTER 5 ARRAYS

krsort()

integer krsort(array array [,int sort flags])

The krsort() function operates identically to ksort(), sorting by key, except that it sorts in
reverse (descending) order.

usort()

void usort(array array, callback function name)

The usort () function offers a means for sorting an array by using a user-defined comparison
algorithm, embodied within a function. This is useful when you need to sort data in a fashion
not offered by one of PHP’s built-in sorting functions.

The user-defined function must take as input two arguments and must return a negative
integer, zero, or a positive integer, respectively, based on whether the first argument is less
than, equal to, or greater than the second argument. Not surprisingly, this function must be
made available to the same scope in which usort() is being called.

A particularly applicable example of where usort () comes in handy involves the ordering
of American-format dates (month-day-year, as opposed to day-month-year ordering used by
most other countries). Suppose that you want to sort an array of dates in ascending order:

<?php
$dates = array('10-10-2003', '2-17-2002"', '2-16-2003', '1-01-2005"', I10-10-2004');
sort($dates);

// Array ([0] => 10-01-2002 [1] => 10-10-2003 [2] => 2-16-2003 [3] => 8-18-2002)

natsort($dates);
// Array ([2] => 2-16-2003 [3] => 8-18-2002 [1] => 10-01-2002 [0] => 10-10-2003)

function DateSort($a, $b) {

// If the dates are equal, do nothing.
if($a == $b) return o;

// Disassemble dates
list($amonth, $aday, $ayear) = explode('-',%a);
list($bmonth, $bday, $byear) = explode('-',$b);

// Pad the month with a leading zero if leading number not present
$amonth = str pad($amonth, 2, "0", STR_PAD LEFT);
$bmonth = str pad($bmonth, 2, "0", STR_PAD LEFT);

// Pad the day with a leading zero if leading number not present
$aday = str pad($aday, 2, "0", STR_PAD LEFT);
$bday = str pad($bday, 2, "0", STR_PAD LEFT);

123

124 CHAPTER 5 ARRAYS

// Reassemble dates
$a = $ayear . $amonth . $aday;
$b = $byear . $bmonth . $bday;

// Determine whether date $a > $date b
return ($a > $b) ? 1 : -1;

}

usort($dates, 'DateSort');

print_r($dates);
>

This returns the desired result:

Array ([0] => 8-18-2002 [1] => 10-01-2002 [2] => 2-16-2003 [3] => 10-10-2003)

Merging, Slicing, Splicing, and Dissecting Arrays

This section introduces a number of functions that are capable of performing somewhat more
complex array-manipulation tasks, such as combining and merging multiple arrays, extracting
a cross-section of array elements, and comparing arrays.

array_combine()
array array_combine(array keys, array values)

The array combine() function produces a new array consisting of keys residing in the input
parameter array keys, and corresponding values found in the input parameter array values.
Note that both input arrays must be of equal size, and that neither can be empty. An example
follows:

$abbreviations = array("AL","AK","AZ","AR");
$states = array("Alabama","Alaska","Arizona","Arkansas");
$stateMap = array combine($abbreviations,$states);

print_r($stateMap);

This returns:

Array ([AL] => Alabama [AK] => Alaska [AZ] => Arizona [AR] => Arkansas)

array_merge()

array array_merge(array input_arrayi, array input_array? [..., array input_arrayN])

CHAPTER 5 ARRAYS 125

The array merge() function appends arrays together, returning a single, unified array. The
resulting array will begin with the first input array parameter, appending each subsequent
array parameter in the order of appearance. If an input array contains a string key that already
exists in the resulting array, that key/value pair will overwrite the previously existing entry. This
behavior does not hold true for numerical keys, in which case the key/value pair will be appended
to the array. An example follows:

$face = array("J","Q","K","A");

$numbered = array("2","3","4","s","6","7","8","9");
$cards = array merge($face, $numbered);
shuffle($cards);

print_r($cards);

This returns something along the lines of the following (your results will vary because of
the shuffle):

Array ([0] => 8 [1] => 6 [2] => K [3] => Q [4] => 9 [5] => 5
[6] => 3 [7] => 2 [8] => 7 [9] => 4 [10] => A [11] =>])

array_merge_recursive()
array array merge recursive(array input arrayi, array input array? [, array...])

The array merge recursive() function operates identically to array merge(), joining two or
more arrays together to form a single, unified array. The difference between the two functions
lies in the way that this function behaves when a string key located in one of the input arrays
already exists within the resulting array. array_merge() will simply overwrite the preexisting
key/value pair, replacing it with the one found in the current input array. array merge recursive()
will instead merge the values together, forming a new array with the preexisting key as its
name. An example follows:

$class1 = array("John" => 100, "James" => 85);

$class2 = array("Micky" => 78, "John" => 45);
$classScores = array merge recursive($classi, $class2);
print_r($classScores);

This returns the following:

Array ([John] => Array ([0] => 100 [1] => 45) [James] => 85 [Micky] => 78)

Note that the key “John” now points to a numerically indexed array consisting of two scores.

array_slice()
array array slice(array input array, int offset [, int length])

The array_slice() function returns the section of input_array, starting at the key offset and
ending at position offset + length. A positive offset value will cause the slice to begin that

126

CHAPTER 5 ARRAYS

many positions from the beginning of the array, while a negative offset value will start the slice
that many positions from the end of the array. If the optional length parameter is omitted, the
slice will start at offset and end at the last element of the array. If length is provided and is
positive, it will end at offset + length positions from the beginning of the array. Conversely, if
lengthis provided and is negative, it will end at count(input_array) —length positions from the
end of the array. Consider an example:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
"California", "Colorado", "Connecticut");

$subset = array slice($states, 4);

print_r($subset);

This returns:

Array ([0] => California [1] => Colorado [2] => Connecticut)

Consider a second example, this one involving a negative length:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
"California", "Colorado", "Connecticut");

$subset = array slice($states, 2, -2);

print_r($subset);

This returns:

Array ([0] => Arizona [1] => Arkansas [2] => California)

array_splice()
array array splice(array input, int offset [, int length [, array replacement]])

The array splice() function removes all elements of an array, starting at offset and ending
at position offset + length, and will return those removed elements in the form of an array.

A positive offset value will cause the splice to begin that many positions from the beginning of
the array, while a negative offset will start the splice that many positions from the end of the
array. If the optional length parameter is omitted, all elements from the offset position to the
conclusion of the array will be removed. If length is provided and is positive, the splice will end
at offset + length positions from the beginning of the array. Conversely, if length is provided
and is negative, the splice will end at count (input_array) - length positions from the end of the
array. An example follows:

$states

array("Alabama", "Alaska", "Arizona", "Arkansas",
"California", "Connecticut");

$subset = array splice($states, 4);

print_r($states);

print_r($subset);

CHAPTER 5 ARRAYS

This produces:

Array ([0] => Alabama [1] => Alaska [2] => Arizona [3] => Arkansas)
Array ([0] => California [1] => Connecticut)

You can use the optional parameter replacement to specify an array that will replace the
target segment. An example follows:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
"California", "Connecticut");

$subset = array splice($states, 2, -1, array("New York", "Florida"));

print r($states);

This returns the following:

Array ([0] => Alabama [1] => Alaska [2] => New York
[3] => Florida [4] => Connecticut)

array_intersect()
array array intersect(array input arrayi, array input array2? [, array...])

The array_intersect() function returns a key-preserved array consisting only of those values
present in input_array1 that are also present in each of the other input arrays. An example
follows:

$arrayl = array("OH","CA","NY","HI","CT");

$array2 = array("OH","CA","HI","NY","IA");

$array3 = array("TX","MD","NE","OH","HI");

$intersection = array intersect($arrayl, $array2, $array3);
print_r($intersection);

This returns:

Array ([0] => OH [3] => HI)

Note that array intersect() considers two items to be equal only if they also share the
same datatype.
array_intersect_assoc()
array array intersect(array input arrayi, array input array2 [, array...])

The function array intersect assoc() operates identically to array intersect(), except that
it also considers array keys in the comparison. Therefore, only key/value pairs located in

127

128

CHAPTER 5 ARRAYS

input_arrayi that are also found in all other input arrays will be returned in the resulting array.
An example follows:

$arrayl = array("OH" => "Ohio", "CA" => "California", "HI" => "Hawaii");
$array2 = array("50" => "Hawaii", "CA" => "California", "OH" => "Ohio");
$array3 = array("TX" => "Texas", "MD" => "Maryland", "OH" => "Ohio");

$intersection = array intersect assoc($arrayl, $array2, $array3);
print_r($intersection);

This returns:

Array ([OH] => Ohio)

Note that Hawaii was not returned because the corresponding key in $array2 is “50” rather
than “HI” (as is the case in the other two arrays.)

array_diff()
array array diff(array input arrayi, array input_array? [, array...])

The function array diff() returns those values located in input_array1 that are not located in
any of the other input arrays. This function is essentially the opposite of array intersect().
An example follows:

$arrayl = array("OH","CA","NY","HI","CT");
$array2 = array("OH","CA","HI","NY","IA");
$array3 = array("TX","MD","NE","OH","HI");
$diff = array diff($arrayi, $array2, $array3);
print r($intersection);

This returns:

Array ([0] => CT)

array_diff_assoc()
array array diff assoc(array input arrayi, array input array2? [, array...])

The function array diff assoc() operates identically to array diff(), except that it also
considers array keys in the comparison. Therefore only key/value pairs located in input_arrayi,
and not appearing in any of the other input arrays, will be returned in the result array. An
example follows:

CHAPTER 5 ARRAYS

$arrayl = array("OH" => "Ohio", "CA" => "California", "HI" => "Hawaii");
$array2 = array("50" => "Hawaii", "CA" => "California", "OH" => "Ohio");
$array3 = array("TX" => "Texas", "MD" => "Maryland", "KS" => "Kansas");

$diff = array diff assoc($array1l, $array2, $array3);
print r($diff);

This returns:

Array ([HI] => Hawaii)

Other Useful Array Functions

This section introduces a number of array functions that perhaps don’t easily fall into one of
the prior sections but are nonetheless quite useful.

array_rand()

mixed array rand(array input_array [, int num entries])

The array _rand() function will return one or more keys found in input_array. If you omit the
optional num_entries parameter, only one random value will be returned. You can tweak the
number of returned random values by setting num_entries accordingly. An example follows:

$states = array("Ohio" => "Columbus", "Iowa" => "Des Moines",
"Arizona" => "Phoenix");

$randomStates = array rand($states, 2);

print_r($randomStates);

This returns:

Array ([0] => Arizona [1] => Ohio)

shuffle()

void shuffle(array input array)

The shuffle() function randomly reorders the elements of input_array. Consider an array
containing values representing playing cards:

$cards = array("jh","js","jd","jc","gh","gs","qd","qc",
"kh","ks","kd","kc","ah","as","ad", "ac");

// shuffle the cards

shuffle($cards);

print_r($positions);

129

130

CHAPTER 5 ARRAYS

This returns something along the lines of the following (your results will vary because of
the shuffle):

Array ([0] => js [1] => ks [2] => kh [3] => jd
[4] => ad [5] => qd [6] => qc [7] => ah
[8] => kc [9] => qh [10] => kd [11] => as
[12] => ac [13] => jc [14] => jh [15] => gs)

array_sum()
mixed array sum(array input array)

The array sum() function adds all the values of input_array together, returning the final sum.
Of course, the values should be either integers or floats. If other datatypes (a string, for example)
are found in the array, they will be ignored. An example follows:

<?php
$grades = array(42,"hello",42);
$total = array sum($grades);
print $total;

>

This returns:

84

array_chunk()
array array chunk(array input array, int size [, boolean preserve keys])

The array chunk() function breaks input_array into a multidimensional array comprised of
several smaller arrays consisting of size elements. If the input_array can’tbe evenly divided by
size, the last array will consist of fewer than size elements. Enabling the optional parameter
preserve_ keys will preserve each value’s corresponding key. Omitting or disabling this parameter
results in numerical indexing starting from zero for each array. An example follows:

$cards = array("jh","js","jd","jc","gh","gs","qd","qc",
"kh","ks","kd","kc","ah","as","ad", "ac");

// shuffle the cards

shuffle($cards);

// Use array chunk() to divide the cards into four equal "hands"

$hands = array chunk($cards, 4);

print_r($hands);

CHAPTER 5 ARRAYS 131

This returns the following (your results will vary because of the shuffle):

Array ([0] => Array ([0] => jc [1] => ks [2] => js [3] => qd)
[1] => Array ([0] => kh [1] => gh [2] => jd [3] => kd)
[2] => Array ([0] => jh [1] => kc [2] => ac [3] => as)
[3] => Array ([0] => ad [1] => ah [2] => qc [3] => g5))

Summary

Arrays play an indispensable role in programming, and are ubiquitous in every imaginable
type of application, Web-based or not. The purpose of this chapter was to bring you up to
speed regarding many of the PHP functions that will make your programming life much easier
as you deal with these arrays.

The next chapter focuses on yet another very important topic: object-oriented programming.
This topic has a particularly special role in PHP 5, because the process has been entirely redesigned
for this major release.

CHAPTER 6

Object-Oriented PHP

This chapter and the next introduce what is surely PHP 5’s shining star: the vast improve-
ments and enhancements to PHP’s object-oriented functionality. If you've used PHP prior to
version 5, you may be wondering what the buzz is all about. After all, PHP 4 offered object-
oriented capabilities, right? Although the answer to this question is technically yes, version 4’s
object-oriented functionality was rather hobbled. Although the very basic premises of object-

oriented programming (OOP) were offered in version 4, several deficiencies existed, including:

* Anunorthodox object-referencing methodology

* No means for setting the scope (public, private, protected, abstract) of fields and
methods

* No standard convention for naming constructors
¢ Absence of object destructors

* Lack of an object-cloning feature

¢ Lack of support for interfaces

In fact, PHP 4’s adherence to the traditional OOP model is so bad that in Jason’s first book,
A Programmer’s Introduction to PHP 4.0, he devoted more time to demonstrating hacks than to
actually introducing useful OOP features. Thankfully, version 5 eliminates all of the aforemen-
tioned hindrances, offering substantial improvements over the original implementation, as
well as a bevy of new OOP features. This chapter and the following aim to introduce these new
features and enhanced functionality. Before doing so, however, this chapter briefly discusses
the advantages of the OOP development model.

Note While this and the following chapter serve to provide you with an extensive introduction to PHP’s
0O0P features, a thorough treatment of their ramifications for the PHP developer is actually worthy of an entire
book. Conveniently, Matt Zandstra’s PHP 5 Objects, Patterns, and Practice (Apress, 2004) covers the topic in
considerable detail, accompanied by a fascinating introduction to implementing design patterns with PHP and
an overview of key development tools such as Phing, PEAR, and phpDocumentor.

133

134

CHAPTER 6 OBJECT-ORIENTED PHP

The Benefits of 00P

The birth of object-oriented programming represented a major paradigm shift in development
strategy, refocusing attention on an application’s data rather than its logic. To put it another
way, OOP shifts the focus from a program’s procedural events toward the real-life entities it
ultimately models. The result is an application that closely resembles the world around us.

This section examines three of OOP’s foundational concepts: encapsulation, inheritance,
and polymorphism. Together, these three ideals form the basis for the most powerful program-
ming model yet devised.

Encapsulation

Programmers are typically rabidly curious individuals. We enjoy taking things apart and
learning how all of the little pieces work together. Although mentally gratifying, attaining such
in-depth knowledge of an item’s inner workings isn’t a requirement. For example, millions of
people use a computer every day, yet few know how it actually works. The same idea applies to
automobiles, microwaves, televisions, and any number of commonplace items. We can get
away with such ignorance through the use of interfaces. For example, you know that turning
the radio dial allows you to change radio stations; never mind the fact that what you're actually
doing is telling the radio to listen to the signal transmitted at a particular frequency, a feat
accomplished using a demodulator. Failing to understand this process does not prevent you
from using the radio, because the interface takes care to hide such details. The practice of sepa-
rating the user from the true inner workings of an application through well-known interfaces is
known as encapsulation.

Object-oriented programming promotes the same notion of hiding the inner workings
of the application, by making available well-defined interfaces from which each application
component can be accessed. Rather than get bogged down in the gory details, OOP-minded
developers design each application component so that it is independent from the others,
which not only encourages reuse but also enables the developer to assemble components like
a puzzle rather than tightly lash, or couple, them together. These well-defined interfaces are
known as objects. Objects are created from a template known as a class, which is used to embody
both the data and the behavior you would expect of a particular entity. Classes expose certain
behaviors through functions known as methods, which in turn are used to manipulate class
characteristics, known as fields. This strategy offers several advantages:

* The developer can change the application implementation without affecting the object
user, because the user’s only interaction with the object is via its interface.

* The potential for user error is reduced, because of the control exercised over the user’s
interaction with the application.

Inheritance

The many objects constituting our environment can be modeled using a fairly well-defined set
of rules. Take, for example, the concept of an employee. Let’s begin by loosely defining an

employee as somebody who contributes to the common goals of an organization. All employees
share a common set of characteristics: a name, employee ID, and wage, for instance. However,
there are many different classes of employees: clerks, supervisors, cashiers, and chief executive

CHAPTER 6 OBJECT-ORIENTED PHP

offers, among others, each of which likely possesses some superset of those characteristics
defined by the generic employee definition. In object-oriented terms, these various employee
classes inherit the general employee definition, including all of the characteristics and behav-
iors that contribute to this definition. In turn, each of these specific employee classes could, in
turn, be inherited by yet another, more specific class. For example, the “clerk” type might be
inherited by a day clerk and a night clerk, each of which inherits all traits specified by both the
employee definition and the clerk definition. Building on this idea, you could then later create
a “human” class, and then make the “employee” class a subclass of human. The effect would
be that the employee class and all of its derived classes (clerk, cashier, CEO, and so on) would
immediately inherit all characteristics and behaviors defined by human.

The object-oriented development methodology places great stock in the concept of inher-
itance. This strategy promotes code reusability, because it assumes that one will be able to
use well-designed classes (i.e. classes that are sufficiently abstract to allow for reuse) within
numerous applications.

Polymorphism

Polymorphism, a term originating from the Greek language that means “having multiple
forms,” is perhaps the coolest feature of OOP. Simply defined, polymorphism defines OOP’s
ability to redefine, or morph, a class’s characteristic or behavior depending upon the contextin
which it is used. This is perhaps best explained with an example.

Returning to the employee example, suppose that a behavior titled clock_inwas included
within the employee definition. For employees of class clerk, this behavior might involve actu-
ally using a time clock to timestamp a card. For other types of employees, “programmers” for
instance, clocking in might involve signing on to the corporate network. Although both classes
derive this behavior from the employee class, the actual implementation of each is dependent
upon the context in which “clocking in” is implemented. This is the power of polymorphism.

These three key OOP concepts, encapsulation, inheritance, and polymorphism, are
touched upon as they apply to PHP’s OOP implementation through this chapter and the next.

Key 00P Concepts

This section introduces key object-oriented implementation concepts, including PHP-specific
examples.

Classes

Our everyday environment consists of innumerable entities: plants, people, vehicles, food...we
could go on for hours just listing them. Each entity is defined by a particular set of characteristics
and behaviors that ultimately serves to define the entity for what it is. For example, a vehicle
might be defined as having characteristics such as color, number of tires, make, model, and
capacity, and having behaviors such as stop, go, turn, and honk horn. In the vocabulary of
OOP, such an embodiment of an entity’s defining attributes and behaviors is known as a class.
Classes are intended to represent those real-life items that you’d like to manipulate within
an application. For example, if you wanted to create an application for managing a public
library, you’d probably want to include classes representing books, magazines, employees,
special events, patrons, and anything else that would require oversight. Each of these entities

135

136

CHAPTER 6 OBJECT-ORIENTED PHP

embodies a certain set of characteristics and behaviors, better known in OOP as fields and
methods, respectively, that defines the entity as what it is. PHP’s generalized class creation
syntax follows:

class classname

{
// Field declarations defined here
// Method declarations defined here

Listing 6-1 depicts a class representing employees.

Listing 6-1. Class Creation

class Staff
{
private $name;
private $title;
protected $wage;
protected function clockIn() {
echo "Member $this->name clocked in at ".date("h:i:s");
}
protected function clockOut() {
echo "Member $this->name clocked out at ".date("h:i:s");

}

Titled Staff, this class defines three fields, name, title, and wage, in addition to two methods,
clockIn and clockOut. Don’t worry if you're not familiar with some of the grammar and syntax
(private/protected and $this, particularly); each of these topics is covered in detail later in
the chapter.

Objects

A class is quite similar to a recipe, or template, that defines both the characteristics and
behavior of a particular concept or tangible item. This template provides a basis from which
you can create specific instances of the entity the class models, better known as objects. For
example, an employee management application may include a Staff class, which serves as the
template for managing employee information. Based on these specifications, you can create
and maintain specific instances of the staff class, Sally and Jim, for example.

Note The practice of creating objects based on predefined classes is often referred to as class instantiation.

Objects are created using the new keyword, like this:

$employee = new Staff();

CHAPTER 6 OBJECT-ORIENTED PHP

Once the object is created, all of the characteristics and behaviors defined within the class
are made available to the newly instantiated object. Exactly how this is accomplished is revealed
in the following sections.

Fields

Fields are attributes that are intended to describe some aspect of a class. They are quite similar
to normal PHP variables, except for a few minor differences, which you’ll learn about in this
section. You'll also learn how to declare and invoke fields, and read all about field scopes.

Declaring Fields

The rules regarding field declaration are quite similar to those in place for variable declaration:
essentially, there are none. Because PHP is a loosely typed language, fields don’t even necessarily
need to be declared; they can simply be created and assigned simultaneously by a class object,
although you’ll rarely want to do that. Instead, common practice is to declare fields at the
beginning of the class. Optionally, you can assign them initial values at this time. An example
follows:

class Staff

{
public $name = "Lackey";
private $wage;

In this example, the two fields, name and wage, are prefaced with a scope descriptor (public
or private), a common practice when declaring fields. Once declared, each field can be used
under the terms accorded to it by the scope descriptor. If you don’t know what role scope plays
in class fields, don’t worry; that topic is covered later in this chapter.

Invoking Fields

Fields are referred to using the -> operator and, unlike variables, are not prefaced with a dollar
sign. Furthermore, because a field’s value typically is specific to a given object, it is correlated
to said object like this:

$object->field

For example, the Staff class described at the beginning of this chapter included the fields
name, title, and wage. If you created an object named $employee of type Staff, you would refer
to these fields like this:

$employee->name
$employee->title
$employee->wage

When you refer to a field from within the class in which it is defined, it is still prefaced with
the -> operator, although instead of correlating it to the class name, you use the $this keyword.
$this implies that you're referring to the field residing in the same class in which the field is
being accessed or manipulated. Therefore, if you were to create a method for setting the name
field in the aforementioned Staff class, it might look like this:

137

138

CHAPTER 6 OBJECT-ORIENTED PHP

function setName($name)

{

$this->name = $name;
}
Field Scopes

PHP supports five class field scopes: public, private, protected, final, and static. The first four
are introduced in this section, and the static scope is introduced in the later section, “Static
Class Members.”

Public

You can declare fields in the public scope by prefacing the field with the keyword public.
An example follows:

class Staff
{
public $name;
/* Other field and method declarations follow... */

Public fields can then be manipulated and accessed directly by a corresponding object,
like so:

$employee = new Staff();
$employee->name = "Mary Swanson";
$name = $employee->name;

echo "New staff member: $name";

Not surprisingly, executing this code produces:
New staff member: Mary Swanson

Although this might seem like a logical means for maintaining class fields, public fields are
actually generally considered taboo to OOP, and for good reason. The reason for shunning
such an implementation is that such direct access robs the class of a convenient means for
enforcing any sort of data validation. For example, nothing would prevent the user from
assigning name like so:

$employee->name = "12345";

This is certainly not the kind of input you were expecting. To prevent such mishaps from
occurring, two solutions are available. One solution involves encapsulating the data within the
object, making it available only via a series of interfaces, known as public methods. Data encap-
sulated in this way is said to be private in scope. The second recommended solution involves
the use of properties, and is actually quite similar to the first solution, although it is a tad more
convenient in most cases. Private scoping is introduced next, whereas properties are discussed
in the later section, “Properties.”

CHAPTER 6 OBJECT-ORIENTED PHP

Private

Private fields are only accessible from within the class in which they are defined. An example
follows:

class Staff

{
private $name;
private $telephone;

Fields designated as private are not directly accessible by an instantiated object, nor are
they available to subclasses. If you want to make these fields available to subclasses, consider
using the protected scope instead, introduced next. Instead, private fields must be accessed via
publicly exposed interfaces, which satisfies one of OOP’s main tenets introduced at the begin-
ning of this chapter: encapsulation. Consider the following example, in which a private field is
manipulated by a public method:

<?php

class Staff

{
private $name;
public function setName($name) {

$this->name = $name;

}

}

$staff = new Staff;
$staff->setName("Mary");
>

Encapsulating the management of such fields within a method enables the developer to
maintain tight control over how that field is set. For example, you could add to the setName()
method’s capabilities, to validate that the name is set to solely alphabetical characters and to
ensure that it isn’t blank. This strategy is much more reliable than leaving it to the end user to
provide valid information.

Protected

Just like functions often require variables intended for use only within the function, classes can
include fields used for solely internal purposes. Such fields are deemed protected, and are prefaced
accordingly. An example follows:

class Staff
{

protected $wage;

}

Protected fields are also made available to inherited classes for access and manipulation,
a trait not shared by private fields. Any attempt by an object to access a protected field will
result in a fatal error. Therefore, if you plan on extending the class, you should use protected
fields in lieu of private fields.

139

140

CHAPTER 6 OBJECT-ORIENTED PHP

Final

Marking a field as final prevents it from being overridden by a subclass, a matter discussed in
further detail in the next chapter. A finalized field is declared like so:

class Staff
{

final $ssn;

You can also declare methods as final; the procedure for doing so is described in the later
section, “Methods.”

Properties

Properties are a particularly convincing example of the powerful features OOP has to offer,
ensuring protection of fields by forcing access and manipulation to take place through methods,
yet allowing the data to be accessed as if it were a public field. These methods, known as accessors
and mutators, or more informally as getters and setters, are automatically triggered whenever
the field is accessed or manipulated, respectively.

Unfortunately, PHP 5 does not offer the property functionality that you might be used to if
you're familiar with other OOP languages like C++ and Java. Therefore, you'll need to make do
with using public methods to imitate such functionality. For example, you might create getter
and setter methods for the property name by declaring two functions, getName () and setName(),
respectively, and embedding the appropriate syntax within each. An example of this strategy is
presented at the conclusion of this section.

PHP 5 does offer some semblance of support for properties, opening up several new possi-
bilities. This support is made available by overloading the set and __get methods. These
methods are invoked if you attempt to reference a member variable that does not exist within
the class definition. Properties can be used for a variety of purposes, such as to invoke an error
message, or even to extend the class by actually creating new variables on the fly. Both _get and
_set are introduced in this section.

__set()

boolean _ set([string property name],[mixed value to assign])

The mutator, or setter method, is responsible for both hiding field assignment implementation
and validating class data before assigning it to a class field. It takes as input a property name
and a corresponding value, returning TRUE if the method is successfully executed, and FALSE
otherwise. An example follows:

class Staff

{
var $name;
function _ set($propName, $propValue)
{
echo "Nonexistent variable: \$$propName!";
}
}

$employee = new Staff();
$employee->name = "Mario";
$employee->title = "Executive Chef";

This results in the following output:

CHAPTER 6

OBJECT-ORIENTED PHP

Nonexistent variable: $title!

Of course, you could use this method to actually extend the class with new properties,

like this:
class Staff
{
var $name;
function _ set($propName, $propValue)
{
$this->$propName = $propValue;
}
}

$employee = new Staff();
$employee->name = "Mario";
$employee->title = "Executive Chef";
echo "Name: ".$employee->name;

echo "
";

echo "Title: ".$employee->title;

This produces:

Name: Mario
Title: Executive Chef

141

142 CHAPTER 6 OBJECT-ORIENTED PHP

__get()
boolean get([string property name])

The accessor, or getter method, is responsible for encapsulating the code required for retrieving
a class variable. It takes as input one parameter, the name of the property whose value you'd
like to retrieve. It should return the value TRUE on successful execution, and FALSE otherwise. An
example follows:

class Staff

{
var $name;
var $city;
protected $wage;
function _ get($propName)
{
echo " _get called!
";
$vars = array("name","city");
if (in_array($propName, $vars))
{
return $this->$propName;
} else {
return "No such variable!";
}
}
}

$employee = new Staff();
$employee->name = "Mario";

echo $employee->name."
";
echo $employee->age;

This returns the following:

Mario
__get called!
No such variable!

Creating Custom Getters and Setters

Frankly, although there are some benefits to the aforementioned _set() and __get() methods,
they really aren’t sufficient for managing properties in a complex object-oriented application.
Because PHP doesn’t offer support for the creation of properties in the fashion that Java or C#
does, you need to implement your own methodology. Consider creating two methods for each
private field, like so:

CHAPTER 6 OBJECT-ORIENTED PHP

<?php
class Staff {
private $name;
// Getter
public function getName() {
return $this->name;
}
// Setter
public function setName($name) {
$this->name = $name;
}
}

>

Although such a strategy doesn’t offer the same convenience as using properties, it does
encapsulate management and retrieval tasks using a standardized naming convention. Of
course, you should add additional validation functionality to the setter; however, this simple
example should suffice to drive the point home.

Constants

You can define constants, or values that are not intended to change, within a class. These values
will remain unchanged throughout the lifetime of any object instantiated from that class. Class
constants are created like so:

const NAME = 'VALUE';

For example, suppose you created a math-related class that contains a number of methods
defining mathematical functions, in addition to numerous constants:

class math_functions

{

const PI = '3.14159265";

const E = '2.7182818284";

const EULER = '0.5772156649";

/* define other constants and methods here... */
}

Class constants can then be called like this:

echo math_functions::PI;

Methods

A method is quite similar to a function, except that it is intended to define the behavior of a
particular class. Like a function, a method can accept arguments as input and can return a
value to the caller. Methods are also invoked like functions, except that the method is prefaced
with the name of the object invoking the method, like this:

143

144

CHAPTER 6 OBJECT-ORIENTED PHP

$object->method name();

In this section you'll learn all about methods, including method declaration, method invo-
cation, and scope.

Declaring Methods

Methods are created in exactly the same fashion as functions, using identical syntax. The only
difference between methods and normal functions is that the method declaration is typically
prefaced with a scope descriptor. The generalized syntax follows:

scope function functionName()

{
}

/* Function body goes here */

For example, a public method titled calculateSalary() might look like this:

public function calculateSalary()
{

}

return $this->wage * $this->hours;

In this example, the method is directly invoking two class fields, wage and hours, using the
$this keyword. It calculates a salary by multiplying the two field values together, and returns
the result just like a function might. Note, however, that a method isn’t confined to working
solely with class fields; it’s perfectly valid to pass in arguments in the same way you can with
a function.

Tip In the case of public methods, you can forego explicitly declaring the scope and just declare the
method like you would a function (without any scope).

Invoking Methods

Methods are invoked in almost exactly the same fashion as functions. Continuing with the
previous example, the calculateSalary() method might be invoked like so:

$employee = new staff("Janie");
$salary = $employee->calculateSalary();

Method Scopes

PHP supports six method scopes: public, private, protected, abstract, final, and static. The first
five scopes are introduced in this section. The sixth, static, is introduced in the later section,
“Static Members.”

CHAPTER 6 OBJECT-ORIENTED PHP 145

Public

Public methods can be accessed from anywhere, at any time. You declare a public method by
prefacing it with the keyword public, or by foregoing any prefacing whatsoever. The following
example demonstrates both declaration practices, in addition to demonstrating how public
methods can be called from outside the class:

<?php
class Visitors
{
public function greetVisitor()
{
echo "Hello
";
}
function sayGoodbye()
{
echo "Goodbye
";
}
}

Visitors::greetVisitor();
$visitor = new Visitors();
$visitor->sayGoodbye();

>

The following is the result:

Hello
Goodbye

Private

Methods marked as private are available for use only within the originating class and cannot be
called by the instantiated object, nor by any of the originating class’s subclasses. Methods
solely intended to be helpers for other methods located within the class should be marked as
private. For example, consider a method, called validateCardNumber(), used to determine the
syntactical validity of a patron’s library card number. Although this method would certainly
prove useful for satisfying a number of tasks, such as creating patrons and self-checkout, the
function has no use when executed alone. Therefore, validateCardNumber () should be marked
as private, like this:

private function validateCardNumber($number)

{
if (! ereg('"([0-9]{4})-([0-9]{3})-([0-9]{2})")) return FALSE;
else return TRUE;

Attempts to call this method from an instantiated object result in a fatal error.

146

CHAPTER 6 OBJECT-ORIENTED PHP

Protected

Class methods marked as protected are available only to the originating class and its subclasses.
Such methods might be used for helping the class or subclass perform internal computations.
For example, before retrieving information about a particular staff member, you might want to
verify the employee identification number (EIN), passed in as an argument to the class instanti-
ator. You would then verify this EIN for syntactical correctness using the verify ein() method.
Because this method is intended for use only by other methods within the class, and could
potentially be useful to classes derived from Staff, it should be declared protected:

<?php
class Staff
{
private $ein;
function _ construct($ein)
{
if ($this->verify ein($ein)) {
echo "EIN verified. Finish";
}
}
protected function verify ein($ein)
{
return TRUE;
}
}

$employee = new Staff("123-45-6789");
2>

Attempts to call verify ein() from outside of the class will result in a fatal error, because
of its protected scope status.

Abstract

Abstract methods are special in that they are declared only within a parent class but are imple-
mented in child classes. Only classes declared as abstract can contain abstract methods. You
might declare an abstract method if you’d like to define an application programming interface
(API) that can later be used as a model for implementation. A developer would know that his
particular implementation of that method should work provided that it meets all requirements as
defined by the abstract method. Abstract methods are declared like this:

abstract function methodName();

Suppose that you wanted to create an abstract Staff class, which would then serve as the base
class for a variety of staff types (manager, clerk, cashier, and so on):

CHAPTER 6 OBJECT-ORIENTED PHP

abstract class Staff

{
abstract function hire();
abstract function fire();
abstract function promote();
abstract demote();

}

This class could then be extended by the respective staffing classes, such as manager, clerk,
and cashier. Chapter 7 expands upon this concept and looks much more deeply at abstract classes.
Final

Marking a method as final prevents it from being overridden by a subclass. A finalized method
is declared like this:

class staff
{

final function getName() {

Attempts to later override a finalized method result in a fatal error. PHP supports six method
scopes: public, private, protected, abstract, final, and static.

Note The topics of class inheritance and the overriding of methods and fields are discussed in the
next chapter.

Type Hinting

Type hintingis a feature new to PHP 5. Type hinting ensures that the object being passed to the
method is indeed a member of the expected class. For example, it makes sense that only objects of
class staff should be passed to the take_lunchbreak() method. Therefore, you can preface the
method definition’s sole input parameter $employee with staff, enforcing this rule. An example
follows:

private function take lunchbreak (staff $employee)
{

}

Keep in mind that type hinting only works for objects. You can’t offer hints for types such
as integers, floats, or strings.

147

148

CHAPTER 6 OBJECT-ORIENTED PHP

Constructors and Destructors

Often, you'll want to execute a number of tasks when creating and destroying objects. For
example, you might want to immediately assign several fields of a newly instantiated object.
However, if you have to do so manually, you’ll almost certainly forget to execute all of the
required tasks. Object-oriented programming goes a long way toward removing the possibility
for such errors by offering special methods, called constructors and destructors, that automate
the object creation and destruction processes.

Constructors

You often want to initialize certain fields and even trigger the execution of methods found
when an object is newly instantiated. There’s nothing wrong with doing so immediately after
instantiation, but it would be easier if this were done for you automatically. Such a mechanism
exists in OOP, known as a constructor. Quite simply, a constructor is defined as a block of code
that automatically executes at the time of object instantiation. OOP constructors offer a
number of advantages:

¢ Constructors can accept parameters, which are assigned to specific object fields at
creation time.

* Constructors can call class methods or other functions.
¢ Class constructors can call on other constructors, including those from the class parent.

This section reviews how all of these advantages work with PHP 5’s improved constructor
functionality.

Note PHP 4 also offered class constructors, but it used a different, more cumbersome syntax than that
used in version 5. Version 4 constructors were simply class methods of the same name as the class they
represented. Such a convention made it tedious to rename a class. The new constructor-naming convention
resolves these issues. For reasons of compatibility, however, if a class is found to not contain a constructor
satisfying the new naming convention, that class will then be searched for a method bearing the same name
as the class; if located, this method is considered the constructor.

PHP recognizes constructors by the name __ construct. The general syntax for constructor
declaration follows:

function _ construct([argumenti, argument2, ..., argumentN])

{

/* Class initialization code */

As an example, suppose you wanted to immediately populate certain book fields with
information specific to a supplied ISBN. For example, you might want to know the title and
author of the book, in addition to how many copies the library owns, and how many are pres-
ently available for loan. This code might look like this:

<?php

CHAPTER 6

class book

{

}

private $title;
private $isbn;
private $copies;

public function _ construct($isbn)

{
$this->setIsbn($isbn);
$this->getTitle();
$this->getNumberCopies();
}

public function setIsbn($isbn)
{

$this->isbn = $isbn;

}

public function getTitle() {
$this->title = "Beginning Python";
print "Title: ".$this->title."
";
}

public function getNumberCopies() {
$this->copies = "5";

OBJECT-ORIENTED PHP

print "Number copies available: ".$this->copies."
";

$book = new book("159059519X");

>

This results in:

Title: Beginning Python
Number copies available: 5

Of course, a real-life implementation would likely involve somewhat more intelligent get
methods (methods that query a database, for example), but the point is made. Instantiating
the book object results in the automatic invocation of the constructor, which in turn calls the
setIsbn(),getTitle(), and getNumberCopies() methods. If you know that such method should
be called whenever a new object is instantiated, you're far better off automating the calls via
the constructor than attempting to manually call them yourself.

Additionally, if you would like to make sure that these methods are called only via the
constructor, you should set their scope to private, ensuring that they cannot be directly called
by the object or by a subclass.

149

150

CHAPTER 6 OBJECT-ORIENTED PHP

Invoking Parent Constructors

PHP does not automatically call the parent constructor; you must call it explicitly using the
parent keyword. An example follows:

<?php
class Staff
{

protected $name;
protected $title;

function _ construct()

{
echo "<p>Staff constructor called!</p>";
}
}
class Manager extends Staff
{
function _ construct()
{
parent:: construct();
echo "<p>Manager constructor called!</p>";
}
}

$employee = new Manager();
>

This results in:

Staff constructor called!
Manager constructor called!

Neglecting to include the call to parent:: _construct() results in the invocation of only
the Manager constructor, like this:

Manager constructor called!

Invoking Unrelated Constructors

You can invoke class constructors that don’t have any relation to the instantiated object, simply
by prefacing _ constructor with the class name, like so:

classname:: construct()

CHAPTER 6 OBJECT-ORIENTED PHP

As an example, assume that the Manager and Staff classes used in the previous example
bear no hierarchical relationship; instead, they are simply two classes located within the same
library. The Staff constructor could still be invoked within Manager’s constructor, like this:

Staff:: construct()

Calling the Staff constructor like this results in the same outcome as that shown in the
previous example.

Note You may be wondering why the extremely useful constructor-overloading feature, available in many
0O0P languages, has not been discussed. The answer is simple: PHP does not support this feature.

Destructors

Although objects were automatically destroyed upon script completion in PHP 4, it wasn’t
possible to customize this cleanup process. With the introduction of destructors in PHP 5,
this constraint is no more. Destructors are created like any other method, but must be titled
__destruct(). An example follows:

<?php
class Book
{
private $title;
private $isbn;
private $copies;
function _ construct($isbn)
{
echo "<p>Book class instance created.</p>";
}
function _ destruct()
{
echo "<p>Book class instance destroyed.</p>";
}
}

$book = new Book("1893115852");
>

Here’s the result:

Book class instance created.
Book class instance destroyed.

151

152

CHAPTER 6 OBJECT-ORIENTED PHP

When the script is complete, PHP will destroy any objects that reside in memory. Therefore,
if the instantiated class and any information created as a result of the instantiation reside in
memory, you're not required to explicitly declare a destructor. However, if less volatile data
were created (say, stored in a database) as a result of the instantiation, and should be destroyed
at the time of object destruction, you’ll need to create a custom destructor.

Static Class Members

Sometimes it’s useful to create fields and methods that are not invoked by any particular
object, but rather are pertinent to, and are shared by, all class instances. For example, suppose
that you are writing a class that tracks the number of Web page visitors. You wouldn’t want the
visitor count to reset to zero every time the class was instantiated, and therefore you would set
the field to be of the static scope:

<?php
class visitors
{
private static $visitors = 0;
function _ construct()
{
self::$visitors++;
}
static function getVisitors()
{
return self::$visitors;
}
}

/* Instantiate the visitors class. */
$visits = new visitors();

echo visitors::getVisitors()."
";
/* Instantiate another visitors class. */
$visits2 = new visitors();

echo visitors::getVisitors()."
";

>

The results are as follows:

CHAPTER 6 OBJECT-ORIENTED PHP 153

Because the $visitors field was declared as static, any changes made to its value (in this
case via the class constructor) are reflected across all instantiated objects. Also note that static
fields and methods are referred to using the self keyword and class name, rather than via the
this and arrow operators. This is because referring to static fields using the means allowed for
their “regular” siblings is not possible, and will result in a syntax error if attempted.

Note You can’t use $this within a class to refer to a field declared as static.

The instanceof Keyword

Another newcomer to PHP 5 is the instanceof keyword. With it, you can determine whether an
object is an instance of a class, is a subclass of a class, or implements a particular interface, and
do something accordingly. For example, suppose you wanted to learn whether an object called
manager is derived from the class Staf+:

$manager = new Staff();

if ($manager instanceof staff) echo "Yes";

There are two points worth noting here. First, the class name is not surrounded by any sort
of delimiters (quotes). Including them will result in a syntax error. Second, if this comparison
fails, then the script will abort execution! The instanceof keyword is particularly useful when
you’re working with a number of objects simultaneously. For example, you might be repeatedly
calling a particular function, but want to tweak that function’s behavior in accordance with a
given type of object. You might use a case statement and the instanceof keyword to manage
behavior in this fashion.

Helper Functions

A number of functions are available to help the developer manage and use class libraries.
These functions are introduced in this section.

class_exists()

boolean class exists(string class name)

The class_exists() function returns TRUE if the class specified by class_name exists within the
currently executing script context, and returns FALSE otherwise.

get_class()

string get class(object object)

The get_class() function returns the name of the class to which object belongs, and returns
FALSE if object is not an object.

154

CHAPTER 6 OBJECT-ORIENTED PHP

get_class_methods()

array get class_methods (mixed class name)

The get_class_methods() function returns an array containing all method names defined by
the class class_name.

get_class_vars()

array get class vars (string class name)

The get_class_vars() function returns an associative array containing the names of all fields
and their corresponding values defined within the class specified by class_name.
get_declared_classes()

array get declared classes(void)

The function get declared classes() returns an array containing the names of all classes
defined within the currently executing script. The output of this function will vary according to
how your PHP distribution is configured. For instance, executing get declared classes() on
a test server produces a list of 63 classes.

get_object_vars()

array get object vars(object object)

The function get_object vars() returns an associative array containing the defined fields
available to object, and their corresponding values. Those fields that don’t possess a value
will be assigned NULL within the associative array.

get_parent_class()

string get parent class(mixed object)

The get_parent class() function returns the name of the parent of the class to which object
belongs. If object’s class is a base class, then that class name will be returned.
interface_exists()

boolean interface exists(string interface name [, boolean autoload])

The interface_exists() function determines whether an interface exists, returning TRUE if it
does and FALSE otherwise.

is_a()

boolean is a(object object, string class name)

CHAPTER 6 OBJECT-ORIENTED PHP

The is_a() function returns TRUE if object belongs to a class of type class_name, or if it belongs
to a class that is a child of class_name. If object bears no relation to the class_name type, FALSE
isreturned.

is_subclass_of()
boolean is subclass of (object object, string class name)

The is_subclass_of() function returns TRUE if object belongs to a class inherited from
class_name, and returns FALSE otherwise.

method_exists()
boolean method exists(object object, string method name)

The method_exists() function returns TRUE if a method named method_name is available to
object, and returns FALSE otherwise.

Autoloading Objects

For organizational reasons, it's common practice to place each class in a separate file. Returning
to the library scenario, suppose the management application called for classes representing
books, employees, events, and patrons. Tasked with this project, you might create a directory
named classes and place the following files in it: Books.class.php, Employees.class.php,
Events.class.php, and Patrons.class.php. While this does indeed facilitate class management, it
also requires that each separate file be made available to any script requiring it, typically through
the require_once() statement. Therefore, a script requiring all four classes would require that
the following statements be inserted at the beginning:

require_once("classes/Books.class.php");
require_once("classes/Employees.class.php");
require_once("classes/Events.class.php");
require_once("classes/Patrons.class.php");

Managing class inclusion in this manner can become rather tedious, and adds an extra
step to the already often complicated development process. To eliminate this additional task,
the concept of autoloading objects was introduced in PHP 5. Autoloading allows you to define
aspecial __autoload function that is automatically called whenever a class is referenced that
hasn’t yet been defined in the script. Returning to the library example, you can eliminate the
need to manually include each class file by defining the following function:

function _ autoload($class) {
require_once("classes/$class.class.php");

}

155

156

CHAPTER 6 OBJECT-ORIENTED PHP

Defining this function eliminates the need for the require once() statements, because
when a class is invoked for the first time, _autoload() will be called, loading the class
according to the commands defined in __autoload(). This function can be placed in some
global application configuration file, meaning only that function will need to be made avail-
able to the script.

Note The require_once() function and its siblings are introduced in Chapter 10.

Summary

This chapter introduced object-oriented programming fundamentals, followed by an overview
of PHP’s basic object-oriented features, devoting special attention to those enhancements and
additions that are new to PHP 5.

The next chapter expands upon this introductory information, covering topics such as
inheritance, interfaces, abstract classes, and more.

CHAPTER 7

Advanced OOP Features

Chapter 6 introduced the fundamentals of object-oriented PHP programming. This chapter
builds on that foundation by introducing several of the more advanced OOP features that you
should consider once you have mastered the basics. Specifically, this chapter introduces the
following five features:

Object cloning: One of the major improvements to PHP’s OOP model in version 5 is the
treatment of all objects as references rather than values. However, how do you go about
creating a copy of an object if all objects are treated as references? By cloning the object,
a feature that is new in PHP 5.

Inheritance: As mentioned in Chapter 6, the ability to build class hierarchies through
inheritance is a key concept of OOP. This chapter introduces PHP 5’s inheritance features
and syntax, and includes several examples that demonstrate this key OOP feature.

Interfaces: An interface is a collection of unimplemented method definitions and constants
that serves as a class blueprint of sorts. Interfaces define exactly what can be done with
the class, without getting bogged down in implementation-specific details. This chapter
introduces PHP 5’s interface support and offers several examples demonstrating this
powerful OOP feature.

Abstract classes: An abstract class is essentially a class that cannot be instantiated.
Abstract classes are intended to be inherited by a class that can be instantiated, better
known as a concrete class. Abstract classes can be fully implemented, partially imple-
mented, or notimplemented at all. This chapter presents general concepts surrounding
abstract classes, coupled with an introduction to PHP 5’s class abstraction capabilities.

Reflection: As you learned in Chapter 6, hiding the application’s gruesome details behind
afriendly interface (encapsulation) is one of the main OOP tenants. However, programmers
nonetheless require a convenient means for investigating a class’s behavior. A concept
known as reflection provides that capability, as described in this chapter.

Advanced O0OP Features Not Supported by PHP

If you have experience in other object-oriented languages, you might be scratching your head
over why the previous list of features doesn’t include one or more particular OOP features that
you are familiar with from other languages. The reason might well be that PHP doesn’t support

157

158 CHAPTER 7 ADVANCED OOP FEATURES

those features. To save you from further head scratching, the following list enumerates the
advanced OOP features that are not supported by PHP and thus are not covered in this chapter:

¢ Namespaces: Although originally planned as a PHP 5 feature, inclusion of namespace
support was soon removed. It isn’t clear whether namespace support will be integrated
into a future version.

¢ Method overloading: The ability to implement polymorphism through functional
overloading is not supported by PHP and, according to a discussion on the Zend Web
site, probably never will be. Learn more about why at http://www. zend. com/php/
ask_experts.php.

* Operator overloading: The ability to assign additional meanings to operators based
upon the type of data you're attempting to modify did not make the cut this time around.
According to the aforementioned Zend Web site discussion, it is unlikely that this feature
will ever be implemented.

¢ Multiple inheritance: PHP does not support multiple inheritance. Implementation of
multiple interfaces is supported, however.

Only time will tell whether any or all of these features will be supported in future versions
of PHP.

Object Cloning

One of the biggest drawbacks to PHP 4’s object-oriented capabilities was its treatment of objects
as just another data type, which impeded the use of many common OOP methodologies, such as
the use of design patterns. Such methodologies depend on the ability to pass objects to other
class methods as references, rather than as values, which was PHP’s default practice. Thank-
fully, this matter has been resolved with PHP 5, and now all objects are treated by default as
references. However, because all objects are treated as references rather than as values, it is
now more difficult to copy an object. If you try to copy a referenced object, it will simply point
back to the addressing location of the original object. To remedy the problems with copying,
PHP offers an explicit means for cloning an object.

Cloning Example

You clone an object by prefacing it with the clone keyword, like so:
destinationobject = clone targetobject;

Listing 7-1 offers a comprehensive object-cloning example. This example uses a sample
class named corporatedrone, which contains two members (employeeid and tiecolor) and
corresponding getters and setters for these members. The example code instantiates a
corporatedrone object and uses it as the basis for demonstrating the effects of a clone
operation.

CHAPTER 7 ADVANCED OOP FEATURES

Listing 7-1. Cloning an Object with the clone Keyword

<?php

class corporatedrone {
private $employeeid;
private $tiecolor;

>

// Define a setter and getter for $employeeid
function setEmployeeID($employeeid) {

}

$this->employeeid = $employeeid;

function getEmployeeID() {

}

return $this->employeeid;

// Define a setter and getter for $tiecolor
function setTiecolor($tiecolor) {

}

$this->tiecolor = $tiecolor;

function getTiecolor() {

}
}

return $this->tiecolor;

// Create new corporatedrone object
$dronel = new corporatedrone();

// Set the $dronel employeeid member
$dronel->setEmployeeID("12345");

// Set the $dronel tiecolor member
$dronel->setTiecolor("red");

// Clone the $dronel object
$drone2 = clone $dronei;

// Set the $drone2 employeeid member
$drone2->setEmployeeID("67890");

// Output the $drone1l and $drone2 employeeid members

echo
echo
echo
echo

"dronel employeeID: ".$dronel->getEmployeeID()."
";
"dronel tie color: ".$dronel->getTiecolor()."
";
"drone2 employeeID: ".$drone2->getEmployeeID()."
";
"drone2 tie color: ".$drone2->getTiecolor()."
";

Executing this code returns the following output:

159

160

CHAPTER 7 ADVANCED OOP FEATURES

dronel employeeID: 12345
dronel tie color: red
drone2 employeeID: 67890
drone2 tie color: red

Asyou can see, $drone2 became an object of type corporatedrone and inherited the member
values of $drone1. To further demonstrate that $drone2 is indeed of type corporatedrone, its
employeeid member was also reassigned.

The _ clone() Method

You can tweak an object’s cloning behavior by defininga __clone() method within the object
class. Any code in this method will execute during the cloning operation. This occurs in addi-
tion to the copying of all existing object members to the target object. Now the corporatedrone
class is revised, adding the following method:

function _ clone() {
$this->tiecolor = "blue";

}

With this in place, let’s create a new corporatedrone object, add the employeeid member
value, clone it, and then output some data to show that the cloned object’s tiecolor was
indeed set through the _ clone() method. Listing 7-2 offers the example.

Listing 7-2. Extending clone’s Capabilities with the __clone() Method

// Create new corporatedrone object
$dronel = new corporatedrone();

// Set the $dronel employeeid member
$drone1->setEmployeeID("12345");

// Clone the $drone1l object
$drone2 = clone $dronei;

// Set the $drone2 employeeid member
$drone2->setEmployeeID("67890");

// Output the $dronel and $drone2 employeeid members

echo "dronel employeeID: ".$dronel->getEmployeeID()."
";
echo "drone2 employeeID: ".$drone2->getEmployeeID()."
";
echo "drone2 tiecolor: ".$drone2->getTiecolor()."
";

CHAPTER 7 ADVANCED OOP FEATURES

Executing this code returns the following output:

dronel employeelID: 12345
drone2 employeeID: 67890
drone2 tiecolor: blue

Inheritance

People are quite adept at thinking in terms of organizational hierarchies; thus, it doesn’t come
as a surprise that we make widespread use of this conceptual view to manage many aspects of
our everyday lives. Corporate management structures, the United States tax system, and our
view of the plant and animal kingdoms are just a few examples of systems that rely heavily on
hierarchical concepts. Because object-oriented programming is based on the premise of allowing
us humans to closely model the properties and behaviors of the real-world environment we’re
trying to implement in code, it makes sense to also be able to represent these hierarchical
relationships.

For example, suppose that your application calls for a class titled employee, which is intended
to represent the characteristics and behaviors that one might expect from an employee. Some
class members that represent characteristics might include:

* name: The employee’s name

* age: The employee’s age

* salary: The employee’s salary

* years_employed: The number of years the employee has been with the company
Some employee class methods might include:

* dolWork: Perform some work-related task

* eatlunch: Take a lunch break

* takeVacation: Make the most of those valuable two weeks

These characteristics and behaviors would be relevant to all types of employees, regard-
less of the employee’s purpose or stature within the organization. Obviously, though, there are
also differences among employees; for example, the executive might hold stock options and be
able to pillage the company, while other employees are not afforded such luxuries. An assistant
must be able to take a memo, and an office manager needs to take supply inventories. Despite
these differences, it would be quite inefficient if you had to create and maintain redundant
class structures for those attributes that all classes share. The OOP development paradigm
takes this into account, allowing you to inherit from and build upon existing classes.

161

162 CHAPTER 7 ADVANCED OOP FEATURES

Class Inheritance

As applied to PHP, class inheritance is accomplished by using the extends keyword. Listing 7-3
demonstrates this ability, first creating an Employee class, and then creating an Executive class
that inherits from Employee.

Note A class that inherits from another class is known as a child class, or a subclass. The class from
which the child class inherits is known as the parent, or base class.

Listing 7-3. Inheriting from a Base Class

<?php
Define a base Employee class
class Employee {

private $name;

Define a setter for the private $name member.
function setName($name) {
if ($name == "") echo "Name cannot be blank!";
else $this->name = $name;

}

Define a getter for the private $name member
function getName() {
return "My name is ".$this->name."
";

}

} #end Employee class

Define an Executive class that inherits from Employee
class Executive extends Employee {
Define a method unique to Employee
function pillageCompany() {
echo "I'm selling company assets to finance my yacht!";

}

} #end Executive class

Create a new Executive object
$exec = new Executive();

Call the setName() method, defined in the Employee class
$exec->setName("Richard");

CHAPTER 7 ADVANCED OOP FEATURES

Call the getName() method
echo $exec->getName();

Call the pillageCompany() method
$exec->pillageCompany();
2>

This returns the following:

My name is Richard.
I'm selling company assets to finance my yacht!

Because all employees have a name, the Executive class inherits from the Employee class,
saving you the hassle of having to re-create the name member and the corresponding getter and
setter. You can then focus solely on those characteristics that are specific to an executive, in
this case a method named pillageCompany(). This method is available solely to objects of type
Executive, and not to the Employee class or any other class, unless of course we create a class
that inherits from Executive. The following example demonstrates that concept, producing a
class titled CEO, which inherits from Executive:

<?php
class Employee {

class Executive extends Employee {

class CEO extends Executive {
function getFacelift() {
echo "nip nip tuck tuck";
}
}

$ceo = new CEO();
$ceo->setName("Bernie");
$ceo->pillageCompany();
$ceo->getFacelift();

2>

Because Executive has inherited from Employee, objects of type CEO also have all the members
and methods that are available to Executive.

163

164

CHAPTER 7 ADVANCED OOP FEATURES

Inheritance and Constructors

A common question pertinent to class inheritance has to do with the use of constructors. Does
a parent class constructor execute when a child is instantiated? If so, what happens if the child
class also has its own constructor? Does it execute in addition to the parent constructor, or
does it override the parent? Such questions are answered in this section.

If a parent class offers a constructor, it does execute when the child class is instantiated,
provided that the child class does not also have a constructor. For example, suppose that the
Employee class offers this constructor:

function _ construct($name) {
$this->setName($name);

}
Then you instantiate the CEO class and retrieve the name member:

$ceo = new CEO("Dennis");
echo $ceo->getName();

It will yield the following:

My name is Dennis

However, if the child class also has a constructor, that constructor will execute when the
child class is instantiated, regardless of whether the parent class also has a constructor. For
example, suppose that in addition to the Employee class containing the previously described
constructor, the CEO class contains this constructor:

function _ construct() {
echo "<p>CEO object created!</p>";
}

Then you instantiate the CEO class:

$ceo = new CEO("Dennis");
echo $ceo->getName();

This time it will yield the following, because the CEO constructor overrides the Employee
constructor:

CEO object created!
My name is

When it comes time to retrieve the name member, you find that it’s blank, because the
setName () method, which executes in the Employee constructor, never fires. Of course, you're
quite likely going to want those parent constructors to also fire. Not to fear, because there is a
simple solution. Modify the CEO constructor like so:

CHAPTER 7 ADVANCED OOP FEATURES

function _ construct($name) {
parent:: construct($name);
echo "<p>CEO object created!</p>";

}

Again instantiating the CEO class and executing getName() in the same fashion as before,
this time you’ll see a different outcome:

CEO object created!
My name is Dennis

You should understand that when parent:: construct() was encountered, PHP began a
search upward through the parent classes for an appropriate constructor. Because it did not
find one in Executive, it continued the search up to the Employee class, at which pointitlocated
an appropriate constructor. If PHP had located a constructor in the Employee class, then it
would have fired. If you want both the Employee and Executive constructors to fire, then you
need to place a call to parent:: construct() in the Executive constructor.

You also have the option to reference parent constructors in another fashion. For example,
suppose that both the Employee and Executive constructors should execute when a new CEO
object is created. As mentioned in the last chapter, these constructors can be referenced
explicitly within the CEO constructor like so:

function _ construct($name) {
Employee:: construct($name);
Executive:: construct();
echo "<p>CEO object created!</p>";

Interfaces

An interface defines a general specification for implementing a particular service, declaring the
required functions and constants, without specifying exactly how it must be implemented.
Implementation details aren’t provided because different entities might need to implement
the published method definitions in different ways. The point is to establish a general set of
guidelines that must be implemented in order for the interface to be considered implemented.

Caution Class members are not defined within interfaces! This is a matter left entirely to the
implementing class.

Take for example the concept of pillaging a company. This task might be accomplished in
avariety of ways, depending upon who is doing the dirty work. For example, a typical employee
might do his part by using the office credit card to purchase shoes and movie tickets, writing
the purchases off as “office expenses,” while an executive might force his assistant to reallocate

165

166

CHAPTER 7 ADVANCED OOP FEATURES

funds to his Swiss bank account through the online accounting system. Both employees are
intent on accomplishing the task, but each goes about it in a different way. In this case, the goal
of the interface is to define a set of guidelines for pillaging the company, and then ask the
respective classes to implement that interface accordingly. For example, the interface might
consist of just two methods:

emptyBankAccount()
burnDocuments()

You can then ask the Employee and Executive classes to implement these features. In this
section, you'll learn how this is accomplished. First, however, take a moment to understand
how PHP 5 implements interfaces. In PHP, an interface is created like so:

interface IinterfaceName

{ CONST 1,
CONST N;
function methodName1();
-.FL'Jr'lction methodNameN() ;
}

Tip It's common practice to preface the names of interfaces with the letter I to make them easier
to recognize.

The contract is completed when a class implements the interface, via the implements
keyword. All methods must be implemented, or the implementing class must be declared
abstract (a concept introduced in the next section), or else a fatal error similar to the following
will occur:

Fatal error: Class Executive contains 1 abstract methods and must
therefore be declared abstract (pillageCompany::emptyBankAccount) in
/www/htdocs/pmnp/7/executive.php on line 30

The following is the general syntax for implementing the preceding interface:

class className implements interfaceName

{

function methodName1()

{

/* methodName1() implementation */

}

CHAPTER 7 ADVANCED OOP FEATURES

function methodNameN()
{

/* methodName1() implementation */

}

Implementing a Single Interface

This section presents a working example of PHP’s interface implementation by creating and
implementing an interface, named IPillage, thatis used to pillage the company:

interface IPillage

{
function emptyBankAccount();

function burnDocuments();

This interface is then implemented for use by the Executive class:

class Executive extends Employee implements IPillage

{
private $totalStockOptions;
function emptyBankAccount()
{
echo "Call CFO and ask to transfer funds to Swiss bank account.";
}
function burnDocuments()
{
echo "Torch the office suite.";
}
}

Because pillaging should be carried out at all levels of the company, we can implement the
same interface by the Assistant class:

class Assistant extends Employee implements IPillage

{
function takeMemo() {

echo "Taking memo..";

}

function emptyBankAccount()
{

echo "Go on shopping spree with office credit card.";

}

167

168

CHAPTER 7 ADVANCED OOP FEATURES

function burnDocuments()

{

echo "Start small fire in the trash can.";

}

Asyou can see, interfaces are particularly useful because, although they define the number
and name of the methods required for some behavior to occur, they acknowledge the fact that
different classes might require different ways of carrying out those methods. In this example,
the Assistant class burns documents by setting them on fire in a trash can, while the Executive
class does so through somewhat more aggressive means (setting his office on fire).

Implementing Multiple Interfaces

Of course, it wouldn’t be fair if we allowed outside contractors to pillage the company; after all,
itwas upon the backs of our full-time employees that the organization was built. That said, how
can we provide our employees with the ability to both do their job and pillage the company,
while limiting contractors solely to the tasks required of them? The solution is to break these
tasks down into several tasks and then implement multiple interfaces as necessary. Such a
feature is available to PHP 5. Consider this example:

<?php
interface IEmployee {...}
interface IDeveloper {...}
interface IPillage {...}

class Employee implements IEmployee, IDeveloper, iPillage {
}
class Contractor implements IEmployee, IDeveloper {
}
>
Asyou can see, all three interfaces (IEmployee, IDeveloper, and IPillage) have been made

available to the employee, while only IEmployee and IDeveloper have been made available to
the contractor.

Abstract Classes

An abstract class is a class that really isn’t supposed to ever be instantiated, but instead serves
as a base class to be inherited by other classes. For example, consider a class titled Media, intended
to embody the common characteristics of various types of published materials, such as news-
papers, books, and CDs. Because the Media class doesn’t represent a real-life entity, but is instead a
generalized representation of a range of similar entities, you'd never want to instantiate it

directly. To ensure that this doesn’t happen, the class is deemed abstract. The various derived

CHAPTER 7 ADVANCED OOP FEATURES 169

Media classes then inherit this abstract class, ensuring conformity among the child classes,
because all methods defined in that abstract class must be implemented within the subclass.
A class is declared abstract by prefacing the definition with the word abstract, like so:

abstract class classname

{
// insert attribute definitions here
// insert method definitions here

Attempting to instantiate an abstract class results in the following error message:

Fatal error: Cannot instantiate abstract class staff in
/www/book/chaptero6/class.inc.php.

Abstract classes ensure conformity because any classes derived from them must imple-
ment all abstract methods derived within the class. Attempting to forego implementation of
any abstract method defined in the class results in a fatal error.

ABSTRACT CLASS OR INTERFACE?

When should you use an interface instead of an abstract class, and vice versa? This can be quite confusing
and is often a matter of considerable debate. However, there are a few factors that can help you formulate a
decision in this regard:

e |f you intend to create a model that will be assumed by a number of closely related objects, use an
abstract class. If you intend to create functionality that will subsequently be embraced by a number of
unrelated objects, use an interface.

e |f your object must inherit behavior from a number of sources, use an interface. PHP classes can inherit
multiple interfaces but cannot extend multiple abstract classes.

e [f you know that all classes will share a common behavior implementation, use an abstract class and
implement the behavior there. You cannot implement behavior in an interface.

Reflection

The classes used as examples in this and the previous chapters were for demonstrational
purposes only, and therefore were simplistic enough that most of the features and behaviors
could be examined at a single glance. However, real-world applications often require much
more complex code. For instance, it isn’t uncommon for a single application to consist of
dozens of classes, with each class consisting of numerous members and complex methods.
While opening the code in an editor does facilitate review, what if you just want to retrieve a list
of all available classes, or all class methods or members for a specific class? Or perhaps you'd
like to know the scope of a particular method (abstract, private, protected, public, or static).
Sifting through the code to make such determinations can quickly grow tedious.

170

CHAPTER 7 ADVANCED OOP FEATURES

The idea of inspecting an object to learn more about it is known as introspection, whereas
the process of actually doing so is called reflection. As of version 5, PHP offers a reflection API
that is capable of querying not only classes and methods, but also functions, interfaces, and
extensions. This section introduces reflection as applied to the review of classes and methods.

Tip The PHP manual offers more about the other features available to PHP’s reflection API. See http://
www . php.net/oop5.reflection for more information.

As related to class and method introspection, the PHP reflection API consists of four
classes: ReflectionClass, ReflectionMethod, ReflectionParameter, and ReflectionProperty.
Each class is introduced in turn in the following sections.

Writing the ReflectionClass Class

TheReflectionClass class isused tolearn all about a class. It is capable of determining whether the
class is a child class of some particular parent, retrieving a list of class methods and members,
verifying whether the class is final, and much more. Listing 7-4 presents the ReflectionClass
class contents. Although it isn’t practical to introduce each of the more than 30 methods available
to this class, the method names are fairly self-explanatory regarding their purpose. An example
follows the listing.

Listing 7-4. The ReflectionClass Class

class ReflectionClass implements Reflector
{
final private _ clone()
public object _ construct(string name)
public string _ toString()

public static string export()

public mixed getConstant(string name)
public array getConstants()

public ReflectionMethod getConstructor()
public array getDefaultProperties()
public string getDocComment()

public int getEndLine()

public string getExtensionName()

public string getFileName()

public ReflectionClass[] getInterfaces()
public ReflectionMethod[] getMethods()
public ReflectionMethod getMethod(string name)

CHAPTER 7 ADVANCED OOP FEATURES 1

public int getModifiers()

public string getName()

public ReflectionClass getParentClass()

public ReflectionProperty[] getProperties()

public ReflectionProperty getProperty(string name)
public int getStartLine()

public array getStaticProperties()

The following three methods were introduced in PHP 5.1

public bool hasConstant(string name)
public bool hasMethod(string name)
public bool hasProperty(string name)

public bool implementsInterface(string name)

public bool isAbstract()

public bool isFinal()

public bool isInstance(stdclass object)

public bool isInstantiable()

public bool isInterface()

public bool isInternal()

public bool isSubclassOf(ReflectionClass class)
public bool isIterateable()

public bool isUserDefined()

public stdclass newInstance(mixed* args)

public ReflectionExtension getExtension()

To see ReflectionClass in action, let’s use it to examine the corporatedrone class first
created in Listing 7-1:

<?php
$class = new ReflectionClass("corporatedrone");

Retrieve and output class methods
$methods = $class->getMethods();

echo "Class methods:
";

foreach($methods as $method)
echo $method->getName()."
";

172 CHAPTER 7 ADVANCED OOP FEATURES

Is the class abstract or final?
$isAbstract = $class->isAbstract() ? "Yes" : "No";
$isFinal = $class->isFinal() ? "Yes" : "No";

echo "
";
echo "Is class ".$class->getName()." Abstract: ".$isAbstract."
";
echo "Is class ".$class->getName()." Final: ".$isFinal."
";

2>

Executing this example returns the following output:

Class methods:
setEmployeeID
getEmployeeID
setTiecolor
getTiecolor

Is class corporatedrone Abstract: No
Is class corporatedrone Final: No

Writing the ReflectionMethod Class

The ReflectionMethod class is used to learn more about a particular class method. Listing 7-5
presents the ReflectionMethod class contents. An example following the listing illustrates some
of this class’s capabilities.

Listing 7-5. The ReflectionMethod Class

class ReflectionMethod extends ReflectionFunction
{
public _ construct(mixed class, string name)
public string toString()

public static string export()

public int getModifiers()
public ReflectionClass getDeclaringClass()

public mixed invoke(stdclass object, mixed* args)
public mixed invokeArgs(stdclass object, array args)

public bool isAbstract()
public bool isConstructor()
public bool isDestructor()
public bool isFinal()
public bool isPrivate()

public
public
public

CHAPTER 7 ADVANCED OOP FEATURES

bool isProtected()
bool isPublic()
bool isStatic()

ReflectionMethod inherits from ReflectionFunction

(not

covered in this book), therefore the following methods

are made available to it.

final private _ clone()

public

public
public

public
public
public
public
public
public
public
public

public

Let’s use the ReflectionMethod class to learn more about the setTieColor () method defined

string getName()

bool isInternal()
bool isUserDefined()

string getDocComment()

int getEndlLine()

string getFileName()

int getNumberOfRequiredParameters()
int getNumberOfParameters()
ReflectionParameter[] getParameters()
int getStartLine()

array getStaticVariables()

bool returnsReference()

in the corporatedrone class (see Listing 7-1):

<?php

$method = new ReflectionMethod("corporatedrone”, "setTieColor");

$isPublic = $method->isPublic() ? "Yes" : "No";

printf ("Is %s public: %s
", $method->getName(), $isPublic);

printf ("Total number of parameters: %d", $method->getNumberofParameters());

7>

Executing this example produces this output:

Is setTiecolor public: Yes
Total number of parameters: 1

173

174

CHAPTER 7 ADVANCED OOP FEATURES

Writing the ReflectionParameter Class

The ReflectionParameter class is used to learn more about a method’s parameters. Listing 7-6
presents the ReflectionParameter class contents. An example following the listing demonstrates
some of this class’s capabilities.

Listing 7-6. The ReflectionParameter Class

class ReflectionParameter implements Reflector

{

final private _ clone()
public object construct(string name)
public string toString()

public bool allowsNull()
public static string export()

public ReflectionClass getClass()
public mixed getDefaultValue() # introduced in PHP 5.1.0
public string getName()

public bool isDefaultValueAvailable() # introduced in PHP 5.1.0
public bool isOptional() # introduced in PHP 5.1.0
public bool isPassedByReference()

Let’s use the ReflectionParameter class to learn more about the setTieColor() method’s
input parameters (this method is found in the corporatedrone class in Listing 7-1):

<?php
$method = new ReflectionMethod("corporatedrone”, "setTieColor");
$parameters = $method->getParameters();
foreach ($parameters as $parameter) echo $parameter->getName()."
";
>

Executing this example returns the following:

tiecolor

Note It's presently not possible to learn more about a specific method or function parameter. The only way
to do so is to loop through all of them, as is done in the preceding example. Of course, it would be fairly easy
to extend this class to offer such a feature.

CHAPTER 7 ADVANCED OOP FEATURES 175

Writing the ReflectionProperty Class

The ReflectionProperty class is used to learn more about a particular class’s properties.
Listing 7-7 presents the ReflectionProperty class contents. An example demonstrating this
class’s capabilities follows the listing.

Listing 7-7. The ReflectionProperty Class

class ReflectionProperty implements Reflector
{
final private _ clone()
public _ construct(mixed class, string name)
public string toString()

public static string export()

public ReflectionClass getDeclaringClass()

public string getDocComment() # introduced in PHP 5.1.0
public int getModifiers()

public string getName()

public mixed getValue(stdclass object)

public bool isPublic()
public bool isPrivate()
public bool isProtected()
public bool isStatic()
public bool isDefault()

public void setValue(stdclass object, mixed value)

Let’s use the ReflectionProperty class to learn more about the corporatedrone class’s
properties (the corporatedrone class is found in Listing 7-1):

<?php
$method = new ReflectionClass("corporatedrone");

$properties = $method->getProperties();

foreach ($properties as $property) echo $property->getName()."
";
>

This example returns the following output:

employeeid
tiecolor

176

CHAPTER 7 ADVANCED OOP FEATURES

Other Reflection Applications

While reflection is useful for purposes such as those described in the preceding sections, you
may be surprised to know that it can also be applied to a variety of tasks, including testing code,
generating documentation, and performing other duties. For instance, the following two PEAR
packages depend upon the reflection API to carry out their respective tasks:

* PHPDoc: Useful for automatically generating code documentation based on comments
embedded in the source code (see http://www.pear.php.net/package/PHPDoc)

* PHPUnit2: A testing framework for performing unit tests (see http://www.pear.php.net/
package/PHPUnit2)

Consider examining the contents of these packages to learn about the powerful ways in
which they harness reflection to carry out useful tasks.

Summary

This and the previous chapter introduced you to the entire gamut of PHP’s OOP features, both old
and new. Although the PHP development team was careful to ensure that users aren’t constrained
to use these features, the improvements and additions made regarding PHP’s ability to operate
in conjunction with this important development paradigm represent a quantum leap forward
for the language. If you're an old hand at object-oriented programming, hopefully these last
two chapters have left you smiling ear-to-ear over the long-awaited capabilities introduced
within these pages. If you're new to OOP, the material should help you to better understand
many of the key OOP concepts and inspire you to perform additional experimentation and
research.

The next chapter introduces yet another new, and certainly long-awaited, feature of PHP 5:
exception handling.

CHAPTER 8

Error and Exception Handling

Even if you wear an S on your chest when it comes to programming, you can be sure that errors
will be a part of all but the most trivial of applications. Some of these errors are programmer-
induced; that is, they’re the result of blunders during the development process. Others are
user-induced, caused by the end user’s unwillingness or inability to conform to application
constraints. For example, the user might enter “12341234” when asked for an e-mail address,
obviously ignoring what would otherwise be expected as valid input. Regardless of the source
of the error, your application must be able to encounter and react to such unexpected errors in
a graceful fashion, hopefully doing so without a loss of data or the crash of a program or system.
In addition, your application should be able to provide users with the feedback necessary to
understand the reason for such errors and potentially adjust their behavior accordingly.

This chapter introduces several features PHP has to offer for handling errors. Specifically,
the following topics are covered:

* Configuration directives: PHP’s error-related configuration directives determine the
bulk of the language’s error-handling behavior. Many of the most pertinent directives
are introduced in this chapter.

* Error logging: Keeping a running log of application errors is the best way to record
progress regarding the correction of repeated errors, as well as quickly take note of newly
introduced problems. In this chapter, you learn how to log messages to both your oper-
ating system syslog and a custom log file.

* Exception handling: This long-awaited feature, prevalent among many popular languages
(Java, C#, and Python, to name a few) and new to PHP 5, offers a standardized process for
detecting, responding to, and reporting errors.

Historically, the development community has been notoriously lax in implementing
proper application error handling. However, as applications continue to grow increasingly
complex and unwieldy, the importance of incorporating proper error-handling strategies into
your daily development routine cannot be understated. Therefore, you should invest some
time becoming familiar with the many features PHP has to offer in this regard.

Configuration Directives

Numerous configuration directives determine PHP’s error-reporting behavior. Many of these
directives are introduced in this section.

177

178

CHAPTER 8 ERROR AND EXCEPTION HANDLING

error_reporting (string)

Scope: PHP_INI ALL; Defaultvalue: E_ALL & ~E_NOTICE & ~E_STRICT

The error_reporting directive determines the reporting sensitivity level. Thirteen separate
levels are available, and any combination of these levels is valid. See Table 8-1 for a complete

list of these levels. Note that each level is inclusive of all levels residing below it. For example,
the E_WARNING level reports any messages resulting from all 10 levels residing below it in the table.

Table 8-1. PHP’s Error-Reporting Levels

Level Description

E_ALL All errors and warnings

E_ERROR Fatal run-time errors

E_WARNING Run-time warnings

E_PARSE Compile-time parse errors

E_NOTICE Run-time notices

E_STRICT PHP version portability suggestions
E_CORE_ERROR Fatal errors that occur during PHP’s initial start
E_CORE_WARNING Warnings that occur during PHP’s initial start
E_COMPILE_ERROR Fatal compile-time errors

E_COMPILE_WARNING Compile-time warnings

E_USER_ERROR User-generated errors

E_USER_WARNING User-generated warnings

E_USER_NOTICE User-generated notices

Take special note of E_STRICT, because it's new as of PHP 5. E_STRICT suggests code changes
based on the core developers’ determinations as to proper coding methodologies, and is intended
to ensure portability across PHP versions. If you use deprecated functions or syntax, use refer-
ences incorrectly, use var rather than a scope level for class fields, or introduce other stylistic
discrepancies, E_STRICT calls it to your attention.

Note The logical operator NOT is represented by the tilde character (~). This meaning is specific to this
directive, as the exclamation mark (!) bears this significance throughout all other parts of the language.

During the development stage, you'll likely want all errors to be reported. Therefore,
consider setting the directive like this:

error_reporting E_ALL

CHAPTER 8 ERROR AND EXCEPTION HANDLING

However, suppose that you were only concerned about fatal run-time, parse, and core
errors. You could use logical operators to set the directive as follows:

error_reporting E ERROR | E_PARSE | E_CORE_ERROR
As a final example, suppose you want all errors reported except for user-generated ones:
error_reporting E_ALL & ~(E_USER_ERROR | E_USER_WARNING | E_USER NOTICE)

Asis often the case, the name of the game is to remain well-informed about your application’s
ongoing issues without becoming so inundated with information that you quit looking at the
logs. Spend some time experimenting with the various levels during the development process,
at least until you're well aware of the various types of reporting data that each configuration
provides.

display_errors (On | Off)
Scope: PHP_INI ALL; Default value: On

Enabling the display errors directive results in the display of any errors meeting the criteria
defined by error_reporting. You should have this directive enabled only during testing, and
keep it disabled when the site is live. The display of such messages not only is likely to further
confuse the end user, but could also provide more information about your application/server
than you might like to make available. For example, suppose you were using a flat file to store
newsletter subscriber e-mail addresses. Due to a permissions misconfiguration, the application
could not write to the file. Yet rather than catch the error and offer a user-friendly response,
you instead opt to allow PHP to report the matter to the end user. The displayed error would
look something like:

Warning: fopen(subscribers.txt): failed to open stream: Permission denied in
/home/www/htdocs/pmnp/8/displayerrors.php on line 3

Granted, you've already broken a cardinal rule by placing a sensitive file within the docu-
ment root tree, but now you've greatly exacerbated the problem by informing the user of the
exact location and name of the file. The user can then simply enter a URL similar to http://
www. example.com/subscribers.txt, and proceed to do what he will with your soon-to-be
furious subscriber base.

display_startup_errors (On | Off)
Scope: PHP_INI_ALL; Default value: Off

Enabling the display startup_errors directive will display any errors encountered during the
initialization of the PHP engine. Like display errors, you should have this directive enabled
during testing, and disabled when the site is live.

log_errors (On | Off)
Scope: PHP_INI ALL; Default value: Off

179

180

CHAPTER 8 ERROR AND EXCEPTION HANDLING

Errors should be logged in every instance, because such records provide the most valuable
means for determining problems specific to your application and the PHP engine. Therefore,
you should keep log_errors enabled at all times. Exactly to where these log statements are
recorded depends on the error log directive.

error_log (string)
Scope: PHP_INI ALL; Default value: Null

Errors can be sent to the system syslog, or can be sent to a file specified by the administrator via
the error_log directive. If this directive is set to syslog, error statements will be sent to the
syslog on Linux, or to the event log on Windows.

If you're unfamiliar with the syslog, it’s a Unix-based logging facility that offers an API for
logging messages pertinent to system and application execution. The Windows event log is
essentially the equivalent to the Unix syslog. These logs are commonly viewed using the Event
Viewer.

log_errors_max_len (integer)
Scope: PHP_INI ALL; Default value: 1024

The log_errors max_len directive sets the maximum length, in bytes, of each logged item. The
default is 1,024 bytes. Setting this directive to 0 means that no maximum length is imposed.

ignore_repeated_errors (On | Off)
Scope: PHP_INI ALL; Default value: Off

Enabling this directive causes PHP to disregard repeated error messages that occur within the
same file and on the same line.

ignore_repeated_source (On | Off)
Scope: PHP_INI ALL; Default value: Off

Enabling this directive causes PHP to disregard repeated error messages emanating from
different files or different lines within the same file.

track_errors (On | Off)
Scope: PHP_INI_ALL; Default value: Off

Enabling this directive causes PHP to store the most recent error message in the variable
$php_errormsg. Once registered, you can do as you please with the variable data, including
output it, save it to a database, or do any other task suiting a variable.

Error Logging

If you've decided to log your errors to a separate text file, the Web server process owner must
have adequate permissions to write to this file. In addition, be sure to place this file outside of

CHAPTER 8 ERROR AND EXCEPTION HANDLING 181

the document root to lessen the likelihood that an attacker could happen across it and poten-
tially uncover some information that is useful for surreptitiously entering your server. When
you write to the syslog, the error messages look like this:

Dec 5 10:56:37 example.com httpd: PHP Warning:
fopen(/home/www/htdocs/subscribers.txt): failed to open stream: Permission
denied in /home/www/htdocs/book/8/displayerrors.php on line 3

When you write to a separate text file, the error messages look like this:

[05-Dec-2005 10:53:47] PHP Warning:
fopen(/home/www/htdocs/subscribers.txt): failed to open stream: Permission
denied in /home/www/htdocs/book/8/displayerrors.php on line 3

As to which one to use, that is a decision that you should make on a per-environment
basis. If your Web site is running on a shared server, then using a separate text file or database
table is probably your only solution. If you control the server, then using the syslog may be ideal,
because you’d be able to take advantage of a syslog-parsing utility to review and analyze the
logs. Take care to examine both routes and choose the strategy that best fits the configuration
of your server environment.

PHP enables you to send custom messages as well as general error output to the system
syslog. Four functions facilitate this feature. These functions are introduced in this section,
followed by a concluding example.

define_syslog_variables()
void define_syslog variables(void)

The define_syslog variables() function initializes the constants necessary for using the
openlog(), closelog(), and syslog() functions. You need to execute this function before using
any of the following logging functions.

openlog()
int openlog(string ident, int option, int facility)

The openlog() function opens a connection to the platform’s system logger and sets the stage
for the insertion of one or more messages into the system log by designating several parameters
that will be used within the log context:

e ident: A message identifier added to the beginning of each entry. Typically this value is
set to the name of the program. Therefore, you might want to identify PHP-related
messages as “PHP” or “PHP5”.

* option: Determines which logging options are used when generating the message. A list
of available options is offered in Table 8-2. If more than one option is required, separate
each option with a vertical bar. For example, you could specify three of the options like
s0: LOG_ODELAY | LOG _PERROR | LOG PID.

182

CHAPTER 8 ERROR AND EXCEPTION HANDLING

e facility: Helps determine what category of program is logging the message. There are

several categories, including LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR,
and LOG_LOCALN, where N is a value ranging between 0 and 7. Note that the designated
facility determines the message destination. For example, designating LOG_CRON results
in the submission of subsequent messages to the cron log, whereas designating LOG_USER
results in the transmission of messages to the messages file. Unless PHP is being used as
a command-line interpreter, you'll likely want to set this to LOG_USER. It’s common to use
LOG_CRON when executing PHP scripts from a crontab. See the syslog documentation for
more information about this matter.

Table 8-2. Logging Options

Option Description

LOG_CONS If error occurs when writing to the syslog, send output to the system console.

LOG_NDELAY Immediately open the connection to the syslog.

LOG_ODELAY Do not open the connection until the first message has been submitted for
logging. This is the default.

LOG_PERROR Output the logged message to both the syslog and standard error.

LOG PID Accompany each message with the process ID (PID).

closelog()

int closelog(void)

The closelog() function closes the connection opened by openlog().

syslog()

int syslog(int priority, string message)

The syslog() function is responsible for sending a custom message to the syslog. The first
parameter, priority, specifies the syslog priority level, presented in order of severity here:

LOG_EMERG: A serious system problem, likely signaling a crash

LOG_ALERT: A condition that must be immediately resolved to avert jeopardizing
system integrity

LOG_CRIT: A critical error, which could render a service unusable but does not necessarily
place the system in danger

LOG_ERR: A general error
LOG_WARNING: A general warning

LOG_NOTICE: A normal but notable condition

CHAPTER 8 ERROR AND EXCEPTION HANDLING

e LOG_INFO: General informational message
e LOG DEBUG: Information that is typically only relevant when debugging an application

The second parameter, message, specifies the text of the message that you'd like to log. If
you’d like to log the error message as provided by the PHP engine, you can include the string
%min the message. This string will be replaced by the error message string (strerror) as offered
by the engine at execution time.

Now that you've been acquainted with the relevant functions, here’s an example:

<?php
define_syslog variables();
openlog("CHP8", LOG PID, LOG USER);
syslog(LOG_WARNING, "Chapter 8 example warning.");
closelog();

2>

This snippet would produce a log entry in the messages syslog file similar to the following:

Dec 5 20:09:29 CHP8[30326]: Chapter 8 example warning.

Exception Handling

Languages such as Java, C#, and Python have long been heralded for their efficient error-
management abilities, accomplished through the use of exception handling. If you have prior
experience working with exception handlers, you likely scratch your head when working with
any language, PHP included, that doesn’t offer similar capabilities. This sentiment is appar-
ently acommon one across the PHP community, because as of version 5.0, exception-handling
capabilities have been incorporated into the language. In this section, you'll learn all about this
feature, including the basic concepts, syntax, and best practices. Because exception handling
is new to PHP, you may not have any prior experience incorporating this feature into your
applications. Therefore, a general overview is presented regarding the matter. If you're already
familiar with the basic concepts, feel free to skip ahead to the PHP-specific material later in
this section.

Why Exception Handling Is Handy

In a perfect world, your program would run like a well-oiled machine, devoid of both internal
and user-initiated errors that disrupt the flow of execution. However, programming, like the
real world, remains anything but an idyllic dream, and unforeseen events that disrupt the ordinary
chain of events happen all the time. In programmer’s lingo, these unexpected events are known as
exceptions. Some programming languages have the capability to react gracefully to an exception
bylocating a code block that can handle the error. This is referred to as throwing the exception.
In turn, the error-handling code takes ownership of the exception, or catches it. The advantages
to such a strategy are many.

183

184

CHAPTER 8 ERROR AND EXCEPTION HANDLING

For starters, exception handling essentially brings order to the error-management process
through the use of a generalized strategy for not only identifying and reporting application
errors, but also specifying what the program should do once an error is encountered. Further-
more, exception-handling syntax promotes the separation of error handlers from the general
application logic, resulting in considerably more organized, readable code. Most languages
that implement exception handling abstract the process into four steps:

1. The application attempts something.
If the attempt fails, the exception-handling feature throws an exception.

The assigned handler catches the exception and performs any necessary tasks.

> @ N

The exception-handling feature cleans up any resources consumed during the attempt.

Almost all languages have borrowed from the C++ language’s handler syntax, known as
try/catch. Here’s a simple pseudocode example:

try {
perform some task
if something goes wrong
throw exception("Something bad happened")
// Catch the thrown exception
} catch(exception) {
output the exception message

}

You can also set up multiple handler blocks, which enables you to account for a variety of
errors. You can accomplish this either by using various predefined handlers, or by extending
one of the predefined handlers, essentially creating your own custom handler. PHP currently
only offers a single handler, exception. However, that handler can be extended if necessary. It’s
likely that additional default handlers will be made available in future releases. For the purposes of
illustration, let’s build on the previous pseudocode example, using contrived handler classes to
manage I/0 and division-related errors:

try {
perform some task
if something goes wrong
throw IOexception("Something bad happened")
if something else goes wrong
throw Numberexception("Something really bad happened")
// Catch IOexception
} catch(I0exception) {
output the IOexception message
}
// Catch Numberexception
} catch(Numberexception) {
output the Numberexception message

}

CHAPTER 8 ERROR AND EXCEPTION HANDLING 185

If you're new to exceptions, such a syntactical error-handling standard seems like a breath
of fresh air. In the next section, we’ll apply these concepts to PHP by introducing and demon-
strating the variety of new exception-handling procedures made available in version 5.

PHP’s Exception-Handling Implementation

This section introduces PHP’s exception-handling feature. Specifically, we’ll touch upon the
base exception class internals, and demonstrate how to extend this base class, define multiple
catch blocks, and introduce other advanced handling tasks. Let’s begin with the basics: the
base exception class.

PHP’s Base Exception Class

PHP’s base exception class is actually quite simple in nature, offering a default constructor
consisting of no parameters, an overloaded constructor consisting of two optional parameters,
and six methods. Each of these parameters and methods is introduced in this section.

The Default Constructor

The default exception constructor is called with no parameters. For example, you can invoke
the exception class like so:

throw new Exception();

Once the exception has been instantiated, you can use any of the six methods introduced
later in this section. However, only four will be of any use; the other two are useful only if you
instantiate the class with the overloaded constructor, introduced next.

The Overloaded Constructor

The overloaded constructor offers additional functionality not available to the default
constructor through the acceptance of two optional parameters:

* message: Intended to be a user-friendly explanation that presumably will be passed to
the user via the getMessage() method, introduced in the following section.

e error code:Intended to hold an error identifier that presumably will be mapped to some
identifier-to-message table. Error codes are often used for reasons of internationalization
and localization. This error code is made available via the getCode () method, introduced
in the next section. Later, you’ll learn how the base exception class can be extended to
compute identifier-to-message table lookups.

You can call this constructor in a variety of ways, each of which is demonstrated here:

throw new Exception("Something bad just happened", 4)
throw new Exception("Something bad just happened");
throw new Exception("",4);

Of course, nothing actually happens to the exception until it’s caught, as demonstrated
later in this section.

186

CHAPTER 8 ERROR AND EXCEPTION HANDLING

Methods

Six methods are available to the exception class:
¢ getMessage(): Returns the message if it was passed to the constructor.
e getCode(): Returns the error code if it was passed to the constructor.
¢ getline(): Returns the line number for which the exception is thrown.
e getFile(): Returns the name of the file throwing the exception.

e getTrace(): Returns an array consisting of information pertinent to the context in which
the error occurred. Specifically, this array includes the file name, line, function, and
function parameters.

¢ getTraceAsString(): Returns all of the same information as is made available by getTrace(),
except that this information is returned as a string rather than as an array.

Caution Although you can extend the exception base class, you cannot override any of the preceding
methods, because they are all declared as final. See Chapter 6 more for information about the final scope.

Listing 8-1 offers a simple example that embodies the use of the overloaded base class
constructor, as well as several of the methods.

Listing 8-1. Raising an Exception
try {

$th = fopen("contacts.txt", "r");
if (! $fh) {

throw new Exception("Could not open the file!");
}

}
catch (Exception $e) {

echo "Error (File: ".$e->getFile().", line
$e->getLine()."): ".$e->getMessage();

If the exception is raised, something like the following would be output:

Error (File: /usr/local/apache2/htdocs/read.php, line 6): Could not open the file!

CHAPTER 8 ERROR AND EXCEPTION HANDLING

Extending the Exception Class

Although PHP’s base exception class offers some nifty features, in some situations, you'll likely
want to extend the class to allow for additional capabilities. For example, suppose you want to
internationalize your application to allow for the translation of error messages. These messages
reside in an array located in a separate text file. The extended exception class will read from this
flat file, mapping the error code passed into the constructor to the appropriate message (which
presumably has been localized to the appropriate language). A sample flat file follows:

1,Could not connect to the database!

2,Incorrect password. Please try again.

3,Username not found.

4,You do not possess adequate privileges to execute this command.

When MyException is instantiated with a language and error code, it will read in the appro-
priate language file, parsing each line into an associative array consisting of the error code and
its corresponding message. The MyException class and a usage example are found in Listing 8-2.

Listing 8-2. The MyException Class in Action

class MyException extends Exception {
function _ construct($language,$errorcode) {
$this->language = $language;
$this->errorcode = $errorcode;

}

function getMessageMap() {
$errors = file("errors/".$this->language.".txt");
foreach($errors as $error) {
list($key,$value) = explode(",",$error,2);
$errorArray[$key] = $value;
}

return $errorArray[$this->errorcode];

}

} # end MyException

try {
throw new MyException("english",4);
}

catch (MyException $e) {
echo $e->getMessageMap();

}

Catching Multiple Exceptions

Good programmers must always ensure that all possible scenarios are taken into account.
Consider a scenario in which your site offers an HTML form from which the user could

187

188 CHAPTER 8 ERROR AND EXCEPTION HANDLING

subscribe to a newsletter by submitting his or her e-mail address. Several outcomes are
possible. For example, the user could do one of the following:

¢ Provide a valid e-mail address

¢ Provide an invalid e-mail address

¢ Neglect to enter any e-mail address at all

* Attempt to mount an attack such as a SQL injection

Proper exception handling will account for all such scenarios. However, in order to do so,
you need to provide a means for catching each exception. Thankfully, this is easily possible
with PHP. Listing 8-3 shows the code that satisfies this requirement.

Listing 8-3. Catching Multiple Exceptions

<?php

/* The InvalidEmailException class is responsible for notifying the site
administrator in the case that the e-mail is deemed invalid. */

class InvalidEmailException extends Exception {

function _ construct($message, $email) {
$this->message = $message;
$this->notifyAdmin($email);

}

private function notifyAdmin($email) {
mail("admin@example.org","INVALID EMAIL",$email,"From:web@example.com");
}
}

/* The subscribe class is responsible for validating an e-mail address
and adding the user e-mail address to the database. */
class subscribe {

function validateEmail($email) {

try {
if ($email == "") {
throw new Exception("You must enter an e-mail address!");
} else {

list($user,$domain) = explode("@", $email);
if (! checkdnsrr($domain, "MX"))
{

throw new InvalidEmailException("Invalid e-mail address!", $email);

CHAPTER 8 ERROR AND EXCEPTION HANDLING

} else {
return 1;
}
}
} catch (Exception $e) {
echo $e->getMessage();
} catch (InvalidEmailException $e) {
echo $e->getMessage();

}
}

/* This method would presumably add the user's e-mail address to
a database. */

function subscribeUser() {
echo $this->email." added to the database!";

}
} #tend subscribe class
/* Assume that the e-mail address came from a subscription form. */
$ POST['email'] = "someuser@example.com”;

/* Attempt to validate and add address to database. */
if (isset($_POST['email'])) {
$subscribe = new subscribe();
if($subscribe->validateEmail($ POST['email']))
$subscribe->subscribeUser($ POST['email']);

}

>

You can see that it’s possible for two different exceptions to fire, one derived from the base
class and one extended from the base class, InvalidEmailException.

Summary

The topics covered in this chapter touch upon many of the core error-handling practices used
in today’s programming industry. While the implementation of such features unfortunately
remains more preference than policy, the introduction of capabilities such as logging and error
handling has contributed substantially to the ability of programmers to detect and respond to
otherwise unforeseen problems in their code.

In the next chapter, we’ll take an in-depth look at PHP’s string-parsing capabilities,
covering the language’s powerful regular expression features, and offering insight into many of
the powerful string-manipulation functions.

189

CHAPTER 9

Strings and
Regular Expressions

As programmers, we build applications that are based on established rules regarding the
classification, parsing, storage, and display of information, whether that information consists
of gourmet recipes, store sales receipts, poetry, or some other collection of data. In this chapter,
we examine many of the PHP functions that you’ll undoubtedly use on a regular basis when
performing such tasks.

This chapter covers the following topics:

PHP 5’s new string offset syntax: In an effort to remove ambiguity and pave the way for
potential optimization of run-time string processing, a change to the string offset syntax
was made in PHP 5.

Regular expressions: A brief introduction to regular expressions touches upon the features
and syntax of PHP’s two supported regular expression implementations: POSIX and
Perl. Following that is a complete introduction to PHP’s respective function libraries.

String manipulation: It’s conceivable that throughout your programming career, you'll
somehow be required to modify every conceivable aspect of a string. Many of the powerful
PHP functions that can help you to do so are introduced in this chapter.

The PEAR Validate US package: In this and subsequent chapters, various PEAR packages
are introduced that are relevant to the respective chapter’s subject matter. This chapter
introduces Validate US, a PEAR package that is useful for validating the syntax for items
of information commonly used in applications of all types, including phone numbers,
social security numbers, ZIP codes, and state abbreviations. (If you're not familiar with
PEAR, it’s introduced in Chapter 11.)

Complex (Curly) Offset Syntax

Because PHP is aloosely typed language, it makes sense that a string could also easily be treated as
an array. Therefore, any string, php for example, could be treated as both a contiguous entity
and as a collection of three characters, meaning that you could output such a string in two
fashions:

191

192

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

<?php
$thing = "php";
echo $thing;
echo "
";
echo $thing[o];
echo $thing[1];
echo $thing[2]

)

>

This returns the following:

php
php

Although this behavior is quite convenient, it isn’t without problems. For starters, it invites
ambiguity. Looking at the code, was it the developer’s intention to treat this data as a string or
as an array? Also, this loose syntax prevents you from creating any sort of run-time code opti-
mization intended solely for strings, because the scripting engine can’t differentiate between
strings and arrays. To resolve this problem, the square bracket offset syntax has been deprecated
in preference to curly bracket syntax when working with strings. Here’s another look at the
previous example, this time using the preferred syntax:

<?php
$thing = "php";
echo $thing;
echo "
";
echo $thing{o};
echo $thing{1};
echo $thing{2};

?>

This example yields the same results as the original version.

The square bracket syntax has been around so long that it’s unlikely to go away any time
soon, if ever. Nonetheless, in the spirit of clean programming practice, it’s suggested that you
migrate to the curly bracketing syntax style for future applications.

Regular Expressions

Regular expressions provide the foundation for describing or matching data according to defined
syntax rules. A regular expression is nothing more than a pattern of characters itself, matched
against a certain parcel of text. This sequence may be a pattern with which you are already
familiar, such as the word “dog,” or it may be a pattern with specific meaning in the context of
the world of pattern matching, <(?)>.*<\ /.?> for example.

PHP offers functions specific to two sets of regular expression functions, each corresponding
to a certain type of regular expression: POSIX and Perl-style. Each has its own unique style of
syntax and is discussed accordingly in later sections. Keep in mind that innumerable tutorials
have been written regarding this matter; you can find them both on the Web and in various

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS 193

books. Therefore, this chapter provides just a basic introduction to both, leaving it to you to
search out further information should you be so inclined.

Ifyou are not already familiar with the mechanics of general expressions, please take some
time to read through the short tutorial comprising the remainder of this section. If you are
already a regular expression pro, feel free to skip past the tutorial to the section “PHP’s Regular
Expression Functions (POSIX Extended).”

Regular Expression Syntax (POSIX)

The structure of a POSIX regular expression is similar to that of a typical arithmetic expression:
various elements (operators) are combined to form a more complex expression. The meaning
of the combined regular expression elements is what makes them so powerful. You can locate
not only literal expressions, such as a specific word or number, but also a multitude of seman-
tically different but syntactically similar strings, such as all HTML tags in a file.

The simplest regular expression is one that matches a single character, such as g, which
would match strings such as g, haggle, and bag. You could combine several letters together to
form larger expressions, such as gan, which logically would match any string containing gan:
gang, organize, or Reagan, for example.

You can also test for several different expressions simultaneously by using the pipe (|)
operator. For example, you could test for php or zend via the regular expression php | zend.

Prior to introducing PHP’s POSIX-based regular expression functions, we’ll introduce
three syntactical variations that POSIX supports for easily locating different character sequences:
brackets, quantifiers, and predefined character classes.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions, which
are used to find a range of characters. Contrary to the regular expression php, which will find
strings containing the explicit string php, the regular expression [php] will find any string containing
the character p or h. Bracketing plays a significant role in regular expressions, because many
times you may be interested in finding strings containing any of a range of characters. Several
commonly used character ranges follow:

¢ [0-9] matches any decimal digit from 0 through 9.

¢ [a-z] matches any character from lowercase a through lowercase z.

e [A-Z] matches any character from uppercase A through uppercase Z.

e [A-Za-z] matches any character from uppercase A through lowercase z.

Of course, the ranges shown here are general; you could also use the range [0-3] to match
any decimal digit ranging from 0 through 3, or the range [b-v] to match any lowercase character
ranging from b through v. In short, you are free to specify whatever range you wish.

Quantifiers

The frequency or position of bracketed character sequences and single characters can be denoted
by a special character, with each special character having a specific connotation. The +, *, ?,
{occurrence_range}, and $ flags all follow a character sequence:

194 CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

¢ p+matches any string containing at least one p.

¢ p* matches any string containing zero or more p’s.

¢ p? matches any string containing zero or one p.

¢ p{2} matches any string containing a sequence of two p’s.

¢ p{2,3} matches any string containing a sequence of two or three p’s.

¢ p{2,} matches any string containing a sequence of at least two p’s.

¢ p$ matches any string with p at the end of it.

Still other flags can precede and be inserted before and within a character sequence:
¢ “pmatches any string with p at the beginning of it.

¢ ["a-zA-Z] matches any string not containing any of the characters ranging from a
through z and A through Z.

¢ p.p matches any string containing p, followed by any character, in turn followed by
another p.

You can also combine special characters to form more complex expressions. Consider the
following examples:

¢ ~.{2}$ matches any string containing exactly two characters.

¢ (.*) matches any string enclosed within and (presumably HTML
bold tags).

¢ p(hp)* matches any string containing a p followed by zero or more instances of the
sequence hp.

You may wish to search for these special characters in strings instead of using them in
the special context just described. If you want to do so, the characters must be escaped with
a backslash (\). For example, if you wanted to search for a dollar amount, a plausible regular
expression would be as follows: ([\$]) ([0-9]+); that is, a dollar sign followed by one or more
integers. Notice the backslash preceding the dollar sign. Potential matches of this regular
expression include $42, $560, and $3.

Predefined Character Ranges (Character Classes)

For your programming convenience, several predefined character ranges, also known as character
classes, are available. Character classes specify an entire range of characters, for example, the
alphabet or an integer set. Standard classes include:

¢ [:alpha:]: Lowercase and uppercase alphabetical characters. This can also be specified
as [A-Za-z].

¢ [:alnum:]: Lowercase and uppercase alphabetical characters and numerical digits. This
can also be specified as [A-Za-z0-9].

e [:cntrl:]: Control characters such as a tab, escape, or backspace.

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

e [:digit:]: Numerical digits 0 through 9. This can also be specified as [0-9].
e [:graph:]: Printable characters found in the range of ASCII 33 to 126.
e [:lower:]: Lowercase alphabetical characters. This can also be specified as [a-z].

e [:punct:]: Punctuation characters, including~ "~ 1 @#$%~&* () - _+={}[]:; "'<>,
. ?and/.

* [:upper:]: Uppercase alphabetical characters. This can also be specified as [A-Z].

e [:space:]: Whitespace characters, including the space, horizontal tab, vertical tab, new
line, form feed, or carriage return.

e [:xdigit:]: Hexadecimal characters. This can also be specified as [a-fA-F0-9].

PHP’s Regular Expression Functions (POSIX Extended)

PHP currently offers seven functions for searching strings using POSIX-style regular expressions:
ereg(), ereg replace(), eregi(), eregi replace(), split(), spliti(), and sql regcase(). These
functions are discussed in this section.

ereg()
boolean ereg (string pattern, string string [, array regs])

The ereg() function executes a case-sensitive search of string for pattern, returning TRUE if the
pattern is found and FALSE otherwise. Here’s how you could use ereg() to ensure that a user-
name consists solely of lowercase letters:

<?php

$username = "jasoN";

if (ereg("([*a-z])",$username)) echo "Username must be all lowercase!";
>

In this case, ereg() will return TRUE, causing the error message to output.

The optional input parameter regs contains an array of all matched expressions that were
grouped by parentheses in the regular expression. Making use of this array, you could segment
a URL into several pieces, as shown here:

<?php
$url = "http://www.apress.com”;

// break $url down into three distinct pieces:
// "http://www", "apress", and "com"
$parts = ereg("~(http://waw)\.([[:alnum:]]+)\.([[:alnum:]]+)", $url, $regs);

echo $regs[o0]; // outputs the entire string "http://www.apress.com"
echo "
";

echo $regs[1]; // outputs "http://www"

echo "
";

195

196

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

echo $regs[2]; // outputs "apress"
echo "
";
echo $regs[3]; // outputs "com"

?>

This returns:

http://www.apress.com
http://www

apress

com

eregi()
int eregi (string pattern, string string, [array regs])

The eregi() function searches string for pattern. Unlike ereg(), the search is case insensitive.
This function can be useful when checking the validity of strings, such as passwords. This concept
is illustrated in the following example:

<?php
$pswd = "jasongild";
if (leregi("~[a-zA-Z0-9]{8,10}$", $pswd))
echo "The password must consist solely of alphanumeric characters,
and must be 8-10 characters in length!";
2>

In this example, the user must provide an alphanumeric password consisting of 8 to 10
characters, or else an error message is displayed.

ereg_replace()
string ereg replace (string pattern, string replacement, string string)

Theereg replace() function operates much like ereg(), except that the functionality is extended
to finding and replacing pattern with replacement instead of simply locating it. If no matches
are found, the string will remain unchanged. Like ereg(), ereg_replace() is case sensitive.
Consider an example:

<?php
$text = "This is a link to http://www.wjgilmore.com/.";
echo ereg replace("http://([a-zA-Z0-9./-]+)$", "\\0",
$text);
>

This returns:

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

This is a link to
http://www.wjgilmore.com.

A rather interesting feature of PHP’s string-replacement capability is the ability to back-
reference parenthesized substrings. This works much like the optional input parameter regs in
the function ereg(), except that the substrings are referenced using backslashes, such as \0, \1,
\2, and so on, where \0 refers to the entire string, \1 the first successful match, and so on. Up to
nine back references can be used. This example shows how to replace all references to a URL
with a working hyperlink:

$url = "Apress (http://www.apress.com)";
$url = ereg replace("http://([a-zA-Z0-9./-1+)([a-zA-Z/]+)",
"\\0o", $url);
print $url;
// Displays Apress (http://www.apress.com)

Note Although ereg_replace() works just fine, another predefined function named str_replace()
is actually much faster when complex regular expressions are not required. str_replace() is discussed
later in this chapter.

eregi_replace()
string eregi replace (string pattern, string replacement, string string)

The eregi_replace() function operates exactly like ereg_replace(), except that the search for
patternin string is not case sensitive.

split()
array split (string pattern, string string [, int limit])

The split() function divides string into various elements, with the boundaries of each element
based on the occurrence of pattern in string. The optional input parameter 1imit is used to
specify the number of elements into which the string should be divided, starting from the left
end of the string and working rightward. In cases where the pattern is an alphabetical character,
split() is case sensitive. Here’s how you would use split () to break a string into pieces based
on occurrences of horizontal tabs and newline characters:

<?php
$text = "this is\tsome text that\nwe might like to parse.";
print_r(split("[\n\t]",$text));

>

This returns:

197

198

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Array ([0] => this is [1] => some text that [2] => we might like to parse.)

spliti()
array spliti (string pattern, string string [, int 1imit])

The spliti() function operates exactly in the same manner as its sibling split (), except that it
is case insensitive.

sql_regcase()
string sql regcase (string string)

The sql_regcase() function converts each character in string into a bracketed expression
containing two characters. If the character is alphabetic, the bracket will contain both forms;
otherwise, the original character will be left unchanged. This function is particularly useful
when PHP is used in conjunction with products that support only case-sensitive regular
expressions. Here’s how you would use sql_regcase() to convert a string:

<?php
$version = "php 4.0";
print sql regcase($version);
// outputs [Pp] [Hh] [Pp] 4.0
>

Regular Expression Syntax (Perl Style)

Perl has long been considered one of the greatest parsing languages ever written, and it provides
a comprehensive regular expression language that can be used to search and replace even the
most complicated of string patterns. The developers of PHP felt that instead of reinventing the
regular expression wheel, so to speak, they should make the famed Perl regular expression
syntax available to PHP users, thus the Perl-style functions.

Perl-style regular expressions are similar to their POSIX counterparts. In fact, Perl’s regular
expression syntax is a derivation of the POSIX implementation, resulting in considerable simi-
larities between the two. You can use any of the quantifiers introduced in the previous POSIX
section. The remainder of this section is devoted to a brief introduction of Perl regular expression
syntax. Let’s start with a simple example of a Perl-based regular expression:

/food/

Notice that the string food is enclosed between two forward slashes. Just like with POSIX
regular expressions, you can build a more complex string through the use of quantifiers:

/fo+/

This will match fo followed by one or more characters. Some potential matches include
food, fool, and fo4. Here is another example of using a quantifier:

/fo{2,4}/

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS 199

This matches f followed by two to four occurrences of 0. Some potential matches include
fool, fooool, and foosball.

Modifiers

Often, you'll want to tweak the interpretation of a regular expression; for example, you may
want to tell the regular expression to execute a case-insensitive search or to ignore comments
embedded within its syntax. These tweaks are known as modifiers, and they go a long way
toward helping you to write short and concise expressions. A few of the more interesting modi-
fiers are outlined in Table 9-1.

Table 9-1. Six Sample Modifiers

Modifier Description

i Perform a case-insensitive search.

g Find all occurrences (perform a global search).

m Treat a string as several (m for multiple) lines. By default, the ~ and $ characters

match at the very start and very end of the string in question. Using the m modifier
will allow for * and $ to match at the beginning of any line in a string.

s Treat a string as a single line, ignoring any newline characters found within;
this accomplishes just the opposite of the m modifier.

X Ignore whitespace and comments within the regular expression.

U Stop at the first match. Many quantifiers are “greedy”; they match the pattern as

many times as possible rather than just stop at the first match. You can cause
them to be “ungreedy” with this modifier.

These modifiers are placed directly after the regular expression; for example, /string/i.
Let’s consider a few examples:

e /wmd/i: Matches WMD, wMD, WMd, wmd, and any other case variation of the string wmd.

» /taxation/gi: Case insensitivity locates all occurrences of the word taxation. You might
use the global modifier to tally up the total number of occurrences, or use it in conjunction
with a replacement feature to replace all occurrences with some other string.

Metacharacters

Another useful thing you can do with Perl regular expressions is use various metacharacters to
search for matches. A metacharacter is simply an alphabetical character preceded by a backslash
that symbolizes special meaning. A list of useful metacharacters follows:

* \A: Matches only at the beginning of the string.
¢ \b: Matches a word boundary.

e \B: Matches anything but a word boundary.

200 CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

¢ \d: Matches a digit character. This is the same as [0-9].
* \D: Matches a nondigit character.

* \s: Matches a whitespace character.

* \S: Matches a nonwhitespace character.

¢ []: Encloses a character class. A list of useful character classes was provided in the
previous section.

¢ ():Encloses a character grouping or defines a back reference.
¢ $:Matches the end of a line.

¢ ": Matches the beginning of a line.

¢ .:Matches any character except for the newline.

¢ \: Quotes the next metacharacter.

* \w: Matches any string containing solely underscore and alphanumeric characters.
This is the same as [a-zA-Z0-9_].

* \W: Matches a string, omitting the underscore and alphanumeric characters.
Let’s consider a few examples:
/sa\b/

Because the word boundary is defined to be on the right side of the strings, this will match
strings like pisa and lisa, but not sand.

/\blinux\b/i
This returns the first case-insensitive occurrence of the word 1inux.
/sa\B/

The opposite of the word boundary metacharacter is \B, matching on anything but a word
boundary. This will match strings like sand and Sally, but not Melissa.

/\$\d+\g

This returns all instances of strings matching a dollar sign followed by one or more digits.

PHP’s Regular Expression Functions (Perl Compatible)

PHP offers seven functions for searching strings using Perl-compatible regular expressions:
preg grep(), preg_match(), preg match all(), preg quote(), preg replace(),

preg replace callback(), and preg split(). These functions are introduced in the following
sections.

preg_grep()
array preg grep (string pattern, array input [, flags])

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

The preg_grep() function searches all elements of the array input, returning an array consisting of
all elements matching pattern. Consider an example that uses this function to search an array
for foods beginning with p:

<?php
$foods = array("pasta", "steak", "fish", "potatoes");
$food = preg grep("/"p/", $foods);
print_r($food);

>

This returns:

Array ([0] => pasta [3] => potatoes)

Note that the array corresponds to the indexed order of the input array. If the value at that
index position matches, it’s included in the corresponding position of the output array. Other-
wise, that position is empty. If you want to remove those instances of the array that are blank,
filter the output array through the function array_values(), introduced in Chapter 5.

The optional input parameter flags was added in PHP version 4.3. It accepts one value,
PREG_GREP_INVERT. Passing this flag will result in retrieval of those array elements that do not
match the pattern.

preg_match()

int preg match (string pattern, string string [, array matches]
[, int flags [, int offset]]])

The preg_match() function searches string for pattern, returning TRUE if it exists and FALSE
otherwise. The optional input parameter pattern_array can contain various sections of the
subpatterns contained in the search pattern, if applicable. Here’s an example that uses
preg match() to perform a case-sensitive search:

<?php

$line = "Vim is the greatest word processor ever created!";

if (preg match("/\bvim\b/i", $line, $match)) print "Match found!";
>

For instance, this script will confirm a match if the word Vim or vimis located, but not
simplevim, vims, or evim.
preg_match_all()

int preg match_all (string pattern, string string, array pattern_array
[, int order])

The preg_match_all() function matches all occurrences of pattern in string, assigning each
occurrence to array pattern_array in the order you specify via the optional input parameter
order. The order parameter accepts two values:

201

202 CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

e PREG_PATTERN_ORDER is the default if the optional order parameter is not included.
PREG_PATTERN_ORDER specifies the order in the way that you might think most logical:
$pattern_array[0] is an array of all complete pattern matches, $pattern array[1] is an
array of all strings matching the first parenthesized regular expression, and so on.

e PREG SET ORDER orders the array a bit differently than the default setting. $pattern_array[0]
contains elements matched by the first parenthesized regular expression,
$pattern array[1] contains elements matched by the second parenthesized regular
expression, and so on.

Here’s how you would use preg match_all() to find all strings enclosed in bold HTML tags:

<?php
$userinfo = "Name: Zeev Suraski
 Title: PHP Guru";
preg match all ("/(.*)<\/b>/U", $userinfo, $pat array);
print $pat_array[o][0]."
 ".$pat array[0][1]."\n";

?>

This returns:

Zeev Suraski
PHP Guru

preg_quote()
string preg quote(string str [, string delimiter])

The function preg_quote() inserts a backslash delimiter before every character of special
significance to regular expression syntax. These special charactersinclude: $** () +={} []|
\\ : < >. The optional parameter delimiter is used to specify what delimiter is used for the
regular expression, causing it to also be escaped by a backslash. Consider an example:

<?php
$text = "Tickets for the bout are going for $500.";
echo preg quote($text);

2>

This returns:

Tickets for the bout are going for \$500\.

preg_replace()

mixed preg replace (mixed pattern, mixed replacement, mixed str [, int limit])

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS 203

The preg replace() function operates identically to ereg_replace(), except that it uses a Perl-
based regular expression syntax, replacing all occurrences of pattern with replacement, and
returning the modified result. The optional input parameter 1imit specifies how many matches
should take place. Failing to set 1imit or setting it to -1 will result in the replacement of all
occurrences. Consider an example:

<?php

$text = "This is a link to http://www.wjgilmore.com/.";

echo preg replace("/http:\/\/(.*¥)\//", "\${0}", $text);
2>

This returns:

This is a link to
http://www.wjgilmore.com/.

Interestingly, the pattern and replacement input parameters can also be arrays. This function
will cycle through each element of each array, making replacements as they are found. Consider
this example, which we could market as a corporate report generator:

<?php
$draft = "In 2006 the company faced plummeting revenues and scandal.";
$keywords = array("/faced/", "/plummeting/", "/scandal/");
$replacements = array("celebrated", "skyrocketing", "expansion");
echo preg replace($keywords, $replacements, $draft);

2>

This returns:

In 2006 the company celebrated skyrocketing revenues and expansion.

preg_replace_callback()

mixed preg replace callback(mixed pattern, callback callback, mixed str
[, int 1imit])

Rather than handling the replacement procedure itself, the preg replace callback() function
delegates the string-replacement procedure to some other user-defined function. The pattern
parameter determines what you're looking for, while the str parameter defines the string you're
searching. The callback parameter defines the name of the function to be used for the replace-
ment task. The optional parameter 1imit specifies how many matches should take place. Failing to
set 1limit or setting it to -1 will result in the replacement of all occurrences. In the following
example, a function named acronym() is passed into preg replace callback() and is used to
insert the long form of various acronyms into the target string:

204 CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

<?php
// This function will add the acronym long form
// directly after any acronyms found in $matches
function acronym($matches) {
$acronyms = array(
"WWW' => 'World Wide Web',
"IRS' => 'Internal Revenue Service',
'"PDF' => 'Portable Document Format');
if (isset($acronyms[$matches[1]]))
return $matches[1] . " (" . $acronyms[$matches[1]] . ")";
else
return $matches[1];

// The target text
$text = "The <acronym>IRS</acronym> offers tax forms in
<acronym>PDF</acronym> format on the <acronym>WwWW</acronym>.";
// Add the acronyms' long forms to the target text
$newtext = preg replace_callback("/<acronym>(.*)<\/acronym>/U", "acronym',
$text);

print_r($newtext);
>

This returns:

The IRS (Internal Revenue Service) offers tax forms
in PDF (Portable Document Format) on the WWW (World Wide Web).

preg_split()
array preg split (string pattern, string string [, int Iimit [, int flags]])

The preg_split() function operates exactly like split(), except that pattern can also be defined in
terms of a regular expression. If the optional input parameter 1imit is specified, only 1imit
number of substrings are returned. Consider an example:

<?php
$delimitedText = "+Jason+++Gilmore+++++++++++Columbus+++0H";
$fields = preg split("/\+{1,}/", $delimitedText);
foreach($fields as $field) echo $field."
";

?>

This returns the following:

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Jason
Gilmore
Columbus
OH

Note Later in this chapter, the section titled “Alternatives for Regular Expression Functions” offers several
standard functions that can be used in lieu of regular expressions for certain tasks. In many cases, these
alternative functions actually perform much faster than their regular expression counterparts.

Other String-Specific Functions

In addition to the regular expression-based functions discussed in the first half of this chapter,
PHP offers over 100 functions collectively capable of manipulating practically every imaginable
aspect of a string. To introduce each function would be out of the scope of this book and would
only repeat much of the information in the PHP documentation. This section is devoted to a
categorical FAQ of sorts, focusing upon the string-related issues that seem to most frequently
appear within community forums. The section is divided into the following topics:

* Determining string length

* Comparing string length

* Manipulating string case

* Converting strings to and from HTML
 Alternatives for regular expression functions
* Padding and stripping a string

* Counting characters and words

Determining the Length of a String

Determining string length is a repeated action within countless applications. The PHP function
strlen() accomplishes this task quite nicely.

strlen()

int strlen (string str)

You can determine the length of a string with the strlen() function. This function returns the
length of a string, where each character in the string is equivalent to one unit. The following
example verifies whether a user password is of acceptable length:

205

206

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

<?php

$pswd = "secretpswd";

if (strlen($string) < 10) echo "Password is too short!";
>

In this case, the error message will not appear, because the chosen password consists of
10 characters, whereas the conditional expression validates whether the target string consists
of less than 10 characters.

Comparing Two Strings

String comparison is arguably one of the most important features of the string-handling capa-
bilities of any language. Although there are many ways in which two strings can be compared
for equality, PHP provides four functions for performing this task: strcmp(), strcasecmp(),
strspn(), and strcspn(). These functions are discussed in the following sections.

stremp()
int stremp (string stri, string str2)

The strcmp() function performs a binary-safe, case-sensitive comparison of the strings str1
and str2, returning one of three possible values:

e 0ifstriand str2 are equal
o -lifstriislessthan str2
e lifstr2islessthan stri

Web sites often require a registering user to enter and confirm his chosen password, less-
ening the possibility of an incorrectly entered password as a result of a typing error. Because
passwords are often case sensitive, strcmp() is a great function for comparing the two:

<?php
$pswd = "supersecret"”;
$pswd2 = "supersecret"”;

if (strcmp($pswd,$pswd2) != 0) echo "Your passwords do not match!";
>

Note that the strings must match exactly for strcmp() to consider them equal. For example,
Supersecret is different from supersecret. If you're looking to compare two strings case-
insensitively, consider strcasecmp(), introduced next.

Another common point of confusion regarding this function surrounds its behavior of
returning 0 if the two strings are equal. This is different from executing a string comparison
using the == operator, like so:

if ($str1 == $str2)

While both accomplish the same goal, which is to compare two strings, keep in mind that
the values they return in doing so are different.

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS 207

strcasecmp()
int strcasecmp (string stri, string str2)

The strcasecmp() function operates exactly like strcmp(), except that its comparison is case
insensitive. The following example compares two e-mail addresses, an ideal use for strcasecmp()
because casing does not determine an e-mail address’s uniqueness:

<?php
$emaill = "admin@example.com";
$email2 = "ADMIN@example.com";

if (! strcasecmp($email1, $email2))
print "The email addresses are identicall!"”;
7>

In this case, the message is output, because strcasecmp() performs a case-insensitive
comparison of $emaill and $email2 and determines that they are indeed identical.

strspn()
int strspn (string stri, string str2)

The strspn() function returns the length of the first segment in str1 containing characters also
in str2. Here’s how you might use strspn() to ensure that a password does not consist solely
of numbers:

<?php
$password = "3312345";
if (strspn($password, "1234567890") == strlen($password))
echo "The password cannot consist solely of numbers!";
>

In this case, the error message is returned, because $password does indeed consist solely
of digits.

strespn()
int strcspn (string stri, string str2)

The strcspn() function returns the length of the first segment in str1 containing characters
not found in str2. Here’s an example of password validation using strcspn():

<?php
$password = "a12345";
if (strcspn($password, "1234567890") == 0) {
print "Password cannot consist solely of numbers! ";

}

>

208

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

In this case, the error message will not be displayed, because $password does not consist
solely of numbers.

Manipulating String Case

Four functions are available to aid you in manipulating the case of characters in a string:
strtolower(), strtoupper(), ucfirst(), and ucwords(). These functions are discussed in
this section.

strtolower()

string strtolower (string str)

The strtolower() function converts str to all lowercase letters, returning the modified string.
Nonalphabetical characters are not affected. The following example uses strtolower() to
convert a URL to all lowercase letters:

<?php
$url = "http://WWW.EXAMPLE.COM/";
echo strtolower($url);

>

This returns:

http://www.example.com/

strtoupper()
string strtoupper (string str)

Just as you can convert a string to lowercase, you can convert it to uppercase. This is accom-
plished with the function strtoupper (). Nonalphabetical characters are not affected. This
example uses strtoupper() to convert a string to all uppercase letters:

<?php
$msg = "i annoy people by capitalizing e-mail text.";
echo strtoupper($msg);

?>

This returns:

I ANNOY PEOPLE BY CAPITALIZING E-MAIL TEXT.

ucfirst()

string ucfirst (string str)

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS 209

The ucfirst() function capitalizes the first letter of the string stz, if it is alphabetical. Nonalpha-
betical characters will not be affected. Additionally, any capitalized characters found in the
string will be left untouched. Consider this example:

<?php
$sentence = "the newest version of PHP was released today!";
echo ucfirst($sentence);

2>

This returns:

The newest version of PHP was released today!

Note that while the first letter is indeed capitalized, the capitalized word “PHP” was left
untouched.
ucwords()
string ucwords (string str)

The ucwords () function capitalizes the first letter of each word in a string. Nonalphabetical
characters are not affected. This example uses ucwords() to capitalize each word in a string:

<?php
$title = "0'Malley wins the heavyweight championship!";
echo ucwords($title);

>

This returns:

0'Malley Wins The Heavyweight Championship!

Note that if “O’Malley” was accidentally written as “O’malley,” ucwords () would not catch
the error, as it considers a word to be defined as a string of characters separated from other
entities in the string by a blank space on each side.

Converting Strings to and from HTML

Converting a string or an entire file into a form suitable for viewing on the Web (and vice versa)
is easier than you would think. Several functions are suited for such tasks, all of which are intro-
duced in this section. For convenience, this section is divided into two parts: “Converting Plain
Text to HTML” and “Converting HTML to Plain Text.”

210

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Converting Plain Text to HTML

It is often useful to be able to quickly convert plain text into HTML for readability within a Web
browser. Several functions can aid you in doing so. These functions are the subject of this section.

ni2br()

string nl2br (string str)

The n12br () function converts all newline (\n) characters in a string to their XHTML-compliant
equivalent,
. The newline characters could be created via a carriage return, or explicitly
written into the string. The following example translates a text string to HTML format:

<?php
$recipe = "3 tablespoons Dijon mustard
1/3 cup Caesar salad dressing
8 ounces grilled chicken breast
3 cups romaine lettuce";
// convert the newlines to
's.
echo nl2br($recipe);

>

Executing this example results in the following output:

3 tablespoons Dijon mustard

1/3 cup Caesar salad dressing

8 ounces grilled chicken breast

3 cups romaine lettuce

htmlentities()

string htmlentities (string str [, int quote style [, int charset]])

During the general course of communication, you may come across many characters that are
not included in a document’s text encoding, or that are not readily available on the keyboard.
Examples of such characters include the copyright symbol (©), cent sign (¢), and the French
accent grave (). To facilitate such shortcomings, a set of universal key codes was devised, known
as character entity references. When these entities are parsed by the browser, they will be converted
into their recognizable counterparts. For example, the three aforementioned characters would
be presented as 8copy;, 8cent;, and È, respectively.

The htmlentities() function converts all such characters found in str into their HTML equiv-
alents. Because of the special nature of quote marks within markup, the optional quote_style
parameter offers the opportunity to choose how they will be handled. Three values are accepted:

e ENT_COMPAT: Convert double-quotes and ignore single quotes. This is the default.
e ENT_NOQUOTES: Ignore both double and single quotes.

e ENT_QUOTES: Convert both double and single quotes.

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

A second optional parameter, charset, determines the character set used for the conversion.
Table 9-2 offers the list of supported character sets. If charset is omitted, it will default to
1SO-8859-1.

Table 9-2. htmlentities()’s Supported Character Sets

Character Set Description

BIG5 Traditional Chinese

BIG5-HKSCS BIG5 with additional Hong Kong extensions, traditional Chinese
cp866 DOS-specific Cyrillic character set

cp1251 Windows-specific Cyrillic character set

cp1252 Windows-specific character set for Western Europe
EUC-JP Japanese

GB2312 Simplified Chinese

IS0-8859-1 Western European, Latin-1

IS0-8859-15 Western European, Latin-9

KOI8-R Russian

Shift-JIS Japanese

UTF-8 ASCII-compatible multibyte 8 encode

The following example converts the necessary characters for Web display:

<?php
$advertisement = "Coffee at 'Café Francaise' costs $2.25.";
echo htmlentities($advertisement);

>

This returns:

Coffee at 'Caf8egrave; Fran8ccedil;aise' costs $2.25.

Two characters were converted, the accent grave (€) and the cedilla (¢). The single quotes
were ignored due to the default quote_style setting ENT_COMPAT.
htmispecialchars()
string htmlspecialchars (string str [, int quote style [, string charset]])

Several characters play a dual role in both markup languages and the human language. When
used in the latter fashion, these characters must be converted into their displayable equivalents.

211

212

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

For example, an ampersand must be converted to &, whereas a greater-than character
must be converted to 8gt;. The htmlspecialchars() function can do this for you, converting
the following characters into their compatible equivalents:

¢ &becomes &

¢ " (double quote) becomes 8quot;
¢ ' (single quote) becomes '
e <becomes8lt;

* >becomes >

This function is particularly useful in preventing users from entering HTML markup into
an interactive Web application, such as a message board.
The following example converts potentially harmful characters using htmlspecialchars():

<?php
$input = "I just can't get <<enough>> of PHP!";
echo htmlspecialchars($input);

2>

Viewing the source, you'll see:

I just can't get &1t;&1t;enoughdgt;> of PHP &!

If the translation isn’t necessary, perhaps a more efficient way to do this would be to use
strip tags(), which deletes the tags from the string altogether.

Tip If you are using gethtmlspecialchars() in conjunction with a function like n12br (), you should
execute n12br () after gethtmlspecialchars(); otherwise, the
 tags that are generated with
nl2br () will be converted to visible characters.

get_html_translation_table()
array get html translation table (int table [, int quote style])

Using get html translation table() isa convenient way to translate text to its HTML equivalent,
returning one of the two translation tables (HTML_SPECIALCHARS or HTML_ENTITIES) specified by
table. This returned value can then be used in conjunction with another predefined function,
strtr() (formally introduced later in this section), to essentially translate the text into its corre-
sponding HTML code.

The following sample uses get_html translation_table() to convert text to HTML:

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

<?php
$string = "La pasta é il piatto pid amato in Italia";
$translate = get_html_translation_table(HTML_ENTITIES);
echo strtr($string, $translate);

>

This returns the string formatted as necessary for browser rendering:

La pasta é il piatto pi8uacute; amato in Italia

Interestingly, array flip() is capable of reversing the text-to-HTML translation and vice
versa. Assume that instead of printing the result of strtr() in the preceding code sample, you
assigned it to the variable $translated string.

The next example uses array flip() to return a string back to its original value:

<?php
$entities = get html translation table(HTML ENTITIES);
$translate = array flip($entities);
$string = "La pasta é il piatto piú amato in Italia"“;
echo strtr($string, $translate);
>

This returns the following:

La pasta é il piatto pid amato in italia

strir()

string strtr (string str, array replacements)

The strtr() function converts all characters in str to their corresponding match found in

replacements. This example converts the deprecated bold () character to its XHTML equivalent:

<?php
$table = array("" => "", "" => "");
$html = "Today In PHP-Powered News";
echo strtr($html, $table);

>

This returns the following:

Today In PHP-Powered News

213

214 CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Converting HTML to Plain Text

You may sometimes need to convert an HTML file to plain text. The following function can
help you accomplish this.

strip_tags()
string strip tags (string str [, string allowable tags])

The strip tags() function removes all HTML and PHP tags from stz, leaving only the text
entities. The optional allowable_ tags parameter allows you to specify which tags you would
like to be skipped during this process. This example uses strip tags() to delete all HTML tags
from a string:

<?php
$input = "Email spammer@example.com";
echo strip tags($input);

?>

This returns the following:

Email spammer@example.com

The following sample strips all tags except the <a> tag:

<?php
$input = "This example
is awesome!";
echo strip tags($input, "<a>");
>

This returns the following:

This example is awesome!

Note Another function that behaves like strip tags() is fgetss(). This function is described in
Chapter 10.

Alternatives for Regular Expression Functions

When you're processing large amounts of information, the regular expression functions can
slow matters dramatically. You should use these functions only when you are interested in
parsing relatively complicated strings that require the use of regular expressions. If you are

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS 215

instead interested in parsing for simple expressions, there are a variety of predefined functions
that speed up the process considerably. Each of these functions is described in this section.

strtok()

string strtok (string str, string tokens)

The strtok() function parses the string str based on the characters found in tokens. One
oddity about strtok() is that it must be continually called in order to completely tokenize a
string; each call only tokenizes the next piece of the string. However, the str parameter needs
to be specified only once, because the function keeps track of its position in str until it either
completely tokenizes str or a new str parameter is specified. Its behavior is best explained via
an example:

<?php
$info = "J. Gilmore:jason@example.com|Columbus, Ohio";

// delimiters include colon (:), vertical bar (|), and comma (,)
$tokens = ":|,";
$tokenized = strtok($info, $tokens);
// print out each element in the $tokenized array
while ($tokenized) {
echo "Element = $tokenized
";
// Don't include the first argument in subsequent calls.
$tokenized = strtok($tokens);

>

This returns the following:

Element = J. Gilmore
Element = jason@example.com
Element = Columbus

Element = Ohio

parse_str()
void parse str (string str [, array arr]))

The parse_str() function parses string into various variables, setting the variables in the
current scope. If the optional parameter arr is included, the variables will be placed in that
array instead. This function is particularly useful when handling URLs that contain HTML
forms or other parameters passed via the query string. The following example parses informa-
tion passed via a URL. This string is the common form for a grouping of data that is passed from
one page to another, compiled either directly in a hyperlink or in an HTML form:

216

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

<?php
// suppose that the URL is http://www.example.com?1n=gilmore8zip=43210
parse str($ SERVER['QUERY STRING']);
// after execution of parse str(), the following variables are available:
// $ln = "gilmore"
// $zip = "43210"

>

Note that parse_str() is unable to correctly parse the first variable of the query string
if the string leads off with a question mark. Therefore, if you use a means other than
$ SERVER['QUERY_STRING'] for retrieving this parameter string, make sure you delete that
preceding question mark before passing the string to parse_str(). The 1trim() function, intro-
duced later in the chapter, is ideal for such tasks.

explode()
array explode (string separator, string str [, int limit])

The explode() function divides the string str into an array of substrings. The original string is
divided into distinct elements by separating it based on the character separator specified by
separator. The number of elements can be limited with the optional inclusion of 1imit. Let’s
use explode() in conjunction with sizeof() and strip tags() to determine the total number
of words in a given block of text:

<?php

$summary = <<< summary

In the latest installment of the ongoing Developer.com PHP series,

I discuss the many improvements and additions to

PHP 5's object-oriented architecture.
summary;

$words = sizeof(explode(' ',strip tags($summary)));

echo "Total words in summary: $words";

>

This returns:

Total words in summary: 22

The explode () function will always be considerably faster than preg_split(), split(), and
spliti(). Therefore, always use it instead of the others when a regular expression isn’t necessary.

implode()

string implode (string delimiter, array pieces)

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Just as you can use the explode() function to divide a delimited string into various array elements,
you concatenate array elements to form a single delimited string. This is accomplished with
the implode() function. This example forms a string out of the elements of an array:

<?php
$cities = array("Columbus", "Akron", "Cleveland", "Cincinnati");
echo implode("|", $cities);

>

This returns:

Columbus|Akron|Cleveland|Cincinnati

Note join() is an alias for implode().

strpos()
int strpos (string str, string substr [, int offset])

The strpos() function finds the position of the first case-sensitive occurrence of substr in str.
The optional input parameter offset specifies the position at which to begin the search. If
substris notin str, strpos() will return FALSE. The optional parameter offset determines the
position from which strpos() will begin searching. The following example determines the
timestamp of the first time index.html is accessed:

<?php

$substr = "index.html";
$log = <<« logfile
192.168.1.11:/www/htdocs/index.html:[2006/02/10:20:36:50]
192.168.1.13:/www/htdocs/about.html:[2006/02/11:04:15:23]
192.168.1.15:/www/htdocs/index.html:[2006/02/15:17:25]
logfile;

// what is first occurrence of the time $substr in log?
$pos = strpos($log, $substr);

// Find the numerical position of the end of the line
$pos2 = strpos($log,"\n",$pos);

// Calculate the beginning of the timestamp
$pos = $pos + strlen($substr) + 1;

217

218 CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

// Retrieve the timestamp
$timestamp = substr($log,$pos,$pos2-$pos);

echo "The file $substr was first accessed on: $timestamp"”;
>

This returns the position in which the file index.html was first accessed:

The file index.html was first accessed on: [2006/02/10:20:36:50]

stripos()
int stripos(string str, string substr [, int offset])

The function stripos() operates identically to strpos(), except that that it executes its search
case-insensitively.

strrpos()
int strrpos (string str, char substr [, offset])

The strrpos() function finds the last occurrence of substr in str, returning its numerical posi-
tion. The optional parameter offset determines the position from which strrpos() will begin
searching. Suppose you wanted to pare down lengthy news summaries, truncating the summary
and replacing the truncated component with an ellipsis. However, rather than simply cut off
the summary explicitly at the desired length, you want it to operate in a user-friendly fashion,
truncating at the end of the word closest to the truncation length. This function is ideal for such
a task. Consider this example:

<?php
// Limit $summary to how many characters?
$1limit = 100;

$summary = <<< summary

In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to

PHP 5's object-oriented
architecture.

summary;

if (strlen($summary) > $limit)
$summary = substr($summary, 0, strrpos(substr($summary, 0, $limit),
' |)) . 1...|;
echo $summary;
?>

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

This returns:

In the latest installment of the ongoing Developer.com PHP series,
I discuss the many...

str_replace()
mixed str replace (string occurrence, mixed replacement, mixed str [, int count])

The str_replace() function executes a case-sensitive search for occurrence in str, replacing
all instances with replacement. If occurrence is not found in str, then str is returned unmodi-
fied. If the optional parameter count is defined, then only count occurrences found in str will
be replaced.

This function is ideal for hiding e-mail addresses from automated e-mail address retrieval
programs:

<?php

$author = "jason@example.com";

$author = str replace("@","(at)",$author);

echo "Contact the author of this article at $author."”;
7>

This returns:

Contact the author of this article at jason(at)example.com.

str_ireplace()
mixed str ireplace(mixed occurrence, mixed replacement, mixed str [, int count])

The function str_ireplace() operates identically to str_replace(), except that it is capable of
executing a case-insensitive search.

strstr()

string strstr (string str, string occurrence)

The strstr() function returns the remainder of str beginning at the first occurrence. This
example uses the function in conjunction with the 1trim() function to retrieve the domain
name of an e-mail address:

<?php

$url = "sales@example.com";

echo ltrim(strstr($url, "@"),"@");
>

219

220

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

This returns the following:

example.com

substr()

string substr(string str, int start [, int length])

The substr() function returns the part of str located between the start and start + length
positions. If the optional length parameter is not specified, the substring is considered to be
the string starting at start and ending at the end of str. There are four points to keep in mind
when using this function:

e Ifstartis positive, the returned string will begin at the start position of the string.

o Ifstartis negative, the returned string will begin at the string length — start position of
the string.

e Iflengthis provided and is positive, the returned string will consist of the characters
between start and (start + length). If this distance surpasses the total string length,
then only the string between start and the string’s end will be returned.

e Iflengthis provided and is negative, the returned string will end length characters from
the end of str.

Keep in mind that start is the offset from the first character of str; therefore, the returned
string will actually start at character position (start + 1).
Consider a basic example:

<?php
$car = "1944 Ford";
echo substr($car, 5);
2>

This returns the following:

Ford

The following example uses the length parameter:

<?php

$car = "1944 Ford",

echo substr($car, 0, 4);
2>

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

This returns the following:

1944

The final example uses a negative length parameter:

<?php

$car = "1944 Ford";

$yr = echo substr($car, 2, -5);
2>

This returns:

44

substr_count()
int substr count (string str, string substring)

The substr_count() function returns the number of times substring occurs in str. The following
example determines the number of times an IT consultant uses various buzzwords in his
presentation:

<?php

$buzzwords = array("mindshare", "synergy", "space");
$talk = <<« talk
I'm certain that we could dominate mindshare in this space with our new product,
establishing a true synergy between the marketing and product development teams.
We'll own this space in three months.
talk;

foreach($buzzwords as $bw) {

echo "The word $bw appears ".substr count($talk,$bw)." time(s).
";

}

2>

This returns the following:

The word mindshare appears 1 time(s).
The word synergy appears 1 time(s).
The word space appears 2 time(s).

221

222

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

substr_replace()
string substr replace (string str, string replacement, int start [, int length])

The substr_replace() function replaces a portion of str with replacement, beginning the substitu-
tion at start position of str, and ending at start + length (assuming that the optional input
parameter length is included). Alternatively, the substitution will stop on the complete placement
of replacement in str. There are several behaviors you should keep in mind regarding the values of
start and length:

e Ifstart is positive, replacement will begin at character start.
o If start is negative, replacement will begin at (str length — start).
¢ If length is provided and is positive, replacement will be length characters long.

¢ If length is provided and is negative, replacement will end at (str length — length)
characters.

Suppose you built an e-commerce site, and within the user profile interface, you want to
show just the last four digits of the provided credit card number. This function is ideal for such
atask:

<?php

$ccnumber = "1234567899991111";

echo substr replace($ccnumber, ¥ iktrktotrikt g 97);
?>

This returns:

kokskstokokokkokokkkq 911

Padding and Stripping a String

For formatting reasons, you sometimes need to modify the string length via either padding or
stripping characters. PHP provides a number of functions for doing so. We’ll examine many of
the commonly used functions in this section.

Itrim()

string ltrim (string str [, string charlist])

The 1trim() function removes various characters from the beginning of str, including whitespace,
the horizontal tab (\t), newline (\n), carriage return (\r), NULL (\0), and vertical tab (\x0b).You can
designate other characters for removal by defining them in the optional parameter charlist.

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

rtrim()

string rtrim(string str [, string charlist])

The rtrim() function operates identically to 1trim(), except that it removes the designated
characters from the right side of str.

trim()

string trim (string str [, string charlist])

You can think of the trim() function as a combination of 1trim() and rtrim(), except that it
removes the designated characters from both sides of str.

str_pad()
string str pad (string str, int length [, string pad string [, int pad type]])

The str_pad() function pads str to length characters. If the optional parameter pad_string is
not defined, str will be padded with blank spaces; otherwise, it will be padded with the character
pattern specified by pad_string. By default, the string will be padded to the right; however, the
optional parameter pad_type may be assigned the values STR_PAD RICHT, STR_PAD_LEFT, or
STR_PAD BOTH, padding the string accordingly. This example shows how to pad a string using
str_pad():

<?php
echo str pad("Salad", 10)." is good.";
>

This returns the following:

Salad is good.

This example makes use of str_pad()’s optional parameters:

<?php

$header = "Log Report";

echo str pad ($header, 20, "=+", STR_PAD BOTH);
>

This returns:

=+=+=Log Report=+=+=

Note that str_pad() truncates the pattern defined by pad_string if length is reached
before completing an entire repetition of the pattern.

223

224

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Counting Characters and Words

It’s often useful to determine the total number of characters or words in a given string. Although
PHP’s considerable capabilities in string parsing has long made this task trivial, two functions
were recently added that formalize the process. Both functions are introduced in this section.

count_chars()
mixed count chars(string str [, mode])

The function count_chars() offers information regarding the characters found in str. Its behavior
depends upon how the optional parameter mode is defined:

¢ 0:Returns an array consisting of each found byte value as the key and the corresponding
frequency as the value, even if the frequency is zero. This is the default.

* 1:Same as 0, but returns only those byte-values with a frequency greater than zero.
e 2:Same as 0, but returns only those byte-values with a frequency of zero.

¢ 3:Returns a string containing all located byte-values.

¢ 4:Returns a string containing all unused byte-values.

The following example counts the frequency of each character in $sentence:

<?php
$sentence = "The rain in Spain falls mainly on the plain";
// Retrieve located characters and their corresponding frequency.
$chart = count_chars($sentence, 1);

foreach($chart as $letter=>$frequency)
echo "Character ".chr($letter)." appears $frequency times
";
>

This returns the following:

Character appears 8 times

Character S appears 1 times
Character T appears 1 times
Character a appears 5 times
Character e appears 2 times
Character f appears 1 times
Character h appears 2 times
Character i appears 5 times
Character 1 appears 4 times
Character m appears 1 times
Character n appears 6 times
Character o appears 1 times
Character p appears 2 times
Character r appears 1 times

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Character s appears 1 times
Character t appears 1 times
Character y appears 1 times

str_word_count()
mixed str word count (string str [, int format])

The function str_word count() offers information regarding the total number of words found
in str. If the optional parameter format is not defined, it will simply return the total number of
words. If format is defined, it modifies the function’s behavior based on its value:

* 1: Returns an array consisting of all words located in str.

* 2: Returns an associative array, where the key is the numerical position of the word in
str, and the value is the word itself.

Consider an example:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
$words = str word count($summary);
echo "Total words in summary: $words";
>

This returns the following:

Total words in summary: 23

You can use this function in conjunction with array count values() to determine the
frequency in which each word appears within the string:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
$words = str word count($summary,2);
$frequency = array count values($words);
print_r($frequency);
2>

225

226

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

This returns the following:

Array ([In] => 1 [the] => 3 [latest
[ongoing] => 1 [Developer] => 1 [com
[I] => 1 [discuss] => 1 [many] => 1
[additions] => 1 [to] => 1 [s] => 1
[architecture] => 1)

=> 1 [installment] => 1 [of] => 1
=> 1 [PHP] => 2 [series] => 1
improvements] => 1 [and] => 1
object-oriented] => 1

—_——

Taking Advantage of PEAR: Validate_US

Regardless of whether your Web application is intended for use in banking, medical, IT, retail,
or some other industry, chances are that certain data elements will be commonplace. For instance,
it’s conceivable you'll be tasked with inputting and validating a telephone number or state
abbreviation, regardless of whether you're dealing with a client, patient, staff member, or
customer. Such repeatability certainly presents the opportunity to create a library that is capable
of handling such matters, regardless of the application. Indeed, because we're faced with such
repeatable tasks, it follows that so are other programmers. Therefore, it’s always prudent to
investigate whether somebody has already done the hard work for us and made a package
available via PEAR.

Note If you’re unfamiliar with PEAR, then take some time to review Chapter 11 before continuing.

Sure enough, our suspicions have proved fruitful, because a quick PEAR search turns up
Validate US, a package thatis capable of validating various informational items specific to the
United States. Although still in beta at press time, Validate_US is already capable of syntacti-
cally validating phone numbers, social security numbers, state abbreviations, and ZIP codes.
This section introduces Validate US, showing you how to install and implement this immensely
useful package.

Installing Validate_US

To take advantage of Validate US, you need to install it. The process for doing so follows:

%>pear install -f Validate US

Warning: Validate US is state 'beta' which is less stable than state 'stable’
downloading Validate US-0.5.0.tgz ...

Starting to download Validate US-0.5.0.tgz (5,611 bytes)

..... done: 5,611 bytes

install ok: Validate US 0.5.0

Note that because Validate US is still a beta release, you need to pass the -f option to the
install command in order to force installation. Once you have installed the package, proceed
to the next section.

CHAPTER 9 STRINGS AND REGULAR EXPRESSIONS

Using Validate_US

The Validate_ US package is extremely easy to use; simply instantiate the Validate US() class
and call the appropriate validation method. In total there are seven methods, three of which
are relevant to this discussion, including:

 phoneNumber (): Validates a phone number, returning TRUE on success and FALSE other-
wise. It accepts phone numbers in a variety of formats, including xxx xxx-xxxx, (xxx)
xxx-xxxx, and similar combinations without dashes, parentheses, or spaces. For example,
(614)999-9999, 6149999999, and (614)9999999 are all valid, whereas (6149999999,
614-999-9999, and 614999 are not.

e postalCode(): Validates a ZIP code, returning TRUE on success and FALSE otherwise. It
accepts ZIP codes in a variety of formats, including xxxxx, XXXXXXXXX, XXXXX-XxxX, and
similar combinations without the dash. For example, 43210 and 43210-0362 are both
valid, whereas 4321 and 4321009999 are not.

e region(): Validates a state abbreviation, returning TRUE on success and FALSE otherwise.
It accepts two-letter state abbreviations as supported by the United States Postal Service
(http://www.usps.com/ncsc/lookups/usps_abbreviations.html). For example, OH, CA,
and NY are all valid, whereas CC, DUI, and BASF are not.

 ssn(): Validates a social security number (SSN) by not only checking the SSN syntax but
also reviewing validation information made available via the Social Security Administra-
tion Web site (http://www.ssa.gov/), returning TRUE on success and FALSE otherwise. It
accepts SSNs in a variety of formats, including xxx-Xxx-XxXX, XXX XX XXX, XXX/XX/XXXX,
xxx\Exx\txxxx (\t = tab), xxx\nxx\nxxxx (\n = newline), or any nine-digit combination
thereof involving dashes, forward slashes, tabs, or newline characters. For example,
479-35-6432 and 591467543 are valid, whereas 999999999, 777665555, and 45678 are not.

Once you have an understanding of the method definitions, implementation is trivial. For
example, suppose you want to validate a phone number. Justinclude the Validate US class and
call phoneNumber () like so:

<?php

include "Validate/US.php";

$validate = new Validate US();

echo $validate->phoneNumber("614-999-9999");
?>

Because phoneNumber () returns a boolean, in this example a 1 will be returned. Contrast
this with supplying 614-876530932 to phoneNumber (), which will return FALSE.

Summary

Many of the functions introduced in this chapter will be among the most commonly used
within your PHP applications, as they form the crux of the language’s string-manipulation
capabilities.

In the next chapter, we’ll turn our attention toward another set of well-worn functions:
those devoted to working with the file and operating system.

227

CHAPTER 10

Working with the File and
Operating System

It’s quite rare to write an application that is entirely self-sufficient—that is, a program that
does not rely on at least some level of interaction with external resources, such as the under-
lying file and operating system, and even other programming languages. The reason for this is
simple: As languages, file systems, and operating systems have matured, the opportunities for
creating much more efficient, scalable, and timely applications have increased greatly as a
result of the developer’s ability to integrate the tried-and-true features of each component into
a singular product. Of course, the trick is to choose a language that offers a convenient and effi-
cient means for doing so. Fortunately, PHP satisfies both conditions quite nicely, offering the
programmer a wonderful array of tools not only for handling file system input and output, but
also for executing programs at the shell level. This chapter serves as an introduction to all such
functionality, describing how to work with the following:

Files and directories: You'll learn how to perform file system forensics, revealing details
such as file and directory size and location, modification and access times, file pointers
(both the hard and symbolic types), and more.

File ownership and permissions: All mainstream operating systems offer a means for
securing system data through a permission system based on user and group ownership
and rights. You'll learn how to both identify and manipulate these controls.

File I/0: You'll learn how to interact with data files, which will let you perform a variety
of practical tasks, including creating, deleting, reading, and writing files.

Directory contents: You'll learn how to easily retrieve directory contents.

Shell commands: You can take advantage of operating system and other language-level
functionality from within a PHP application through a number of built-in functions and
mechanisms. You'll learn all about them. This chapter also demonstrates PHP’s input
sanitization capabilities, showing you how to prevent users from passing data that could
potentially cause harm to your data and operating system.

229

230

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

Note PHP is particularly adept at working with the underlying file system, so much so that it is gaining
popularity as a command-line interpreter, a capability introduced in version 4.2.0. Although this topic is out of
the scope of this book, you can find additional information in the PHP manual.

Learning About Files and Directories

Organizing related data into entities commonly referred to as files and directories has long
been a core concept in the computing environment. For this reason, programmers need to
have a means for obtaining important details about files and directories, such as the location,
size, last modification time, last access time, and other defining information. This section
introduces many of PHP’s built-in functions for obtaining these important details.

Parsing Directory Paths

It’s often useful to parse directory paths for various attributes, such as the tailing extension
name, directory component, and base name. Several functions are available for performing
such tasks, all of which are introduced in this section.

basename()
string basename (string path [, string suffix])

The basename() function returns the filename component of path. If the optional suffix
parameter is supplied, that suffix will be omitted if the returned file name contains that extension.
An example follows:

<?php
$path = "/home/www/data/users.txt";
$filename = basename($path); // $filename contains "users.txt"
$filename2 = basename($path, ".txt"); // $filename2 contains "users"
?>

dirname()

string dirname (string path)

The dirname() function is essentially the counterpart to basename(), providing the directory
component of path. Reconsidering the previous example:

<?php

$path = "/home/www/data/users.txt";

$dirname = dirname($path); // $dirname contains "/home/www/data"
>

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

pathinfo()

array pathinfo (string path)

The pathinfo() function creates an associative array containing three components of the path
specified by path: directory name, base name, and extension, referred to by the array keys
dirname, basename, and extension, respectively. Consider the following path:

/home/www/htdocs/book/chapter10/index.html
As is relevant to pathinfo(), this path contains three components:
e dirname: /home/www/htdocs/book/chapter10
* basename: index.html
e extension: html
Therefore, you can use pathinfo() like this to retrieve this information:

<?php
$pathinfo = pathinfo("/home/www/htdocs/book/chapter10/index.html");
echo "Dir name: $pathinfo[dirname]
\n";
echo "Base name: $pathinfo[basename]
\n";
echo "Extension: $pathinfo[extension]
\n";
?>

This returns:

Dir name: /home/www/htdocs/book/chapter1o
Base name: index.html
Extension: html

realpath()
string realpath (string path)

The useful realpath() function converts all symbolic links, and relative path references located
in path, to their absolute counterparts. For example, suppose your directory structure assumed
the following path:

/home/www/htdocs/book/images/
You can use realpath() to resolve any local path references:

<?php
$imgPath = "../../images/cover.gif";
$absolutePath = realpath($imgPath);
// Returns /www/htdocs/book/images/cover.gif
>

231

232

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

File Types and Links

Numerous functions are available for learning various details about files and links (or file
pointers) found on a file system. Those functions are introduced in this section.

filetype()
string filetype (string filename)

The filetype() function determines and returns the file type of filename. Eight values
are possible:

* block: A block device such as a floppy disk drive or CD-ROM.

¢ char: A character device, which is responsible for a nonbuffered exchange of data between
the operating system and a device such as a terminal or printer.

e dir: A directory.

¢ fifo: Anamed pipe, which is commonly used to facilitate the passage of information
from one process to another.

¢ file: A hard link, which serves as a pointer to a file inode. This type is produced for
anything you would consider to be a file, such as a text document or executable.

¢ link: A symbolic link, which is a pointer to the pointer of a file.
¢ socket: A socket resource. At the time of writing, this value is undocumented.
¢ unknown: The type is unknown.

Let’s consider three examples. In the first example, you determine the type of a
CD-ROM drive:

echo filetype("/mnt/cdrom"); // char

Next, you determine the type of a Linux partition:
echo filetype("/dev/sda6"); // block

Finally, you determine the type of a regular old HTML file:
echo filetype("/home/www/htdocs/index.html"); // file

link()
int link (string target, string link)

The link() function creates a hard link, 1ink, to target, returning TRUE on success and FALSE
otherwise. Note that because PHP scripts typically execute under the guise of the server daemon
process owner, this function will fail unless that user has write permissions within the directory
in which link is to reside.

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

linkinfo()
int linkinfo (string path)

The 1stat() function is used to return useful information about a symbolic link, including
items such as the size, time of last modification, and the owner’s user ID. The 1inkinfo() function
returns one particular item offered by the 1stat() function, used to determine whether the

symbolic link specified by path really exists. This function isn’t available for the Windows platform.

Istat()

array lstat (string symlink)

The 1stat() function returns numerous items of useful information regarding the symbolic
link referenced by symlink. See the following section on fstat() for a complete accounting of
the returned array.

fstat()

array fstat (resource filepointer)

The fstat() function retrieves an array of useful information pertinent to a file referenced by
a file pointer, filepointer. This array can be accessed either numerically or via associative
indices, each of which is listed in its numerically indexed position:

e dev (0): The device number upon which the file resides.

* ino (1): The file’s inode number. The inode number is the unique numerical identifier
associated with each file name and is used to reference the associated entry in the inode
table that contains information about the file’s size, type, location, and other key
characteristics.

* mode (2): The file’s inode protection mode. This value determines the access and modi-
fication privileges assigned to the file.

¢ nlink (3): The number of hard links associated with the file.
¢ uid (4): The file owner’s user ID (UID).
* gid (5): The file group’s group ID (GID).

* rdev (6): The device type, if the inode device is available. Note that this element is not
available for the Windows platform.

e size (7): The file size, in bytes.
e atime (8): The time of the file’s last access, in Unix timestamp format.
e mtime (9): The time of the file’s last modification, in Unix timestamp format.

e ctime (10): The time of the file’s last change, in Unix timestamp format.

233

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

¢ blksize (11): The file system’s block size. Note that this element is not available on the
Windows platform.

¢ blocks (12): The number of blocks allocated to the file.

Consider the example shown in Listing 10-1.

Listing 10-1. Retrieving Key File Information

<?php

/* Convert timestamp to desired format. */
function tstamp to date($tstamp) {

return date("m-d-y g:i:sa", $tstamp);
}

$file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";
/* Open the file */
$th = fopen($file, "r");

/* Retrieve file information */
$fileinfo = fstat($fth);

/* Output some juicy information about the file. */

echo "Filename: ".basename($file)."
";

echo "Filesize: ".round(($fileinfo["size"]/1024), 2)." kb
";

echo "Last accessed: ".tstamp to date($fileinfo["atime"])."
";

echo "Last modified: ".tstamp to date($fileinfo["mtime"])."
";
>

This code returns:

Filename: stat.php
Filesize: 2.16 kb
Last accessed: 06-09-05 12:03:00pm
Last modified: 06-09-05 12:02:59pm

stat()

array stat (string filename)

The stat() function returns an array of useful information about the file specified by filename,
or FALSE if it fails. This function operates exactly like fstat(), returning all of the same array
elements; the only difference is that stat() requires an actual file name and path rather than a
resource handle.

If filename is a symbolic link, then the information will be pertinent to the file the symbolic
link points to, and not the symbolic link itself. To retrieve information about a symbolic link,
use 1stat(), introduced a bit earlier in this chapter.

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

readlink()

string readlink (string path)

The readlink() function returns the target of the symbolic link specified by path, or FALSE if an
error occurs. Therefore, if link test-1ink.txt is a symbolic link pointing to test. txt, the following
will return the absolute pathname to the file:

echo readlink("/home/jason/test-link.txt");
// returns /home/jason/myfiles/test.txt

symlink()
int symlink (string target, string link)

The symlink() function creates a symbolic link named 1ink to the existing target, returning
TRUE on success and FALSE otherwise. Note that because PHP scripts typically execute under
the guise of the server daemon process owner, this function will fail unless that daemon owner
has write permissions within the directory in which 1ink is to reside. Consider this example, in
which symbolic link “03” is pointed to the directory “2003”:

<?php
$1link = symlink("/www/htdocs/stats/2003", "/www/htdocs/stats/03");
?>

Calculating File, Directory, and Disk Sizes

Calculating file, directory, and disk sizes is a common task in all sorts of applications. This
section introduces a number of standard PHP functions suited to this task.

filesize()
int filesize (string filename)

The filesize() function returns the size, in bytes, of filename. An example follows:

<?php
$file = "/www/htdocs/book/chapter1.pdf";
$bytes = filesize("$file"); // Returns 91815
echo "File ".basename($file)." is $bytes bytes, or
".round($bytes / 1024, 2)." kilobytes.";
>

This returns the following:

File 852Chapter16R.rtf is 91815 bytes, or 89.66 kilobytes

235

236

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

disk_free_space()
float disk free space (string directory)

The disk_free_space() function returns the available space, in bytes, allocated to the disk
partition housing the directory specified by directory. An example follows:

<?php

$drive = "/usr";

echo round((disk free space($drive) / 1048576), 2);
?>

This returns:

2141.29

Note that the returned number is in megabytes (MB), because the value returned from
disk free space() was divided by 1,048,576, which is equivalent to IMB.

disk_total_space()
float disk total space (string directory)

The disk total space() function returns the total size, in bytes, consumed by the disk partition
housing the directory specified by directory. If you use this function in conjunction with
disk free space(), it’s easy to offer useful space allocation statistics:

<?php
$systempartitions = array("/", "/home","/usr", "/www");
foreach ($systempartitions as $partition) {
$totalSpace = disk total space($partition) / 1048576;
$usedSpace = $totalSpace - disk free space($partition) / 1048576;
echo "Partition: $partition (Allocated: $totalSpace MB.
Used: $usedSpace MB.)";

2>

This returns:

Partition: / (Allocated: 3099.292 MB. Used: 343.652 MB.)

Partition: /home (Allocated: 5510.664 MB. Used: 344.448 MB.)

Partition: /usr (Allocated: 4127.108 MB. Used: 1985.716 MB.)

Partition: /usr/local/apache2/htdocs (Allocated: 4127.108 MB. Used: 1985.716 MB.)

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

Retrieving a Directory Size

PHP doesn’t currently offer a standard function for retrieving the total size of a directory, a task
more often required than retrieving total disk space (see disk_total space()).And although you
could make a system-level call to du using exec() or system() (both of which are introduced later
in this chapter), such functions are often disabled for security reasons. The alternative solution is
to write a custom PHP function that is capable of carrying out this task. A recursive function
seems particularly well-suited for this task. One possible variation is offered in Listing 10-2.

Note The du command will summarize disk usage of a file or directory. See the appropriate man page for
usage information.

Listing 10-2. Determining the Size of a Directory’s Contents

<?php
function directory size($directory) {
$directorySize=0;

/* Open the directory and read its contents. */
if ($dh = @opendir($directory)) {

/* Iterate through each directory entry. */
while (($filename = readdir ($dh))) {

/* Filter out some of the unwanted directory entries. */
if ($filename != "." 8& $filename != "..")
{

// File, so determine size and add to total.
if (is_file($directory."/".$filename))
$directorySize += filesize($directory."/".$filename);

// New directory, so initiate recursion. */
if (is_dir($directory."/".$filename))
$directorySize += directory size($directory."/".$filename);
}
} #tendWHILE
} #endIF

@closedir($dh);
return $directorySize;

} ttend directory size()

237

238

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

$directory = "/usr/local/apache2/htdocs/book/chapter10/";
$totalSize = round((directory size($directory) / 1024), 2);
echo "Directory $directory: ".$totalSize. "kb.";

>

Access and Modification Times

The ability to determine a file’s last access and modification time plays an important role in
many administrative tasks, especially in Web applications that involve network or CPU-intensive
update operations. PHP offers three functions for determining a file’s access, creation, and last
modification time, all of which are introduced in this section.

fileatime()

int fileatime (string filename)

The fileatime() function returns filename’s last access time in Unix timestamp format, or
FALSE on error. An example follows:

<?php

$file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";

echo "File last accessed: ".date("m-d-y g:i:sa", fileatime($file));
>

This returns:

File last accessed: 06-09-03 1:26:14pm

filectime()
int filectime (string filename)

The filectime() function returns filename’s last changed time in Unix timestamp format, or
FALSE on error. An example follows:

<?php

$file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";

echo "File inode last changed: ".date("m-d-y g:i:sa", fileatime($file));
?>

This returns:

File inode last changed: 06-09-03 1:26:14pm

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

Note The “last changed time” differs from the “last modified time” in that the last changed time refers to
any change in the file’s inode data, including changes to permissions, owner, group, or other inode-specific
information, whereas the last modified time refers to changes to the file’s content (specifically, byte size).

filemtime()
int filemtime (string filename)

The filemtime() function returns filename’s last modification time in Unix timestamp format,
or FALSE otherwise. The following code demonstrates how to place a “last modified” timestamp
on a Web page:

<?php

$file = "/usr/local/apache2/htdocs/book/chapteri0/stat.php";

echo "File last updated: ".date("m-d-y g:i:sa", filemtime($file));
7>

This returns:

File last updated: 06-09-03 1:26:14pm

File Ownership and Permissions

These days, security is paramount to any server installation, large or small. Most modern operating
systems have embraced the concept of the separation of file rights via a user/group ownership
paradigm, which, when properly configured, offers a wonderfully convenient and powerful
means for securing data. In this section, you’ll learn how to use PHP’s built-in functionality to
review and manage these permissions.

Note that because PHP scripts typically execute under the guise of the server daemon
process owner, some of these functions will fail unless highly insecure actions are taken to run
the server as a privileged user. Thus, keep in mind that some of the functionality introduced in
this chapter is much better suited for use when running PHP as a command-line interface
(CLI), since scripts executed by way of the CLI could conceivably be run as any system user.

chown()
int chown (string filename, mixed user)

The chown() function attempts to change the owner of filename to user (specified either by the
user’s username or UID), returning TRUE on success and FALSE otherwise.

239

240

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

chgrp()
int chgrp (string filename, mixed group)

The chgrp() function attempts to change the group membership of filename to group, returning
TRUE on success and FALSE otherwise.

fileperms()
int fileperms (string filename)

The fileperms() function returns filename’s permissions in decimal format, or FALSE in case of
error. Because the decimal permissions representation is almost certainly not the desired
format, you'll need to convert fileperms()’s return value. This is easily accomplished using the
base_convert() function in conjunction with substr (). The base_convert() function converts
a value from one number base to another; therefore, you can use it to convert fileperms()’s
returned decimal value from base 10 to the desired base 8. The substr() function is then used
to retrieve only the final three digits of base_convert()’s returned value, which are the only
digits referred to when discussing Unix file permissions. Consider the following example:

<?php
echo substr(base convert(fileperms("/etc/passwd"), 10, 8), 3);
?>

This returns:

644

filegroup()
int filegroup (string filename)

The filegroup() function returns the group ID (GID) of the filename owner, and FALSE if the
GID cannot be determined:

<?php

$gid = filegroup("/etc/passwd");

// Returns "0" on Unix, because root usually has GID of O.
>

Note that filegroup() returns the GID, and not the group name.

fileowner()
int fileowner (string filename)

The fileowner() function returns the user ID (UID) of the filename owner, or FALSE if the UID
cannot be determined. Consider this example:

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

<?php

$uid = fileowner("/etc/passwd");

// Returns "0" on Linux, as root typically has UID of o.
2>

Note that fileowner() returns the UID, and not the username.

isexecutable()
boolean isexecutable (string filename)

The isexecutable() function returns TRUE if filename exists and is executable, and FALSE otherwise.
Note that this function is not available on the Windows platform.

isreadable()
boolean isreadable (string filename)

The isreadable() function returns TRUE if filename exists and is readable, and FALSE otherwise.
If a directory name is passed in as filename, isreadable() will determine whether that directory is
readable.

iswriteable()

boolean iswriteable (string filename)

The iswriteable() function returns TRUE if filename exists and is writable, and FALSE otherwise.
If a directory name is passed in as filename, iswriteable() will determine whether that directory is
writable.

Note The function iswritable() is an alias of iswriteable().

umask()
int umask ([int mask])

The umask () function determines the level of permissions assigned to a newly created file. The
umask () function calculates PHP’s umask to be the result of mask bitwise ANDed with 0777, and
returns the old mask. Keep in mind that mask is a three- or four-digit code representing the
permission level. PHP then uses this umask when creating files and directories throughout the
script. Omitting the optional parameter mask results in the retrieval of PHP’s currently config-
ured umask value.

24

242

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

File 1/0

Writing exciting, useful programs almost always requires that the program work with some sort
of external data source. Two prime examples of such data sources are files and databases. In

this section, we delve deep into working with files. Before we introduce PHP’s numerous standard
file-related functions, however, it's worth introducing a few basic concepts pertinent to this topic.

The Concept of a Resource

The term “resource” is commonly attached to any entity from which an input or output stream
can be initiated. Standard input or output, files, and network sockets are all examples of resources.

Newline

The newline character, which is represented by the \n character sequence, represents the end
of aline within a file. Keep this in mind when you need to input or output information one line
atatime. Several functions introduced throughout the remainder of this chapter offer functionality
tailored to working with the newline character. Some of these functions include file(), fgetcsv(),
and fgets().

End-of-File

Programs require a standardized means for discerning when the end of a file has been reached.
This standard is commonly referred to as the end-of-file, or EOF, character. This is such an
important concept that almost every mainstream programming language offers a built-in function
for verifying whether or not the parser has arrived at the EOF. In the case of PHP, this function is
feof(), described next.

feof()

int feof (string resource)

The feof() function determines whether resource’s EOF has been reached. It is used quite
commonly in file I/0 operations. An example follows:

<?php
$th = fopen("/home/www/data/users.txt", "rt");
while (!feof($fh)) echo fgets($fh);
fclose($fh);

?>

Opening and Closing a File

You'll often need to establish a connection to a file resource before you can do anything with
its contents. Likewise, once you've finished working with that resource, you should close the
connection. Two standard functions are available for such tasks, both of which are introduced
in this section.

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

fopen()

resource fopen (string resource, string mode [, int use_include path
[, resource zcontext]])

The fopen() function binds a resource to a stream, or handler. Once bound, the script can
interact with this resource via the handle. Most commonly, it’s used to open files for reading
and manipulation. However, fopen() is also capable of opening resources via a number of
protocols, including HTTP, HTTPS, and FTP, a concept discussed in Chapter 16.

The mode, assigned at the time a resource is opened, determines the level of access avail-
able to that resource. The various modes are defined in Table 10-1.

Table 10-1. File Modes

Mode Description

T Read-only. The file pointer is placed at the beginning of the file.

T+ Read and write. The file pointer is placed at the beginning of the file.

W Write only. Before writing, delete the file contents and return the file pointer to the
beginning of the file. If the file does not exist, attempt to create it.

W+ Read and write. Before reading or writing, delete the file contents and return the file
pointer to the beginning of the file. If the file does not exist, attempt to create it.

a Write only. The file pointer is placed at the end of the file. If the file does not exist,
attempt to create it. This mode is better known as Append.

a+ Read and write. The file pointer is placed at the end of the file. If the file does not exist,
attempt to create it. This process is known as appending to the file.

b Open the file in binary mode.

t Open the file in text mode.

If the resource is found on the local file system, PHP expects the resource to be available
by either the local or relative path prefacing it. Alternatively, you can assign fopen()’s
use_include_path parameter the value of 1, which will cause PHP to consider the paths speci-
fied in the include_path configuration directive.

The final parameter, zcontext, is used for setting configuration parameters specific to the
file or stream, and for sharing file- or stream-specific information across multiple fopen()
requests. This topic is discussed in further detail in Chapter 16.

Let’s consider a few examples. The first opens a read-only stream to a text file residing on
the local server:

$fth = fopen("/usr/local/apache/data/users.txt","rt");

The next example demonstrates opening a write stream to a Microsoft Word document.
Because Word documents are binary, you should specify the binary b mode variation.

$fh = fopen("/usr/local/apache/data/docs/summary.doc", "wb");

243

244

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

The next example refers to the same Word document, except this time PHP will search for
the file in the paths specified by the include path directive:

$th = fopen("summary.doc","wb", 1);
The final example opens a read-only stream to a remote index.html file:
$th = fopen("http://www.example.com/", "rt");

You'll see this function in numerous examples throughout this and the next chapter.

fclose()
boolean fclose (resource filehandle)

Good programming practice dictates that you should destroy pointers to any resources once
you're finished with them. The fclose() function handles this for you, closing the previously
opened file pointer specified by filehandle, returning TRUE on success and FALSE otherwise.
The filehandle must be an existing file pointer opened using fopen() or fsockopen().

Reading from a File

PHP offers numerous methods for reading data from a file, ranging from reading in just one
character at a time to reading in the entire file with a single operation. Many of the most useful
functions are introduced in this section.

file()
array file (string filename [int use include path [, resource context]])

The immensely useful file() function is capable of reading a file into an array, separating each
element by the newline character, with the newline still attached to the end of each element.
Although simplistic, the importance of this function can’t be understated, and therefore it
warrants a simple demonstration. Consider the following sample text file, named users.txt:

Ale ale@example.com
Nicole nicole@example.com
Laura laura@example.com

The following script reads in users. txt and parses and converts the data into a convenient
Web-based format:

<?php
$users = file("users.txt");

foreach ($users as $user) {
list($name, $email) = explode(

non

, $user);
// Remove newline from $email
$email = trim($email);

echo "$name
\n";

>

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

This script produces the following HTML output:

Ale

Nicole

Laura

Like fopen(), you can tell file() to search through the paths specified in the include path
configuration parameter by setting use_include path to 1. The context parameter refers to a
stream context. You'll learn more about this topic in Chapter 16.

file_get_contents()

string file get contents (string filename [, int use include path
[resource context]])

The file get contents() function reads the contents of filename into a string. By revising the

script from the preceding section to use this function instead of file(), you get the following code:

<?php
$userfile= file get contents("users.txt");
// Place each line of $userfile into array
$users = explode("\n",$userfile);
foreach ($users as $user) {
list($name, $email) = explode(" ", $user);
echo "$name/a>
";

}

>

The context parameter refers to a stream context. You'll learn more about this topic in
Chapter 16.

fgetc()
string fgetc (resource handle)

The fgetc() function reads a single character from the open resource stream specified by
handle. If the EOF is encountered, a value of FALSE is returned.

fgetcsv()

array fgetcsv (resource handle, int length [, string delimiter
[, string enclosure]])

The convenient fgetcsv() function parses each line of a file specified by handle and delimited
by delimiter, placing each field into an array. Reading does not stop on a newline; rather, it
stops either when length characters have been read or when the closing enclosure character is
located. Therefore, it is always a good idea to choose a number that will certainly surpass the
longest line in the file.

245

246

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

Consider a scenario in which weekly newsletter subscriber data is cached to a file for
perusal by the corporate marketing staff. Always eager to barrage the IT department with
dubious requests, the marketing staff asks that the information also be made available for
viewing on the Web. Thankfully, this is easily accomplished with fgetcsv(). The following
example parses the already cached file:

<?php
$th = fopen("/home/www/data/subscribers.csv", "r");
while (list($name, $email, $phone) = fgetcsv($fh, 1024, ",")) {
echo "<p>$name ($email) Tel. $phone</p>";
}

2>

Note that you don’t have to use fgetcsv() to parse such files; the file() and 1ist() functions
accomplish the job quite nicely. Reconsidering the preceding example:

<?php
$users = file("users.txt");
foreach ($users as $user) {
list($name, $email, $phone) = explode(",", $user);
echo "<p>$name ($email) Tel. $phone</p>";
}

>

Note Comma-separated value (CSV) files are commonly used when importing files between applications.
Microsoft Excel and Access, MySQL, Oracle, and PostgreSQL are just a few of the applications and databases
capable of both importing and exporting CSV data. Additionally, languages such as Perl, Python, and PHP are
particularly efficient at parsing delimited data.

fgets()
fgets (resource handle [, int length])

The fgets() function returns either length — 1 bytes from the opened resource referred to by
handle, or everything it has read up to the point that a newline or the EOF is encountered. If the
optional length parameter is omitted, 1,024 characters is assumed. In most situations, this
means that fgets() will encounter a newline character before reading 1,024 characters, thereby
returning the next line with each successive call. An example follows:

<?php
$th = fopen("/home/www/data/users.txt", "rt");
while (!feof($fh)) echo fgets($fh);
fclose($fh);

?>

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

fgetss()
string fgetss (resource handle, int length [, string allowable tags])

The fgetss() function operates similarly to fgets(), except that it strips any HTML and PHP
tags from handle. If you'd like certain tags to be ignored, include them in the allowable_ tags
parameter. As an example, consider a scenario in which authors are expected to submit their
work in HTML format using a specified subset of HTML tags. Of course, the authors don’t
always follow instructions, so the file must be scanned for tag misuse before it can be
published. With fgetss(), this is trivial:

<?php
/* Build list of acceptable tags */
$tags = "<h2><h3><p><a>";

/* Open the article, and read its contents. */
$th = fopen("article.html", "rt");

while (!feof($fth)) {
$article .= fgetss($fh, 1024, $tags);

}
fclose($fth);

/* Open the file up in write mode
and write $article contents. */
$th = fopen("article.html", "wt");
fwrite($th, $article);
fclose($fth);
?>

Tip If you want to remove HTML tags from user input submitted via a form, check out the strip tags()
function, introduced in Chapter 9.

fread()

string fread (resource handle, int length)

The fread() function reads length characters from the resource specified by handle. Reading
stops when the EOF is reached or when length characters have been read. Note that, unlike
other read functions, newline characters are irrelevant when using fread(); therefore, it’s often
convenient to read the entire file in at once using filesize() to determine the number of char-
acters that should be read in:

247

248

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

<?php
$file = "/home/www/data/users.txt";
$th = fopen($file, "rt");
$userdata = fread($fth, filesize($file));
fclose($fh);
>

The variable $userdata now contains the contents of the users. txt file.

readfile()

int readfile (string filename [, int use include path])

The readfile() function reads an entire file specified by filename and immediately outputs it to
the output buffer, returning the number of bytes read. Enabling the optional use_include_path
parameter tells PHP to search the paths specified by the include_path configuration parameter.
After sanitizing the article discussed in the fgetss() section, it can be output to the browser
quite easily using readfile(). This revised example is shown here:

<?php

$file = "/home/www/articles/gilmore.html";

/* Build list of acceptable tags */
$tags = "<h2><h3><p><ar";

/* Open the article, and read its contents. */
$th = fopen($file, "rt");

while (!feof($fh))
$article .= fgetss($fh, 1024, $tags);

fclose($fh);

/* Open the article, overwriting it with the sanitized material */
$th = fopen($file, "wt");

furite($fh, $article);

fclose($fh);

/* Output the article to the browser. */
$bytes = readfile($file);
>

Like many of PHP’s other file I/O functions, remote files can be opened via their URL if the
configuration parameter fopen_wrappers is enabled.

fscanf()

mixed fscanf (resource handle, string format [, string vari])

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

The fscanf() function offers a convenient means for parsing the resource specified by handle
in accordance with the format specified by format. Suppose you want to parse the following file
consisting of social security (SSN) numbers (socsecurity.txt):

123-45-6789
234-56-7890
345-67-8901

The following example parses the socsecurity.txt file:
<?php
$th = fopen("socsecurity.txt", "r");

/* Parse each SSN in accordance with
integer-integer-integer format. */

while ($user = fscanf($fh, "%d-%d-%d")) {
list ($parti,$part2,$part3) = S$user;

}

fclose($th);
>

With each iteration, the variables $part1, $part2, and $part3 are assigned the three
components of each SSN, respectively.

Moving the File Pointer

It’s often useful to jump around within a file, reading from and writing to various locations.
Several PHP functions are available for doing just this.

fseek()

int fseek (resource handle, int offset [, int whence])

The fseek() function moves the handle’s pointer to the location specified by offset. If the
optional parameter whence is omitted, the position is set offset bytes from the beginning of the
file. Otherwise, whence can be set to one of three possible values, which affect the pointer’s
position:

* SEEK_CUR: Sets the pointer position to the current position plus offset bytes.

» SEEK_END: Sets the pointer position to the EOF plus offset bytes. In this case, offset
must be set to a negative value.

» SEEK_SET: Sets the pointer position to offset bytes. This has the same effect as omitting
whence.

249

250

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

ftell()

int ftell (resource handle)

The ftell() function retrieves the current position of the file pointer’s offset within the resource
specified by handle.

rewind()
int rewind (resource handle)

The rewind() function moves the file pointer back to the beginning of the resource specified by
handle.

Writing to a File

This section highlights several of the functions used to output data to a file.

fwrite()
int fwrite (resource handle, string string [, int length])

The fwrite() function outputs the contents of string to the resource pointed to by handle. If
the optional length parameter is provided, fwrite() will stop writing when length characters
have been written. Otherwise, writing will stop when the end of the string is found. Consider
this example:

<?php
$subscriberInfo = "Jason Gilmore|wj@example.com";
$th = fopen("/home/www/data/subscribers.txt", "at");
fwrite($fh, $subscriberInfo);
fclose($fh);

>

Tip Ifthe optional length parameter is not supplied to fwrite(), themagic_quotes_runtime config-
uration parameter will be disregarded. See Chapters 2 and 9 for more information about this parameter.

fputs()
int fputs (resource handle, string string [, int length])

The fputs() function operates identically to fwrite(). Presumably, it was incorporated into
the language to satisfy the terminology preferences of C/C++ programmers.

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

Reading Directory Contents

The process required for reading a directory’s contents is quite similar to that involved in reading a
file. This section introduces the functions available for this task, and also introduces a function
new to PHP 5 that reads a directory’s contents into an array.

opendir()

resource opendir (string path)

Just as fopen() opens a file pointer to a given file, opendir () opens a directory stream specified
by path.

closedir()

void closedir (resource directory handle)

The closedir() function closes the directory stream pointed to by directory handle.

readdir()

string readdir (int directory handle)

The readdir () function returns each element in the directory specified by directory handle.
You can use this function to list all files and child directories in a given directory:

<?php
$dh = opendir('/usr/local/apache2/htdocs/");
while ($file = readdir($dh))
echo "$file
";
closedir($dh);
>

Sample output follows:

articles
images
news
test.php

Note that readdir() also returns the . and .. entries common to a typical Unix directory
listing. You can easily filter these out with an if statement:

if($file != "." AND $file I= "..")...

251

252

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

scandir()
array scandir (string directory [,int sorting order [, resource context]])

The scandir() function, which is new to PHP 5, returns an array consisting of files and directories
found in directory, or returns FALSE on error. Setting the optional sorting_order parameter to
1 sorts the contents in descending order, overriding the default of ascending order. Revisiting
the example from the previous section:

<?php
print_r(scandir("/usr/local/apache2/htdocs"));
?>

This returns:

Array ([0] => . [1] => .. [2] => articles [3] => images
[4] => news [5] => test.php)

The context parameter refers to a stream context. You'll learn more about this topic in
Chapter 16.

Executing Shell Commands

The ability to interact with the underlying operating system is a crucial feature of any programming
language. This section introduces PHP’s capabilities in this regard.

PHP’s Built-in System Commands

Although you could conceivably execute any system-level command using a function like
exec() or system(), some of these functions are so commonplace that the developers thought
it a good idea to incorporate them directly into the language. Several such functions are intro-
duced in this section.

rmdir()
int rmdir (string dirname)

The rmdir () function removes the directory specified by dirname, returning TRUE on success
and FALSE otherwise. As with many of PHP’s file system functions, permissions must be prop-
erly set in order for rmdir () to successfully remove the directory. Because PHP scripts typically
execute under the guise of the server daemon process owner, rmdir () will fail unless that user
has write permissions to the directory. Also, the directory must be empty.

To remove a nonempty directory, you can either use a function capable of executing a
system-level command, like system() or exec(), or write a recursive function that will remove
all file contents before attempting to remove the directory. Note that in either case, the executing

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

user (server daemon process owner) requires write access to the parent of the target directory.
Here is an example of the latter approach:

<?php
function delete directory($dir)
{
if ($dh = @opendir($dir))
{
/* Iterate through directory contents. */
while (($file = readdir ($dh)) != false)
{
if (($file == ".") || ($file == "..")) continue;
if (is_dir($dir . '/' . $file))
delete_directory($d1r L $file);
else
unlink($dir . '/' . $file);
} #endWHILE
@closedir($dh);
mdir($dir);
} ttendIF

} ttend delete directory()

$dir = "/usr/local/apache2/htdocs/book/chapter10/test/";
delete directory($dir);
>

rename()

boolean rename (string oldname, string newname)

The rename() function renames a file specified by oldname to the new name newname, returning
TRUE on success and FALSE otherwise. Because PHP scripts typically execute under the guise of
the server daemon process owner, rename () will fail unless that user has write permissions to
that file.

touch()

int touch (string filename [, int time [, int atime]])

The touch() function sets the file filename’s last-modified and last-accessed times, returning
TRUE on success or FALSE on error. If time is not provided, the present time (as specified by the
server) is used. If the optional atime parameter is provided, the access time will be set to this

value; otherwise, like the modification time, it will be set to either time or the present server time.

Note that if filename does not exist, it will be created, assuming that the script’s owner
possesses adequate permissions.

253

254

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

System-Level Program Execution

Truly lazy programmers know how to make the most of their entire server environment when
developing applications, which includes exploiting the functionality of the operating system,
file system, installed program base, and programming languages whenever necessary. In this
section, you'll learn how PHP can interact with the operating system to call both OS-level
programs and third-party installed applications. Done propetly, it adds a whole new level of
functionality to your PHP programming repertoire. Done pootrly, it can be catastrophic not
only to your application, but also to your server’s data integrity. That said, before delving into
this powerful feature, take a moment to consider the topic of sanitizing user input before
passing it to the shell level.

Sanitizing the Input

Neglecting to sanitize user input that may subsequently be passed to system-level functions
could allow attackers to do massive internal damage to your information store and operating
system, deface or delete Web files, and otherwise gain unrestricted access to your server. And
that’s only the beginning.

Note See Chapter 21 for a discussion of secure PHP programming.

As an example of why sanitizing the input is so important, consider a real-world scenario.
Suppose that you offer an online service that generates PDFs from an input URL. A great tool for
accomplishing just this is HTMLDOC, a program that converts HTML documents to indexed
HTML, Adobe PostScript, and PDF files. HTMLDOC (http://www.htmldoc.org/) is released
under the GNU General Public License. HTMLDOC can be invoked from the command line,
like so:

%>htmldoc --webpage -f webpage.pdf http://www.wjgilmore.com/

This would result in the creation of a PDF named webpage. pdf, which would contain a
snapshot of the Web site’s index page. Of course, most users will not have command-line
access to your server; therefore, you'll need to create a much more controlled interface to the
service, perhaps the most obvious of which being via a Web page. Using PHP’s passthru()
function (introduced later in this chapter), you can call HTMLDOC and return the desired PDF,
like so:

$document = $ POST['userurl'];
passthru("htmldoc --webpage -f webpage.pdf $document);

What if an enterprising attacker took the liberty of passing through additional input, unre-
lated to the desired HTML page, entering something like this:

http://www.wjgilmore.com/ ; cd /usr/local/apache/htdocs/; rm -rf *

Most Unix shells would interpret the passthru() request as three separate commands.
The first is:

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

htmldoc --webpage -f webpage.pdf http://www.wjgilmore.com/
The second command is:

cd /usr/local/apache/htdocs/
And the final command is:

m -rf *

Those last two commands were certainly unexpected, and could result in the deletion of
your entire Web document tree. One way to safeguard against such attempts is to sanitize user
input before it is passed to any of PHP’s program execution functions. Two standard functions
are conveniently available for doing so: escapeshellarg() and escapeshellcmd(). Each is intro-
duced in this section.

escapeshellarg()
string escapeshellarg (string arguments)

The escapeshellarg() function delimits arguments with single quotes and prefixes (escapes)
quotes found within arguments. The effect is that when arguments is passed to a shell command, it
will be considered a single argument. This is significant because it lessens the possibility that
an attacker could masquerade additional commands as shell command arguments. Therefore,
in the aforementioned nightmarish scenario, the entire user input would be enclosed in single
quotes, like so:

"http://www.wjgilmore.com/ ; cd /usr/local/apache/htdoc/; rm -rf *'

The result would be that HTMLDOC would simply return an error, because it could not
resolve a URL possessing this syntax, rather than delete an entire directory tree.

escapeshellcmd()

string escapeshellcmd (string command)

The escapeshellcmd() function operates under the same premise as escapeshellarg(), sanitizing
potentially dangerous input by escaping shell metacharacters. These characters include the
following: # &; >, |*2,~<>A () [1{}$\\.

PHP’s Program Execution Functions

This section introduces several functions (in addition to the backticks execution operator)
used to execute system-level programs via a PHP script. Although at first glance they all appear
to be operationally identical, each offers its own syntactical nuances.

exec()

string exec (string command [, array output [, int return var]])

255

256

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

The exec() function is best-suited for executing an operating system-level application (desig-
nated by command) intended to continue executing in the server background. Although the last
line of output will be returned, chances are that you’d like to have all of the output returned for
review; you can do this by including the optional parameter output, which will be populated
with each line of output upon completion of the command specified by exec(). In addition,
you can discover the executed command’s return status by including the optional parameter
return_var.

Although we could take the easy way out and demonstrate how exec() can be used to
execute an 1s command (dir for the Windows folks), returning the directory listing, it’s more
informative to offer a somewhat more practical example: how to call a Perl script from PHP.
Consider the following Perl script (1languages.pl):

#! /usr/bin/perl
my @languages = qw[perl php python java c];
foreach $language (@languages) {

print $language."
";

}

The Perl script is quite simple; no third-party modules are required, so you could test this
example with little time investment. If you're running Linux, chances are very good that you
could run this example immediately, because Perl is installed on every respectable distribu-
tion. If you're running Windows, check out ActiveState’s (http://www.activestate.com/)
ActivePerl distribution.

Like languages.pl, the PHP script shown here isn’t exactly rocket science; it simply calls
the Perl script, specifying that the outcome be placed into an array named $results. The contents
of $results are then output to the browser.

<?php
$outcome = exec("languages.pl", $results);
foreach ($results as $result) echo $result;
?>

The results are as follows:

perl
php
python
Jjava

c

system()
string system (string command [, int return var])

The system() function is useful when you want to output the executed command’s results.
Rather than return output via an optional parameter, as is the case with exec(), the output is

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

returned directly to the caller. However, if you would like to review the execution status of the
called program, you need to designate a variable using the optional parameter return_var.
For example, suppose you’d like to list all files located within a specific directory:

$mymp3s = system("ls -1 /home/jason/mp3s/");
Or, revising the previous PHP script to again call the languages.pl using system():

<?php
$outcome = exec("languages.pl”, $results);
echo $outcome

2>

passthru()
void passthru (string command [, int return var])

The passthru() function is similar in function to exec(), except that it should be used if you'd
like to return binary output to the caller. For example, suppose you want to convert GIF images
to PNG before displaying them to the browser. You could use the Netpbm graphics package,
available at http://netpbm.sourceforge.net/ under the GPL license:

<?php

header ("ContentType:image/png");

passthru("giftopnm cover.gif | pnmtopng > cover.png");
>

Backticks

Delimiting a string with backticks signals to PHP that the string should be executed as a shell
command, returning any output. Note that backticks are not single quotes, but rather are a
slanted cousin, commonly sharing a key with the tilde (~) on most American keyboards. An
example follows:

<?php

$result = “date”;

echo "<p>The server timestamp is: $result</p>";
>

This returns something similar to:

The server timestamp is: Sun Jun 15 15:32:14 EDT 2003

The backtick operator is operationally identical to the shellexec() function, introduced next.

257

258

CHAPTER 10 WORKING WITH THE FILE AND OPERATING SYSTEM

shell_exec()
string shell exec (string command)

The shell exec() function offers a syntactical alternative to backticks, executing a shell command
and returning the output. Reconsidering the preceding example:

<?php

$result = shell exec("date");

echo "<p>The server timestamp is: $result</p>";
>

Summary

Although you can certainly go a very long way using solely PHP to build interesting and powerful
Web applications, such capabilities are greatly expanded when functionality is integrated with
the underlying platform and other technologies. As applied to this chapter, these technologies
include the underlying operating and file systems. You'll see this theme repeatedly throughout
the remainder of this book, as PHP’s ability to interface with a wide variety of technologies like
LDAP, SOAP, and Web Services is introduced.
In the next chapter, you'll examine two key aspects of any Web application: Web forms

and navigational cues.

CHAPTER 11

PEAR

Good programmers write solid code, while great programmers reuse the code of good
programmers. For PHP programmers, PEAR (http://pear.php.net), acronym for PHP Extension
and Application Repository, is one of the most effective means for finding and reusing good
PHP code. Inspired by Perl’s wildly popular CPAN (http://www.cpan.org), the project was
started in 1999 by noted PHP developer Stig Bakken, with the first stable release bundled with
PHP version 4.3.0. Formally defined, PEAR is a framework and distribution system for reusable
PHP components, and presently offers 442 packages categorized under 41 different topics (and
increasing all the time). Because PEAR contributions are carefully reviewed by the community
before they’re accepted, code quality and adherence to PEAR’s standard development guide-
lines are assured. Furthermore, because many PEAR packages logically implement common
tasks guaranteed to repeatedly occur no matter the type of application, taking advantage of
this community-driven service will save you countless hours of programming time.

This chapter is devoted to a thorough discussion of PEAR, offering the following topics:

* Asurvey of several popular PEAR packages, intended to give you an idea of just how
useful this repository can really be.

* Instructions regarding the installation and administration of PEAR packages via the
PEAR console.

* Adiscussion of PEAR coding and documentation guidelines, which could prove useful
not only for building general applications but also for reviewing and submitting PEAR
packages.

* An overview of the PEAR submission process, should you be interested in making your
own contributions to the repository.

Popular PEAR Packages

To give you a taste of just how popular the PEAR packages are, at the time of this writing the
hosted packages have been downloaded almost 14 million times to date! In fact, several packages
are so popular that the developers started including them by default as of version 4.0. A list of
the presently included packages follows:

259

260

CHAPTER 11 PEAR

e Archive Tar:TheArchive Tar package facilitates the management of tar files, providing

methods for creating, listing, extracting, and adding to tar files. Additionally, it supports
the Gzip and Bzip2 compression algorithms, provided the respective PHP extensions are
installed. This package is required for PEAR to run properly.

Console Getopt: It’s often useful to modify the behavior of scripts executed via the
command line by supplying options at execution time. For example, you can verify the
installed PEAR version by passing -V to the pear command:

%>pear -V

The Console Getopt package provides a standard means for reading these options and
providing the user with error messages if the supplied syntax does not correspond to
some predefined specifications (such as whether a particular argument requires a
parameter). This package is required for PEAR to run properly.

DB: The DB package provides an object-oriented query API for abstracting communication
with the database layer. This affords you the convenience of transparently migrating
applications from one database to another potentially as easily as modifying a single line
of code. At present there are 12 supported databases, including: dBase, FrontBase, Informix,
InterBase, Mini SQL, Microsoft SQL Server, MySQL, Oracle, ODBC, PostgreSQL, SQLite, and
Sybase.

Mail: Writing a portable PHP application that is capable of sending e-mail may be trickier
than you think, because not all operating systems offer the same facilities for supporting
this feature. For instance, by default, PHP’s mail() function relies on the sendmail
program (or a sendmail wrapper), but sendmail isn’t available on Windows. To account
for this incompatibility, it’s possible to alternatively specify the address of an SMTP
server and send mail through it. However, how would your application be able to deter-
mine which method is available? The Mail package resolves this dilemma by offering a
unified interface for sending mail that doesn’t involve modifying PHP’s configuration. It
supports three different back ends for sending e-mail from a PHP application (PHP’s
mail() function, sendmail, and an SMTP server) and includes a method for validating
e-mail address syntax. Using a simple application configuration file or Web-based pref-
erences form, users can specify the methodology that best suits their needs.

Net Socket: TheNet Socket package is used to simplify the management of TCP sockets
by offering a generic API for carrying out connections, and reading and writing informa-
tion between these sockets.

Net SMTP: TheNet SMTP package offers an implementation of the SMTP protocol, making
it easy for you to carry out tasks such as connecting to and disconnecting from SMTP
servers, performing SMTP authentication, identifying senders, and sending mail.

PEAR: This package is required for PEAR to run properly.

PHPUnit: A unit test is a particular testing methodology for ensuring the proper operation
of a block (or unit) of code, typically classes or function libraries. The PHPUnit package
facilitates the creation, maintenance, and execution of unit tests by specifying a general
set of structural guidelines and a means for automating testing.

CHAPTER 11 PEAR

e XML Parser: The XML_Parser package offers an easy, object-oriented solution for parsing
XML files.

* XML_RPC: The XML_RPC package is a PHP-based implementation of the XML-RPC protocol
(http://www.xmlrpc.com/), a means for remotely calling procedures over the Internet.
Using this package, you can create XML-RPC-based clients and servers. This package is
required for PEAR to run properly.

While the preceding packages are among the most popular, keep in mind that they are just
a few of the packages available via PEAR. A few other prominent packages follow:

* Auth: The Auth package facilitates user authentication across a wide variety of mechanisms,
including LDAP, POP3, IMAP, RADIUS, SOAP, and others.

e HTML QuickForm: The HTML QuickForm package facilitates the creation, rendering, and
validation of HTML forms.

* Log: The Log package offers an abstract logging facility, supporting logging to console,
file, SQL, SQLite, syslog, mail, and mcal destinations.

It might not come as a surprise that the aforementioned packages are so popular. After all,
ifyou haven’tyet started taking advantage of PEAR, it’s likely you’'ve spent significant effort and
time repeatedly implementing some of these features.

Converting Numeral Formats

To demonstrate the power of PEAR, it’s worth calling attention to a package that exemplifies
why you should regularly look to the repository before attempting to resolve any significant
programming task. While some might consider this particular choice of package a tad odd, it is
meant to show that a package may be available even for a particularly tricky problem that you
may think is too uncommon for a package to have been developed, and thus not bother searching
the repository for an available solution. The package is Numbers Roman, and it makes converting
Arabic numerals to Roman and vice versa a snap.

Returning to the problem, suppose you were recently hired to create a new Web site for a
movie producer. As we all know, any serious producer uses Roman numerals to represent
years, and the product manager tells you that any date found on the Web site must appear in
this format. Take a moment to think about this requirement, because fulfilling it isn’t as easy as
it may sound. Of course, you could look up a conversion table online and hard code the values,
but how would you ensure that the site copyright year in the page footer is always up to date?
You're just about to settle in for a long evening of coding when you pause for a moment to
consider whether somebody else has encountered a similar problem. “No way,” you mutter,
but taking a quick moment to search PEAR certainly would be worth the trouble. You navigate
over and, sure enough, encounter Numbers_Roman.

For the purposes of this exercise, assume that the Numbers _Roman package has been installed
on the server. Don’t worry too much about this right now, because you’ll learn how to install
packages in the next section. So how would you go about making sure the current year is
displayed in the footer? By using the following script:

261

262 CHAPTER 11 PEAR

<?php
// Make the Numbers Roman package available
require_once("Numbers/Roman.php");

// Retrieve current year
$year = date("Y");

// Convert year to Roman numerals
$romanyear = Numbers Roman::toNumeral($year);

// Output the copyright statement
echo "Copyright © $romanyear";
2>

For the year 2005, this script would produce:

Copyright © MMV

The moral of this story? Even though you may think that a particular problem is obscure,
other programmers likely have faced a similar problem, and if you're fortunate enough, a solu-
tion is readily available and yours for the taking.

Installing and Updating PEAR

The easiest way to manage your PEAR packages is through the PEAR Package Manager. This is
a command-line program that offers a simple and efficient interface for performing tasks such
as inspecting, adding, updating, and deleting packages, and browsing packages residing in the
repository. In this section, you'll learn how to install and update the PEAR Package Manager
on both the Unix and Windows platforms. Because many readers run Web sites on a shared
hosting provider, this section also explains how to take advantage of PEAR without running the
Package Manager.

Installing PEAR

PEAR has become such an important aspect of efficient PHP programming that a stable release
has been included with the distribution since version 4.3.0. Therefore, if you're running this
version or later, feel free to jump ahead and review the section “Updating Pear.” If you're running
PHP version 4.2.X or earlier on Unix, or are using the Windows platform, the installation process is
trivial, as you'll soon learn.

Unix
Installing PEAR on Unix is a rather simple process, done by retrieving a script from the

http://go-pear.org/ Web site and executing it with the PHP binary. Open up a terminal and
execute the following command:

CHAPTER 11 PEAR

%>1lynx -source http://go-pear.org/ | php

Note that you need to have the lynx Web browser installed, a rather standard program on
the Unix platform. If you don’t have it, search the appropriate program repository for your
particular OS distribution; it’s guaranteed to be there. Alternatively, you can just use a standard
Web browser such as Firefox and navigate to the preceding URL, save the retrieved page, and
execute it using the binary.

Once the installation process begins, you'll be prompted to confirm a few configuration
settings such as the location of the PHP root directory and executable; you'll likely be able to
accept the default answers (provided between square brackets) without issue. During this round
of questions, you will also be prompted as to whether the six optional default packages should
be installed. It’s presently an all-or-none proposition; therefore, if you’d like to immediately
begin using any of the packages, just go ahead and accede to the request.

Windows

PEAR is not installed by default with the Windows distribution. To install it, you need to run the
go-pear.bat file, located in the PHP distribution’s root directory. This file installs the PEAR

command, the necessary support files, and the aforementioned six PEAR packages. Initiate the
installation process by changing to the PHP root directory and executing go-pear.bat, like so:

%>go-pear.bat

You'll be prompted to confirm a few configuration settings such as the location of the PHP
root directory and executable; you'll likely be able to accept the default answers (provided
between square brackets) without issue. During this round of questions, you will also be prompted
as to whether the six optional default packages should be installed. It’s presently an all-or-none
proposition; therefore, if you’d like to immediately begin using any of the packages, just go
ahead and accede to the request.

At the conclusion of the installation process, a registry file named PEAR_ENV.reg is created.
Executing this file will create environment variables for a number of PEAR-specific variables.
Although not critical, adding these variables to the system path affords you the convenience of
executing the PEAR Package Manager from any location while at the Windows command
prompt.

Caution Executing the PEAR_ENV. reg file will modify your system registry. Although this particular
modification is innocuous, you should nonetheless consider backing up your registry before executing the
script. To do so, go to Start » Run, execute regedit, and then export the registry via File » Export.

PEAR and Hosting Companies

If your hosting company doesn’t allow users to install new software on its servers, don’t fret,
because it likely already offers at least rudimentary support for the most prominent packages.
If PEAR support is not readily obvious, contact customer support and inquire as to whether
they would consider making a particular package available for use on the server. If they accede,
you're all set. If they deny your request, not to worry, because it’s still possible to use the packages,

263

264

CHAPTER 11 PEAR

although installing them is accomplished by a somewhat more manual mechanism. This process
is outlined in the later section, “Installing a PEAR Package.”

Updating PEAR

Although it’s been around for years, the PEAR Package Manager is constantly the focus of
ongoing enhancements. That said, you'll want to occasionally check for and update the system.
Doing so is a trivial process on both the Unix and Windows platforms, done by executing the
go-pear.php script found in the PHP_INSTALLATION DIR\PEAR directory:

%>php go-pear.php

Executing this command essentially restarts the installation process, overwriting the
previously installed Package Manager version.

Using the PEAR Package Manager

The PEAR Package Manager allows you to browse and search the contributions, view recent
releases, and download packages. It executes via the command line, using the following syntax:

%>pear [options] command [command-options] <parameters>

To get better acquainted with the Package Manager, open up a command prompt and
execute the following:

%>pear

You'll be greeted with a list of commands and some usage information. This output is
pretty long, so we’ll forego reproducing it here and instead introduce just the most popular
commands available to you. Note that, because the intent of this chapter is to familiarize you
with only the most commonplace PEAR features, this introduction is not exhaustive. Therefore, if
you're interested in learning more about one of the commands not covered in the remainder
of this chapter, execute that command in the Package Manager, supplying the help parameter
like so:

%>pear help <command>

Tip If PEAR doesn’t execute because the command was not found, you need to add the PEAR directory to
your system path.

Viewing Installed Packages

Viewing the packages installed on your machine is simple; just execute the following:
%>pear list

Here’s some sample output:

CHAPTER 11 PEAR 265

Installed packages:

Package Version State
Archive_Tar 1.3.1 stable
Console Getopt 1.2 stable
DB 1.7.6 stable
HTTP 1.2.2 stable
Mail 1.1.3 stable
Net_SMTP 1.2.6 stable
Net_Socket 1.0.1 stable
PEAR 1.3.5 stable
PhpDocumentor 1.3.0RC3 beta

XML_Parser 1.0.1 stable
XML_RPC 1.2.2 stable

Learning More About an Installed Package

The preceding output indicates that 11 packages are installed on the server in question. However,
this information is quite rudimentary and really doesn’t provide anything more than the package
name and version. To learn more about a package, execute the info command, passing it the

package name. For example, you would execute the following command to learn more about

the Console_Getopt package:

%>pear info Console Getopt

Here’s an example of output from this command:

ABOUT CONSOLE_GETOPT-1.2

Provides Classes: Console Getopt

Package Console Getopt

Summary Command-line option parser

Description This is a PHP implementation of "getopt"
supporting both short and long options.

Maintainers Andrei Zmievski <andrei@php.net> (lead)
Stig Bakken <stig@php.net> (developer)

Version 1.2

Release Date 2003-12-11

Release License PHP License

Release State stable

Release Notes Fix to preserve BC with 1.0 and allow correct
behaviour for new users

Last Modified 2005-01-23

As you can see, this output offers some very useful information about the package.

266

CHAPTER 11 PEAR

Installing a Package

Installing a PEAR package is a surprisingly automated process, accomplished simply by executing
the install command. The general syntax follows:

%>pear install [options] package

Suppose for example that you want to install the Auth package, first introduced earlier in
this chapter. The command and corresponding output follows:

%>pear install Auth

pear install auth

downloading Auth-1.2.3.tgz ...

Starting to download Auth-1.2.3.tgz (24,040 bytes)

........ done: 24,040 bytes

Optional dependencies:

package 'File Passwd' version >= 0.9.5 is recommended to utilize some features.
package 'Net POP3' version >= 1.3 is recommended to utilize some features.
package 'MDB' is recommended to utilize some features.

package 'Auth _RADIUS' is recommended to utilize some features.

package 'File SMBPasswd' is recommended to utilize some features.

install ok: Auth 1.2.3

In addition to offering information regarding the installation status, many packages also
present a list of optional dependencies that, if installed, will expand the available features. For
example, installing the File SMBPasswd package enhances Auth’s capabilities, enabling it to
authenticate against a Samba server.

Assuming a successful installation, you're ready to begin using the package. Forge ahead
to the section “Using a Package” to learn more about how to make the package available to
your script. If you run into installation problems, it’s almost certainly due to a failed dependency.
Read on to learn how to resolve this problem.

Failed Dependency?

In the preceding example, File SMBPasswd is an instance of an optional dependency, meaning
it doesn’t have to be installed in order to use Auth, although a certain subset of functionality
will not be available via Auth until File SMBPasswd is installed. However, it is also possible for
there to be required dependencies involved when installing a package, if developers can save
development time by incorporating existing packages into their project. For instance, because
Auth_HTTP requires the Auth package in order to function, any attempt to install Auth_HTTP
without first installing this requisite package will fail, producing the following error:

downloading Auth HTTP-2.1.4.tgz ...

Starting to download Auth HTTP-2.1.4.tgz (7,835 bytes)
..... done: 7,835 bytes

requires package 'Auth' >= 1.2.0

Auth_HTTP: Dependencies failed

CHAPTER 11 PEAR

Automatically Installing Dependencies

Of course, chances are that if you need a particular package, then installing any dependencies
is a foregone conclusion. To install required dependencies, pass the -o (or --onlyreqdeps)
option to the install command:

%>pear install -o Auth_HTTP

To install both optional and required dependencies, pass along the -a (or --alldeps)
option:

%>pear install -a Auth_HTTP

Installing a Package from the PEAR Web Site

The PEAR Package Manager by default installs the latest stable package version. But what if you
were interested in installing a previous package release, or were unable to use the Package
Manager altogether due to administration restrictions placed on a shared server? Navigate to
the PEAR Web site at http://pear.php.net and locate the desired package. If you know the
package name, you can take a shortcut by entering the package name at the conclusion of the
URL http://pear.php.net/package/.

Next, click on the Download tab, found toward the top of the package’s home page. Doing
so produces a linked list of the current package and all previous packages released. Select and
download the appropriate package to your server. These packages are stored in TGZ (tar’red
and gzipped) format.

Next, extract the files to an appropriate location. It doesn’t really matter where, provided
you're consistent in placing all packages in this tree. If you're taking this installation route
because of the need to install a previous version, then it makes sense to place the files in their
appropriate location within the PEAR directory structure found in the PHP root installation
directory. If you're forced to take this route in order to circumvent ISP restrictions, then creating
a PEAR directory in your home directory will suffice. Regardless, be sure this directory is found
in the include_path.

The package should now be ready for use, so move on to the next section to learn how this
is accomplished.

Using a Package

Using an installed PEAR package is simple. All you need to do is make the package contents
available to your script with include or preferably require. Examine the following example,
where PEAR DB package is included and used:

<?php
// Make the PEAR DB package available to the script
require_once("DB.php");

// Connect to the database
$db = DB::connect("mysql://jason:secret@localhost/book");

2>

267

268

CHAPTER 11 PEAR

Keep in mind that you need to add the PEAR base directory to your include_path directive;
otherwise, an error similar to the following will occur:

Fatal error: Class 'DB' not found in /home/www/htdocs/book/11/Roman.php on line 9

Those of you with particularly keen eyes might have noticed in the preceding example that
the require_once statement directly references the DB. php file, whereas in the earlier example
involving the Numbers Roman package, a directory was also referenced:

require_once("Numbers/Roman.php");

A directory is referenced because the Numbers Roman package falls under the Numbers cate-
gory, meaning that, for purposes of organization, a corresponding hierarchy will be created,
with Roman. php placed in a directory named Numbexrs. You can determine the package’s location in
the hierarchy simply by looking at the package name. Each underscore is indicative of another level
in the hierarchy, so in the case of Numbers_Roman, it’s Numbers/Roman.php. In the case of DB, it’s
just DB. php.

Note See Chapter 2 for more information about the include_path directive.

Upgrading a Package

All PEAR packages must be actively maintained, and most are in a regular state of development.
That said, to take advantage of the latest enhancements and bug fixes, you should regularly
check whether a new package version is available. The general syntax for doing so looks like this:

%>pear upgrade [package name]

For instance, on occasion you’ll want to upgrade the PEAR package, responsible for
managing your package environment. This is accomplished with the following command:

%>pear upgrade pear

If your version corresponds with the latest release, you'll see a message that looks like:

Package 'PEAR-1.3.3.1' already installed, skipping

If for some reason you have a version that’s greater than the version found in the PEAR
repository (for instance, you manually downloaded a package from the author’s Web site
before it was officially updated in PEAR), you’ll see a message that looks like this:

CHAPTER 11 PEAR

Package 'PEAR' version '1.3.3.2"' 1is installed and 1.3.3.1 is > requested '1.3.0',
skipping

Otherwise, the upgrade should automatically proceed. When completed, you'll see a
message that looks like:

downloading PEAR-1.3.3.1.tgz ...

Starting to download PEAR-1.3.3.1.tgz (106,079 bytes)
........................ done: 106,079 bytes

upgrade ok: PEAR 1.3.3.1

Upgrading All Packages

It stands to reason that you’ll want to upgrade all packages residing on your server, so why not
perform this task in a single step? This is easily accomplished with the upgrade-all command,
executed like this:

%>pear upgrade-all

Although unlikely, it’s possible some future package version could be incompatible with
previous releases. That said, using this command isn’t recommended unless you're well aware
of the consequences surrounding the upgrade of each package.

Uninstalling a Package

Ifyou have finished experimenting with a PEAR package, have decided to use another solution,
or have no more use for the package, you should uninstall it from the system. Doing so is trivial
using the uninstall command. The general syntax follows:

%>pear uninstall [options] package name
For example, to uninstall the Numbers Roman package, execute the following command:
%>pear uninstall Numbers Roman

Because the options are fairly rarely used, you can perform additional investigation on
your own, by executing:

%>pear help uninstall

Downgrading a Package

There is no readily available means for downgrading a package via the Package Manager. To do
so, download the desired version via the PEAR Web site (http://pear.php.net), which will be
encapsulated in TGZ format, uninstall the presently installed package, and then install the
downloaded package using the instructions provided in the earlier section, “Installing a Package.”

269

270

CHAPTER 11 PEAR

Summary

PEAR can be a major catalyst for quickly creating PHP applications. Hopefully this chapter
convinced you of the serious time savings this repository can present. You learned about the
PEAR Package Manager, and how to manage and use packages.

Forthcoming chapters introduce additional packages, as appropriate, showing you how
these packages can really speed development and enhance your application’s capabilities.

CHAPTER 12

Date and Time

Temporal matters play a role in practically every conceivable aspect of programming and are
often crucial to representing data in a fashion of interest to users. When was a tutorial published?
Is the pricing information for a particular product recent? What time did the office assistantlog
into the accounting system? At what hour of the day does the corporate Web site see the most
visitor traffic? These and countless other time-oriented questions come about on a regular
basis, making the proper accounting of such matters absolutely crucial to the success of your
programming efforts.

This chapter introduces PHP’s powerful date and time manipulation capabilities. After
offering some preliminary information regarding how Unix deals with date and time values,
you'll learn about several of the more commonly used functions found in PHP’s date and time
library. Next, we’ll engage in a bout of Date Fu, where you'll learn how to use the date functions
together to produce deadly (okay, useful) combinations, young grasshopper. We’'ll also create
grid calendars using the aptly named PEAR package Calendar. Finally, the vastly improved date
and time manipulation functions available as of PHP 5.1 are introduced.

The Unix Timestamp

Fitting the oft-incongruous aspects of our world into the rigorous constraints of a programming
environment can be a tedious affair. Such problems are particularly prominent when dealing
with dates and times. For example, suppose you were tasked with calculating the difference in
days between two points in time, but the dates were provided in the formats July 4, 2005 3:45pm
and 7th of December, 2005 18:17. As you might imagine, figuring out how to do this program-
matically would be a daunting affair. What you would need is a standard format, some sort of
agreement regarding how all dates and times will be presented. Preferably, the information
would be provided in some sort of numerical format, 20050704154500 and 20051207181700,
for example. Date and time values formatted in such a manner are commonly referred to as
timestamps.

However, even this improved situation has its problems. For instance, this proposed solu-
tion still doesn’t resolve challenges presented by time zones, matters pertinent to time adjustment
due to daylight savings, or cultural date format variances. What we need is to standardize
according to a single time zone, and to devise an agnostic format that could easily be converted
to any desired format. What about representing temporal values in seconds, and basing every-
thing on Coordinated Universal Time (UTC)? In fact, this strategy was embraced by the early
Unix development team, using 00:00:00 UTC January 1, 1970 as the base from which all dates

2n

272

CHAPTER 12 DATE AND TIME

are calculated. This date is commonly referred to as the Unix epoch. Therefore, the incongruously
formatted dates in the previous example would actually be represented as 1120491900 and
1133979420, respectively.

Gaution You may be wondering whether it’s possible to work with dates prior to the Unix epoch (00:00:00 UTC
January 1, 1970). Indeed it is, at least if you're using a Unix-based system. On Windows, due to an integer
overflow issue, an error will occur if you attempt to use the timestamp-oriented functions in this chapter in
conjunction with dates prior to the epoch definition.

PHP’s Date and Time Library

Even the simplest of PHP applications often involve at least a few of PHP’s date- and time-related
functions. Whether validating a date, formatting a timestamp in some particular arrangement,
or converting a human-readable date value to its corresponding timestamp, these functions
can prove immensely useful in tackling otherwise quite complex tasks.

checkdate()

boolean checkdate (int month, int day, int year)

Although most readers could distinctly recall learning the “Thirty Days Hath September”
poem! back in grade school, it’s unlikely many of us could recite it, present company included.
Thankfully, the checkdate() function accomplishes the task of validating dates quite nicely,
returning TRUE if the date specified by month, day, and year is valid, and FALSE otherwise. Let’s
consider a few examples:

echo checkdate(4, 31, 2005);
// returns false

echo checkdate(03, 29, 2004);
// returns true, because 2004 was a leap yearf

echo checkdate(03, 29, 2005);
// returns false, because 2005 is not a leap year

date()

string date (string format [, int timestamp])

The date() function returns a string representation of the present time and/or date formatted
according to the instructions specified by format. Table 12-1 includes an almost complete

1. “Thirty days hath September, April, June, and November; February has twenty-eight alone, All the rest
have thirty-one, Excepting leap year, that’s the time When February’s days are twenty-nine.”

CHAPTER 12 DATE AND TIME 273

breakdown of all available date() format parameters. Forgive the decision to forego inclusion
of the parameter for Swatch Internet time?.

Including the optional timestamp parameter, represented in Unix timestamp format,
prompts date() to produce a string representation according to that designation. The timestamp
parameter must be formatted in accordance with the rules of GNU'’s date syntax. If timestamp
isn’t provided, the current Unix timestamp will be used in its place.

Table 12-1. The date() Function’s Format Parameters

Parameter Description Example
a Lowercase ante meridiem and post meridiem am or pm
A Uppercase ante meridiem and AM or PM
post meridiem
d Day of the month, with leading zero 01to 31
D Three-letter text representation of day Mon through Sun
F Complete text representation of month January through December
12-hour format of hour, sans zeros 1 through 12
24-hour format, sans zeros 1 through 24
h 12-hour format of hour, with zeros 01 through 24
H 24-hour format, with zeros 01 through 24
i Minutes, with zeros 01 through 60
I Daylight saving time 0ifno, 1 ifyes
j Day of month, sans zeros 1 through 31
1 Text representation of day Monday through Sunday
L Leap year 0ifno, 1ifyes
m Numeric representation of month, 01 through 12
with zeros
M Three-letter text representation Jan through Dec
of month
n Numeric representation of month, 1 through 12
sans zeros
0 Difference to Greenwich Mean Time (GMT) -0500
T Date formatted according to RFC 2822 Tue, 19 Apr 2005 22:37:00 —0500
s Seconds, with zeros 01 through 59
S Ordinal suffix of day st, nd, rd, th

2. Created in the midst of the dotcom insanity, the watchmaker Swatch (http://www.swatch.com/) came
up with the concept of Swatch time, which intended to do away with the stodgy old concept of time
zones, instead setting time according to “Swatch beats.” Not surprisingly, the universal reference for
maintaining Swatch time was established via a meridian residing at the Swatch corporate office.

274

CHAPTER 12

DATE AND TIME

Table 12-1. The date() Function’s Format Parameters (Continued)

Parameter Description Example

t Number of days in month 28 through 31

T Timezone setting of executing machine PST, MST, CST, EST, etc.

U Seconds since Unix epoch 1114646885

W Numeric representation of weekday 0 for Sunday through 6 for
Saturday

W ISO-8601 week number of year 1 through 53

Y Four-digit representation of year 1901 through 2038 (Unix);
1970 through 2038 (Windows)

z The day of year 0 through 365

Z Timezone offset in seconds —43200 through 43200

Despite having regularly used PHP for years, many PHP programmers still need to visit the
PHP documentation to refresh their memory about the list of parameters provided in Table 12-1.
Therefore, although you likely won’t be able to remember how to use this function simply by
reviewing a few examples, let’s look at a few examples just to give you a clearer understanding
of what exactly date() is capable of accomplishing.

The first example demonstrates one of the most commonplace uses for date(), which is
simply to output a standard date to the browser:

echo "Today is ".date("F d, Y");
// Today is April 27, 2005

The next example demonstrates how to output the weekday:

echo "Today is ".date("1");
// Today is Wednesday

Let’s try a more verbose presentation of the present date:

$weekday = date("1");
$daynumber = date("ds");
$monthyear = date("F Y");

printf("Today is %s the %s day of %s", $weekday, $daynumber, $monthyear);

This returns the following output:

Today is Wednesday the 27th day of April 2005

You might be tempted to insert the nonparameter-related strings directly into the date()
function, like this:

CHAPTER 12 DATE AND TIME

echo date("Today is 1 the ds day of F Y");

Indeed, this does work in some cases; however, the results can be quite unpredictable. For
instance, executing the preceding code produces:

EDT027pm05 0351 Wednesday 3008e 2751 27pm05 of April 2005

However, because punctuation doesn’t conflict with any of the parameters, feel free to
insert it as necessary. For example, to format a date as mm-dd-yyyy, use the following:

echo date("m-d-Y");
// 04-26-2005

Working with Time

The date() function can also produce time-related values. Let’s run through a few examples,
starting with simply outputting the present time:

echo "The time is ".date("h:i:s");
// The time is 07:44:53

But is it morning or evening? Just add the a parameter:
echo "The time is ".date("h:i:sa");
// The time is 07:44:53pm

getdate()

array getdate ([int timestamp])

The getdate() function returns an associative array consisting of timestamp components. This
function returns these components based on the present date and time unless a Unix-format
timestamp is provided. In total, 11 array elements are returned, including:

* hours: Numeric representation of the hours. The range is 0 through 23.

* mday: Numeric representation of the day of the month. The range is 1 through 31.
* minutes: Numeric representation of the minutes. The range is 0 through 59.

* mon: Numeric representation of the month. The range is 1 through 12.

* month: Complete text representation of the month, e.g. July.

* seconds: Numeric representation of seconds. The range is 0 through 59.

* wday: Numeric representation of the day of the week, e.g. 0 for Sunday.

» weekday: Complete text representation of the day of the week, e.g. Friday.

* yday: Numeric offset of the day of the year. The range is 0 through 365.

275

276 CHAPTER 12 DATE AND TIME

* year: Four-digit numeric representation of the year, e.g. 2005.

¢ 0:Number of seconds since the Unix epoch. While the range is system-dependent, on
Unix-based systems, it’s generally —2147483648 through 2147483647, and on Windows,
the range is 0 through 2147483648.

CGaution The Windows operating system doesn’t support negative timestamp values, so the earliest date
you could parse with this function on Windows is midnight, January 1, 1970.

Consider the timestamp 1114284300 (April 23, 2005 15:25:00 EDT). Let’s pass it to getdate()
and review the array elements:

Array (
[seconds] => 0
minutes] => 25

hours] => 15
mday] => 23
wday] => 6

year] => 2005

yday] => 112
weekday] => Saturday
month] => April

[
[
[
[
[mon] => 4
[
[
[
[
[0] => 1114284300

gettimeofday()
mixed gettimeofday ([bool return float])

The gettimeofday() function returns an associative array consisting of elements regarding the
current time. For those running PHP 5.1.0 and newer, the optional parameter return_float
causes gettimeofday() to return the current time as a float value. In total, four elements are
returned, including:

e dsttime: Indicates the daylight savings time algorithm used, which varies according to
geographic location. There are 11 possible values, including 0 (no daylight savings
time enforced), 1 (United States), 2 (Australia), 3 (Western Europe), 4 (Middle Europe),
5 (Eastern Europe), 6 (Canada), 7 (Great Britain and Ireland), 8 (Romania), 9 (Turkey),
and 10 (the Australian 1986 variation).

¢ minuteswest: The number of minutes west of Greenwich Mean Time (GMT).

CHAPTER 12 DATE AND TIME

e sec: The number of seconds since the Unix epoch.

e usec: The number of microseconds should the time fractionally supercede a whole
second value.

Executing gettimeofday() from a test server on April 23, 2005 16:24:55 EDT produces the
following output:

Array (
[sec] => 1114287896
[usec] => 110683
[minuteswest] => 300
[dsttime] => 1

)

Of course, it’s possible to assign the output to an array and then reference each element as
necessary:

$time = gettimeofday();
$GMToffset = $time['minuteswest'] / 60;
echo "Server location is $GMToffset hours west of GMT.";

This returns the following:

Server location is 5 hours west of CMT.

mktime()

int mktime ([int hour [, int minute [, int second [, int month
[, int day [, int year [, int is dst]]]111])

The mktime() function is useful for producing a timestamp, in seconds, between the Unix
epoch and a given date and time. The purpose of each optional parameter should be obvious,
save for perhaps is_dst, which should be set to 1 if daylight savings time is in effect, 0 if not, or -1
(default) if you're not sure. The default value prompts PHP to try to determine whether daylight
savings is in effect. For example, if you want to know the timestamp for April 27, 2005 8:50 p.m.,
all you have to do is plug in the appropriate values:

echo mktime(20,50,00,4,27,2005);

This returns the following:

1114649400

277

278 CHAPTER 12 DATE AND TIME

This is particularly useful for calculating the difference between two points in time. For
instance, how many hours are there between now and midnight April 15, 2006 (the next major
U.S. tax day)?

$now = mktime();
$taxday = mktime(0,0,0,4,15,2006);

// Difference in seconds
$difference = $taxday - $now;

// Calculate total hours
$hours = round($difference / 60 / 60);

echo "Only $hours hours until tax day!";

This returns the following:

Only 8451 hours until tax day!

time()
int time()

The time() function is useful for retrieving the present Unix timestamp. The following example
was executed at 15:25:00 EDT on April 23, 2005:

echo time();

This produces the following:

1114284300

Using the previously introduced date() function, this timestamp can later be converted
back to a human-readable date:

echo date("F d, Y h:i:s", 1114284300);

This returns the following:

April 23, 2005 03:25:00

If you’d like to convert a specific date/time value to its corresponding timestamp, see the
previous section for mktime().

CHAPTER 12 DATE AND TIME 279

Date Fu

Some prize fighters never reach the upper echelons of their sport because they’re one-
dimensional. That is, they rely too heavily on one particular aspect of their fighting repertoire,
a left hook, for instance. The truly world-class boxers take advantage of everything at their
disposal, using combinations to attack, wear down, and ultimately defeat their competitors.
This is analogous to effective use of the date functions: While sometimes only one function is
all you need, often their true power becomes apparent when you use two or three together to
produce the desired outcome. This section demonstrates several of the most commonly
requested date-related “moves” (tasks), some of which involve just one function, and others
that involve some combination of several functions.

Displaying the Localized Date and Time

Throughout this chapter, and indeed this book, the Americanized temporal and monetary
formats have been commonly used, such as 04-12-05 and $2,600.93. However, other parts of
the world use different date and time formats, currencies, and even character sets. Given the
Internet’s global reach, you may have to create an application that’s capable of adhering to
foreign, or localized, formats. In fact, neglecting to do so can cause considerable confusion. For
instance, suppose you are going to create a Web site that books reservations for a popular hotel
in Orlando, Florida. This particular hotel is popular among citizens of various other countries,
so you decide to create several localized versions of the site. How should you deal with the fact
that most countries use their own currency and date formats, not to mention different languages?
While you could go to the trouble of creating a tedious method of managing such matters, it likely
would be error-prone and take some time to deploy. Thankfully, PHP offers a built-in set of
features for localizing this type of data.

PHP not only can facilitate proper formatting of dates, times, currencies, and such, but
also can translate the month name accordingly. In this section, you'll learn how to take advantage
of this feature to format dates according to any locality you please. Doing so essentially requires two
functions, setlocale() and strftime(). Both are introduced, followed by a few examples.

setlocale()

string setlocale (mixed category, string locale [, string locale...])
string setlocale (mixed category, array locale)

The setlocale() function changes PHP’s localization default by assigning the appropriate
value to locale. Localization strings officially follow this structure:

language COUNTRY.characterset

For example, if you wanted to use Italian localization, the locale string should be set to
it_IT.Israelilocalization would be set to he_IL, British localization to en_GB, and United States
localization to en_US. The characterset component would come into play when potentially
several character sets are available for a given locale. For example the locale string zh CN.gb18030
is used for handling Tibetan, Uigur, and Yi characters, whereas zh_CN.gb3212 is for Simplified
Chinese.

You'll see that the locale parameter can be passed as either several different strings or an
array of locale values. But why pass more than one locale? This feature is in place (as of PHP

280

CHAPTER 12 DATE AND TIME

version 4.2.0) to counter the discrepancies between locale codes across different operating
systems. Given that the vast majority of PHP-driven applications target a specific platform, this
should rarely be an issue; however, the feature is there should you need it.

Finally, if you're running PHP on Windows, keep in mind that, apparently in the interests
of keeping us on our toes, Microsoft has devised its own set of localization strings. You can
retrieve a list of the language and country codes from http://msdn.microsoft.com.

Tip On some Unix-based systems, you can determine which locales are supported by running the
command: locale -a.

It’s possible to specify alocale for a particular classification of data. Six different categories
are supported:

e LC_ALL: Setlocalization rules for all of the following five categories.

e LC_COLLATE: String comparison. This is useful for languages using characters such as &
and é.

e LC_CTYPE: Character classification and conversion. For example, setting this category
allows PHP to properly convert 4 to its corresponding lowercase representation of A
using the strtolower() function.

e LC_MONETARY: Monetary representation. For example, Americans represent 50 dollars as
$50.00, whereas Italians represent 50 Euro as 50,00.

e LC_NUMERIC: Numeric representation. For example, Americans represent one thousand
four hundred and twelve as 1,412.00, whereas Italians represent it as 1.412,00.

e LC_TIME: Date and time representation. For example, Americans represent dates with the
month followed by the day, and finally the year. For example, February 12, 2005 might be
represented as 02-12-2005. However, Europeans (and much of the rest of the world)
represent this date as 12-02-2005. Once set, you can use the strftime() function to
produce the localized format.

For example, suppose we were working with monetary values and wanted to ensure that
the sums were formatted according to the Italian locale:

setlocale(LC_MONETARY, "it IT");
echo money format("%i", 478.54);

This returns:
EUR 478,54

To localize dates and times, you need to use setlocale() in conjunction with strftime(),
introduced next.

strftime()

string strftime (string format [, int timestamp])

CHAPTER 12

DATE AND TIME 281

The strftime() function formats a date and time according to the localization setting as specified
by setlocale(). While it works in the same format as date(), accepting conversion parameters
that determine the layout of the requested date and time, unfortunately, the parameters are
different from those used by date(), necessitating reproduction of all available parameters in
Table 12-2 for your reference. Keep in mind that all parameters will produce the output according
to the set locale. Also, note that some of these parameters aren’t supported on Windows.

Table 12-2. The strftime() Function’s Format Parameters

Parameter Description Examples or Range

%a Abbreviated weekly name Mon, Tue

%A Complete weekday name Monday, Tuesday

%b Abbreviated month name Jan, Feb

%B Complete month name January, February

%c Standard date and time 04/26/05 21:40:46

%C Century number 21

%d Numerical day of month, with leading zero 01, 15, 26

%D Equivalent to %m/%d/%y 04/26/05

%e Numerical day of month, no leading zero 26

%g Same output as %G, but without the century 05

%G Numerical year, behaving according to rules 2005
set by %V

%h Same output as %b Jan, Feb

%H Numerical hour (24-hour clock), 00 through 23
with leading zero

%1 Numerical hour (12-hour clock), 00 through 12
with leading zero

%] Numerical day of year 001 through 366

%m Numerical month, with leading zero 01 through 12

M Numerical month, with leading zero 00 through 59

%n Newline character \n

%p Ante meridiem and post meridiem AM, PM

% Ante meridiem and post meridiem, with periods AM.,, P.M.

24-hour time notation

Numerical seconds, with leading zero

00:01:00 through 23:59:59
00 through 59

282

CHAPTER 12 DATE AND TIME

Table 12-2. The strftime() Function’s Format Parameters (Continued)

Parameter Description Examples or Range
%t Tab character \t
%T Equivalent to %H:%M:%S 22:14:54
%u Numerical weekday, where 1 = Monday 1 through 7
%U Numerical week number, where first Sunday is 17
first day of first week
%V Numerical week number, where week 1 = 01 through 53
first week with >= 4 days
oW Numerical week number, where first Monday is 08
first day of first week
% Numerical weekday, where 0 = Sunday 0 through 6
%x Standard date 04/26/05
%X Standard time 22:07:54
%y Numerical year, without century 05
%Y Numerical year, with century 2005
%Z ot %z Time zone Eastern Daylight Time
%% The percentage character %

By using strftime() in conjunction with setlocale(), it's possible to format dates according
to your user’s local language, standards, and customs. Recalling the travel site, it would be
trivial to provide the user with a localized itinerary with travel dates and the ticket cost:

Benvenuto abordo, Sr. Sanzi

<?php
setlocale(LC_ALL, "it IT");
$tickets = 2;
$departure time = 1118837700;
$return_time = 1119457800;
$cost = 1350.99;
>
Numero di biglietti: <?php echo $tickets; ?>

Orario di partenza: <?php echo strftime("%d %B, %Y", $departure time); ?>

Orario di ritorno: <?php echo strftime("%d %B, %Y", $return time); ?>

Prezzo IVA incluso: <?php echo money format('%i', $cost); ?>

This example returns the following:

CHAPTER 12 DATE AND TIME

Benvenuto abordo, Sr. Sanzi

Numero di biglietti: 2

Orario di partenza: 15 giugno, 2005
Orario di ritorno: 22 giugno, 2005
Prezzo IVA incluso: EUR 1.350,99

Displaying the Web Page’s Most Recent Modification Date

Barely a decade old, the Web is already starting to look like a packrat’s office. Documents are
strewn everywhere, many of which are old, outdated, and often downright irrelevant. One of
the commonplace strategies for helping the visitor determine the document’s validity involves
adding a timestamp to the page. Of course, doing so manually will only invite errors, as the
page administrator will eventually forget to update the timestamp. However, it’s possible to
automate this process using date() and getlastmod(). You already know date(), so this oppor-
tunity is taken to introduce getlastmod().

getlastmod()

int getlastmod()

The getlastmod() function returns the value of the page’s Last-Modified header, or FALSE in the
case of an error. If you use it in conjunction with date(), providing information regarding the
page’s last modification time and date is trivial:

$lastmod = date("F d, Y h:i:sa", getlastmod());
echo "Page last modified on $lastmod";

This returns output similar to the following:

Page last modified on April 26, 2005 07:59:34pm

Determining the Number Days in the Current Month

To determine the number of days found in the present month, use the date() function’s
t parameter. Consider the following code:

printf("There are %d days in %s.", date("t"), date("F"));

If this was executed in April, the following result would be output:

There are 30 days in April.

283

284

CHAPTER 12 DATE AND TIME

Determining the Number of Days in Any Given Month

Sometimes you might want to determine the number of days in some month other than the
present month. The date() function alone won’t work because it requires a timestamp, and
you might only have a month and year available. However, the mktime() function can be used
in conjunction with date() to produce the desired result. Suppose you want to determine the
number of days found in February of 2006:

$lastday = mktime(o, 0, 0, 3, 0, 2006);
printf("There are %d days in February, 2006.", date("t",$lastday));

Executing this snippet produces the following output:

There are 28 days in February, 2006.

Calculating the Date X Days from the Present Date

It’s often useful to determine the precise date some specific number of days into the future or
past. Using the strtotime() function and GNU date syntax, such requests are trivial. Suppose
you want to know what the date will be 45 days into the future, based on today’s date of April

23, 2005:

$futuredate = strtotime("45 days");
echo date("F d, Y", $futuredate);

This returns:

June 07, 2005

By prepending a negative sign, you can determine the date 45 days into the past:

$pastdate = strtotime("-45 days");
echo date("F d, Y", $pastdate);

This returns the following:

March 09, 2005

What about 10 weeks and 2 days from today?

$futuredate = strtotime("10 weeks 2 days");
echo date("F d, Y", $futuredate);

This returns:

July 04, 2005

CHAPTER 12 DATE AND TIME

Using strtotime() and the supported GNU date input formats, making such determinations
is largely limited to your imagination.

Creating a Calendar

The Calendar package consists of 12 classes capable of automating numerous chronological
tasks. The following list highlights just a few of the useful ways in which you can apply this
powerful package:

* Render a calendar of any scope (hourly, daily, weekly, monthly, and yearly being the
most common) in a format of your choice.

* Navigate calendars in a manner reminiscent of that used by the Gnome Calendar and
Windows Date & Time Properties interface.

» Validate any date. For example, you can use Calendar to determine whether April 1, 2019
falls on a Monday (it does).

» Extend Calendar’s capabilities to tackle a variety of other tasks, date analysis for instance.

In this section, you'll learn about Calendar’s most important capabilities, followed by
several examples showing you how to actually implement some of these interesting features. But
before you can begin taking advantage of this powerful package, you need to install it. Although you
learned all about the PEAR package installation process in Chapter 11, for those of you not
yet entirely familiar with the installation process, the necessary steps are reproduced next.

Installing Calendar

To capitalize upon all of Calendar’s features, you also need to install the Date package. Let’s
take care of both during the Calendar installation process, which follows:

%>pear install Date

downloading Date-1.4.3.tgz ...

Starting to download Date-1.4.3.tgz (42,048 bytes)
............ done: 42,048 bytes

install ok: Date 1.4.3

%>pear install -f Calendar

Warning: Calendar is state 'beta' which is less stable than state 'stable’
downloading Calendar-0.5.2.tgz ...

Starting to download Calendar-0.5.2.tgz (60,164 bytes)
.............. done: 60,164 bytes

Optional dependencies:

package “Date' is recommended to utilize some features.
install ok: Calendar 0.5.2

%>

The -f flag is included when installing Calendar here because, at the time of this writing,
Calendar is still a beta release. By the time of publication, Calendar could be officially stable,
meaning you won’t need to include this flag. See Chapter 11 for a complete introduction to
PEAR and the install command.

285

286

CHAPTER 12 DATE AND TIME

Calendar Fundamentals

Calendar is a rather large package, consisting of 12 public classes broken down into four
distinct groups:

¢ Date classes: Used to manage the six date components: years, months, days, hours,
minutes, and seconds. A separate class exists for each component: Calendar_Year,
Calendar_Month, Calendar Day, Calendar Hour, Calendar_Minute, and Calendar_Second,
respectively.

¢ Tabular date classes: Used to build monthly and weekly grid-based calendars. Three
classes are available: Calendar_Month Weekdays, Calendar Month Weeks, and Calendar_Week.
These classes are useful for building monthly tabular calendars in daily and weekly
formats, and weekly tabular calendars in seven-day format, respectively.

* Validation classes: Used to validate dates. The two classes are Calendar_Validator,
which is used to validate any component of a date and can be called by any subclass, and
Calendar Validation Error, which offers an additional level of reporting if something is
wrong with a date, and provides several methods for dissecting the date value.

¢ Decorator classes: Used to extend the capabilities of the other subclasses without having to
actually extend them. For instance, suppose you want to extend Calendar’s functionality
with a few features for analyzing the number of Saturdays falling on the 17t of any given
month. A decorator would be an ideal way to make that feature available. Several decorators
are offered for reference and use, including Calendar_Decorator, Calendar Decorator Uri,
Calendar Decorator Textual, and Calendar Decorator Wrapper.In the interests of sticking
to a discussion of the most commonly used features, Calendar’s decorator internals aren’t
discussed here; consider examining the decorators installed with Calendar for ideas
regarding how you can go about creating your own.

All four classes are subclasses of Calendar, meaning all of the Calendar class’s methods are
available to each subclass. For a complete summary of the methods for this superclass and the
four subclasses, see http://pear.php.net/package/Calendar.

Creating a Monthly Calendar

These days, grid-based monthly calendars seem to be one of the most commonly desired Web
site features, particularly given the popularity of time-based content such as blogs. Yet creating
one from scratch can be deceivingly difficult. Thankfully, Calendar handles all of the tedium for
you, offering the ability to create a grid calendar with just a few lines of code. For example,
suppose we want to create a calendar for the present month and year, as shown in Figure 12-1.
The code for creating this calendar is surprisingly simple, and is presented in Listing 12-1.
An explanation of key lines follows the code, referring to their line numbers for convenience.

CHAPTER 12 DATE AND TIME 287

April, 2006
Su Mo Tu We Th Fr Sa
1
23 4 5 67 8
9 10 1112 13 14 15
16 17 18 19 2021 22
2324 2526 27 28 29
30

Figure 12-1. A grid calendar for April, 2006

Listing 12-1. Creating a Monthly Calendar

01 <?php

02 require once 'Calendar/Month/Weekdays.php';

03

04 $month = new Calendar Month_ Weekdays(2006, 4, 0);
05

06 $month->build();

07

08 echo "<table cellspacing='5'>\n";
09 echo "<tr><td class="monthname' colspan="7'>April, 2006</td></tr>";
10 echo "<tr><td>Su</td><td>Mo</td><td>Tu</td><td>We</td>

11 <td>Th</td><td>Fr</td><td>Sa</td></tr>";
12 while ($day = $month->fetch()) {

13 if ($day->isFirst()) {

14 echo "<tr>";

15 }

16

17 if ($day->isEmpty()) {

18 echo "<td> </td>";

19 } else {

20 echo '<td>'.$day->thisDay()."</td>";
21 }

22

23 if ($day->isLast()) {

24 echo "</tr>";

25 }

26}

27

28 echo "</table>";
29 2>

288

CHAPTER 12 DATE AND TIME

¢ Line 02: Because we want to build a grid calendar representing a month, the
Calendar Month Weekdays class is required. Line 02 makes this class available to
the script.

¢ Line 04: The Calendar Month_Weekdays class is instantiated, and the date is set to April,
2006. The calendar should be laid out from Sunday to Saturday, so the third parameter
is set to 0, which is representative of the Sunday numerical offset (1 for Monday, 2 for
Tuesday, and so forth).

¢ Line 06: The build() method generates an array consisting of all dates found in the month.
¢ Line 12: Awhile loop begins, responsible for cycling through each day of the month.

* Lines 13-15: If $Day is the first day of the week, output a <tr> tag.

* Lines 17-21:If $Day is empty, output an empty cell. Otherwise, output the day number.
* Lines 23-25: If $Day is the last day of the week, output a </tr> tag.

Pretty simple isn’t it? Creating weekly and daily calendars operates on a very similar premise.
Just choose the appropriate class and adjust the format as you see fit.

Validating Dates and Times

While PHP’s checkdate() function is useful for validating a date, it requires that all three date
components (month, day, and year) are provided. But what if you want to validate just one
date component, the month, for instance? Or perhaps you’d like to make sure a time value
(hours:minutes:seconds), or some particular part of it, is legitimate before inserting it into a
database. The Calendar package offers several methods for confirming both dates and times,
or any part thereof. This list introduces these methods:

e isValid(): Executes all the other time and date validator methods, validating a date
and time

e isValidDay(): Ensures that a day falls between 1 and 31

e isValidHour(): Ensures that the value falls between 0 and 23

e isValidMinute(): Ensures that the value falls between 0 and 59
e isValidMonth(): Ensures that the value falls between 1 and 12
e isValidSecond(): Ensures that the value falls between 0 and 59

e isValidYear(): Ensures that the value falls between 1902 and 2037 on Unix, or 1970
and 2037 on Windows

PHP 5.1

While the built-in date functions discussed earlier in this chapter are very useful, users inter-
ested in manipulating and navigating dates are left out in the cold. For example, there is no
readily available function for determining what day comes after Monday, what month comes

CHAPTER 12 DATE AND TIME

after November, or whether a given year is a leap year. While the Calendar package introduced
in the last section offers these capabilities, it would be nice to make these enhancements avail-
able via the default distribution. Those of you who have long yearned for such features are in
luck, because the PECL3 Date and Time extension has been incorporated into the standard
PHP distribution as of version 5.1. Authored by Pierre-Alain Joye, the Date and Time Library
(hereafter referred to as Date) is guaranteed to make the lives of many PHP programmers
significantly easier. In this section, you'll learn about Date and see its powerful capabilities
demonstrated through several examples.

Caution This chapter was written several months ahead of the official PHP 5.1 release, at a time when
no documentation was available for the Date extension. Therefore, be forewarned that any information found
in this section could indeed be incorrect by the time you read this. Nor does this section offer a comprehensive
summary of all available features, as at the time of writing several of the methods weren’t working properly,
and therefore it was decided better to omit them from the material. Such are the risks one takes to stay on
the leading edge of technology!

Date Fundamentals

Earlier in the chapter, it was half-jokingly mentioned that offering date() examples was just for
the sake of demonstration, because you'll nonetheless need to refer to the documentation (or
this book) for years in order to recall what the somewhat nonsensical parameters do. Date takes
away much of the guesswork because it’s fully object-oriented, meaning the process involved
in juggling dates is somewhat natural because the method names are rather self-explanatory.
For example, to set the month, you call the setMonth () mutator; to retrieve the year, you call the
getYear () accessor; and so on. The remainder of this chapter is devoted to an introduction of
this class and its many methods.

Note Because Date relies on object-oriented features available as of version 5.0, you cannot use Date
in conjunction with any earlier version. If you haven’t yet upgraded to version 5.1 (but are using version 5.0.X)
and want to use Date, download it from http://pecl.php.net/package/date_time.

The Date Constructor

Before you can use the Date features, you need to instantiate a date object via its class
constructor. This constructor is introduced in this section.

3. PECLis the PHP Extension Community Library, containing PHP extensions written in the C language.
Learn more about it at http://pecl.php.net.

289

290

CHAPTER 12 DATE AND TIME

date()

object date ([integer day [, integer month [, integer year [, integer weekstart]]]])

The date() method is the class constructor. You can set the date either at the time of instantiation
by using the day, month, and year parameters, or later by using a variety of mutators (setters),
which are introduced next. To create an empty date object, just call date() like so:

$date = new Date();
To create an object and set the date to April 29, 2005, execute:
$date = new Date(29,4,2005);

You can use the optional weekstart parameter to tell the object which day of the week
should be considered the first. By default, date objects assume the week begins with Monday,
meaning Monday has the offset 1.

Curiously, there is no convenient means for setting the date object to the current date.
To do so, you need to use the date() function:

$date = new Date(date("j"),date("n"),date("Y"));

Accessors and Mutators

Date offers several accessors (getters) and mutators (setters) that are useful for manipulating
and retrieving date component values. Those methods are introduced in this section.

setDMY()

boolean setDMY (integer day, integer month, integer year)

The setDMY() method sets the date object’s day, month, and year, returning TRUE on success
and FALSE otherwise. Let’s set the date to April 29, 2005:

$date = new Date();
$date->setDMY(29,4,2005);
$dcs = $date->getArray();
print_r($dcs);

This returns the following:

Array (
[day] => 29 [month] => 4 [year]

4 => 2005
[hour] => 0 [min] => 0 [sec] => 0

The getArray() method is convenient for easily storing all three date components in an
array. This method is introduced next.

CHAPTER 12 DATE AND TIME 291

getArray()
array getArray()

The getArray () method returns an associative array consisting of three keys: day, month,
and year:

$date = new Date();
$date->setDMY(29,4,2005);

$dcs = $date->getArray();

echo "The month: ".$dcs['month']."
";
echo "The day: ".$dcs['day']."
";
echo "The year: ".$dcs['year']."
";

The result follows:

The month: 4
The day: 29
The year: 2005

setDay()
boolean setDay (integer day)

The setDay () method sets the date object’s day attribute to day, returning TRUE on success and
FALSE otherwise. The following example sets the date to April 29, 2006 and then changes the
day to 15:

$date = new Date(29,4,2006);
$date->setDay15);
// The date is now set to April 15, 2006

getDay()
integer getDay()
The getDay() method returns the day attribute from the date object. An example follows:

$date = new Date(29,4,2006);
echo $date->getDay();

The following is returned:

29

292

CHAPTER 12 DATE AND TIME

setJulian()

The Julian date was created by historian Joseph Scaliger (1540-1609) in an attempt to convert
between the many disparate calendaring systems he encountered when studying historical
documents. It's based on a 7,980-year cycle, because this number is a multiple of several common
time cycles (namely the lunar and solar cycles and a Roman taxation cycle) that served as the
foundation for these systems. Julian dates are represented by the number of days elapsed from
a specific date, and the first Julian cycle began at noon on January 1, 4,713 B.C. on the Julian
calendar; therefore, the Julian date equivalent for April 29, 2006 is 2453851.5.

CGaution Julian dates bear no relation to the 365-day Julian calendaring system we use today, which was
instituted by Julius Caesar in 46 B.C.

getJuliaan()
int getJuliaan()

The getJuliaan() method returns the Julian date calculated from the date specified by the date
object. Interestingly, as of the time of writing, Julian is misspelled as Juliaan. If you use this
method, be sure to monitor future releases, because this is likely to change to the correct
spelling in the future.

setMonth()

boolean setMonth (integer month)

The setMonth() method sets the date object’s month attribute to month, returning TRUE on success
and FALSE otherwise. The following example sets the date to April 29, 2005 and then changes
the month to July:

$date = new Date(29,4,2005);
$date->setMonth(7);
// The month is now set to July (7)

getMonth()
integer getMonth()

The getMonth() method returns the month attribute from the date object. An example follows:

$date = new Date(29,4,2005);
echo $date->getMonth();

This returns:

CHAPTER 12 DATE AND TIME

setYear()
boolean setYear (integer year)

The setYear () method sets the date object’s year attribute to year, returning TRUE on success
and FALSE otherwise. The following example sets the date to April 29, 2005 and then changes
the year to 2006:

$date = new Date(29,4,2005);

$date->setYear(2006);

// The year is now set to 2006

getYear()

integer getYear()

The getYear () method returns the year attribute from the date object. An example follows:

$date = new Date(29,4,2005);
echo $date->getYear();

The result returned follows:

2005

Validators

Date offers a method for determining whether the date falls on a leap year and a method for
validating the date’s correctness. Both of those methods are introduced in this section.

isLeap()
boolean isleap()

The isLeap() method returns TRUE if the year represented by the date object is a leap year, and
FALSE otherwise. The following script uses isLeap() in conjunction with a ternary operator to
inform the user whether a given year is a leap year:

$year = 2005;
$date = new Date(date("j"),date("n"),$year);
echo "$year is ". ($date->isleap() ==1 ? "" : "not"). " a leap year.";

This produces the following output:

2005 is not a leap year.

293

294

CHAPTER 12 DATE AND TIME

isValid()
boolean isValid()

The isValid() method returns TRUE if the date represented by the date object is valid, and FALSE
otherwise. Because this method can’t be called statically, and it’s impossible to set an invalid
date using the constructor of any of the mutators, it isn’t presently apparent why isValid()
exists.

Manipulation Methods

Of course, the true applicability of this class comes from its date-manipulation capabilities. In
this section, you'll learn about the functions that allow you to manipulate dates with ease

addDays()

boolean addDays (int days)

The addDays () method adds days days to the date object, adjusting the month and year accord-
ingly should the new day value surpass the present month’s total number of days, returning TRUE
on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2005
and we use addDays () to add five days:

$date = new Date();
$date->setDMY(28,4,2005);
$date->addDays(5);

$dcs = $date->getArray();
print_r($dcs);

The following is returned:

Array (
[day] => 3 [month] => 5 [year] => 2005
[hour] => 0 [min] => 0 [sec] => 0

subDays()
boolean subDays (int days)

The subDays () method subtracts days days from the date object, adjusting the month and year
accordingly should days be greater than the date’s day component, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
addDays () to subtract 14 days:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subDays(14);

$dcs = $date->getArray();
print_r($dcs);

CHAPTER 12 DATE AND TIME

This returns:

Array (
[day] => 14 [month] => 4 [year] => 2006
[hour] => 0 [min] => 0 [sec] => 0

addMonths()
boolean addMonths (int months)

The addMonths () method adds months months to the date object’s month attribute, adjusting the
year accordingly should the new month value be greater than 12, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
addMonths() to add nine months:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addMonths(9);
$dcs = $date->getArray();
print r($dcs);

The following is the output:

Array (
[day] => 28 [month] => 1 [year]

=> 2007
[hour] => 0 [min] => 0 [sec] => 0

In the case that the new month does not possess the number of days found in the day
attribute, then day will be adjusted downward to the last day of the new month.

subMonths()

boolean subMonths (int months)

The subMonths () method subtracts months months from the date object’s month attribute, adjusting
the year accordingly should the new month value be less than zero, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
subMonths () to add nine months:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subMonths(9);
$dcs = $date->getArray();
print_r($dcs);

295

296 CHAPTER 12 DATE AND TIME

This returns:

Array (
[day] => 28 [month] => 7 [year] => 2005
[hour] => 0 [min] => 0 [sec] => 0

In the case that the new month does not possess the number of days found in the day
attribute, then day will be adjusted downward to the last day of the new month.

addWeeks()

boolean addwWeeks (int weeks)

The addweeks () method adds weeks weeks to the date object’s date, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
addWeeks () to add seven weeks:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addWeeks(7);

$dcs = $date->getArray();
print_r($dcs);

The following is returned:

Array (
[day] => 16 [month] => 6 [year] => 2006
[hour] => 0 [min] => 0 [sec] => 0

)

subWeeks()

boolean subWeeks (int weeks)

The subWeeks () method subtracts weeks weeks from the date object’s date, returning TRUE on
success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and
we use subleeks () to subtract seven weeks:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subWeeks(7);

$dcs = $date->getArray();
print_r($dcs);

CHAPTER 12 DATE AND TIME 297

This returns the following:

Array (
[day] => 10 [month] => 3 [year] => 2006
[hour] => 0 [min] => 0 [sec] => 0

addYears()

boolean addYears (int years)

The addYears () method adds years years from the date object’s year attribute, returning TRUE
on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006
and we use addYears() to add four years:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addYears(4);

$dcs = $date->getArray();
print r($dcs);

This returns the following:

Array (
[day] => 28 [month] => 4 [year]

=> 2010
[hour] => 0 [min] => 0 [sec] => 0

subYears()
boolean subYears (int years)

The subYears() method subtracts years years from the date object’s year attribute, returning
TRUE on success and FALSE otherwise. For example, suppose the object’s date is set to April 28,
2006 and we use subYears() to subtract two years:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subYears(2);

$dcs = $date->getArray();
print_r($dcs);

298

CHAPTER 12 DATE AND TIME

The following output is returned:

Array (
[day] => 28 [month] => 4 [year] => 2004
[hour] => 0 [min] => 0 [sec] => 0

getWeekday()

integer getWeekday()

The getWeekday () method returns the numerical offset of the day specified by the date object.
An example follows:

$date = new Date();
$date->setDMY(30,4,2006);
echo $date->getWeekday();

This returns the following, which is a Sunday, because Sunday’s numerical offset is 7:

setToWeekday()

boolean setToWeekday (int weekday, int n [, int month [, int year]])

The setToleekday () method sets the date to the nth weekday of the month and year, returning
TRUE on success and FALSE otherwise. If no month and year are provided, the present month and
year are used. As of the time of writing, this method was broken; quite likely it will have been
fixed by the time this book is published.

getDayOfYear()

integer getDayOfYear()

The getDayOfYear () method returns the numerical offset of the day specified by the date object.
An example follows:

$date = new Date();
$date->setDMY(4,7,1776);
echo $date->getDayOfYear();

The following is the result:

186

CHAPTER 12 DATE AND TIME

getWeekOfYear()
integer getWeekOfYear()
The getDayOfYear () method returns the numerical offset of the week specified by the date object:

$date = new Date();
$date->setDMY(4,7,1776);
echo $date->getWeekOfYear();

This returns:

27

getiSOWeekOfYear()
integer getISOWeekOfYear()

The getISOWeekOfYear () method returns the week number of the date represented by the date
object according to the ISO 8601 specification. ISO 8601 states that the first week of the year is
the week containing the first Thursday. For instance, the first day of 2005 fell on a Sunday, but
January 2 through 8 contained the first Thursday; therefore, January 1 does not even count as
falling in the first week of the year. You might think this a tad odd; however, the decision is
almost arbitrary in that it just standardizes the method for determining what constitutes the
year’s first week. Let’s see this explanation in action by querying for the week number in which
January 4 falls:

$date = new Date();
$date->setDMY(4,1,2005);
echo $date->getISOWeekOfYear();

The following is returned:

So, given that January 1 doesn’t qualify as falling within the first week of the year, within
what week does it fall? You might be surprised to learn the ISO standard actually considers it to
be the 53" week of 2004:

$date = new Date();
$date->setDMY(1,1,2005);
echo $date->getISOWeekOfYear();

299

300

CHAPTER 12 DATE AND TIME

This returns:

53

setToLastMonthDay()
boolean setTolLastMonthDay()

The setTolLastMonthDay () method adjusts the date object’s day attribute to the last day of the
month specified by the month attribute, returning TRUE on success and FALSE otherwise. An
example follows:

$date = new Date();
$date->setDMY(1,4,2006);
$date->setTolLastMonthDay();
echo $date->getDay();

The following output is returned:

30

setFirstDow()
boolean setFirstDow()

The setFirstDow() method sets the date object’s day attribute to the first day of the week as
specified by the weekstart attribute, returning TRUE on success and FALSE otherwise. By default,
weekstart is set to Monday. The following example sets the date April 28, 2006 (which is a
Friday), and then moves the date to the first day of the week (a Monday):

$date = new Date();
$date->setDMY(28,4,2006);
$date->setFirstDow();
$dcs = $date->getArray();
print r($dcs);

This returns:

Array (
[day] => 24 [month] => 4 [year] => 2006
[hour] => 0 [min] => 0 [sec] => 0

CHAPTER 12 DATE AND TIME

setLastDow()
boolean setlLastDow()

The setLastDow() method sets the date object’s day attribute to the last day of the week, returning
TRUE on success and FALSE otherwise. This day is dependent upon the value of the weekstart
attribute, which is set to Monday by default. The following example sets the date April 28, 2006
(which is a Friday), and then moves the date to the last day of the week (a Sunday):

$date = new Date();
$date->setDMY(28,4,2006);
$date->setlastDow();

$dcs = $date->getArray();
print_r($dcs);

This returns:

Array (
[day] => 30 [month] => 4 [year] => 2006
[hour] => 0 [min] => 0 [sec] => 0

Summary

This chapter covered quite a bit of material, beginning with an overview of several date and
time functions that appear almost daily in typical PHP programming tasks. Next up was a
journey into the ancient art of Date Fu, where you learned how to combine the capabilities of
these functions to carry out useful chronological tasks. We also covered the useful Calendar
PEAR package, where you learned how to create grid-based calendars, and both validation and
navigation mechanisms. Finally, for those readers living on the frayed edges of emerging tech-
nology, an introduction to PHP 5.1’s new date-manipulation features was provided.

The next chapter is focused on the topic that is likely responsible for piquing your interest
in learning more about PHP: user interactivity. We’ll jump into data processing via forms,
demonstrating both basic features and advanced topics such as how to work with multivalued
form components and automated form generation. You'll also learn how to facilitate user navi-
gation by creating breadcrumb navigation trails and custom 404 messages.

301

CHAPTER 13

Forms and Navigational Cues

You can throw about technical terms such as relational database, Web Services, session handling,
and LDAP, but when it comes down to it, you started learning PHP because you wanted to
build cool, interactive Web sites. After all, one of the Web’s most alluring aspects is that it’s a
two-way media; the Web not only enables you to publish information, but also offers a highly
effective means for interaction. This chapter formally introduces one of the most common
ways in which you can use PHP to interact with the user: Web forms. In addition, you'll learn a
few commonplace site-design strategies that will help the user to better engage with your site
and even recall key aspects of your site structure more easily. This chapter presents three such
strategies, referred to as navigational cues, including user-friendly URLs, breadcrumb trails,
and custom error pages.

The majority of the material covered in this chapter should be relatively simple to under-
stand, yet crucial for anybody who is interested in building even basic Web sites. In total, we’ll
talk about the following topics:

¢ Basic PHP and Web form concepts

» Passing form data to PHP functions

* Working with multivalued form components
e Automating form generation

¢ Forms autocompletion

e PHP and JavaScript integration

* Creating friendly URLs with PHP and Apache
* Creating breadcrumb navigation trails

* Creating custom 404 handlers

PHP and Web Forms

Although using hyperlinks as a means for interaction is indeed useful, often you'll require a
means for allowing the user to actually input raw data into the application. For example, what
if you wanted to enable a user to enter his name and e-mail address so he could subscribe to a

303

304

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

newsletter? You'd use a form, of course. Because you're surely quite aware of what a Web form
is, and have undoubtedly made use of Web forms—at least on the level of an end user—hundreds,
if not thousands of times, this chapter won’t introduce form syntax. If you require a primer or
arefresher course regarding how to create basic forms, consider reviewing any of the many
tutorials made available on the Web. Two particularly useful sites that offer forms-specific
tutorials follow:

e W3 Schools: http://www.w3schools.com/
e HTML Goodies: http://www.htmlgoodies.com/

Instead, we will review how you can use Web forms in conjunction with PHP to gather and
process valuable user data.

There are two common methods for passing data from one script to another: GET and
POST. Although GET is the default, you'll typically want to use POST, because it’s capable of
handling considerably more data, an important behavior when you're using forms to insert
and modify large blocks of text. If you use POST, any posted data sent to a PHP script must be
referenced using the $_POST syntax, as was first introduced in Chapter 3. For example, suppose
the form contains a text-field value named email that looks like this:

<input type="text" name="email" size="20" maxlength="40" value="" />
Once this form is submitted, you can reference that text-field value like so:
$ POST['email']

Of course, for sake of convenience, nothing prevents you from first assigning this value to
another variable, like so:

$email = $ POST['email'];

Keep in mind that, other than the odd naming convention, $ POST variables are just like any
other variable. They're simply referenced in this fashion in an effort to definitively compart-
mentalize an external variable’s origination. As you learned in Chapter 3, such a convention
is available for variables originating from the GET method, cookies, sessions, the server, and
uploaded files. Think of it as namespaces for variables.

This section introduces numerous scenarios in which PHP can play a highly effective role
not only in managing form data, but also in actually creating the form itself. For starters, though,
let’s take a look at a proof-of-concept example.

A Simple Example

The following script renders a form that prompts the user for their name and e-mail address.
Once completed and submitted, the script (named subscribe.php) displays this information
back to the browser window.

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

<?php
// If the submit button has been pressed
if (isset($_POST['submit']))
{
echo "Hi ".$ POST['name']."!l
";
echo "The address ".$ POST['email']." will soon be a spam-magnet!
";

>

<form action="subscribe.php" method="post">
<p>
Name:

<input type="text" name="name" size="20" maxlength="40" value="" />
</p>
<p>
Email Address:

<input type="text" name="email" size="20" maxlength="40" value="" />
</p>
<input type="submit" name = "submit" value="Go!" />
</form>

Assuming that the user completes both fields and clicks the Go! button, output similar to
the following will be displayed:

Hi Bill!
The address bill@example.com will soon be a spam-magnet!

Note that in this example the form refers to the script in which it is found, rather than
another script. Although both practices are regularly employed, it’s quite commonplace to
refer to the originating document and use conditional logic to determine which actions should
be performed. In this case, the conditional logic dictates that the echo statements will only
occur if the user has submitted (posted) the form.

It’s also worth noting that in cases where you're posting data back to the same script from
which it originated, as in the preceding example, you can use the PHP superglobal variable
$ SERVER['PHP_SELF']. The name of the executing script is automatically assigned to this variable;
therefore, using it in place of the actual file name will save some additional code modification
should the file name later change. For example, the <form> tag in the preceding example could
be modified as follows and still produce the same outcome:

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

305

306 CHAPTER 13 FORMS AND NAVIGATIONAL CUES

Passing Form Data to a Function

The process for passing form data to a function is identical to the process for passing any other
variable; you simply pass the posted form data as function parameters. Suppose you wanted to
incorporate some server-side validation into the previous example, using a custom function to
verify the e-mail address’s syntactical validity. Listing 13-1 offers this revised script.

Listing 13-1. Validating Form Data in a Function

<?php
// Function used to check email syntax
function validate email($email)
{
// Create the syntactical validation regular expression
$regexp = "~([_a-z0-9-]+)(\.[_a-z0-9-]+)*@([a-z0-9-]+)
(\.[a-20-9-]+)*(\.[a-2]{2,6})$";

// Validate the syntax
if (eregi($regexp, $email)) return 1;
else return 0;

// Has the form been submitted?
if (isset($_POST['submit']))

{
echo "Hi ".$ POST['name']."l
";
if (validate email($ POST['email']))
echo "The address ".$ POST['email']." is valid!";
else
echo "The address ".$ POST['email']." is invalid!";
}

>

<form action="subscribe.php" method="post">
<p>
Name:

<input type="text" name="name" size="20" maxlength="40" value="" />
</p>

<p>

Email Address:

<input type="text" name="email" size="20" maxlength="40" value="" />
</p>

<input type="submit" name = "submit" value="Go!" />
</form>

CHAPTER 13 FORMS AND NAVIGATIONAL CUES 307

Working with Multivalued Form Components

Multivalued form components such as checkboxes and multiple-select boxes greatly enhance
your Web-based data-collection capabilities, because they enable the user to simultaneously
select multiple values for a given form item. For example, consider a form used to gauge a
user’s computer-related interests. Specifically, you would like to ask the user to indicate those
programming languages that interest her. Using checkboxes or a multiple-select box, this form
item might look similar to that shown in Figure 13-1.

The HTML code for rendering the checkboxes looks like this:

<input type="checkbox" name="languages" value="csharp" />Ci

<input type="checkbox" name="languages" value="jscript" />JavaScript

<input type="checkbox" name="languages" value="perl" />Perl

<input type="checkbox" name="languages" value="php" />PHP

“What's your favornite program ming language?
(check all that apply)

O C#

[T TavaScript

[T Perl

[PHP

“What's your favornite program ming language?
(zelect all that apply)

Figure 13-1. Representing the same data using two different form items

The HTML for the multiple-select box might look like this:

<select name="languages" multiple="multiple">
<option value="csharp">C#</option>
<option value="jscript">JavaScript</option>
<option value="perl">Perl</option>
<option value="php">PHP</option>

</select>

Because these components are multivalued, the form processor must be able to recognize
that there may be several values assigned to a single form variable. In the preceding examples,
note that both use the name “languages” to reference several language entries. How does PHP
handle the matter? Perhaps not surprisingly, by considering it an array. To make PHP recognize
that several values may be assigned to a single form variable (i.e., consider it an array), you
need to make a minor change to the form item name, appending a pair of square brackets to it.
Therefore, instead of languages, the name would read languages[]. Once renamed, PHP will
treat the posted variable just like any other array. Consider a complete example, found in the
file multiplevaluesexample.php:

308

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

<?php
if (isset($_POST['submit']))
{
echo "You like the following languages:
";
foreach($_POST['languages'] AS $language) echo "$language
";
}
2>

<form action="multiplevalueexample.php" method="post">
What's your favorite programming language?
 (check all that apply):

<input type="checkbox" name="languages[]" value="csharp" />Ci

<input type="checkbox" name="languages[]" value="jscript" />JavaScript

<input type="checkbox" name="languages[]" value="perl" />Perl

<input type="checkbox" name="languages[]" value="php" />PHP

<input type="submit" name="submit" value="Go!" />

</form>

If the user were to choose the languages “C#” and “PHP,” she would be greeted with the
following output:

You like the following languages:
csharp

php

Generating Forms with PHP

Of course, many Web-based forms require a tad more work than simply assembling a few fields.
Items such as checkboxes, radio buttons, and drop-down boxes are all quite useful, and can
add considerably to the utility of a form. However, you'll often want to base the values assigned
to such items on data retrieved from some dynamic source, such as a database. PHP renders
such a task trivial, as this section explains.

Suppose your site offers a registration form that prompts for the user’s preferred language,
among other things. That language will serve as the default for future e-mail correspondence.
However, the choice of languages depends upon the language capabilities of your support staff, the
records of which are maintained by the human resources department. Therefore, rather than
take the chance of offering an outdated list of available languages, you link the drop-down list
used for this form item directly to the language table used by the HR department. Furthermore,
because you know that each element of a drop-down list consists of three items (a name iden-
tifying the list itself, and a value and a name for each list item), you can create a function that
abstracts this task. This function, which is creatively called create_dropdown(), accepts four
input parameters:

e $identifier: The name assigned to the drop-down list, determining how the posted
variable will be referenced.

e $pairs: Anassociative array that contains the key-value pairs used to create the selection
menu entries.

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

» $firstentry: Serves as a visual cue for the drop-down list, and is placed in the very first
position.

e $multiple: Should this drop-down list allow for multiple selection? If yes, pass inmultiple;
if no, pass in nothing (the parameter is optional).

The function follows:

function create_dropdown($identifier,$pairs,$firstentry,$multiple="")
{
// Start the dropdown list with the <select> element and title
$dropdown = "<select name=\"$identifier\" multiple=\"$multiple\">";
$dropdown .= "<option name=\"\">$firstentry</option>";

// Create the dropdown elements
foreach($pairs AS $value => $name)

{
}

// Conclude the dropdown and return it
echo "</select>";
return $dropdown;

}

The following code snippet uses the function, using a MySQL database to store the form

$dropdown .= "<option name=\"$value\">$name</option>";

information:

<?php

2>

// Connect to the db server and select a database
$conn = mysql connect("localhost”, "website", "secret")
or die("Can't connect to database!");

mysql select db("corporate")
or die("Can't select database!");

// Retrieve the language table data
$query = "SELECT id,name FROM language ORDER BY name";
$result = mysql query($query)

// Create an associative array based on the table data
while($row = mysql fetch array($result))
{

$value = $row["id"];

$name = $row["name"];

$pairs["$value”] = $name;

}

echo "Choose your preferred language:
";
echo create_dropdown("language",$pairs,"Choose One:");

309

310

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

Figure 13-2 offers a rendering of the form once the values have been retrieved.

Choose your preferred language:

Choose One: =

Figure 13-2. A PHP-generated form element

Autoselecting Forms Data

Quality GUI design is largely a product of consistency. That said, it’s always a good idea to
strive for visual harmony across the entire site, particularly within those components that the
user will come into direct contact with—forms, for example. To facilitate a consistent interface,
it may be a good idea to reuse form-based code wherever possible, re-enlisting the same template
for both data insertion and modification. Of course, you might imagine that such a strategy
could quickly result in a mish-mash of logic and presentation. However, with a bit of forethought,
it’s actually quite simple to encourage form reuse while maintaining some semblance of
respectable coding practice. This section presents one way to do so.

The last section demonstrated how to create a general function for creating dynamically
generated drop-down lists. To illustrate the concepts introduced in this section, let’s continue
that theme, except this time we will revise the create_dropdown() function to both generate the
dynamic list and autoselect a predetermined value. Adding this extra feature is accomplished
simply by defining another parameter:

* $key: This optional parameter holds the value of the element to be autoselected. If it is
not assigned, then no values will be autoselected.

The function determines whether a particular element should be autoselected by comparing
each to the $key while building the drop-down list. For the purposes of slightly more compact
code, the ternary operator is used to make this comparison. The revised function follows:

function create dropdown($identifier, $pairs, $firstentry,$multiple="", $key="")
{
$dropdown = "<select name=\"$identifier\" multiple=\"$multiple\">";
$dropdown .= "<option name=\"\">$firstentry</option>";

foreach($pairs AS $value => $name)
{
$dropdown .= ($value == $key) ?

"<option name=\"$value\" selected=\"selected\">$name</option>" :
"<option name=\"$value\">$name</option>";

}

echo "</select>";

return $dropdown;

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

If you want to autoselect the element “Italian,” you just pass in its corresponding identifier,
for example “2,” like this:

echo create_dropdown("language",$pairs, "Choose One:", "", 2);
This produces the following output (formatted for readability):

Choose your preferred language:

<select name="language" >
<option name="">Choose One:</option>
<option name="4">Dutch</option>
<option name="1">English</option>
<option name="2" selected="selected">Italian</option>
<option name="3">Spanish</option>

</select>

Note that the “Italian” element has been selected.

PHP, Web Forms, and JavaScript

Of course, just because you're using PHP as a primary scripting language doesn’t mean that
you should rely on it to do everything. In fact, using PHP in conjunction with a client-side
language such as JavaScript often greatly extends the application’s flexibility. However, a point
of common confusion involves how to make one language talk to another, because JavaScript
executes on the client side whereas PHP executes on the server side. Accomplishing this is
easier than you think, as is illustrated in the following example.

Many Web sites offer the ability to e-mail an article or news story to a friend. Sometimes
this is accomplished by using a “pop-up” window, which in turn prompts the user for the
recipient’s address and some other information. Upon submitting the form, the article is mailed
to the recipient, and the user in turn closes the window. Often, the pop-up action is accomplished
using JavaScript, while the mail submission is performed using PHP. However, because JavaScript
is launching the new window, it must be able to pass some important information, such as a
unique article identifier, that uniquely identifies the article.

The following script demonstrates this task, showing how easy it is to pass a PHP variable
into a JavaScript function. In the document header, a JavaScript function named mail() is
defined. This function opens a new fixed-size window to a PHP script, which in turn prompts
for and then processes the mail submission.

<html>
<head>
<title>Breaking News</title>
<script type="text/javascript">
function mail(id) {
window.open("mail.php?id=" + id, "info",
"width=250,height=250,scrollbars=0,resizable=0")

311

312 CHAPTER 13 FORMS AND NAVIGATIONAL CUES

</script>

</head>

<body bgcolor="#ffffff" text="#000000" link="#0000ff"

vlink="#800080" alink="#ff0000">

<a href="#" onclick="mail(<?php echo $id; ?>);">
Mail this article to a friend
Article content goes here...

</body>

</html>

Once the link is clicked, a form similar to that shown in Figure 13-3 is opened.

3 Email this article - Microsof 10l =l
Email this article to a fhend!

Eecipient email:

Tour name:

Send Article |

Figure 13-3. The article mailer form

In particular, note that you passed the PHP variable $id into the call to the JavaScript function
mail() simply by escaping to PHP, outputting the variable, and then escaping back to the HTML.
Clicking the link triggers the onclick() event, which opens the following script:

<?php

// If the mail form has been submitted
if (isset($_POST['submit']))

{
// Designate a mail header and body
$headers = "FROM:editor@example.com\n";
$body = $ POST['name']." thought you'd be interested in this
article:\nhttp://www.example.com/article.html?id=".$ POST['id'];
// Mail the article URL
mail($_POST['recipient'],"Example.com News Article",$body,$headers);
// Notify the user
echo "The article has been mailed to ".$ POST['recipient'];
}

2>

CHAPTER 13 FORMS AND NAVIGATIONAL CUES 313

<p>
Email this article to a friend!
</p>
<form action="mail.html" method="post">
<input type="hidden" name="id" value="<?php echo $ GET['id'];?>" />
<p>
Recipient email:

<input type="text" name="recipient" size="20" maxlength="40" value="" />
</p>
<p>
Your name:

<input type="text" name="name" size="20" maxlength="40" value="" />
</p>
<input type="submit" name="submit" value="Send Article" />
</form>

Although a predefined URL was used to provide the recipient with a reference to the article,
you could just as easily offer the option to retrieve the article from the database by using the
available unique identifier ($id), and embed the article information directly into the e-mail.

Navigational Cues

Programmers tend to delegate matters pertinent to usability to the site designer. Indeed, while
the presentational aspects of the site are often placed in a designer’s hands, the programmer
nonetheless plays a very important part in providing the necessary navigational data to the
designer in a convenient format. But how can application data provide users with cues that are
useful for facilitating site navigation? Strictly defined, the degree to which a Web application is
“usable” is determined by the degree of effectiveness and satisfaction derived from its use. In
other words, has the interface been designed in such a manner that users feel comfortable and
perhaps even empowered using it? Can they easily locate the tools and data they require? Does
it offer multiple means to the same ends, often accomplished through readily available visual
cues? Taken together, characteristics such as these define an application’s “usability.”

This section presents three commonplace navigational cues: user-friendly URLs, bread-
crumb trails, and custom error files. All three can be implemented with a minimum of effort,
and provide considerable value to the user.

User-Friendly URLs

Back in the early days of the Web, coming across a URL like this was pretty impressive:
http://waw.example.com/sports/football/buckeyes.html

This user undoubtedly meant business! After all, he’s taken the time to categorize his site
material, and judging from the URL structure, his site is so vast that he talks about more than
one football team, or even more than one sport. However, the intuitive nature of the URL provides
site visitors with an additional aid for determining their present location, not to mention that it
affords power users the opportunity to navigate the site through direct URL manipulation.

314

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

These days, however, it’s not uncommon to come across a URL that looks like this (or that is
significantly longer!):

http://www.example.com/articles.php?category=php&id=145

Note The feature found in this section is Apache 2.0-specific, because it requires the Apache
AcceptPathInfo directive, which is found only in Apache versions 2.0.30 and later.

URLs have continued to grow in length due to the need to pass ever more information
from one page to another in order to drive increasingly complex applications. The trade-off is
that, although the amount of material made available via that avant-garde Web site of years
ago is laughable when compared to many of today’s sports-related Web sites, we’ve managed
to lose a key navigational aid, the URL, in the process. But what if you could rewrite the latter
URL in a much more user-oriented fashion, all without sacrificing use of cutting-edge technologies
such as PHP? For example, suppose that you could rewrite it like so:

http://www.example.com/articles/php/145/

This is much more “friendly” than its uglier predecessor, but how is it possible to implement
friendly URLs and still pass the required variables to the necessary PHP script? Furthermore,
how does Apache even know which script to request? After all, both php and 145 are actually
parameters and do not represent a location in the server document structure. Believe it or not,
Apache is capable of resolving both dilemmas, by employing a little-known feature called lookback
to discern the intended destination. Let’s consider an example that demonstrates how this
feature operates.

Suppose Apache receives a request for the preceding user-friendly URL, which doesn’t
physically exist. When lookback is enabled, after Apache finds that no index file exists at that
location, it begins to “look backward” down the URL, searching for a suitable destination. So,
Apache next looks for a file named 145. Because Apache does not find that file, it then examines
the following URL, repeating the same process::

http://www.example.com/articles/php/
Because no suitable match is presumably located, Apache then examines:
http://www.example.com/articles/

Assuming there is no index file in a directory at thatlocation named articles, Apache then
looks for a file named articles. It finds articles.php, and thus serves that file.

Once the file articles.php is served, anything following articles within the URL is assigned
to the Apache environment variable PATH_INFO, and is accessible from a PHP script using the
following variable:

$_SERVER['PATH_INFO']

CHAPTER 13 FORMS AND NAVIGATIONAL CUES 315

Therefore, in the case of this example, this variable would be assigned:
/php/145/

So, now you know the basic premise behind how the lookback feature works. To implement
this feature, you’ll probably need to make some minor changes to your Apache configuration,
explained next.

Configuring Apache’s Lookback Feature

You can activate Apache’s lookback feature by using three configuration directives: Files,
ForceType, and AcceptPathInfo. This section introduces each in turn as it applies to the look-
back feature.

Note You can accomplish the same task via Apache’s rewrite feature. In fact, this might even be the
preferred method in some cases, because it eliminates the need to embed additional code within your appli-
cation with the sole purpose of parsing the URL. However, because many users run their Web sites through a
third-party host, and thus do not possess adequate privileges to manipulate Apache’s configuration, Apache’s
lookback feature can offer an ideal solution.

Files

The Files directive is a container that enables you to modify the behavior of certain requests
based on the filename destination. A demonstration of this directive is provided in the
following section.

ForceType

The ForceType directive allows you to force the mapping of a particular MIME type in a given
instance. For example, you could use this directive in conjunction with the Files container to
force the mapping of the PHP MIME type to any file named articles:

<Files articles>
ForceType application/x-httpd-php
</Files>

If the context of the preceding Files container were applied at the document root level,
you could create a file named articles (with no extension), and place various PHP commands
within it, executing the script like so:

http://www.example.com/articles

This causes the file to be parsed and executed like any other PHP script. When used in
conjunction with the next directive, AcceptPathInfo, you've completed the Apache configuration
requirements.

316

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

Note Discussing the context in which Apache directives and containers are applied is out of the scope of
this book. Please consult the excellent Apache documentation at http://httpd.apache.org/ for more
information.

AcceptPathInfo

The AcceptPathInfo directive is the key component of Apache’s lookback feature. When enabled,
Apache understands that a URL might not explicitly map to the intended destination. Turning
on this directive causes Apache to begin searching the requested URL path for a viable destina-
tion and placing any trailing URL components into the PATH_INFO variable.

This directive is typically used in conjunction with a Directory container. Therefore, if you
enable lookback capabilities at the document root level of your Web server, you might enable
AcceptPathInfo like so:

<Directory />
Other directives go here..
AcceptPathInfo On
</Directory>

Keep in mind that the AcceptPathInfo directive is only available to Apache 2.0.30 and later.
Therefore, if you're using an earlier Apache version, you won’t be able to take advantage of this
feature as implemented.

Putting It All Together

What follows is a sample snippet from Apache’s httpd.conf file, used to configure Apache’s
lookback feature:

<Directory content>
AcceptPathInfo On
<Files articles>
ForceType application/x-httpd-php
</Files>
<Files news>
ForceType application/x-httpd-php
</Files>
</Directory>

Once the necessary changes to Apache are in place, restart the Apache server and proceed
to the next section.

The PHP Code

Once you've reconfigured Apache, all that’s left to do is write a tiny bit of PHP code to handle
the data placed in the PATH_INFO environment variable. For starters, however, you'll just output
this data. Assuming that you configured your Apache as explained previously, place the following
in the articles file (again, no extension):

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

<?php
echo $ SERVER['PATH INFO'];
>

Next, navigate to the example URL, replacing the domain with your own:
http://waw.example.com/articles/php/145/

The following should appear within the browser:
/php/145/

However, you need to parse that information. According to our original “unfriendly” URL,
two parameters are required, category and id. You can use two predefined PHP functions,
list() and explode(), to retrieve these parameter values from $_SERVER['PATH_INFO']:

list($category, $id) = explode("/", $_SERVER['PATH INFO']);

Just place this at the top of your articles script, and then use the resulting variables as
necessary to retrieve the intended article. Note that it’s not necessary to modify any other
aspect of the article-retrieval script, because the variable names used to retrieve the article
information presumably do not change.

Breadcrumb Trails

Navigational trails, or as they are more affectionately titled, breadcrumb trails, are frequently
implemented within Web applications, because they offer a readily visible and intuitive navi-
gational aid to users. Breaking down a user’s present location into a path of hyperlinks that
provides a summary view of the current document’s location as it relates to the site at large not
only offers the user a far more practical and efficient navigational tool than is offered by the
browser, but also serves to complement or even replace a typical site’s localized menu system.
Figure 13-4 depicts a breadcrumb trail in action.

Horne * ©pen Source = A Prograrmer's Introduction to PHP 4.0

A Programmer's Introduction to PHP 4.0 ‘ m
Bl 1 ilenova ik

Figure 13-4. A typical navigational trail

This section is devoted to a demonstration of two separate breadcrumb trail implementa-
tions. The first uses an array to transform an unwieldy URL tree into a much more user-friendly
naming convention. This implementation is particularly useful for creating navigational trees
that correspond to largely static pages. The second implementation expands upon the first,
this time using a MySQL database to create user-friendly navigational mappings for a database-
driven Web site. Although each follows a different approach, both accomplish the same goal.
In fact, it’s often useful to implement a hybrid mapping strategy: that is, one that can handle
both static and database-driven pages as necessary.

317

318

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

Creating Breadcrumbs from Static Data

One rather simple means for implementing breadcrumb trails using PHP is to create an associative
array that maps the entire directory structure to corresponding user-friendly titles. When each page
isloaded, the URL is parsed and converted to its corresponding linked list of those user-friendly
titles as specified within the array. The generalized process for realizing this implementation
follows:

1. Outline the Web directory structure on a piece of paper or in a text file, assigning a user-
friendly name to each directory and page.

2. Create an associative array, which is used to provide user-friendly names to the bread-
crumbs. This array is typically stored in a global site header.

3. Create the URL parsing and mapping function, create_crumbs(). Store it in the global
site header.

4. Execute the create_crumbs() function where necessary within each page intended to
contain the crumb trail.

Listing 13-2 shows the create_crumbs() function.

Listing 13-2. The create_crumbs() Function

function create crumbs($crumb_site, $home label, $crumb labels) {

// Start the crumb trail
$crumb_trail = "$home label";

// Parse the requested URL path
$crumb_tree = explode('/', $_SERVER['PHP_SELF']);

// Start the URL path used within the trail
$crumb_path = $crumb_site.'/’;

// Assemble the crumb trail
for ($x = 1; $x < count($crumb_tree) - 2; $x++) {
$crumb_path .= $crumb_tree[$x].'/";
$crumb_trail .= ' > ".
$crumb_labels[$crumb_tree[$x]]. ";

}

return $crumb_trail;

Next you need to create the three input parameters. The purpose of each is explained here:

CHAPTER 13 FORMS AND NAVIGATIONAL CUES 319

* $crumb_site: The base URL of the path. This is useful because it allows you to easily start
new trails within subsections of your site.

e $home_label: The name given to the very first crumb in the path. This will point back to
the URL specified by $crumb_site.

e $crumb_labels: The array containing the URL component to friendly name mappings.

Typically these variables would be placed in an application configuration file. However,
for the sake of space, they’re included in the same script as the call to the create_crumbs()
function:

<?php
include "breadcrumbs.php";
$crumb_site = "http://www.example.com/";
$crumb_labels = array("articles" => "Recent Articles”,
"php" => "PHP",
"mysql" => "MYSQL",
"pmnp" => "Beginning PHP and MySQL 5");
echo create crumbs($crumb_site, "Home", $crumb labels);
2>

Now place this script into a document tree at this location:
http://www.example.com/pmnp/articles/mysql/
The following breadcrumb trail will appear:

Home > Beginning PHP and MySQL 5 > Recent Articles > MySQL

Creating Breadcrumbs from Database Table Data

In the previous section, you learned how to use arrays in conjunction with URLs to create navi-
gational trails. But what about generating breadcrumbs based on data stored within a database?
For example, consider the following URL:

http://www.example.com/books/1590595521/
How would you go about translating this URL into the following breadcrumb trail?
Home > Books > Beginning PHP and MySQL 5

At first glance, it would seem that you could use the first breadcrumb implementation.
After all, it seems as if a simple translation is taking place, involving the replacement of a
user-unfriendly ISBN (1590595521) with the user-friendly book title, “Beginning PHP and
MySQL 5.” However, using an array isn’t always the most convenient means for storing
dynamic information. Given that most corporate Web sites retrieve content from a relational
database system, it would be impractical to store some of this information redundantly in both
a database and a separate file-based array. With that in mind, the remainder of this section
demonstrates a mechanism for creating navigational trails using a MySQL database.

320

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

Note If you’re unfamiliar with the MySQL server and are confused by the syntax found in the following
example, consider reviewing the material found in Chapter 30.

The following MySQL table, categories, provides the 1-to-N mapping of a book category
to books stored within the books table (introduced next):

CREATE TABLE categories (
categoryID TINYINT NOT NULL UNSIGNED AUTO_INCREMENT,
name VARCHAR(15) NOT NULL,
PRIMARY KEY(categoryID)););

The following table, books, is used to store information about a publisher’s book offerings:

CREATE TABLE books (
bookID TINYINT NOT NULL UNSIGNED AUTO_ INCREMENT,
categoryID TINYINT NOT NULL,
isbn VARCHAR(9) NOT NULL,
author VARCHAR(50) NOT NULL,
title VARCHAR(45) NOT NULL,
description VARCHAR(300) NOT NULL,
PRIMARY KEY(bookID));

Note that a similar author table mapping would exist in a real implementation, but it’s
omitted here because it’s not relevant to the present discussion.

In addition to the aforementioned user-friendly URL, you would like to provide a naviga-
tional trail at the top of the page to allow users to easily recognize their current site location and
to easily navigate back up the site directory tree. The intended goal is to create a navigation trail
that resembles the following:

Home > Open Source > Beginning PHP and MySQL 5

Listing 13-3 demonstrates the modified create_crumbs() function, this one capable of
parsing the URL and building the preceding navigation trail based on retrieved table data.
Listing 13-3. The create_crumbs() Function Revisited

<?php
// The revised create crumbs() function. Note that this version is
// much simpler, as it's customized specifically for use with the book catalog.
function create crumbs($siteURL, $categoryID, $categoryName, $title) {

$crumb = "Home >

$categoryName > $title";

print $crumb;

CHAPTER 13 FORMS AND NAVIGATIONAL CUES 321

} # end create crumbs definition
$siteURL = "http://www.example.com";

// connect to the db server and select the database
mysql pconnect("localhost","jason","secret");
mysql select db("corporate");

// assume that this would be parsed from the user-friendly URL
$isbn = "1590595521";

// Execute the query. To improve performance, this same query could also
// be used to retrieve the book data for the page.
$result = mysql query("SELECT b.categoryID, c.name, b.isbn,

b.author, b.title, b.description

FROM books b, categories c

WHERE b.isbn = $isbn AND

b.categoryID = c.categoryID");

$row = mysql fetch assoc($result);

// Retrieve the query values
$categoryID = $row["categoryID"];
$categoryName = $row["name"];
$isbn = $row["isbn"];

$authorID = $row["author"];
$title = $row["title"];

// Execute the function
create crumbs($siteURL, $categoryID, $categoryName, $title);

>

Creating Custom Error Handlers

It can be rather irritating for a user to happen upon a moved or removed Web page, only to see
the dreaded “HTTP 404 - File not found” message. That said, site maintainers should take every
step necessary to ensure that “link rot” does not occur. However, there are times when this
cannot be easily avoided, particularly when major site migrations or updates are taking place.
Fortunately, Apache offers a configuration directive that makes it possible to forward all requests
ending in a particular server error (404, 403, and 500, for example) to a predetermined page.
The directive, named ErrorDocument, can be placed with httpd.conf’s main configuration
container, as well as within virtual host, directory, and .htaccess containers (with the appro-
priate permissions, of course). For example, you could point all 404 errors to a document
named error.html, which is located in the particular context’s base directory, like so:

ErrorDocument 404 /error.html

322

CHAPTER 13 FORMS AND NAVIGATIONAL CUES

Pointing 404s to such a page is useful because it could provide the user with further infor-
mation regarding the reason for page removal, an update pertinent to Web site upgrade progress,
or even a search interface. Using it in combination with PHP, such a page could also attempt to
discern the page that the user is attempting to access, and forward them accordingly; e-mail
the site administrator, letting her know that an error has occurred; create custom error logs; or
do really anything else that you'd like it to do. This section demonstrates how to use PHP to
gather some statistics pertinent to the missing file and mail that information to a site adminis-
trator. Hopefully this example will provide you with a few ideas as to how you can begin creating
custom 404 handlers suited to your own specific needs.

Note Some of the concepts described in this chapter are already handled quite efficiently by the URL-
rewriting capability of the Apache Web server. However, keep in mind that many readers use shared servers
for Web hosting, and thus do not have the luxury of wielding such control over the behavior of their Web
server. That said, the concepts described here serve to encourage readers to consider alternative solutions in
situations where not all tools are made available to them.

In this example, you'll create a script that e-mails the site administrator with a detailed
report of the error, and displays a message asking the user’s forgiveness. To start, create an
.htaccess file that redirects the 404 errors to the custom script:

ErrorDocument 404 /www/htdocs/errormessage.html

If you want this behavior to occur throughout the site, place it in the root directory of your
Web site. If you're unfamiliar with . htaccess files, see the Apache documentation for more
information.

Next, create the script that handles the error by e-mailing the site administrator and
displaying an appropriate message. This script is provided in Listing 13-4.

Listing 13-4. E-mail Notification and Simple Message Display

<?php

// Server

$servername = $ SERVER['SERVER NAME'];

$recipient = "webmaster@example.com";

$subject = "404 error detected: ".$ SERVER['PHP_SELF'];
$timestamp = date("F d, Y G:i:s", time());

$referrer = $ SERVER['HTTP_REFERER'];

$ip = $ SERVER['REMOTE_ADDR'];

$redirect = $ SERVER["REQUEST URI'];

$body = <<< body
A 404 error was detected at: $timestamp.

CHAPTER 13 FORMS AND NAVIGATIONAL CUES 323

Server: $servername
Missing page: $redirect
Referring document: $referrer
User IP Address: $ip

body;

mail($recipient, $subject, $body, "From: administrator\r\n");
7>

<h3>File Not Found</h3>

<p>

Please forgive us, as our Web site is currently undergoing maintenance.

As a result, you may experience occasional difficulties accessing documents
and/or services.

The site administrator has been emailed with a detailed event log of this matter.
</p>

Thank you,

The Web site Crew

Of course, if your site is particularly large, you might want to consider writing error infor-
mation to a log file or database rather than sending it via e-mail.

Summary

One of the Web'’s great strengths is the ease with which it enables us to not only disseminate
but also compile and aggregate user information. However, as developers, this mean that we
must spend an enormous amount of time building and maintaining a multitude of user inter-
faces, many of which are complex HTML forms. The concepts described in this chapter should
enable you to decrease that time a tad.

In addition, this chapter offered a few commonplace strategies for improving the general
user experience while working with your application. Although not an exhaustive list, perhaps
the material presented in this chapter will act as a springboard for you to conduct further
experimentation, as well as help you to decrease the time that you invest in what is surely one
of the more time-consuming aspects of Web development: improving the user experience.

The next chapter shows you how to protect the sensitive areas of your Web site by forcing
users to supply a username and password prior to entry.

CHAPTER 14

Authentication

Authenticating user identities is common practice in today’s Web applications. This is done
not only for security-related reasons, but also to offer customization features based on user
preferences and type. Typically, users are prompted for a username and password, the combi-
nation of which forms a unique identifying value for that user. In this chapter, you’ll learn how
to prompt for and validate this information, using PHP’s built-in authentication capabilities.
Specifically, in this chapter you'll learn about:

¢ Basic HTTP-based authentication concepts

e PHP’s authentication variables, namely $_SERVER['PHP_AUTH_USER'] and
$ SERVER['PHP_AUTH PW']

* Several PHP functions that are commonly used to implement authentication procedures

* Three commonplace authentication methodologies: hard-coding the login pair (username
and password) directly into the script, file-based authentication, and database-based
authentication

» Further restricting authentication credentials with a user’s IP address
» Taking advantage of PEAR using the Auth_HTTP package
» Testing password guessability using the CrackLib extension

* Recovering lost passwords using one-time URLs

HTTP Authentication Concepts

The HTTP protocol offers a fairly simple, yet effective, means for user authentication, used by
the server to challenge a resource request, and by the client (browser) to provide information
pertinent to the authentication procedure. A typical authentication process goes like this:

1. The client requests a resource that has been restricted.

2. The server responds to this request with a 401 (Unauthorized access) response message.

325

326

CHAPTER 14 AUTHENTICATION

3. The client (browser) recognizes the 401 response and produces a pop-up authentication
prompt similar to the one shown in Figure 14-1. Most modern browsers are capable of
understanding HTTP authentication and offering appropriate capabilities, including
Internet Explorer, Netscape Navigator, Mozilla, and Opera.

4. If the user supplies proper credentials (username and password), they are sent back
to the server for validation. The user is subsequently allowed to access the resource.
However, if the user supplies incorrect or blank credentials, access is denied.

5. If the user is validated, the browser stores the authentication information within its
authentication cache. This cache information remains within the browser until the
cache is cleared, or until another 401 server response is sent to the browser.

Connect to localhost A |

2
gk

Book Chapters

User name: I | =l j

Password: I

™ Remermber my password

[8]4 I Cancel |

Figure 14-1. An authentication prompt

You should understand that although HTTP authentication effectively controls access to
restricted resources, it does not secure the channel in which authentication information travels.
That s, itis quite trivial for a well-positioned attacker to sniff, or monitor, all traffic taking place
between a server and a client. Both the supplied username and password are included in this
traffic, both unencrypted. Therefore, to eliminate the possibility of compromise through such
a method, you need to implement a secure communications channel, typically accomplished
using Secure Sockets Layer (SSL). SSL support is available for all mainstream Web servers,
including Apache and Microsoft Internet Information Server (IIS).

PHP Authentication

Integrating user authentication directly into your Web application logic is convenient and flexible;
convenient because it consolidates what would otherwise require some level of interprocess
communication, and flexible because integrated authentication provides a much simpler
means for integrating with other components of an application, such as content customization
and user privilege designation. For the remainder of this chapter, we’ll examine PHP’s built-in
authentication feature, and demonstrate several authentication methodologies that you can
immediately begin incorporating into your applications.

CHAPTER 14 AUTHENTICATION

Authentication Variables

PHP uses two predefined variables to authenticate a user: $ SERVER['PHP_AUTH_ USER'] and
$_SERVER['PHP_AUTH PW']. These variables hold the two components needed for authentica-
tion, specifically the username and the password, respectively. Their usage will become apparent
in the following examples. For the moment, however, there are two important caveats to keep
in mind when using these predefined variables:

* Both variables must be verified at the start of every restricted page. You can easily
accomplish this by wrapping each restricted page, which means that you place the
authentication code in a separate file and then include that file in the restricted page
by using the REQUIRE () function.

» These variables do not function properly with the CGI version of PHP, nor do they function
on Microsoft IIS. See the sidebar about PHP authentication and IIS.

PHP AUTHENTICATION AND IIS

If you’re using IIS in conjunction with PHP’s ISAPI module, and you want to use PHP’s HTTP authentication
capabilities, you need to make a minor modification to the examples offered throughout this chapter. The username
and password variables are still available to PHP when using IIS, but not via $ SERVER[‘' PHP_AUTH USER']
and $_SERVER['PHP_AUTH PW"]. Instead, these values must be parsed from another server global variable,
$ SERVER["HTTP_AUTHORIZATION']. So, for example, you need to parse out these variables like so:

list($user, $pswd) =
explode(':', base64 decode(substr($_SERVER['HTTP_AUTHORIZATION'], 6)));

Useful Functions

Two standard functions are commonly used when handling authentication via PHP: header ()
and isset(). Both are introduced in this section.

header()
void header(string string [, boolean replace [, int http response code]])

The header () function sends a raw HTTP header to the browser. The string parameter speci-
fies the header information sent to the browser. The optional replace parameter determines
whether this information should replace or accompany a previously sent header. Finally, the
optional http_response code parameter defines a specific response code that will accompany
the header information. Note that you can include this code in the string, as will soon be
demonstrated. Applied to user authentication, this function is useful for sending the WWW
authentication header to the browser, causing the pop-up authentication prompt to be displayed.
It is also useful for sending the 401 header message to the user, if incorrect authentication
credentials are submitted. An example follows:

327

328

CHAPTER 14 AUTHENTICATION

<?php
header ('WWW-Authenticate: Basic Realm="Book Projects"');
header ("HTTP/1.1 401 Unauthorized");

>

Note that unless output buffering is enabled, these commands must be executed before
any output is returned. Neglecting this rule will result in a server error, because of the violation
of the HTTP specification.

isset()
boolean isset(mixed var [, mixed var [,...]])

The isset() function determines whether or not a variable has been assigned a value. It returns
TRUE if the variable contains a value, and FALSE if it does not. Applied to user authentication, the
isset() function is useful for determining whether or not the $ SERVER['PHP_AUTH_USER'] and
$ SERVER['PHP_AUTH PW'] variables are properly set. Listing 14-1 offers a usage example.

Listing 14-1. Using isset() to Verify Whether a Variable Contains a Value

<?php
if (isset($_SERVER['PHP_AUTH USER']) and isset($ SERVER['PHP_AUTH PW'])) {
// execute additional authentication tasks
} else {
echo "<p>Please enter both a username and a password!</p>";

}

>

Authentication Methodologies

There are several ways you can implement authentication via a PHP script. You should consider the
scope and complexity of each way when the need to invoke such a feature arises. In particular, this
section discusses hard-coding a login pair directly into the script, using file-based authentica-
tion, using IP-based authentication, using PEAR’s HTTP authentication functionality, and
using database-based authentication.

Hard-Coded Authentication

The simplest way to restrict resource access is by hard-coding the username and password
directly into the script. Listing 14-2 offers an example of how to accomplish this.

CHAPTER 14 AUTHENTICATION

Listing 14-2. Authenticating Against a Hard-Coded Login Pair

if (($_SERVER['PHP_AUTH USER'] != 'specialuser') ||
($_SERVER['PHP_AUTH PW'] != 'secretpassword')) {
header ('WWW-Authenticate: Basic Realm="Secret Stash"');
header('HTTP/1.0 401 Unauthorized');
print('You must provide the proper credentials!');
exit;

The logic in this example is quite simple. If $ SERVER['PHP_AUTH USER'] and
$ SERVER['PHP_AUTH PW'] are set to “specialuser” and “secretpassword,” respectively, the
code block will not execute, and anything ensuing that block will execute. Otherwise, the user
is prompted for the username and password until either the proper information is provided or
a 401 Unauthorized message is displayed due to multiple authentication failures.

Although using a hard-coded authentication pair is very quick and easy to configure, it has
several drawbacks. First, as this code currently stands, all users requiring access to that resource
must use the same authentication pair. Usually, in real-world situations, each user must be
uniquely identified so that user-specific preferences or resources can be made available.
Although you could allow for multiple login pairs by adding additional logic, the ensuing code
would be highly unwieldy. Second, changing the username or password can be done only by
entering the code and making the manual adjustment. The next two methodologies satisfy
this need.

File-based Authentication

Often you need to provide each user with a unique login pair, making it possible to log user-
specific login times, movements, and actions. You can do this easily with a text file, much like
the one commonly used to store information about Unix users (/etc/passwd). Listing 14-3
offers such a file. Each line contains a username and an encrypted password pair, with the two
elements separated by a colon (:).

Listing 14-3. The authenticationFile.txt File Containing Encrypted Passwords

jason:60d99e58d66a5e0f4f89ec3ddd1d9a80
donald:dsfcaboe45c8f9a333c0056492c191cf
mickey:bc180dbc583491c00f8a1cd134f7517b

A crucial security consideration regarding authenticationFile.txt is that this file should
be stored outside the server document root. If it is not, an attacker could discover the file
through brute-force guessing, revealing half of the login combination. In addition, although
you have the option to skip encryption of the password and store it in plain-text format, this
practice is strongly discouraged, because users with access to the server might be able to view
the login information if file permissions are not correctly configured.

329

330

CHAPTER 14 AUTHENTICATION

The PHP script required to parse this file and authenticate a user against a given login pair
is only a tad more complicated than the script used to authenticate against a hard-coded
authentication pair. The difference lies in the fact that the script must also read the text file into
an array, and then cycle through that array searching for a match. This involves the use of
several functions, including the following:

e file(string filename): The file() functionreads a file into an array, with each element
of the array consisting of a line in the file.

e explode(string separator, string string [, int limit]): The explode() function
splits a string into a series of substrings, with each string boundary determined by a
specific separator.

e md5(string str): Themds() function calculates an MD5 hash of a string, using RSA Data
Security Inc.’s MD5 Message-Digest algorithm (http://www.rsa.com).

Note Aithough they are similar in function, you should use explode () instead of split(), because
split() is a tad slower due to its invocation of PHP’s regular expression parsing engine.

Listing 14-4 illustrates a PHP script that is capable of parsing authenticationFile.txt,
potentially matching a user’s input to a login pair.

Listing 14-4. Authenticating a User Against a Flat File Login Repository

<?php
// Preset authentication status to false
$authorized = FALSE;

if (isset($_SERVER['PHP_AUTH USER']) 8& isset($ SERVER['PHP_AUTH PW'])) {

// Read the authentication file into an array
$authFile = file("/usr/local/lib/php/site/authenticate.txt");

// Cycle through each line in file, searching for authentication match
foreach ($authFile as $login) {
list($username, $password) = explode(":", $login);

// Remove the newline from the password

$password = trim($password);

if (($username == $ SERVER['PHP_AUTH USER']) &&
($password == md5($ SERVER['PHP_AUTH PW']))) {
$authorized = TRUE;
break;

CHAPTER 14 AUTHENTICATION

// If not authorized, display authentication prompt or 401 error
if (! $authorized) {
header ('WWW-Authenticate: Basic Realm="Secret Stash"');
header('HTTP/1.0 401 Unauthorized');
print('You must provide the proper credentials!');
exit;
}
// restricted material goes here...
>

Although the file-based authentication system works great for relatively small, static
authentication lists, this strategy can become somewhat inconvenient when you're handling a
large number of users, when users are regularly being added, deleted, and modified, or when
you need to incorporate an authentication scheme into a larger information infrastructure
(into a pre-existing user table, for example). Such requirements are better satisfied by imple-
menting a database-based solution. The following section demonstrates just such a solution,
using a MySQL database to store authentication pairs.

Database-based Authentication

Of all the various authentication methodologies discussed in this chapter, implementing a
database-based solution is the most powerful methodology, because it not only enhances
administrative convenience and scalability, but also can be integrated into a larger database
infrastructure. For purposes of this example, we’ll limit the data store to four fields—a primary
key, the user’s name, a username, and a password. These columns are placed into a table that
we’ll call userauth, shown in Listing 14-5.

Note If you’re unfamiliar with the MySQL server and are confused by the syntax found in the following
example, consider reviewing the material found in Chapter 30.

Listing 14-5. A User Authentication Table

CREATE TABLE userauth (
rowID TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
commonname VARCHAR(35) NOT NULL,
username VARCHAR(8) NOT NULL,
pswd VARCHAR(32) NOT NULL,
PRIMARY KEY(rowID));

Listing 14-6 displays the code used to authenticate a user-supplied username and password
against the information stored within the userauth table.

331

332 CHAPTER 14 AUTHENTICATION

Listing 14-6. Authenticating a User Against a MySQL Table

<?php

/* Because the authentication prompt needs to be invoked twice,
embed it within a function.
*/

function authenticate user() {
header ('WWW-Authenticate: Basic realm="Secret Stash"');
header ("HTTP/1.0 401 Unauthorized");
exit;

}

/* If $ SERVER['PHP_AUTH USER'] is blank, the user has not yet been
prompted for the authentication information.
*/

if (! isset($_SERVER['PHP_AUTH USER'])) {
authenticate user();
} else {

// Connect to the MySQL database
mysql pconnect("localhost","authenticator","secret")
or die("Can't connect to database server!");

mysql select db("gilmorebook")
or die("Can't select database!");

// Create and execute the selection query.

$query = "SELECT username, pswd FROM userauth
WHERE username="$_SERVER[PHP_AUTH_USER]' AND
pswd=MD5('$ SERVER[PHP_AUTH PW]')";

$result = mysql query($query);
// If nothing was found, reprompt the user for the login information.
if (mysql _num_rows($result) == 0) {

authenticate user();

}
else {
echo "Welcome to the secret archive!";
}
}
?>

Although MySQL authentication is more powerful than the previous two methodologies, it is
really quite trivial to implement. Simply execute a selection query against the userauth table,
using the entered username and password as criteria for the query. Of course, such a solution
isnot dependent upon specific use of a MySQL database; any relational database could be used
in its place.

CHAPTER 14 AUTHENTICATION

IP-based Authentication

Sometimes you need an even greater level of access restriction to ensure the validity of the
user. Of course, a username/password combination is not foolproof; this information can be
given to someone else, or stolen from a user. It could also be guessed through deduction or
brute force, particularly if the user chooses a poor login combination, which is still quite common.
To combat this, one effective way to further enforce authentication validity is to require not
only a valid username/password login pair, but also a specific IP address. To do so, you only
need to slightly modify the userauth table used in the previous section, and make a tiny modi-
fication to the query used in Listing 14-6. First the table, displayed in Listing 14-7.

Listing 14-7. The userauth Table Revisited

CREATE TABLE userauth (
rowID TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
commonname VARCHAR(35) NOT NULL,
username VARCHAR(8) NOT NULL,
pswd VARCHAR(32) NOT NULL,
ipaddress VARCHAR(15) NOT NULL,
PRIMARY KEY(rowID));

The code for validating both the username/password and IP address is displayed in
Listing 14-8.

Listing 14-8. Authenticating Using a Login Pair and an IP Address

<?php
function authenticate user() {
header ('WWW-Authenticate: Basic realm="Secret Stash"');
header ("HTTP/1.0 401 Unauthorized");
exit;

}

if(! isset($_SERVER['PHP_AUTH USER'])) {
authenticate user();
} else {
mysql_connect("localhost","authenticator","secret")
or die("Can't connect to database server!");

mysql select db("gilmorebook")
or die("Can't select authentication database!");

$query = "SELECT username, pswd FROM userauth
WHERE username='$ SERVER[PHP_AUTH USER]' AND
pswd=MD5('$_SERVER[PHP_AUTH PW]')
AND ipaddress="$ SERVER[REMOTE_ADDR]'";

$result = mysql query($query);

333

334

CHAPTER 14 AUTHENTICATION

if (mysql _num_rows($result) == 0)
authenticate user();

else
echo "Welcome to the secret archivel!";

mysql close();

} # end if
?>

Although this additional layer of security works quite well, you should understand that it is
not foolproof. The practice of IP spoofing, or tricking a network into thinking that traffic is
emanating from a particular IP address, has long been a tool in the savvy attacker’s toolbox.
Therefore, if such an attacker gains access to a user’s username and password, they could
conceivably circumvent your IP-based security obstacles.

Taking Advantage of PEAR: Auth_HTTP

While the approaches to authentication discussed thus far work just fine, it’s always nice to
hide some of the implementation details within a class. The PEAR class Auth_HTTP satisfies this
desire quite nicely, taking advantage of Apache’s authentication mechanism and prompt (see
Figure 14-1) to produce an identical prompt but using PHP to manage the authentication infor-
mation. Auth_HTTP encapsulates many of the messy aspects of user authentication, exposing the
information and features we’re looking for by way of a convenient interface. Furthermore,
because it inherits from the Auth class, Auth_HTTP also offers a broad range of authentication
storage mechanisms, some of which include the DB database abstraction package, LDAP, POP3,
IMAP, RADIUS, and SAMBA. In this section, we’ll show you how to take advantage of Auth_HTTP
to store user authentication information in a flat file.

Installing Auth_ HTTP

To take advantage of Auth_HTTP’s features, you need to install it from PEAR. Therefore, start
PEAR and pass it the following arguments:

%>pear install -o auth_http

Because auth_httpis dependent upon another package (Auth), you should pass at least the
-o option, which will install this required package. Execute this command and you'll see output
similar to the following:

downloading Auth HTTP-2.1.6.tgz ...

Starting to download Auth HTTP-2.1.6.tgz (9,327 bytes)
..... done: 9,327 bytes

downloading Auth-1.2.3.tgz ...

Starting to download Auth-1.2.3.tgz (24,040 bytes)
...done: 24,040 bytes

skipping Package 'auth' optional dependency 'File Passwd'
skipping Package 'auth' optional dependency 'Net POP3'
skipping Package 'auth' optional dependency 'DB'

skipping Package 'auth' optional dependency 'MDB'
skipping Package 'auth' optional dependency 'Auth RADIUS'

CHAPTER 14 AUTHENTICATION

skipping Package 'auth' optional dependency 'File SMBPasswd'

Optional dependencies:

package 'File Passwd' version >= 0.9.5 is recommended to utilize some features.
package 'Net POP3' version >= 1.3 is recommended to utilize some features.
package 'MDB' is recommended to utilize some features.

package 'Auth RADIUS' is recommended to utilize some features.

package 'File SMBPasswd' is recommended to utilize some features.

install ok: Auth 1.2.3

install ok: Auth HTTP 2.1.6

%>

Onceinstalled, you can begin taking advantage of Auth_HTTP’s capabilities. For purposes of
demonstration, we’ll consider how to authenticate against a MySQL database.

Authenticating Against a MySQL Database

Because Auth_HTTP subclasses the Auth package, it inherits all of Auth’s capabilities. Because
Auth subclasses the DB package, Auth HTTP can take advantage of using this popular database
abstraction layer to store authentication information in a database table. To store the informa-
tion, we’ll use a table identical to one used earlier in this chapter:

CREATE TABLE userauth (
rowID TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
commonname VARCHAR(35) NOT NULL,
username VARCHAR(8) NOT NULL,
pswd VARCHAR(32) NOT NULL,
PRIMARY KEY(rowID));

Next we need to create a script that invokes Auth_HTTP, telling it to refer to a MySQL data-
base. This script is presented in Listing 14-9.

Listing 14-9. Validating User Credentials with Auth_HTTP

<?php
require_once("Auth/HTTP.php");

// Designate authentication credentials, table name,
// username and password columns, password encryption type,
// and query parameters for retrieving other fields

$dblogin = array (
"dsn' => "mysql://corpweb:secret@localhost/corporate”,
"table' => "userauth",
'usernamecol’' => "username",
"passwordcol’ => "pswd",
"cryptType' => "md5"
"db_fields' => "*"
)s

335

336

CHAPTER 14 AUTHENTICATION

// Instantiate Auth HTTP
$auth = new Auth HTTP("DB", $dblogin) or die("blah");

// Begin the authentication process
$auth->start();

// Message to provide in case of authentication failure
$auth->setCancelText('Authentication credentials not accepted!');

// Check for credentials. If not available, prompt for them
if($auth->getAuth())
{

echo "Welcome, $auth->commonname
";

}

2>

Executing Listing 14-9, and passing along information matching that found in the userauth
table, will allow the user to pass into the restricted area. Otherwise, he’ll receive the error
message supplied in setCancelText().

The comments should really be enough to guide you through the code, perhaps with one
exception regarding the $dblogin array. This array is passed into the Auth_HTTP constructor
along with a declaration of the data source type. See the Auth_HTTP documentation at http://
pear.php.net/package/Auth HTTP for alist of the accepted data source types. The array’s first
element, dsn, represents the Data Source Name (DSN). A DSN must be presented in the
following format:

datasourcetitle:username:password@hostname/database
Therefore, we use the following DSN to log in to a MySQL database:
mysql://corpweb:secret@localhost/corporate

If it were a PostgreSQL database and all other things were equal, datasourcetitle would
be set to pgsql. See the DB documentation at http://pear.php.net/package/DB for a complete
list of accepted datasourcetitle values.

The next three elements, namely table, usernamecol, and passwordcol, represent the table
that stores the authentication information, the column title that stores the usernames, and the
column title that stores the passwords, respectively.

The cryptType element specifies whether the password is stored in the database in plain
text or as an MD5 hash. If it is stored in plain text, cryptType should be set to none, whereas if is
stored as an MD5 hash, it should be set to mds.

Finally, the db_fields element provides the query parameters used to retrieve any other
table information, such as the commonname field.

Auth_HTTP, its parent class Auth, and the DB database abstraction class provide users with a
powerful array of features capable of carrying out otherwise tedious tasks. Definitely take time
to visit the PEAR site and learn more about these packages.

CHAPTER 14 AUTHENTICATION 337

User Login Administration

When you incorporate user logins into your application, providing a sound authentication
mechanism is only part of the total picture. How do you ensure that the user chooses a sound
password, of sufficient difficulty that attackers cannot use it as a possible attack route? Further-
more, how do you deal with the inevitable event of the user forgetting his password? Both
topics are covered in detail in this section.

Password Designation

Passwords are often assigned during some sort of user registration process, typically when the
user signs up to become a site member. In addition to providing various items of information
such as the user’s given name and e-mail address, the user often is also prompted to designate
a username and password, to use later to log in to the site. You'll create a working example of
such a registration process, using the following table to store the user data:

CREATE TABLE userauth (
rowID TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
commonname VARCHAR(35) NOT NULL,
email VARCHAR(55) NOT NULL,
username VARCHAR(8) NOT NULL,
pswd VARCHAR(32) NOT NULL,
PRIMARY KEY(rowID));

Listing 14-10 offers the registration code. For sake of space conservation, we’ll forego
presenting the registration form HTML, as it is assumed by now that you're quite familiar with
such syntax. This form, shown in Figure 14-2, is stored in a file called registration.html, and
is displayed using the file get contents() function.

Mame:

e

Ermal Address:

TTzername:

e

Pazsword:

Wertfy Password:

ey s

Figure 14-2. The registration form

The user provides the necessary input and submits the form data. The script then confirms
that the password and password verification strings match, displaying an error if they do not.

338 CHAPTER 14 AUTHENTICATION

If the password checks out, a connection to the MySQL server is made, and an appropriate
insertion query is executed.

Listing 14-10. User Registration (registration.php)

<?php

/*
Has the user submitted data?
If not, display the registration form.
*/
if (! isset($_POST['submitbutton'])) {
echo file get contents("/templates/registration.html");

/* Form data has been submitted. */
} else {

$conn = mysql pconnect("localhost”, "corpweb", "secret");
mysql select db("corporate");

/* Ensure that the password and password verifier match. */
if ($_POST['pswd'] != $ POST['pswdagain']) {
echo "<p>The passwords do not match. Please go back and try again.</p>";

/* Passwords match, attempt to insert information into userauth table. */
} else {

try {
$query = "INSERT INTO userauth (commonname, email, username, pswd)
VALUES ('$_POST[name]', '$ POST[email]',
'$ POST[username]', md5('$_POST[pswd]'));

$result = mysql query($query);
if (! $result) {
throw new Exception(
"Registration problems were encountered!"
)
} else {
echo "<p>Registration was successfull</p>";

}
} catch(Exception $e) {

echo "<p>".$e->getMessage()."</p>";
} #endCatch

2>

CHAPTER 14 AUTHENTICATION

The registration script provided here is for demonstration purposes only; if you want to
use such a script in a mission-critical application, you'll need to include additional error-checking
mechanisms. Here are just a few items to verify:

e Allfields have been completed.

* The e-mail address is valid. This is important because the e-mail address is likely to be
the main avenue of communication for matters such as password recovery (a topic
discussed in the next section).

* The password and password verification strings match (done in the preceding example).
* The user does not already exist in the database.

* No potentially malicious code has been inserted into the fields. This matter is discussed
in some detail in Chapter 21.

» Password length is adequate and password syntax is correct. Shorter passwords consisting
solely of letters or numbers are much more likely to be broken, given a concerted attempt.

Testing Password Guessability with the CrackLib Library

In anill-conceived effort to prevent forgetting their passwords, users tend to choose something
easy to remember, such as the name of their dog, their mother’s maiden name, or even their
own name or age. [ronically, this practice often doesn’t help users to remember the password
and, even worse, offers attackers a rather simple route into an otherwise restricted system, either
by researching the user’s background and attempting various passwords until the correct one
is found, or by using brute force to discern the password through numerous repeated attempts.
In either case, the password typically is broken because the user has chosen a password that is
easily guessable, resulting in the possible compromise of not only the user’s personal data, but
also the system itself.

Reducing the possibility that such easily guessable passwords could be introduced into
the system is quite simple, by turning the procedure of unchallenged password creation into
one of automated password approval. PHP offers a wonderful means for doing so via the CrackLib
library, created by Alec Muffett (http://www.crypticide.org/users/alecm/). CrackLib is intended
to test the strength of a password by setting certain benchmarks that determine its guessability,
including:

* Length: Passwords must be longer than four characters.
» Case: Passwords cannot be all lowercase.

¢ Distinction: Passwords must contain adequate different characters. In addition, the
password cannot be blank.

* Familiarity: Passwords cannot be based on a word found in a dictionary. In addition, the
password cannot be based on a reversed word found in the dictionary. Dictionaries are
discussed further in a bit.

339

340

CHAPTER 14 AUTHENTICATION

» Standard numbering: Because CrackLib’s author is British, he thought it a good idea to
check against patterns similar to what is known as a National Insurance (NI) Number.
The NI Number is used in Britain for taxation, much like the Social Security Number
(SSN) is used in the United States. Coincidentally, both numbers are nine characters
long, allowing this mechanism to efficiently prevent the use of either, if a user is stupid
enough to use such a sensitive identifier for this purpose.

Installing PHP’s CrackLib Extension

To use the CrackLib extension, you need to first download and install the CrackLib library,
available at http://www.crypticide.org/users/alecm/. If you're running a Linux/Unix variant,
it might already be installed, because CrackLib is often packaged with these operating systems.
Complete installation instructions are available in the README file found in the CrackLib tar
package.

PHP’s CrackLib extension was unbundled from PHP as of version 5.0.0, and moved to the
PHP Extension Community Library (PECL), a repository for PHP extensions. Therefore, to use
CrackLib, you need to download and install the crack extension from PECL. PECL is not covered
in this book, so please consult the PECL Web site at http://pecl.php.net for extension instal-
lation instructions if you want to take advantage of CrackLib.

Once you install CrackLib, you need to make sure that the crack.default_dictionary
directive in php.ini is pointing to a password dictionary. Such dictionaries abound on the
Internet, so executing a search will turn up numerous results. Later in this section you'll learn
more about the various types of dictionaries at your disposal.

Using the CrackLib Extension

Using PHP’s CrackLib extension is quite easy. Listing 14-11 offers a complete usage example.

Listing 14-11. Using PHP’s CrackLib Extension

<?php
$pswd = "567hejk39";

/* Open the dictionary. Note that the dictionary
filename does NOT include the extension.

*/

$dictionary = crack opendict('/usr/lib/cracklib dict');

// Check password for guessability
$check = crack check($dictionary, $pswd);

// Retrieve outcome
echo crack getlastmessage();

// Close dictionary
crack closedict($dictionary);
>

CHAPTER 14 AUTHENTICATION

In this particular example, crack getlastmessage() returns the string “strong password”
because the password denoted by $pswd is sufficiently difficult to guess. However, if the pass-
word is weak, one of a number of different messages could be returned. Table 14-1 offers a few
other passwords, and the resulting outcome from passing them through crack check().

Table 14-1. Password Candidates and the crack_check() Function’s Response

Password Response

mary itis too short

12 it’s WAY too short

1234567 itis too simplistic/systematic

street it does not contain enough DIFFERENT characters

By writing a short conditional statement, you can create user-friendly, detailed responses
based on the information returned from CrackLib. Of course, if the response is “strong password,”
you can allow the user’s password choice to take effect.

Dictionaries

Listing 14-11 uses the cracklib_dict.pwd dictionary, which is generated by CrackLib during
the installation process. Note that in the example, the extension . pwd is not included when
referring to the file. This seems to be a quirk with the way that PHP wants to refer to this file,
and could change some time in the future so that the extension is also required.

You are also free to use other dictionaries, of which there are many freely available on the
Internet. Furthermore, you can find dictionaries for practically every spoken language. One
particularly complete repository of such dictionaries is available on the University of Oxford’s
FTPsite: ftp.ox.ac.uk. In addition to quite a few language dictionaries, the site offers a number of
interesting specialized dictionaries, including one containing keywords from many Star Trek
plot summaries. At any rate, regardless of the dictionary you decide to use, simply assign its
location to the crack.default dictionary directive, or open it using crack_opendict().

One-Time URLs and Password Recovery

As sure as the sun rises, your application users will forget their passwords. All of us are guilty of
forgetting such information, and it’s not entirely our fault. Take a moment to list all the different
login combinations you regularly use; my guess is that you have at least 12 such combinations.
E-mail, workstations, servers, bank accounts, utilities, online commerce, securities and mortgage
brokerages... We use passwords to manage nearly everything these days. Because your applica-
tion will assumedly be adding yet another login pair to the user’s list, a simple, automated
mechanism should be in place for retrieving or resetting the user’s password when he or she
forgets it. Depending on the sensitivity of the material protected by the login, retrieving the
password might require a phone call or sending the password via the postal service. As always,
use discretion when you devise mechanisms that may be exploited by an intruder. This section
examines one such mechanism, referred to as a one-time URL.

3

342

CHAPTER 14 AUTHENTICATION

A one-time URL is commonly given to a user to ensure uniqueness when no other authen-
tication mechanisms are available, or when the user would find authentication perhaps too
tedious for the task at hand. For example, suppose you maintain a list of newsletter subscribers
and want to know which and how many subscribers are actually reading each monthly issue.
Simply embedding the newsletter into an e-mail won’t do, because you would never know how
many subscribers were simply deleting the e-mail from their inboxes without even glancing at
the contents. Rather, you could offer them a one-time URL pointing to the newsletter, one of
which might look like this:

http://www.example.com/newsletter/0503.php?id=9b758e7f08a2165d664c2684fddbcde2

In order to know exactly which users showed interest in the newsletter issue, a unique ID
parameter like the one shown in the preceding URL has been assigned to each user, and stored
in some subscriber table. Such values are typically pseudorandom, derived using PHP’s md5 ()
and uniqid() functions, like so:

$id = md5(unigid(rand(),1));
The subscriber table might look something like the following:

CREATE TABLE subscriber (
rowID SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
email VARCHAR(55) NOT NULL,
uniqueid VARCHAR(32) NOT NULL,
readnewsletter CHAR,
PRIMARY KEY(rowID));

When the user clicks this link, taking her to the newsletter, a function similar to the
following could execute before displaying the newsletter:

function read newsletter($id) {
$query = "UPDATE subscriber SET readnewsletter='Y' WHERE uniqueid='$id'";
return mysql query($query);

The result is that you will know exactly how many subscribers showed interest in the
newsletter, because they all actively clicked the link.

This very same concept can be applied to password recovery. To illustrate how this is
accomplished, consider the revised userauth table shown in Listing 14-12.

Listing 14-12. A Revised userauth Table

CREATE TABLE userauth (
rowID TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
commonname VARCHAR(35) NOT NULL,
email VARCHAR(55) NOT NULL,
username VARCHAR(8) NOT NULL,
pswd VARCHAR(32) NOT NULL,
uniqueidentifier VARCHAR(32) NOT NULL,
PRIMARY KEY(rowID));

CHAPTER 14 AUTHENTICATION

Suppose one of the users found in this table forgets his password and thus clicks the Forgot
password? link, commonly found near alogin prompt. The user will arrive at a page in which he
is asked to enter his e-mail address. Upon entering the address and submitting the form, a
script is executed similar to that shown in Listing 14-13.

Listing 14-13. A One-Time URL Generator

<?php
// Create unique identifier
$id = md5(unigid(rand(),1));

// Set user's unique identifier field to a unique id
$query = "UPDATE userauth SET uniqueidentifier='$id' WHERE email=$ POST[email]";
$result = mysql query($query);

$email = <<< email

Dear user,

Click on the following link to reset your password:
http://waw.example.com/users/lostpassword.php?id=$id
email;

343

CHAPTER 15

Handling File Uploads

While most people tend to equate the Web with Web pages only, the HTTP protocol actually
facilitates the transfer of any kind of file, such as Microsoft Office documents, PDFs, executables,
MPEGs, zip files, and a wide range of other file types. Although FTP historically has been the
standard means for uploading files to a server, such file transfers are becoming increasingly
prevalent via a Web-based interface. In this chapter, you'll learn all about PHP’s file-upload
handling capabilities. In particular, chapter topics include:

* PHP’s file-upload configuration directives

e PHP’s $_FILES superglobal array, used to handle file-upload data

e PHP’s built-in file-upload functions: is_uploaded file() and move_uploaded file()
¢ Areview of possible values returned from an upload script

As always, numerous real-world examples are offered throughout this chapter, providing
you with applicable insight into this topic.

Uploading Files via the HTTP Protocol

The way files are uploaded via a Web browser was officially formalized in November 1995,
when Ernesto Nebel and Larry Masinter of the Xerox Corporation proposed a standardized
methodology for doing so within RFC 1867, “Form-based File Upload in HTML” (http://
www.ietf.org/rfc/rfc1867.txt). This memo, which formulated the groundwork for making
the additions necessary to HTML to allow for file uploads (subsequently incorporated into
HTML 3.0), also offered the specification for a new Internet media type, multipart/form-data.
This new media type was desired, because the standard type used to encode “normal” form
values, application/x-www-form-urlencoded, was considered too inefficient to handle large
quantities of binary data such as that which might be uploaded via such a form interface. An
example of a file-upload form follows, and a screenshot of the corresponding output is shown
in Figure 15-1:

<form action="uploadmanager.html" enctype="multipart/form-data" method="post">
Name:
 <input type="text" name="name" value="" />

Email:
 <input type="text" name="email" value="" />

Homework:
 <input type="file" name="homework" value="" />

<p><input type="submit" name="submit" value="Submit Homework" /></p>
</form>

345

346

CHAPTER 15 HANDLING FILE UPLOADS

Mame:

e

Ermnail:

O —

Homeworlo

I Browse... |

Submit Homework |

Figure 15-1. HTML form incorporating the “file” input type tag

Understand that this form offers only part of the desired result; whereas the file input
type and other upload-related attributes standardize the way files are sent to the server via an
HTML page, no capabilities are offered for determining what happens once that file gets there!
The reception and subsequent handling of the uploaded files is a function of an upload handler,
created using some server process, or capable server-side language like Perl, Java, or PHP. The
remainder of this chapter is devoted to this aspect of the upload process.

Handling Uploads with PHP

Successfully managing file uploads via PHP is the result of cooperation between various
configuration directives, the $_FILES superglobal, and a properly coded Web form. In the
following sections, all three topics are introduced, concluding with a number of examples.

PHP’s File Upload/Resource Directives

Several configuration directives are available for fine-tuning PHP’s file-upload capabilities.
These directives determine whether PHP’s file-upload support is enabled, the maximum
allowable uploadable file size, the maximum allowable script memory allocation, and various
other important resource benchmarks. These directives are introduced in this section.

file_uploads (boolean)
Scope: PHP_INI SYSTEM; Default value: 1

The file_uploads directive determines whether PHP scripts on the server can accept file uploads.

max_execution_time (integer)
Scope: PHP_INI ALL; Default value: 30

The max_execution_time directive determines the maximum amount of time, in seconds, that
a PHP script will execute before registering a fatal error.

CHAPTER 15 HANDLING FILE UPLOADS 347

memory_limit (integer)M
Scope: PHP_INI ALL; Default value: 8M

The memory 1imit directive sets a maximum allowable amount of memory, in megabytes, that
a script can allocate. Note that the integer value must be followed by M for this setting to work
properly. This prevents runaway scripts from monopolizing server memory, and even crashing
the server in certain situations. This directive takes effect only if the --enable-memory-limit
flag was set at compile-time.

upload_max_filesize (integer)M
Scope: PHP_INI_SYSTEM; Default value: 2M

The upload max_filesize directive determines the maximum size, in megabytes, of an uploaded
file. This directive should be smaller than post_max_size (introduced in the section following
the next section), because it applies only to information passed via the file input type, and not
to all information passed via the POST instance. Like memory limit, note that M must follow the
integer value.

upload_tmp_dir (string)
Scope: PHP_INI SYSTEM; Default value: Null

Because an uploaded file must be successfully transferred to the server before subsequent
processing on that file can begin, a staging area of sorts must be designated for such files as the
location where they can be temporarily placed until they are moved to their final location. This
location is specified using the upload tmp dir directive. For example, suppose you wanted to
temporarily store uploaded files in the /tmp/phpuploads/ directory. You would use the following:

upload tmp dir = "/tmp/phpuploads/"

Keep in mind that this directory must be writable by the user owning the server process.
Therefore, if user nobody owns the Apache process, then user nobody should be made either
owner of the temporary upload directory or a member of the group owning that directory. If
this is not done, user nobody will be unable to write the file to the directory, unless world write
permissions are assigned to the directory.

post_max_size (integer)M
Scope: PHP_INI_SYSTEM; Default value: 81

The post_max_size directive determines the maximum allowable size, in megabytes, of infor-
mation that can be accepted via the POST method. As a rule of thumb, this directive setting
should be larger than upload_max_filesize, to account for any other form fields that may be
passed in addition to the uploaded file. Like memory limit and upload_max_filesize, note that
M must follow the integer value.

348

CHAPTER 15 HANDLING FILE UPLOADS

The $_FILES Array

The $_FILES superglobal is special in that it is the only one of the predefined EGCPFS (Environ-
ment, Get, Cookie, Put, Files, Server) superglobal arrays that is two-dimensional. Its purpose is
to store a variety of information pertinent to a file (or files) uploaded to the server via a PHP

script. In total, five items are available in this array, each of which is introduced in this section.

Note Each of the items introduced in this section makes reference to userfile. This is simply a placeholder
for the name assigned to the file-upload form element. Therefore, this value will likely change in accordance
to your chosen name assignment.

$_FILES['userfile']['error']

The $_FILES['userfile']['error'] array value offers important information pertinent to the
outcome of the upload attempt. In total, five return values are possible, one signifying a successful
outcome, and four others denoting specific errors that arise from the attempt. The names and
meanings of each return value are introduced in the later section, “Upload Error Messages.”

$_FILES['userfile']['name"]

The $_FILES['userfile']['name'] variable specifies the original name of the file, including
the extension, as declared on the client machine. Therefore, if you browse to a file named
vacation. jpg and upload it via the form, this variable will be assigned the value vacation. jpg.

$_FILES['userfile']['size']

The $_FILES['userfile']['size'] variable specifies the size, in bytes, of the file uploaded from
the client machine. Therefore, in the case of the vacation. jpg file, this variable could plausibly
be assigned a value like 5253, or roughly 5KB.

$_FILES['userfile']['tmp_name']

The $ FILES['userfile']['tmp name'] variable specifies the temporary name assigned to the file
once it has been uploaded to the server. This is the name of the file assigned to it while stored
in the temporary directory (specified by the PHP directive upload tmp_dir).

$_FILES['userfile']['type']

The$ FILES['userfile']['type'] variable specifies the MIME-type of the file uploaded from the
client machine. Therefore, in the case of the vacation. jpg file, this variable would be assigned
the value image/jpeg. If a PDF were uploaded, then the value application/pdf would be assigned.

Because this variable sometimes produces unexpected results, you should explicitly verify
it yourself from within the script.

CHAPTER 15 HANDLING FILE UPLOADS 349

PHP’s File-Upload Functions

In addition to the host of file-handling functions made available via PHP’s file system library
(see Chapter 10 for more information), PHP offers two functions specifically intended to aid in
the file-upload process, is_uploaded file()andmove uploaded file().Each function isintro-
duced in this section.

is_uploaded_file()
boolean is uploaded file(string filename)

The is_uploaded file() function determines whether a file specified by the input parameter
filename was uploaded using the POST method. This function is intended to prevent a potential
attacker from manipulating files not intended for interaction via the script in question. For
example, consider a scenario in which uploaded files were made immediately available for viewing
via a public site repository. Say an attacker wanted to make a file somewhat juicier than boring
old class notes available for his perusal, say /etc/passwd. So rather than navigate to a class
notes file as would be expected, the attacker instead types /etc/passwd directly into the form’s
file-upload field.

Now consider the following uploadmanager. php script:

<?php
copy($_FILES['classnotes']['tmp _name'],
"/www/htdocs/classnotes/" .basename($classnotes));
>

The result in this poorly written example would be that the /etc/passwd file is copied to a
publicly accessible directory. (Go ahead, try it. Scary, isn’t it?) To avoid such a problem, use the
is uploaded file() function to ensure that the file denoted by the form field, in this case
classnotes, is indeed a file that has been uploaded via the form. Here’s an improved and revised
version of the uploadmanager . php code:

<?php
if (is_uploaded file($ FILES['classnotes']['tmp name'])) {
copy($_FILES['classnotes']['tmp name'],
"/www/htdocs/classnotes/".$ FILES['classnotes']['name']);

} else {

echo "<p>Potential script abuse attempt detected.</p>";
}
>

In the revised script, is_uploaded file() checks whether the file denoted by
$ FILES['classnotes']['tmp name'] hasindeed been uploaded. If the answer is yes, the file is
copied to the desired destination. Otherwise, an appropriate error message is displayed.

move_uploaded_file()

boolean move uploaded file(string filename, string destination)

350

CHAPTER 15 HANDLING FILE UPLOADS

Themove uploaded file() function was introduced in version 4.0.3 as a convenient means for
moving an uploaded file from the temporary directory to a final location. Although copy () works
equally well, move_uploaded file() offers one additional feature that this function does not: It will
check to ensure that the file denoted by the filename input parameter was in fact uploaded via
PHP’s HTTP POST upload mechanism. If the file has not been uploaded, the move will fail and a
FALSE value will be returned. Because of this, you can forego using is_uploaded file() asa
precursor condition to using move_uploaded file().

Using move_uploaded file() is quite simple. Consider a scenario in which you want to
move the uploaded class notes file to the directory /www/htdocs/classnotes/, while also
preserving the file name as specified on the client:

move_uploaded file($ FILES['classnotes']['tmp name'],
"/www/htdocs/classnotes/".$ FILES['classnotes']['name']);

Of course, you could rename the file to anything you wish when it's moved. It’s important,
however, that you properly reference the file’s temporary name within the first (source)
parameter.

Upload Error Messages

Like any other application component involving user interaction, you need a means to assess
the outcome, successful or otherwise. How do you definitively know that the file-upload procedure
was successful? And if something goes awry during the upload process, how do you know what
caused the error? Thankfully, sufficient information for determining the outcome, and in the
case of an error, the reason for the error, is provided in $ FILES['userfile']['error'].

UPLOAD_ERR_OK (Value = 0)

A value of 0 is returned if the upload is successful.

UPLOAD_ERR_INI_SIZE (Value = 1)

Avalue of 1is returned if there is an attempt to upload a file whose size exceeds the value specified
by the upload _max_filesize directive.

UPLOAD_ERR_FORM_SIZE (Value = 2)

Avalue of 2 is returned if there is an attempt to upload a file whose size exceeds the value of the
MAX_FILE_SIZE directive, which can be embedded into the HTML form.

Note Because the MAX_FILE SIZE directive is embedded within the HTML form, it can easily be modified by
an enterprising attacker. Therefore, always use PHP’s server-side settings (upload max_filesize,
post_max_filesize) to ensure that such predetermined absolutes are not surpassed.

CHAPTER 15 HANDLING FILE UPLOADS

UPLOAD_ERR_PARTIAL (Value = 3)

Avalue of 3 is returned if a file was not completely uploaded. This might occur if a network
error occurs that results in a disruption of the upload process.

UPLOAD_ERR_NO_FILE (Value = 4)

A value of 4 is returned if the user submits the form without specifying a file for upload.

File-Upload Examples

Now that the groundwork has been set regarding the basic concepts, it’s time to consider a few
practical examples.

A First File-Upload Example

The first example actually implements the class notes example referred to throughout this
chapter. To formalize the scenario, suppose that a professor invites students to post class notes
to his Web site, the idea being that everyone might have something to gain from such a collab-
orative effort. Of course, credit should nonetheless be given where credit is due, so each file upload
should be renamed to the last name of the student. In addition, only PDF files are accepted.
Listing 15-1 (uploadmanager.php) offers an example.

Listing 15-1. A Simple File-Upload Example

<form action="uploadmanager.php" enctype="multipart/form-data" method="post">
Last Name:
 <input type="text" name="name" value="" />

Class Notes:
 <input type="file" name="classnotes" value="" />

<p><input type="submit" name="submit" value="Submit Notes" /></p>

</form>

<?php
/* Set a few constants */
define ("FILEREPOSITORY","/home/www/htdocs/class/classnotes/");

/* Make sure that the file was POSTed. */
if (is_uploaded file($ FILES['classnotes']['tmp name'])) {

/* Was the file a PDF? */
if ($_FILES['classnotes']['type'] != "application/pdf") {

echo "<p>Class notes must be uploaded in PDF format.</p>";
} else {

/* move uploaded file to final destination. */

$name = $ POST['name'];

$result = move uploaded file($ FILES['classnotes']['tmp name'],
FILEREPOSITORY."/$name.pdf");

351

352

CHAPTER 15 HANDLING FILE UPLOADS

if ($result == 1) echo "<p>File successfully uploaded.</p>";
else echo "<p>There was a problem uploading the file.</p>";

} #endIF

} ttendIF
?>

Gaution Remember that files are both uploaded and moved under the guise of the Web server daemon
owner. Failing to assign adequate permissions to both the temporary upload directory and the final directory
destination for this user will result in failure to properly execute the file-upload procedure.

Listing Uploaded Files by Date

The professor, delighted by the students’ participation in the class notes project, has decided
to move all class correspondence online. His current project involves providing an interface
that will allow students to submit their daily homework via the Web. Like the class notes, the
homework is to be submitted in PDF format, and will be assigned the student’s last name as its
file name when stored on the server. Because homework is due daily, the professor wants both
a means for automatically organizing the assignment submissions by date and a means for
ensuring that the class slackers can’t sneak homework in after the deadline, which is 11:59:59 p.m.
daily.

The script offered in Listing 15-2 automates all of this, minimizing administrative over-
head for the professor. In addition to ensuring that the file is a PDF and automatically assigning
it the student’s specified last name, the script also creates new folders daily, each following the
naming convention MM-DD-YYYY.

Listing 15-2. Categorizing the Files by Date

<form action="homework.php" enctype="multipart/form-data" method="post">
Last Name:
 <input type="text" name="name" value="" />

Homework:
 <input type="file" name="homework" value="" />

<p><input type="submit" name="submit" value="Submit Notes" /></p>
</form>

<?php

Set a constant

define ("FILEREPOSITORY","/home/www/htdocs/class/homework/");
if (isset($_FILES['homework'])) {

if (is_uploaded file($ FILES['"homework']['tmp name'])) {

CHAPTER 15 HANDLING FILE UPLOADS

if ($_FILES['homework']['type'] != "application/pdf") {
echo "<p>Homework must be uploaded in PDF format.</p>";
} else {

/* Format date and create daily directory, if necessary. */
$today = date("m-d-Y");
if (! is_dir(FILEREPOSITORY.$today)) mkdir(FILEREPOSITORY.$today);

/* Assign name and move uploaded file to final destination. */

$name = $ POST['name'];

$result = move uploaded file($ FILES['homework']['tmp name'],
FILEREPOSITORY.$today."/"."$name.pdf");

/* Provide user with feedback. */
if ($result == 1) echo "<p>File successfully uploaded.</p>";
else echo "<p>There was a problem uploading the homework.</p>";

}

>

Although this code could stand a bit of improvement, it accomplishes what the professor
set out to do. Although it does not prevent students from submitting late homework, the home-
work will be placed in the folder corresponding to the current date as specified by the server clock.

Note Fortunately for the students, PHP will overwrite previously submitted files, allowing them to repeatedly
revise and resubmit homework as the deadline nears.

Working with Multiple File Uploads

The professor, always eager to push his students to the outer limits of sanity, has decided to
require the submission of two daily homework assignments. Striving for a streamlined submis-
sion mechanism, the professor would like both assignments to be submitted via a single interface,
and would like them named student-name1 and student-name2. The dating procedure used in
the previous listing will be reused in this script. Therefore, the only real puzzle here is to devise
a solution for submitting multiple files via a single form interface.

As mentioned earlier in this chapter, the $§ FILES array is unique because it is the only
predefined variable array that is two-dimensional. This is not without reason; the first element
of that array represents the file input name, so if multiple file inputs exist within a single form,
each can be handled separately without interfering with the other. This concept is demonstrated in
Listing 15-3.

353

354 CHAPTER 15 HANDLING FILE UPLOADS

Listing 15-3. Handling Multiple File Uploads

<form action="multiplehomework.php" enctype="multipart/form-data" method="post">

Last Name:
 <input type="text" name="name" value="" />

Homework #1:
 <input type="file" name="homework1" value="" />

Homework #2:
 <input type="file" name="homework2" value="" />

<p><input type="submit" name="submit" value="Submit Notes" /></p>
</form>

<?php
/* Set a constant */
define ("FILEREPOSITORY","/home/www/htdocs/class/homework/");
if (isset($_FILES['homework'])) {
if (is_uploaded file($ FILES['homeworki']['tmp name']) &&
is uploaded file($ FILES['homework2']["tmp name'])) {

if (($_FILES["homeworki']['type']
($_FILES["homework2"']["type']

= "application/pdf") ||
= "application/pdf")) {

echo "<p>All homework must be uploaded in PDF format.</p>";
} else {
/* Format date and create daily directory, if necessary. */

$today = date("m-d-Y");

if (! is_dir(FILEREPOSITORY.$today))
mkdir (FILEREPOSITORY.$today);

/* Name and move homework #1 */
$filenamel = $ POST['name']."1";

$result = move uploaded file($ FILES["homeworki']['tmp name'],
FILEREPOSITORY.$today."/"."$filenamel.pdf");

if ($result == 1) echo "<p>Homework #1 successfully uploaded.</p>";
else echo "<p>There was a problem uploading homework #1.</p>";

/* Name and move homework #2 */
$filename2 = $ POST['name']."2";

$result = move uploaded file($ FILES["homework2']['tmp name'],
FILEREPOSITORY.$today."/"."$filename2.pdf");

if ($result == 1) echo "<p>Homework #2 successfully uploaded.</p>";
else echo "<p>There was a problem uploading homework #2.</p>";

CHAPTER 15 HANDLING FILE UPLOADS

} #tendif
} #tendif
} #endif
?>

Although this script is a tad longer due to the extra logic required to handle the second home-
work assignment, it differs only slightly from Listing 15-2. However, there is one very important
matter to keep in mind when working with this or any other script that handles multiple file
uploads: the combined file size cannot exceed the upload max_size or post max_size configu-
ration directives.

Taking Advantage of PEAR: HTTP_Upload

While the approaches to file uploading discussed thus far work just fine, it’s always nice to hide
some of the implementation details by using a class. The PEAR class HTTP_Upload satisfies this
desire quite nicely. It encapsulates many of the messy aspects of file uploading, exposing the
information and features we’re looking for via a convenient interface. This section introduces
HTTP_Upload, showing you how to take advantage of this powerful, no-nonsense package to
effectively manage your site’s upload mechanisms.

Installing HTTP_Upload

To take advantage of HTTP_Upload’s features, you need to install it from PEAR. The process for
doing so follows:

%>pear install HTTP_Upload

downloading HTTP_Upload-0.9.1.tgz ...

Starting to download HTTP Upload-0.9.1.tgz (9,460 bytes)
..... done: 9,460 bytes

install ok: HTTP_Upload 0.9.1

Learning More About an Uploaded File

In this first example, you find out how easy it is to retrieve information about an uploaded
file. Let’s revisit the form presented in Listing 15-1, this time pointing the form action to
uploadprops.php, found in Listing 15-4.

Listing 15-4. Using HTTP_Upload to Retrieve File Properties

<?php
require("HTTP/Upload.php');

// New HTTP_Upload object
$upload = new HTTP_Upload();

// Retrieve the classnotes file
$file = $upload->getFiles('classnotes');

355

356

CHAPTER 15 HANDLING FILE UPLOADS

// Load the file properties to associative array
$props = $file->getProp();

// Output the properties
print_r($props);
>

Uploading a file named notes. txt and executing Listing 15-4 produces the following output:

Array (

[real] => notes.txt

[name] => notes.txt

[form _name] => classnotes
[ext] => txt

[tmp_name] => /tmp/B723k ka43
[size] => 22616

[type] => text/plain

[error] =>

)

The key values and their respective properties were discussed earlier in this chapter, so
there’s no reason to describe them again (besides, all the names are rather self-explanatory). If
you're interested in just retrieving the value of a single property, pass a key to the getProp()
call. For example, suppose you want to know the size (in bytes) of the file:

echo $files->getProp('size');

This produces the following output:

22616

Moving an Uploaded File to the Final Destination

Of course, simply learning about the uploaded file’s properties isn’t sufficient. We also want to
move the file to some final resting place. Listing 15-5 demonstrates how to ensure an uploaded
file’s validity and subsequently move the file to an appropriate resting place.

Listing 15-5. Using HTTP_Upload to Move an Uploaded File

<?php
require("HTTP/Upload.php");

// New HTTP_Upload object

$upload = new HTTP Upload();

// Retrieve the classnotes file

$file = $upload->getFiles('classnotes');

CHAPTER 15 HANDLING FILE UPLOADS

// If no problems with uploaded file

if ($file->isvalid()) {
$file->moveTo("' /home/httpd/html/uploads');
echo "File successfully uploaded!";

}
else {

echo $file->errorMsg();
}

>

You'll notice that the last line refers to a method named errorMsg(). The package tracks a
variety of potential errors, including matters pertinent to a nonexistent upload directory, lack
of write permissions, a copy failure, or a file surpassing the maximum upload size limit. By
default, these messages are in English; however, HTTP_Upload supports seven languages: Dutch
(nl), English (en), French (fr), German (de), Italian (it), Portuguese (pt_BR), and Spanish (es).
To change the default error language, invoke the HTTP_Upload() constructor using the appro-
priate abbreviation. For example, to change the language to Spanish, invoke the constructor
like so:

$upload = new HTTP_Upload('es');

Uploading Multiple Files

One of the beautiful aspects of HTTP_Upload is its ability to manage multiple file uploads. To
handle a form consisting of multiple files, all you have to do is invoke a new instance of the
class and call getFiles() for each upload control. Suppose the aforementioned professor has
gone totally mad and now demands five homework assignments daily from his students. The
form might look like this:

<form action="multiplehomework.php" enctype="multipart/form-data" method="post">
Last Name:
 <input type="text" name="name" value="" />

Homework #1:
 <input type="file" name="homework1" value="" />

Homework #2:
 <input type="file" name="homework2" value="" />

Homework #3:
 <input type="file" name="homework3" value="" />

Homework #4:
 <input type="file" name="homework4" value="" />

Homework #5:
 <input type="file" name="homeworks5" value="" />

<p><input type="submit" name="submit" value="Submit Notes" /></p>

</form>

Handling this with HTTP_Upload is trivial:

$homework = new HTTP_Upload();

$hwi = $homework->getFiles('homework1
$hw2 = $homework->getFiles("homework2
$hw3 = $homework->getFiles("'homework3
$hwa = $homework->getFiles('homeworks'
$hws = $homework->getFiles('homeworks");

)
1

)
)s
N
)

)

)

At this point, simply use methods such as isValid() and moveTo() to do what you will with
the files.

357

358

CHAPTER 15 HANDLING FILE UPLOADS

Summary

Transferring files via the Web eliminates a great many inconveniences otherwise posed by fire-
walls and FTP servers and clients. It also enhances an application’s ability to easily manipulate
and publish nontraditional files. In this chapter, you learned just how easy it is to add such
capabilities to your PHP applications. In addition to offering a comprehensive overview of
PHP’s file-upload features, several practical examples were discussed.

The next chapter introduces in great detail the highly useful Web development topic of
tracking users via session handling.

CHAPTER 16

Networking

You may have turned to this page wondering just what PHP could possibly have to offer in
regards to networking. After all, aren’t networking tasks largely relegated to languages commonly
used for system administration, such as Perl or Python? While such a stereotype might have
once painted a fairly accurate picture, these days, incorporating networking capabilities into a
Web application is commonplace. In fact, Web-based applications are regularly used to monitor
and even maintain network infrastructures. Furthermore, with the introduction of the command-
line interface (CLI) in PHP version 4.2.0, PHP is now increasingly used for system administration
among those developers who wish to continue using their favorite language for other purposes.
The PHP developers, always keen to acknowledge growing needs in the realm of Web applica-
tion development, and remedy that demand by incorporating new features into the language,
have put together a rather amazing array of network-specific functionality.
This chapter is divided into several topics, each of which is previewed here:

* DNS, servers, and services: PHP offers a variety of functions capable of retrieving infor-
mation about the internals of networks, DNS, protocols, and Internet addressing
schemes. This chapter introduces these functions and offers several usage examples.

* Sending e-mail with PHP: Sending e-mail via a Web application is undoubtedly one of
the most commonplace features you can find these days, and for good reason. E-mail
remains the Internet’s killer application, and offers an amazingly efficient means for
communicating and maintaining important data and information. This chapter explains
how to effectively imitate even the most proficient e-mail client’s “send” functionality
via a PHP script.

e IMAP, POP3, and NNTP: PHP’s IMAP extension is, despite its name, capable of commu-
nicating with IMAP, POP3, and NNTP servers. This chapter introduces many of the most
commonly used functions found in this library, showing you how to effectively manage
an IMAP account via the Web.

* Streams: Introduced in version 4.3, streams offer a generalized means for interacting
with streamable resources, or resources that are read from and written to in a linear
fashion. This chapter offers an introduction to this feature.

* Common networking tasks: To wrap up this chapter, you'll learn how to use PHP to
mimic the tasks commonly carried out by command-line tools, including pinging a
network address, tracing a network connection, scanning a server’s open ports, and more.

359

360

CHAPTER 16 NETWORKING

DNS, Services, and Servers

These days, investigating or troubleshooting a network issue often involves gathering a variety
of information pertinent to affected clients, servers, and network internals such as protocols,
domain name resolution, and IP addressing schemes. PHP offers a number of functions for
retrieving a bevy of information about each subject, each of which is introduced in this section.

DNS

The DNS is what allows us to use domain names (example.com, for instance) in place of the
corresponding not-so-user-friendly IP address, such as 192.0.34.166. The domain names and
their complementary IP addresses are stored and made available for reference on domain
name servers, which are interspersed across the globe. Typically, a domain has several types of
records associated to it, one mapping the IP address to the domain, another for directing e-mail,
and another for a domain name alias, for example. Often, network administrators and developers
require a means to learn more about various DNS records for a given domain. This section
introduces a number of standard PHP functions capable of digging up a great deal of informa-
tion regarding DNS records.

checkdnsrr()
int checkdnsrr (string host [, string typel)

The checkdnsrr () function checks for the existence of DNS records based on the supplied host
value and optional DNS resource record type, returning TRUE if any records are located and
FALSE otherwise. Possible record types include the following:

¢ A:IPv4 Address Record. Responsible for the hostname-to-IPv4 address translation.
¢ AAAA: IPv6 Address Record. Responsible for the hostname-to-IPv6 address translation.

* A6: Arecord type used to represent IPv6 addresses. Intended to supplant present use of
AAAA records for IPv6 mappings.

* ANY: Looks for any type of record.
¢ CNAME: Canonical Name Record. Maps an alias to the real domain name.

¢ MX: Mail Exchange Record. Determines the name and relative preference of a mail
server for the host. This is the default setting.

¢ NAPTR: Naming Authority Pointer. Used to allow for non-DNS-compliant names,
resolving them to new domains using regular expression rewrite rules. For example,
an NAPTR might be used to maintain legacy (pre-DNS) services.

¢ NS: Name Server Record. Determines the name server for the host.

¢ PTR: Pointer Record. Used to map an IP address to a host.

CHAPTER 16 NETWORKING

e SOA: Start of Authority Record. Sets global parameters for the host.

* SRV: Services Record. Used to denote the location of various services for the supplied
domain.

Consider an example. Suppose you want to verify whether the domain name example.com
has been taken:

<?php
$recordexists = checkdnsrr("example.com", "ANY");
if ($recordexists) echo "The domain name has been taken. Sorry!";
else echo "The domain name is available!";

>

This returns the following:

The domain name has been taken. Sorry!

You can use this function to verify the existence of a domain of a supplied mail address:

<?php
$email = "ceo@example.com";
$domain = explode("@",$email);

$valid = checkdnsrr($domain[1], "ANY");

if($valid) echo "The domain has an MX record!";
else echo "Cannot locate MX record for $domain[1]!";
2>

This returns:

The domain has an MX record!

Note that this isn’t a request for verification of the existence of an MX record. Sometimes
network administrators employ other configuration methods to allow for mail resolution without
using MX records (because MX records are not mandatory). To err on the side of caution, just
check for the existence of the domain, without specifically requesting verification of whether
an MXrecord exists.

dns_get_record()

array dns_get record (string hostname [, int type
[, array &authns, array &addtl]])

361

362

CHAPTER 16 NETWORKING

The dns_get record() function returns an array consisting of various DNS resource records
pertinent to the domain specified by hostname. Although by default dns_get record() returns
all records it can find specific to the supplied domain, you can streamline the retrieval process
by specifying a type, the name of which must be prefaced with DNS_. This function supports
all the types introduced along with checkdnsrr (), in addition to others that will be introduced
in a moment. Finally, if you're looking for a full-blown description of this hostname’s DNS
description, you can pass the authns and addtl parameters in by reference, which specify that
information pertinent to the authoritative name servers and additional records also should be
returned.

Assuming that the supplied hostname is valid and exists, a call to dns_get record() returns
at least four attributes:

* host: Specifies the name of the DNS namespace to which all other attributes correspond.

¢ class: Because this function only returns records of class “Internet,” this attribute always
reads IN.

¢ type: Determines the record type. Depending upon the returned type, other attributes
might also be made available.

¢ ttl: Therecord’s time-to-live, calculating the record’s original TTL minus the amount of
time that has passed since the authoritative name server was queried.

In addition to the types introduced in the section on checkdnsrx (), the following domain
record types are made available to dns_get record():

e DNS_ALL: