

Easy Laravel 5
A Hands On Introduction Using a Real-World Project

W. Jason Gilmore

This book is for sale at http://leanpub.com/easylaravel

This version was published on 2018-02-16

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2018 W. Jason Gilmore

http://leanpub.com/easylaravel
http://leanpub.com/
http://leanpub.com/manifesto

Also By W. Jason Gilmore
Easy Active Record for Rails Developers

Easy E-Commerce Using Laravel and Stripe

Easy React

http://leanpub.com/u/wjgilmore
http://leanpub.com/easyactiverecord
http://leanpub.com/easyecommerce
http://leanpub.com/easyreact

Dedicated to The Champ, The Princess, and Little Winnie. Love, Daddy

Contents

Introduction . 1
Introducing the HackerPair Companion Project . 1
About this Book . 2
About W. Jason Gilmore . 5
Errata and Suggestions . 6

Chapter 1. Introducing Laravel . 7
Installing the Laravel Installer . 7
Managing Your Local Laravel Project Hosting Environment 8
Perusing the HackerPair Skeleton Code . 23
Configuring Your Laravel Application . 25
Useful Development and Debugging Tools . 28
Testing Your Laravel Application . 36
Conclusion . 42

Introduction
I’ve spent the vast majority of my professional career (20 years and counting) immersed in the
PHP language. During this time I’ve written eight PHP-related books, including a few bestsellers.
Along the way I’ve worked on dozens of PHP-driven applications for clients ranging from unknown
startups to globally-recognized companies, penned hundreds of articles about PHP and web
development for some of the world’s most popular print and online publications, and personally
trained hundreds of developers on various PHP-related topics. In short, over the span of two decades
I’ve pretty much seen it all when it comes to PHP.

So it might come as a surprise to some that I’ve never been more immersed in the language than
right now. The PHP community and project ecosystem has never been stronger than it is today,
offering an incredible number of libraries, frameworks, and tools which allow PHP developers to
build more complicated web applications faster than they ever have before. And at least at the time
of this writing there is no more popular PHP project on the planet than the Laravel framework.

Over the past several years I’ve worked on multiple large Laravel projects for a variety of clientele.
Among others these projects include a REST API for an incredibly popular iOS and Android app, an
e-commerce application for selling subscription-based services, and a huge intranet application for
a South American agricultural concern. I can say without hesitation that these projects have ranked
among the most entertaining and fulfilling in my career, and that sentiment has largely to do with
the incredible power and productivity Laravel bestows upon its users.

This book summarizes all of the hard-won knowledge and experience I’ve amassed building these
Laravel projects, and indeed that accrued building web applications of all shapes and sizes over the
past two decades. By its conclusion, you’ll have gained a well rounded understanding of Laravel’s
many features, and along the way will have been introduced to many best practices pertaining to
code organization, testing, and deployment. I can’t wait to get started!

Introducing the HackerPair Companion Project

Too many programming tutorials skew far more heavily in favor of academic exercises than real-
world practicalities. Not so in this book. A significant amount of the material found herein is based
upon the development of a project called HackerPair (http://hackerpair.com) which you can interact
with right now by heading over to the HackerPair website (http://hackerpair.com).

HackerPair incorporates many, if not all, of the Laravel features you’ll want to be acquainted with
when building your own applications. I’ll highlight just a few of the features here. Keep in mind
however that not all of these features are currently available in the beta release, although they’ll be
added soon!

Introduction 2

• Comprehensive Database Seeding: Many beginning developers tend to skip over the gen-
eration of real-world data for the development environment. HackerPair includes extensive
data generation scripts (known as seeds) for users, events, categories, and locations.

• Rigorous Form Integration and Validation: HackerPair uses the powerful LaravelCollec-
tive/HTML package for forms generation, and relies on formalized Laravel procedures for
input validation including use of the native Laravel validators and form requests.

• Extensive Model Relationships: HackerPair offers numerous examples of model relation-
ships by including features such as event creation (events are owned by users), event favorites
(users can favorite many events), event locations (events belong to states, states have many
events), and so on.

• User Authentication and Profile Management: Laravel offers great off-the-shelf support for
user registration and login, however developers will quickly outgrow the defaults. HackerPair
extends the registration form to include several additional fields, extensively modifies the
default registration and login view formatting, and adds account profile management.

• Social Login: In addition to standard user registration and authentication, users can instead
opt to login using a third-party service such as GitHub and Twitter.

• Vue.js Features: Vue.js is Laravel’s de facto JavaScript library. HackerPair includes a number
of cool Vue.js features, including AJAX-driven event favoriting, event attendance manage-
ment, and notifications.

• Bootstrap 4 Integration: Although Bootstrap 4 is still in beta at the time of this writing, I
wanted to give it a spin and am glad I did. Although I will make clear I’m not exactly a CSS
guru, and you’ll probably find some of my styling to be repulsive. At any rate, in the book
you’ll also learn how to integrate Bootstrap 3 and the new Tailwind CSS frameworks.

• Extensive Automated Testing: One of my favorite Laravel features is the practically push
button automated test integration. The HackerPair project includes extensive testing of
numerous aspects of the code, including unit tests, model tests, and integration tests using
Laravel Dusk.

• A REST API: We want to give developers the chance to build their own cool HackerPair
applications, and so have exposed a REST API which allows information about events to be
retrieved for display in a variety of formats.

Best of all, all interested Laravel developers are able to peruse and download the HackerPair GitHub
repository for free! Head on over to http://github.com/wjgilmore/hackerpair to view the code.

About this Book

This book is broken into 12 chapters, each of which is briefly described below. Remember, the book
is currently in beta, which is why not all of these chapters are included in your download! Many are
under development and almost complete, so in the coming weeks I’ll be regularly pushing up new
versions and notifying readers.

Introduction 3

Chapter 1. Introducing Laravel

In this opening chapter you’ll learn how to create and configure your Laravel project using your
existing PHP development environment, a virtual machine known as Laravel Homestead, and a
minimal development environment known as Valet (OSX users only). I’ll also show you how to
configure your environment in order to effectively debug your Laravel applications, and how to
extend Laravel’s capabilities by installing several popular third-party packages. We’ll conclude
the chapter with an introduction to PHPUnit, showing you how to create and execute your first
automated Laravel test!

Chapter 2. Managing Your Project Controllers, Layout, Views, and
Other Assets

In this chapter you’ll learn how to create controllers and actions, and define the routes used to access
your application endpoints. You’ll also learn how to create the pages (views), work with variable data
and logic using the Blade templating engine, and reduce redundancy using layouts and view helpers.
I’ll also introduce Laravel Elixir, a new feature for automating otherwise laborious tasks such as
JavaScript transpiling and CSS minification. You’ll also learn how to integrate several popular CSS
frameworks, including Bootstrap 3 and 4, and Tailwind, and how to use Laravel Dusk for integration
testing.

Chapter 3. Talking to the Database

In this chapter we’ll turn our attention to the project’s data. You’ll learn how to integrate and
configure the database, manage your database schema using migrations, and easily populate your
database using seeds. From there we’ll move on to creating models, and how to query the database
through these models using the Eloquent object relational mapper. I’ll also introduce the concept
of resourceful controllers, and we’ll generate a controller which will be used to view and manage
the example project’s events. You’ll also learn how how to use Laravel’s Query Builder to query the
database when Eloquent isn’t possible or practical.

Chapter 4. Customizing Your Models

Laravel models are incredibly powerful tools, and can be customized in a variety of ways to meet
your project’s specific needs. In this chapter you’ll learn how to override model defaults to create
custom accessors and mutators, add instance methods, and use scopes to easily filter database
results with minimal code redundancy. You’ll also learn how to create sluggable URLs using the
eloquent-sluggable package. The chapter concludes with an introduction to testing your models
using Laravel’s amazing database-specific test features.

Introduction 4

Chapter 5. Creating, Updating, and Deleting Data

Chapters 3 and 4 were primarily focused upon the many different ways you can query the database.
In this chapter we’ll turn our attention to creating, updating, and deleting data. In addition to a
review of the Eloquent syntax used to perform these tasks, we’ll continue building out the resourceful
controller created in chapter 3. You’ll also learn how to incorporate flash notifications into your
controllers and views to keep users updated regarding request outcomes, and how to use Laravel
Dusk to test your forms.

Chapter 6. Validating User Input

For reasons of simplicity, chapter 5 focused exclusively on what it must be like to live in a world in
which error prone or malicious users didn’t exist. That is to say I momentarily punted on the matter
of user input validation. But data validation is so crucial to successful web application development
that it can be put off no longer, and so this chapter is devoted entirely to the topic. In this chapter
you’ll learn all about Laravel’s native validators, and how to incorporate form requests into your
project to add form validation while ensuring your controller code remains lean.

Chapter 7. Creating and Managing Model Relationships

Building and navigating table relations is a standard part of the development process even when
working on the most unambitious of projects, yet this task is often painful when working with
many web frameworks. Fortunately, using Laravel it’s easy to define and traverse these relations.
In this chapter I’ll show you how to define, manage, and interact with one-to-one, one-to-many,
many-to-many, has many through, and polymorphic relations.

Chapter 8. Sending E-mails

Whether for requiring newly registered users to confirm their e-mail address, or notifying event
attendees of scheduling changes, web applications such as HackerPair rely heavily on using e-mail
as an efficient means of communication. In this chapter you’ll learn about Laravel’s Mailable class,
a fantastic solution for generating e-mails within your application. You’ll also learn how to test e-
mail generation and delivery in a sane fashion. Just for added measure, I’ll walk you through the
steps I took to incorporate a contact form into HackerPair, which when submitted, sends inquiring
users’ messages and contact details to a support address.

Chapter 9. Authenticating and Managing Your Users

Most modern applications offer user registration and preference management features in order to
provide customized, persisted content and settings. In this chapter you’ll learn how to integrate
user registration, login, and account management capabilities into your Laravel application. I’ll also
show you how to add social authentication to your application, allowing users to authenticate using
a variety of popular OAuth providers such as Twitter, Facebook, and GitHub.

Introduction 5

Chapter 10. Creating an Administration Console

Most web applications incorporate a restricted administration console accessible by the project
developers and support team. In this chapter I’ll show you an easy solution for designating certain
users as administrators, and how to grant access to a restricted console using prefixed route grouping
and custom middleware.

Chapter 11. Introducing Vue.js

Vue.js¹ has become the Laravel community’s de facto JavaScript library, and for good reason; it
shares many of the practical, productive attributes Laravel developers have come to love. Chapter
13 introduces Vue.js’ fundamental features, and shows you how to integrate highly interactive and
eye-appealing interfaces into your Laravel application.

Chapter 12. Creating an Application API

These days a web interface is often only one of several available vehicles for interacting with the
underlying data. Popular services such as GitHub, Amazon, and Google also offer an API (Applica-
tion Programming Interface) which allows enterprising developers to dream up and implement new
ways to view, mine, and update these companies’ vast data stores. In this chapter you’ll learn how to
create your own API, and provide registered users with an API key which they’ll use to authenticate
when interacting with the API.

About W. Jason Gilmore

I’m W. Jason Gilmore², a software developer, consultant, and bestselling author. I’ve spent much of
the past 17 years helping companies of all sizes build amazing technology solutions. Recent projects
include an API for one of the world’s highest volume robocall blockers, a SaaS for the interior design
and architecture industries, an intranet application for a major South American avocado farm, an
e-commerce analytics application for a globally recognized publisher, and a 10,000+ product online
store for the environmental services industry.

I’m the author of eight books, including the bestselling Beginning PHP and MySQL, Fourth Edition,
Easy E-Commerce Using Laravel and Stripe (with co-author and Laravel News founder Eric L.
Barnes), and Easy Active Record for Rails Developers.

Over the years I’ve published more than 300 articles within popular publications such as Devel-
oper.com, JSMag, and Linux Magazine, and instructed hundreds of students in the United States
and Europe. I’m also cofounder of the wildly popular CodeMash Conference³, the largest multi-day
developer event in the Midwest.

¹http://vuejs.org/
²http://www.wjgilmore.com
³http://www.codemash.org

http://vuejs.org/
http://www.wjgilmore.com/
http://www.codemash.org/
http://vuejs.org/
http://www.wjgilmore.com/
http://www.codemash.org/

Introduction 6

Away from the keyboard, you’ll often find me playing with his kids, thinking about chess, and
having fun with DIY electronics.

I love talking to readers and invite you to e-mail me at wj@wjgilmore.com.

Errata and Suggestions

Nobody is perfect, particularly when it comes to writing about technology. I’ve surely made some
mistakes in both code and grammar, and probably completely botched more than a few examples
and explanations. If you would like to report an error, ask a question or offer a suggestion, please
e-mail me at wj@wjgilmore.com.

Chapter 1. Introducing Laravel
Laravel is a web application framework that borrows from the very best features of other popular
framework solutions, among themRuby on Rails andASP.NETMVC. For this reason, if you have any
experience working with other frameworks then I’d imagine you’ll make a pretty graceful transition
to Laravel. Newcomers to framework-driven development will have a slightly steeper learning curve
due to the introduction of new concepts. I promise Laravel’s practical and user-friendly features will
make your journey an enjoyable one.

In this chapter you’ll learn how to install the Laravel Installer and how to manage your projects
using either the Homestead virtual machine or Valet development environment. We’ll also create
the companion project which will serve as the basis for introducing new concepts throughout the
remainder of the book. I’ll also introduce you to several powerful debugging and development tools
crucial to efficient Laravel development. Finally, you’ll learn a bit about Laravel’s automated test
environment, and how to write automated tests to ensure your application is operating precisely as
expected.

Installing the Laravel Installer

A Laravel package known as the Laravel Installer is indispensable for generating new Laravel
project skeletons. The easiest way to install Laravel is via PHP’s Composer package manager
(https://getcomposer.org). If you’re not already using Composer to manage your PHP application
dependencies, it’s easily installed on all major platforms (OS X, Linux, and Windows among them),
so head over to the Composer website and take care of that first before continuing.

With Composer installed, run the following command to install Laravel:

1 $ composer global require laravel/installer

After installing the Laravel installer, you’ll want to add the directory ∼/.composer/vendor/bin

to your system path so you can execute the laravel command anywhere within the operating
system. The process associated with updating the system path is operating system-specific but a
quick Google search will produce all of the instructions you need.

With the system path updated, open a terminal and execute the following command:

1 $ laravel -V

2 Laravel Installer 1.4.1

Chapter 1. Introducing Laravel 8

With that done, let’s create the book’s companion project skeleton. To generate a Laravel 5.5 project
or newer you’ll need to be running PHP 7 or newer on your development machine. Also, for reasons
that will be apparent later in this chapter, I suggest creating a new directory in your development
machine’s account home directory named code. You don’t have to do this, and can certainly manage
your Laravel projects anywhere you desire within the file system, however I’ll be referring to this
directory throughout the next few sections and so it would probably save you some additional
thinking to just play along:

1 $ cd ~

2 $ mkdir code

3 $ cd code

Now that you’re inside the code directory, let’s create the project skeleton. You’ll primarily use the
laravel CLI to generate new Laravel projects, which you can do with the new command:

1 $ laravel new hackerpair

2 Crafting application...

3 Loading composer repositories with package information

4 Installing dependencies (including require-dev) from lock file

5 Package operations: 68 installs, 0 updates, 0 removals

6 - Installing doctrine/inflector (v1.2.0): Loading from cache

7 ...

8 > @php artisan package:discover

9 Discovered Package: fideloper/proxy

10 Discovered Package: laravel/tinker

11 Package manifest generated successfully.

12 Application ready! Build something amazing

If you peek inside the hackerpair directory you’ll see all of the files and directories which comprise
a Laravel application! While I know diving into this code will undoubtedly be a very tantalizing
prospect, please be patient and finish reading this chapter in its entirety before getting your hands
dirty.

Managing Your Local Laravel Project Hosting
Environment

If your development machine is already configured to host PHP applications (and meets a mini-
mum set of requirements itemized here https://laravel.com/docs/master/installation#server-require-
ments), then you’re free to configure your local web server and database to serve the project (use the
public directory as the project’s document root). Even if you’ve been managing your PHP projects

Chapter 1. Introducing Laravel 9

in this manner for years, I urge you to take this opportunity to at least try one of the local hosting
solutions I’ll introduce in this chapter.

Like any typical PHP-based web application, Laravel requires a web server such as NGINX or
Apache, and in most cases a database such as MySQL or PostgreSQL for hosting application data.
Further, modern Laravel applications require PHP 7 or newer. Beyond this, you’ll need to update
your web server’s configuration file to recognize the Laravel application’s document root, ensure
various required PHP extensions have been installed (see the aforementioned link for a complete
set of requirements), and deal with the ongoing system administration-related matters necessary to
ensure this software stack plays nicely together. It gets even worse. Your Laravel application may
require additional software such as Redis⁴ and the npm package manager⁵, only adding to the list of
third-party technologies you’ll have to manage.

In the past dealing with these sorts of distractions was basically a requirement, and along the
way a bunch of packaged solutions such as XAMPP (https://www.apachefriends.org/) and MAMP
(https://www.mamp.info) were offered as alternatives to manually installing and configuring each
part of this stack. In time, a far more convenient and practical solution known as a virtual machine
came along. A virtual machine is a software-based implementation of a computer that can be
run inside the confines of another computer (such as your laptop), or even inside another virtual
machine. This is incredible technology, because you can use a virtual machine to run an Ubuntu
Linux server on your Windows 10 laptop, or vice versa. Further, it’s possible to create a customized
virtual machine image preloaded with a select set of software. This image can then be distributed
to fellow developers, who can run the virtual machine and take advantage of the custom software
configuration. This is precisely what the Laravel developers have done with Homestead⁶, a virtual
machine which bundles everything you need to get started building Laravel-driven websites.

In this section you’ll learn all about Homestead, including how to install and configure it to host your
Laravel projects (you can incidentally host all sorts of other PHP projects using Homestead, among
them WordPress and Drupal). If you’re using OSX, then I recommend you additionally carefully
read the subsequent section introducing Valet, a streamlined hosting solution which allows you to
make new Laravel applications available via your web browser in mere seconds.

Introducing Homestead

Homestead is currently based on Ubuntu 16.04, and includes everything you need to get started
building Laravel applications, including PHP 7.1, NGINX, MySQL, PostgreSQL and a variety of
other useful utilities such as Redis and Memcached. It runs flawlessly on OS X, Linux andWindows,
and the installation process is very straightforward, meaning in most cases you’ll be able to begin
managing Laravel applications in less than 30 minutes.

⁴http://redis.io/
⁵https://www.npmjs.com/
⁶http://laravel.com/docs/homestead

http://redis.io/
https://www.npmjs.com/
http://laravel.com/docs/homestead
http://redis.io/
https://www.npmjs.com/
http://laravel.com/docs/homestead

Chapter 1. Introducing Laravel 10

Installing Homestead

Homestead requires Vagrant⁷ and VirtualBox⁸ (in lieu of VirtualBox you may use VMware Fusion
or Parallels; see the Laravel documentation for more details). User-friendly installers are available
for all of the common operating systems, including OS X, Linux and Windows. Take a moment
now to install Vagrant and VirtualBox. Once complete, open a terminal and execute the following
command:

1 $ vagrant box add laravel/homestead

2 ==> box: Loading metadata for box 'laravel/homestead'

3 box: URL: https://vagrantcloud.com/laravel/homestead

4 This box can work with multiple providers! The providers that it

5 can work with are listed below. Please review the list and choose

6 the provider you will be working with.

7

8 1) parallels

9 2) virtualbox

10 3) vmware_desktop

11

12 Enter your choice: 2

13 ==> box: Adding box 'laravel/homestead' (v4.0.0) for provider: virtualbox

14 box: Downloading: https://vagrantcloud.com/laravel/boxes/homestead/...

15 ==> box: Successfully added box 'laravel/homestead' (v4.0.0) for 'virtualbox'!

Throughout the book I’ll use the $ symbol to represent the terminal prompt.

This command installs the Homestead box. A box is just a term used to refer to a Vagrant package.
Packages are the virtual machine images that contain the operating system and various programs.
The Vagrant communitymaintains hundreds of different boxes useful for building applications using
a wide variety of technology stacks, so check out this list of popular boxes⁹ for an idea of what else
is available.

Once the box has been added, you’ll next want to install Homestead. To do so, you’ll ideally use Git
to clone the repository. If you don’t already have Git installed you can easily do so by heading over
to the Git website¹⁰ or using your operating system’s package manager.

Next, open a terminal and enter your home directory:

⁷http://www.vagrantup.com/
⁸https://www.virtualbox.org/
⁹https://vagrantcloud.com/discover/popular
¹⁰https://git-scm.com/downloads

http://www.vagrantup.com/
https://www.virtualbox.org/
https://vagrantcloud.com/discover/popular
https://git-scm.com/downloads
http://www.vagrantup.com/
https://www.virtualbox.org/
https://vagrantcloud.com/discover/popular
https://git-scm.com/downloads

Chapter 1. Introducing Laravel 11

1 $ cd ~

Then use Git’s clone command to clone the Homestead repository:

1 $ git clone https://github.com/laravel/homestead.git Homestead

2 Cloning into 'Homestead'...

3 remote: Counting objects: 1497, done.

4 remote: Compressing objects: 100% (5/5), done.

5 remote: Total 1497 (delta 0), reused 0 (delta 0), pack-reused 1492

6 Receiving objects: 100% (1497/1497), 241.74 KiB | 95.00 KiB/s, done.

7 Resolving deltas: 100% (879/879), done.

8 Checking connectivity... done.

If you’re not familiar with Git, what you’ve just done is downloaded the Homestead project
repository, which means you not only now possess a copy of the code, but additionally the entire
project’s history of changes and releases. When you cloned the repository in this fashion, you’re
currently using what is known as the master branch, which may not always be stable. Logically
you’ll want to use the latest stable release, and so you’ll want to check it out. At the time of this
writing that latest stable release is v6.5.0. Check that version out like so:

1 $ cd Homestead

2 $ git checkout v6.5.0

When you’ll run this command you’ll receive a scary sounding response about being in a “detached
head” state. This is irrelevant since you’re just going to use Homestead as an end user, so don’t worry
about it.

You’ll see this has resulted in the creation of a directory named Homestead in your home directory
which contains the repository files. Next, you’ll want to enter this directory and execute the
following command:

1 $ bash init.sh

2 Homestead initialized!

If you’re on Windows you’ll instead want to run the following command:

1 $ init.bat

Running this script added a few new files to your Homestead directory, including Homestead.yaml,
after.sh, and aliases. While all three are useful configuration files, for the purposes of just running
our newly created project inside the virtual machine we’ll only worry about Homestead.yaml for
now.

Configuring the Homestead.yaml File

Open the Homestead.yaml file and you’ll find the following contents:

Chapter 1. Introducing Laravel 12

1 ---

2 ip: "192.168.10.10"

3 memory: 2048

4 cpus: 1

5 provider: virtualbox

6

7 authorize: ~/.ssh/id_rsa.pub

8

9 keys:

10 - ~/.ssh/id_rsa

11

12 folders:

13 - map: ~/code

14 to: /home/vagrant/code

15

16 sites:

17 - map: homestead.test

18 to: /home/vagrant/code/public

If you happen to be using VMware Fusion or Parallels then you’ll want to update the provider

property to either vmware_fusion or parallels, respectively.

Next you’ll want to ensure the authorize property is pointed to your public SSH key. If you’re
running Linux or OS X, then chances are high you’ve generated a public key at some point in the
past, and the default ∼/.ssh/id_rsa path is correct. If you’re running Linux or OS X and haven’t
yet generated a key pair then you should be able to do so by running the following command:

1 $ ssh-keygen -t rsa

2 Generating public/private rsa key pair.

3 Enter file in which to save the key (/Users/wjgilmore/.ssh/id_rsa):

4 Enter passphrase (empty for no passphrase):

5 Enter same passphrase again:

6 Your identification has been saved in /Users/wjgilmore/.ssh/id_rsa.

7 Your public key has been saved in /Users/wjgilmore/.ssh/id_rsa.pub.

When using keys for reasons of automation, there’s really no need to protect the key with a
passphrase and so when prompted to provide one just press enter. However, there are very sound
reasons for using a passphrase when using keys for other purposes, so be sure to read up on the
matter if you’re new to key-based authentication!

Windows users don’t currently have native key generation capabilities. To my understanding the
most straightforward way to generate keys is via the popular PuTTY SSH client. You can learn more
about using PuTTY to do so via this link¹¹.

¹¹https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-manually/manually-generating-your-ssh-key-in-
windows

https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-manually/manually-generating-your-ssh-key-in-windows
https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-manually/manually-generating-your-ssh-key-in-windows
https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-manually/manually-generating-your-ssh-key-in-windows

Chapter 1. Introducing Laravel 13

With the provider and authorize properties sorted, we’ll turn attention to the folders and sites

properties. These properties cause quite a bit of confusion among newcomers so pay particular
attention to the following explanation.

The folders property makes known to the virtual machine the location of one or more applications
residing on your local file system, and identifies the location on the virtual machine to which these
application files should be synchronized. Consider the following default mapping:

1 folders:

2 - map: ~/code

3 to: /home/vagrant/code

This means anything residing in a directory named code which is found in your home directory
will automatically be synchronized with the virtual machine’s file system, specifically within the
directory /home/vagrant/code. You’re free to synchronize multiple projects by defining additional
map-to pairs like so:

1 folders:

2 - map: ~/code

3 to: /home/vagrant/code

4 - map: ~/code/hackerpair

5 to: /home/vagrant/code/hackerpair

6 - map: ~/code/wjgilmore

7 to: ~/code/wjgilmore

Further, you’re not required to use code as the local base project directory! For instance if youmanage
projects in your Documents/Software directory, then just change the folders property accordingly:

1 folders:

2 - map: ~/Documents/software/hackerpair

3 to: /home/vagrant/code/hackerpair

4 - map: ~/Documents/software/wjgilmore

5 to: ~/code/wjgilmore

Just keep in mind you don’t want to change the to reference to the ∼/code/ path prefix, because
this is where Homestead expects the files to reside. You can actually change this default but there’s
certainly no reason to do so now.

With your project file system mappings defined, it’s time to tell Homestead how the web server
should recognize those project directories. This is where the sites property comes in. Referring
back to the following folders configuration:

Chapter 1. Introducing Laravel 14

1 - map: ~/code/hackerpair

2 to: /home/vagrant/code/hackerpair

We’re telling Homestead the hackerpair project root directory will be synchronized to home/va-

grant/code/hackerpair. But this is not where a Laravel project’s web (also known as document)
root resides! Laravel project’s are always served from the public directory, meaning Homestead’s
web server (known as NGINX) needs to point to that public directory when responding to requests.
So in the sites property you’ll want to define the hackerpair project like so:

1 folders:

2 - map: ~/code/hackerpair

3 to: /home/vagrant/code/hackerpair

4

5 sites:

6 - map: hackerpair.test

7 to: /home/vagrant/code/hackerpair/public

With these changes in place, you’ll be able to reference http://hackerpair.test in your browser,
and the HackerPair application will be served via Homestead! Not quite, because one minor but
important detail remains; you need to tell your local operating system how to resolve references to
the hackerpair.test domain, because otherwise your browser will reach out to the actual network
in an effort to find this site, which in actuality only exists locally.

To ensure proper resolution, you’ll need to update your development machine’s hosts file. If you’re
running OSX or Linux, this file is found at /etc/hosts. If you’re running Windows, you’ll find the
file at C:\Windows\System32\drivers\etc\hosts. Open up this file and add the following line:

1 192.168.10.10 hackerpair.test

Save these changes, and then run the following command from within your Homestead directory:

1 $ vagrant up

2 Bringing machine 'homestead-7' up with 'virtualbox' provider...

3 ==> homestead-7: Importing base box 'laravel/homestead'...

4 ==> homestead-7: Matching MAC address for NAT networking...

5 ==> homestead-7: Checking if box 'laravel/homestead' is up to date...

6 ==> homestead-7: Setting the name of the VM: homestead-7

7 ==> homestead-7: Clearing any previously set network interfaces...

8 ==> homestead-7: Preparing network interfaces based on configuration...

9 ...

10 $

Chapter 1. Introducing Laravel 15

Your Homestead virtual machine is up and running!With that done, open your browser and navigate
to http://hackerpair.test. You should see the words “Laravel 5” just as depicted in the following
screen shot.

The Laravel 5.5 Splash Screen

Congratulations! From here on out any changes you make to the project will be immediately
reflected via the browser. However, there still remains plenty to talk about regarding Homestead
and virtual machine management. In the sections that follow I discuss several important matters
pertaining to this topic. For the moment I suggest jumping ahead to the section “Perusing the
HackerPair Skeleton Code” and returning to the below sections later.

Managing Your Virtual Machine

There are a few administrative tasks you’ll occasionally need to carry out regarding management
of your virtual machine. For example, if you’d like to shut down the virtual machine you can do so
using the following command:

1 $ cd ~/Homestead

2 $ vagrant halt

3 ==> homestead-7: Attempting graceful shutdown of VM...

4 $

To later boot the machine back up, you can execute vagrant up as we did previously:

1 $ vagrant up

If you’d like to delete the virtual machine (including all data within it), you can use the destroy

command:

Chapter 1. Introducing Laravel 16

1 $ vagrant destroy

2 homestead-7: Are you sure you want to destroy the 'homestead-7' VM? [y/N] y

3 ==> homestead-7: Destroying VM and associated drives...

I stress executing the destroy command this will delete not only the virtual machine and also all
of its data! Executing this command is very different from shutting down the machine using halt.
I’m not warning this command will delete your application code, because that is synchronized from
your local file system to the virtual machine. It would however delete any data residing in your
project databases, since the database is hosted inside the virtual machine.

If you happen to have installed more than one box (it can be addictive), use the box list command
to display them:

1 $ vagrant box list

2 laravel/homestead (virtualbox, 4.0.0)

Finally, if you make any changes to your Homestead.yaml file, you’ll need to run the following
command in order for Homestead to recognize those changes:

1 $ vagrant reload --provision

These are just a few of the many commands available to you. Run vagrant --help for a complete
listing of what’s available:

1 $ vagrant --help

SSH’ing Into Your Virtual Machine

Because Homestead is a virtual machine running Ubuntu, you can SSH into it just as you would
any other server. For instance you might wish to configure NGINX or MySQL, install additional
software, or make other adjustments to the virtual machine environment. If you’re running Linux
or OS X, you can SSH into the virtual machine using the ssh command:

1 $ vagrant ssh

2 Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-92-generic x86_64)

3 vagrant@homestead:~$

Windows users will need to install an SSH client in order to SSH into the Homestead VM. A popular
Windows SSH client is PuTTY¹².

In either case, you’ll be logged in as the user vagrant, and if you list this user’s home directory
contents you’ll see the Code directory defined in the Homestead.yaml file:

¹²http://www.putty.org/

http://www.putty.org/
http://www.putty.org/

Chapter 1. Introducing Laravel 17

1 vagrant@homestead:~$ ls

2 code

If you’re new to Linux be sure to spend some time nosing around Ubuntu! This is a perfect
opportunity to get familiar with the Linux operating system without any fear of doing serious
damage to a server because if something happens to break you can always reinstall the virtual
machine.

Transferring Files Between Homestead and Your Laptop

If you create a file on a Homestead and would like to transfer it to your laptop, you have two
options. The easiest involves SSH’ing into Homestead and moving the file into one of your shared
directories, because the file will instantly bemade available for retrieval via your laptop’s file system.
For instance if you’re following along with the hackerpair directory configuration, you can SSH
into Homestead, move the file into /home/vagrant/hackerpair, and then logout of SSH. Then using
your local terminal, navigate to ∼/code/hackerpair and you’ll find the desired file sitting in your
local hackerpair root directory.

Alternatively, you can use sftp to login to Homestead, navigate to the desired directory, and transfer
the file directly:

1 $ sftp -P 2222 vagrant@127.0.0.1

2 Connected to 127.0.0.1.

3 sftp>

Connecting to Your Database

Although this topic won’t really be relevant until we discuss databases in chapter 3, this nonetheless
seems a logical place to show you how to connect to your project’s Homestead database. If you
return to Homestead.yaml, you’ll find the following section:

1 databases:

2 - homestead

This section is used to define any databases you’d like to be automatically created when the virtual
machine is first booted (or re-provisioned; more about this in the next section). As you can see, a
default database named homestead has already been defined. You can sign into this database now
by SSH’ing into the machine and using the mysql client:

Chapter 1. Introducing Laravel 18

1 $ vagrant ssh

2 Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-92-generic x86_64)

After signing in, enter the database using the mysql client, supplying the default username of
homestead and the desired database (also homestead). When prompted for the password, enter
secret:

1 vagrant@homestead:~$ mysql -u homestead homestead -p

2 Enter password:

3 Welcome to the MySQL monitor. Commands end with ; or \g.

4 Your MySQL connection id is 5

5 Server version: 5.7.19-0ubuntu0.16.04.1 (Ubuntu)

6

7 Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.

8

9 Oracle is a registered trademark of Oracle Corporation and/or its

10 affiliates. Other names may be trademarks of their respective

11 owners.

12

13 Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

14

15 mysql>

At this point there are no tables in the database (we’ll create a few in chapter 3), but feel free to have
a look anyway:

1 mysql> show tables;

2 Empty set (0.00 sec)

To exit the mysql client, execute exit:

1 mysql> exit;

2 Bye

3 vagrant@homestead:~$

Chances are you prefer to interact with your database using a GUI-based application such as Sequel
Pro¹³ or phpMyAdmin¹⁴. You’ll connect to the homestead database like you would any other, by
supplying the username (homestead), password (secret), and the host, which is 192.168.10.10. For
instance, the following screenshot depicts my Sequel Pro connection window:

¹³http://www.sequelpro.com/
¹⁴https://www.phpmyadmin.net/

http://www.sequelpro.com/
http://www.sequelpro.com/
https://www.phpmyadmin.net/
http://www.sequelpro.com/
https://www.phpmyadmin.net/

Chapter 1. Introducing Laravel 19

The Sequel Pro connection window

You may want to change the name of this default database, or define additional databases as the
number of projects you manage via Homestead grows in size. I’ll show you how to do this next.

Defining Multiple Homestead Sites and Databases

My guess is you’ll quickly become so enamored with Homestead that it will be the default solution
for managing all of your Laravel projects. This means you’ll need to define multiple projects within
the Homestead.yaml file. Fortunately, doing so is easier than you think. Check out the following
slimmed down version of my own Homestead.yaml file, which defines two projects (hackerpair
and wjgilmore):

Chapter 1. Introducing Laravel 20

1 folders:

2 - map: ~/code/hackerpair

3 to: /home/vagrant/hackerpair

4 - map: ~/code/wjgilmore

5 to: /home/vagrant/wjgilmore

6

7 sites:

8 - map: hackerpair.test

9 to: /home/vagrant/hackerpair/public

10 - map: wjgilmore.test

11 to: /home/vagrant/wjgilmore/public

12

13 databases:

14 - dev_hackerpair

15 - dev_wjgilmore

Notice how I’ve also defined two different databases, since each application will logically want its
own location to store data.

After saving these changes, you’ll want your virtual server to be reconfigured accordingly. If you
have never started your virtual server, running vagrant upwill suffice because the Homestead.yaml
file had never previously been read. If you’ve already started the VM then you’ll need to force
Homestead to reprovision the virtual machine. This involves reloading the configuration. To do so,
you’ll first need to find the identifier used to present the currently running machine:

1 $ vagrant global-status

2 id name provider state directory

3 --

4 6f13a59 homestead-7 virtualbox running /Users/wjgilmore/Homestead

Copy and paste that id value (6f13a59 in my case), supplying it as an argument to the following
command:

1 $ vagrant reload --provision 6f13a59

2 ==> homestead-7: Attempting graceful shutdown of VM...

3 ==> homestead-7: Checking if box 'laravel/homestead' is up to date...

4 ==> homestead-7: Clearing any previously set forwarded ports...

5 ==> homestead-7: Clearing any previously set network interfaces...

6 ==> homestead-7: Preparing network interfaces based on configuration...

7 ...

Once this command completes, your latest Homestead.yaml changes will be in place!

Chapter 1. Introducing Laravel 21

Introducing Valet

Virtual machines such as Homestead are great, and have become indispensable tools I use on a daily
basis. As you’ve probably gathered from reading the past several pages, Homestead can be overkill
for many developers. If you use a Mac and are interested in a no-frills development environment,
Laravel offers a streamlined solution called Valet which can be configured in mere moments.

Installing Valet

To install Valet you’ll need to first install Homebrew (http://brew.sh/), the community-driven
package manager for OS X. As you’ll see on the home page, Homebrew is very easy to install and
should only take a moment to complete. Once done, you’ll want to install PHP 7. You can do so by
executing the following command:

1 $ brew install homebrew/php/php71

Next you’ll install Valet using Composer. Like Homebrew, Composer (https://getcomposer.org) is a
package manager but is specific to PHP development, and is similarly easy to install. With Composer
installed, install Valet using the following command:

1 $ composer global require laravel/valet

Next, add Composer’s bin directory to your system path. There are a variety of ways to do this but
I find the simplest to be editing your home directory’s .bash_profile file. Open the file in your
editor and add the following line to it:

1 PATH=$PATH:/~/.composer/vendor/bin

Finally, configure Valet by running the following command, which among other things will ensure
it always starts automatically whenever you reboot your machine:

1 $ valet install

Presuming your Laravel applications will use a database, you’ll also need to install a database such
as MySQL or MariaDB. You can easily install either using Homebrew. For instance, you can install
MySQL like so:

1 $ brew install mysql

After installation completes just follow the instructions displayed in the terminal to ensure MySQL
starts automatically upon system boot.

Chapter 1. Introducing Laravel 22

Serving Sites with Valet

With Valet installed and configured, you’ll next want to create a directory to host your various
Laravel projects. I suggest creating this directory in your home directory; consider calling it
something easily recognizable such as Code or Projects. Enter this directory using your terminal
and execute the following command:

1 $ valet park

2 This directory has been added to Valet's paths.

The park command tells Valet monitor this directory for Laravel projects, and automatically make
a convenient URL available for viewing the project in your browser. For instance, while inside the
project directory create a new Laravel project named hackerpair:

1 $ laravel new hackerpair

Next, if you’re using Google Chrome, you’ll need to run the following command to change Valet’s
default use of the .dev domain extension to .test. I use Chrome for development purposes and so
all subsequent URL references will include .test however this is just a preference and so you don’t
need to do this if you’re using another browser:

1 $ valet domain test

After creating the project, open your browser and navigate to http://hackerpair.test and you’ll
see the project’s default splash screen (presented in the following screenshot).

The Laravel splash page

It doesn’t get any easier than that!

Chapter 1. Introducing Laravel 23

Perusing the HackerPair Skeleton Code

With the Laravel Installer (and presumably Homestead or Valet) installed and configured, it’s time
to get our hands dirty! Open a terminal and enter the hackerpair project directory. The contents
are a combination of files and directories, each of which plays an important role in the functionality
of your application so it’s important for you to understand their purpose. Let’s quickly review the
role of each:

• .env: Laravel 5 uses the PHP dotenv¹⁵ library to manage your application’s configuration
variables. You’ll use .env file as the basis for configuring these settings when working in
your development environment. A file named .env.example is also included in the project
root directory, which should be used as a template from which fellow developers will copy
over to .env and modify to suit their own needs. I’ll talk more about these files and practical
approaches for managing your environment settings in the later section, “Configuring Your
Laravel Application”.

• .gitattributes: This file is used by Git¹⁶ to ensure consistent settings across machines, which
is useful when multiple developers using a variety of operating systems are working on the
same project. You’ll find a few default settings in the file; these are pretty standard and you
in all likelihood won’t have to modify them. Plenty of other attributes are available; Scott
Chacon’s online book, “Pro Git”¹⁷ includes a section (“Customizing Git - Git Attributes”¹⁸)
with further coverage on this topic.

• .gitignore: This file tells Git what files and folders should not be included in the repository.
You’ll see a few default settings in here, including the vendor directory which houses the
Laravel source code and other third-party packages, and the .env file, which should never be
managed in version control since it presumably contains sensitive settings such as database
passwords.

• app: This directory contains much of the custom code used to power your application,
including the models, controllers, and middleware. We’ll spend quite a bit of time inside this
directory as the book progresses.

• artisan: artisan is a command-line tool we’ll use to rapidly create new parts of your
applications such as controllers and models, manage your database’s evolution through a
great feature known as migrations, and interactively debug your application. We’ll return
to artisan repeatedly throughout the book because it is such an integral part of Laravel
development.

• bootstrap: This directory contains the various files used to initialize a Laravel application,
loading the configuration files, various application models and other classes, and define the
locations of key directories such as app and public. Normally you won’t have to modify any
of the files found in this directory.

¹⁵https://github.com/vlucas/phpdotenv
¹⁶http://git-scm.com/
¹⁷http://git-scm.com/book
¹⁸http://git-scm.com/book/en/Customizing-Git-Git-Attributes

https://github.com/vlucas/phpdotenv
http://git-scm.com/
http://git-scm.com/book
http://git-scm.com/book/en/Customizing-Git-Git-Attributes
https://github.com/vlucas/phpdotenv
http://git-scm.com/
http://git-scm.com/book
http://git-scm.com/book/en/Customizing-Git-Git-Attributes

Chapter 1. Introducing Laravel 24

• composer.json: Composer¹⁹ is PHP’s de facto package manager, used by thousands of
developers around the globe to quickly integrate popular third-party solutions such as Swift
Mailer²⁰ and Doctrine²¹ into a PHP application. Laravel heavily depends upon Composer, and
you’ll use the composer.json file to identify the packages you’ll like to integrate into your
Laravel application. If you’re not familiar with Composer by the time you’re done reading
this book you’ll wonder how you ever lived without it. In fact in this introductory chapter
alone we’ll use it several times to install various useful packages.

• composer.lock: This file contains information about the state of your project’s installed
Composer packages at the time these packages were last installed and/or updated. Like the
bootstrap directory, you will rarely if ever directly interact with this file.

• config: This directory contains several files used to configure various aspects of your Laravel
application, such as the database credentials, the cache, e-mail delivery, and session settings.

• database: This directory contains the directories used to house your project’s database
migrations and seed data (migrations and database seeding are both introduced in Chapter 3).

• package.json: This file is used to manage locally installed npm (JavaScript) packages. If you
look inside the file you’ll see references to a number of packages, including jQuery, bootstrap-
sass, Laravel Mix, and Vue, among others. Even if you have no JavaScript experience you’ll
come to find npm packages to be indispensable by the end of this book.

• phpunit.xml: Even trivial web applications should be accompanied by an automated test suite.
Laravel leaves little room for excuse to avoid this best practice by automatically configuring
your application to use the popular PHPUnit²² test framework. The phpunit.xml is PHPUnit’s
application configuration file, defining characteristics such as the location of the application
tests. We’ll return to the topic of testing repeatedly throughout the book.

• resources: The resources directory contains your project’s views, localized language files,
and raw assets such as Vue components and Sass files.

• public: The public directory serves as your application’s web root directory, housing the
.htaccess, robots.txt, and favicon.ico files, in addition to a file named index.php that is
the first file to execute when a user accesses your application. This file is known as the front
controller, and it is responsible for loading and executing the application. It’s because the
index.php file serves as the front controller that you needed to identify the public directory
as your application’s root directory when configuring Homestead.yaml earlier in this chapter.

• routes: The routes directory is new to 5.3. It replaces the old app/Http/routes.php file,
and separates your application’s routing definitions into four separate files: api.php, chan-
nels.php, console.php, and web.php. Collectively, these files determine how your application
responds to different endpoints. We’ll return to these files repeatedly throughout the book,
beginning in Chapter 2.

• server.php: The server.php file can be used to bootstrap your application for the purposes
of serving it via PHP’s built-in web server. While a nice feature, Homestead and Valet offer a

¹⁹https://getcomposer.org
²⁰http://swiftmailer.org/
²¹http://www.doctrine-project.org/
²²http://phpunit.de/

https://getcomposer.org/
http://swiftmailer.org/
http://swiftmailer.org/
http://www.doctrine-project.org/
http://phpunit.de/
https://getcomposer.org/
http://swiftmailer.org/
http://www.doctrine-project.org/
http://phpunit.de/

Chapter 1. Introducing Laravel 25

far superior development experience and so you can safely ignore this file and feature.
• storage: The storage directory contains your project’s cache, session, and log data.
• tests: The tests directory contains your project tests. Testing is a recurring theme throughout
this book, and thanks to Laravel’s incredibly simple test integration features I highly
encourage you to follow along closely with the examples provided in these sections.

• vendor: The vendor directory is where the Laravel framework code itself is stored, in addition
to any other third-party code. You won’t typically directly interact with anything found in
this directory, instead doing so through the Composer interface.

• webpack.mix.js: All new Laravel projects include the ability to easily integrate a new feature
called Laravel Mix. Mix provides a convenient JavaScript-based API for automating various
build-related processes associated with your project’s CSS, JavaScript, tests, and other assets.
I’ll introduce Mix in Chapter 2.

Now that you have a rudimentary understanding of the various directories and files comprising a
Laravel skeleton application, let’s dive a bit deeper into the config directory so you have a better
understanding of the many different ways in which your application can be tweaked.

Configuring Your Laravel Application

Laravel offers environment-specific configuration, meaning you can define certain behaviors
applicable only when you are developing the application, and other behaviors when the application
is running in production. For instance you’ll certainly want to output errors to the browser during
development but ensure errors are only output to the log in production.

Your application’s default configuration settings are found in the config directory, and are managed
in a series of files including:

• app.php: The app.php file contains settings that have application-wide impact, including
whether debug mode is enabled (more on this in a bit), the application URL, timezone, and
locale.

• auth.php: The auth.php file contains settings specific to user authentication, including what
modelmanages your application users, the database table containing the user information, and
how password reminders are managed. I’ll talk about Laravel’s user authentication features
in chapter 7.

• broadcasting.php: The broadcasting.php is used to configure the event broadcasting
feature, which is useful when you want to simultaneously notify multiple application users
of some event such as the addition of a new blog post. I discuss event broadcasting in chapter
11.

• cache.php: Laravel supports several caching drivers, including filesystem, database, mem-
cached, redis, and others. You’ll use the cache.php configuration file to manage various
settings specific to these drivers.

Chapter 1. Introducing Laravel 26

• database.php: The database.php configuration file defines a variety of database settings, in-
cluding which of the supported databases the project will use, and the database authorization
credentials. You’ll learn all about Laravel’s database support in chapters 3 and 4.

• filesystems.php: The filesystems.php configuration file defines the file system your
project will use to manage assets such as file uploads. Thanks to Laravel’s integration with
Flysystem²³, support is available for a wide variety of adapters, among them the local disk,
Amazon S3, Azure, Dropbox, FTP, Rackspace, and Redis.

• mail.php: As you’ll learn in chapter 5 it’s pretty easy to send an e-mail from your Laravel
application. The mail.php configuration file defines various settings used to send those e-
mails, including the desired driver (a variety of which are supported, among them Sendmail,
SMTP, PHP’s mail() function, and Mailgun). You can also direct mail to the log file, a
technique that is useful for development purposes.

• queue.php: Queues can improve application performance by allowing Laravel to offload time-
and resource-intensive tasks to a queueing solution such as Beanstalk²⁴ or Amazon Simple
Queue Service²⁵. The queue.php configuration file defines the desired queue driver and other
relevant settings.

• services.php: If your application uses a third-party service such as Stripe for payment
processing or Mailgun for e-mail delivery you’ll use the services.php configuration file to
define any third-party service-specific settings. We’ll return to this file throughout the book
as new third-party services are integrated into the application.

• session.php: It’s entirely likely your application will use sessions to aid in the management of
user preferences and other customized content. Laravel supports a number of different session
drivers used to facilitate the management of session data, including the file system, cookies,
a database, the Alternative PHP Cache, Memcached, and Redis. You’ll use the session.php

configuration file to identify the desired driver, and manage other aspects of Laravel’s session
management capabilities.

• view.php: The view.php configuration file defines the default location of your project’s view
files and the renderer used for pagination.

I suggest spending a few minutes nosing around these files to get a better idea of what configuration
options are available to you. There’s no need to make any changes at this point, but it’s always nice
to know what’s possible.

Configuring Your Environment

Your application will likely require access to database credentials and other sensitive information
such as API keys for accessing third party services. This confidential information should never
be shared with others, and therefore you’ll want to take care it isn’t embedded directly into the

²³https://github.com/thephpleague/flysystem
²⁴http://kr.github.io/beanstalkd/
²⁵http://aws.amazon.com/sqs/

https://github.com/thephpleague/flysystem
http://kr.github.io/beanstalkd/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
https://github.com/thephpleague/flysystem
http://kr.github.io/beanstalkd/
http://aws.amazon.com/sqs/

Chapter 1. Introducing Laravel 27

code. Instead, you’ll want to manage this data within environment variables, and then refer to these
variables within the application.

Laravel supports a very convenient solution for managing and retrieving these variables thanks to
integration with the popular PHP dotenv²⁶ package. When developing your application you’ll define
environment variables within the .env file found in your project’s root directory. The default .env
file looks like this:

1 APP_NAME=Laravel

2 APP_ENV=local

3 APP_KEY=base64:7kPp7zGCLzeXbe0CQuWJ1/lsOymtzZhfmkAUryKyHRF=

4 APP_DEBUG=true

5 APP_LOG_LEVEL=debug

6 APP_URL=http://localhost

7

8 DB_CONNECTION=mysql

9 DB_HOST=127.0.0.1

10 DB_PORT=3306

11 DB_DATABASE=homestead

12 DB_USERNAME=homestead

13 DB_PASSWORD=secret

14

15 BROADCAST_DRIVER=log

16 CACHE_DRIVER=file

17 SESSION_DRIVER=file

18 SESSION_LIFETIME=120

19 QUEUE_DRIVER=sync

20

21 REDIS_HOST=127.0.0.1

22 REDIS_PASSWORD=null

23 REDIS_PORT=6379

24

25 MAIL_DRIVER=smtp

26 MAIL_HOST=smtp.mailtrap.io

27 MAIL_PORT=2525

28 MAIL_USERNAME=null

29 MAIL_PASSWORD=null

30 MAIL_ENCRYPTION=null

31

32 PUSHER_APP_ID=

33 PUSHER_APP_KEY=

34 PUSHER_APP_SECRET=

²⁶https://github.com/vlucas/phpdotenv

https://github.com/vlucas/phpdotenv
https://github.com/vlucas/phpdotenv

Chapter 1. Introducing Laravel 28

These variables can be retrieved anywhere within your application using the env() function. For
instance, the config/database.php is used to define your project’s database connection settings
(we’ll talk more about this file in chapter 3). It retrieves the DB_HOST, DB_DATABASE, DB_USERNAME,
DB_PASSWORD, and DB_SOCKET variables defined within .env:

1 'mysql' => [

2 'driver' => 'mysql',

3 'host' => env('DB_HOST', '127.0.0.1'),

4 'port' => env('DB_PORT', '3306'),

5 'database' => env('DB_DATABASE', 'forge'),

6 'username' => env('DB_USERNAME', 'forge'),

7 'password' => env('DB_PASSWORD', ''),

8 'unix_socket' => env('DB_SOCKET', ''),

9 'charset' => 'utf8mb4',

10 'collation' => 'utf8mb4_unicode_ci',

11 'prefix' => '',

12 'strict' => true,

13 'engine' => null,

14],

You’ll see the .gitignore includes .env by default. This is because you should never manage
.env in your version control repository! Instead, when it comes time to deploy your application
to production, you’ll typically define the variables found in .env as server environment variables
which can also be retrieved using PHP’s env() function. In chapter 9 I’ll talk more about managing
these variables in other environments.

We’ll return to the configuration file throughout the book as new concepts and features are
introduced.

Useful Development and Debugging Tools

There are several native Laravel features and third-party tools that can dramatically boost produc-
tivity by reducing the amount of time and effort spent identifying and resolving bugs. In this section
I’ll introduce you to a few of my favorite solutions, and additionally show you how to install and
configure the third-party tools.

The debugging and development utilities discussed in this section are specific to Laravel,
and do not take into account the many other tools available to PHP in general. Be sure to
check out Xdebug²⁷, and the many tools integrated into PHP IDEs such as Zend Studio²⁸
and PHPStorm²⁹.

²⁷http://xdebug.org/
²⁸http://www.zend.com/en/products/studio
²⁹https://www.jetbrains.com/phpstorm/

http://xdebug.org/
http://www.zend.com/en/products/studio
https://www.jetbrains.com/phpstorm/
http://xdebug.org/
http://www.zend.com/en/products/studio
https://www.jetbrains.com/phpstorm/

Chapter 1. Introducing Laravel 29

The dd() Function

Ensuring the .env file’s APP_DEBUG variable is set to true is the easiest way to view information about
any application errors, because Laravel will dump error- and exception-related information directly
to the browser. Sometimes though you’ll want to peer into the contents of an object or array even
if the data structure isn’t causing any particular problem or error. You can do this using Laravel’s
dd()³⁰ helper function, which will dump a variable’s contents to the browser and halt further script
execution. For example suppose you defined an array inside a Laravel application and wanted to
output its contents to the browser. Here’s an example array:

1 $languages = [

2 'languages' => [

3 'Perl',

4 'PHP',

5 'Python'

6]

7];

You could execute the dd() function like so:

1 dd($languages);

We haven’t yet delved into how to actually add code to your project, so you’re probably wondering
where this code should go if you want to follow along. Setting up a proper environment for inserting
this sort of logic in a natural manner is the subject of another chapter, so for the moment we’re going
to “cheat” a little and embed the code into our routes/web.php routing file. This file is responsible
for associating web endpoints (URLs) with corresponding application resources. If you open this file
you’ll see a single route definition that looks like this:

1 Route::get('/', function () {

2 return view('welcome');

3 });

This definition ensures that when the application’s home page is requested, the template found in
resources/views/welcome.blade.php is returned. You don’t have to understand any of this now
because the topic is covered in great detail in the next chapter. For the time being, change this route
definition to look like this:

³⁰https://laravel.com/docs/master/helpers#method-dd

https://laravel.com/docs/master/helpers#method-dd
https://laravel.com/docs/master/helpers#method-dd

Chapter 1. Introducing Laravel 30

1 Route::get('/', function () {

2 $languages = [

3 'languages' => [

4 'Perl',

5 'PHP',

6 'Python'

7]

8];

9 dd($languages);

10 return view('welcome');

11 });

Save the changes and navigate to http://hackerpair.test in your browser. Passing $languages

into dd() will cause the array contents to be dumped to the browser window as depicted in the
below screenshot.

dd() function output

It is likely at this point you don’t know where this code would even be executed. Not to
worry! In the chapters to come just keep this and the following solutions in mind so you
can easily debug your code once we start building the application.

The Laravel Logger

While the dd() helper function is useful for quick evaluation of a variable’s contents, taking advan-
tage of Laravel’s logging facilities is a more effective approach if you plan on repeatedly monitoring
one or several data structures or events without interrupting script execution. Laravel will by default
log error-related messages to the application log, located at storage/logs/laravel.log. Because
Laravel’s logging features are managed by Monolog³¹, you have a wide array of additional logging
options at your disposal, including the ability to write log messages to this log file, set logging levels,
send log output to the Chrome console³² using Chrome Logger³³, or even trigger alerts via e-mail,

³¹https://github.com/Seldaek/monolog
³²https://developer.chrome.com/devtools/docs/console
³³http://craig.is/writing/chrome-logger

https://github.com/Seldaek/monolog
https://developer.chrome.com/devtools/docs/console
http://craig.is/writing/chrome-logger
https://github.com/Seldaek/monolog
https://developer.chrome.com/devtools/docs/console
http://craig.is/writing/chrome-logger

Chapter 1. Introducing Laravel 31

text messaging, or Slack³⁴. Further, if you’re using the Laravel Debugbar (introduced later in this
chapter) you can easily peruse these messages from the Debugbar’s Messages tab.

Generating a custom log message is easy, done by embedding one of several available logging
methods into the application, passing along the string or variable you’d like to log. Returning to
the $languages array, suppose you instead wanted to log its contents to Laravel’s log:

1 $languages = [

2 'languages' => [

3 'Perl',

4 'PHP',

5 'Python'

6]

7];

8

9 \Log::debug($languages);

After reloading the browser to execute this code, you’ll see a log message similar to the following
will be appended to storage/logs/laravel.log:

1 [2017-11-10 17:59:28] local.DEBUG: array (

2 'languages' =>

3 array (

4 0 => 'Perl',

5 1 => 'PHP',

6 2 => 'Python',

7),

8)

The debug-level message is just one of several at your disposal. Among other levels are info, warning,
error and critical, meaning you can use similarly named methods accordingly:

1 \Log::info('Just an informational message.');

2 \Log::warning('Something may be going wrong.');

3 \Log::error('Something is definitely going wrong.');

4 \Log::critical('Danger, Will Robinson! Danger!');

³⁴https://www.slack.com/

https://www.slack.com/
https://www.slack.com/

Chapter 1. Introducing Laravel 32

Integrating the Logger and Chrome Logger

When monitoring the log file it’s common practice to use the tail -f command (available on Linux
and OS X; Windows users can use Powershell to achieve a similar behavior) to view any log file
changes in real time. You can avoid the additional step ofmaintaining an additional terminal window
for such purposes by instead sending the log messages to the Chrome Logger³⁵ console, allowing you
to see the log messages alongside your application’s browser output.

You’ll first need to install the Chrome browser and Chrome Logger extension. Once installed, click
the Chrome Logger icon once in your browser extension toolbar to enable it for the site. Then add
the following anywhere within bootstrap/app.php:

1 if ($app->environment('local')) {

2 $app->configureMonologUsing(function($monolog) {

3 $monolog->pushHandler(new \Monolog\Handler\ChromePHPHandler());

4 });

5 }

You’ll want to wrap the configuration logic inside a conditional which ensures your application is
running in the local (development) environment, because once deployed you’ll want all log messages
to be sent to the log file or other third-party logging software. After saving the changes, you can log
for instance the $languages array just as you did previously:

1 \Log::debug($languages);

Once executed, the $languages array will appear in your browser console as depicted in the below
screenshot.

Logging to the Chrome console via the Chrome Logger

³⁵http://craig.is/writing/chrome-logger

http://craig.is/writing/chrome-logger
http://craig.is/writing/chrome-logger

Chapter 1. Introducing Laravel 33

Using the Tinker Console

You’ll often want to test a small PHP snippet or experiment with manipulating a particular data
structure, but creating and executing a PHP script for such purposes is kind of tedious. You can
eliminate the additional overhead by instead using the tinker console, a command line-based
window into your Laravel application. Open tinker by executing the following command from your
application’s root directory:

1 $ php artisan tinker

2 Psy Shell v0.8.14 (PHP 7.1.8 â€” cli) by Justin Hileman

3 >>>

Tinker uses PsySH³⁶, a great interactive PHP console and debugger. PsySH is new to Laravel 5, and
is a huge improvement over the previous console. Be sure to take some time perusing the feature list
on the PsySH website to learn more about what this great utility can do. In the meantime, let’s get
used to the interface:

1 >>> $languages = ['Python', 'PHP', 'Perl']

2 => [

3 "Python",

4 "PHP",

5 "Perl"

6]

Fromhere you could for instance learnmore about how to sort an array using PHP’s sort() function:

1 >>> sort($languages)

2 => true

3 >>> $languages

4 => [

5 "Perl",

6 "PHP",

7 "Python"

8]

9 >>>

After you’re done, type exit to exit the PsySH console:

³⁶http://psysh.org/

http://psysh.org/
http://psysh.org/

Chapter 1. Introducing Laravel 34

1 >>> exit

2 Exit: Goodbye.

3 $

The Tinker console can be incredibly useful for quickly experimenting with PHP snippets, and I’d
imagine you’ll find yourself repeatedly returning to this indispensable tool. We’ll take advantage of
Tinker throughout the book to get acquainted with various Laravel features.

Introducing the Laravel Debugbar

It can quickly become difficult to keep tabs on the many different events that are collectively
responsible for assembling the application response. You’ll regularly want to monitor the status
of database requests, routing definitions, view rendering, e-mail transmission and other activities.
Fortunately, there exists a great utility called Laravel Debugbar³⁷ that provides easy access to the
status of these events and much more by straddling the bottom of your browser window (see below
screenshot).

The Laravel Debugbar

The Debugbar consists of several tabs that when clicked result in context-related information in a
panel situated below the menu. These tabs include:

• Messages: Use this tab to view log messages directed to the Debugbar. I’ll show you how to
do this in a moment.

• Timeline: Presents a summary of the time required to load the page.
• Exceptions: Displays any exceptions thrown while processing the current request.
• Views: Provides information about the various views used to render the page, including the
layout.

• Route: Presents information about the requested route, including the corresponding controller
and action.

• Queries: Lists the SQL queries executed in the process of serving the request.
• Mails: This tab presents information about any e-mails delivered while processing the request.
• Auth: Displays information pertaining to user authentication.
• Gate: Displays information pertaining to user authorization.

³⁷https://github.com/barryvdh/laravel-debugbar

https://github.com/barryvdh/laravel-debugbar
https://github.com/barryvdh/laravel-debugbar

Chapter 1. Introducing Laravel 35

• Session: Presents any session-related information made available while processing the
request.

• Request: Lists information pertinent to the request, including the status code, request headers,
response headers, and session attributes.

To install the Laravel Debugbar, execute the following command:

1 $ composer require barryvdh/laravel-debugbar --dev

2 Using version ^3.1 for barryvdh/laravel-debugbar

3 ./composer.json has been updated

4 Loading composer repositories with package information

5 Updating dependencies (including require-dev)

6 Package operations: 2 installs, 0 updates, 0 removals

7 - Installing maximebf/debugbar (v1.14.1): Downloading (100%)

8 - Installing barryvdh/laravel-debugbar (v3.1.0): Downloading (100%)

9 maximebf/debugbar suggests installing kriswallsmith/assetic

10 maximebf/debugbar suggests installing predis/predis (Redis storage)

11 Writing lock file

12 Generating optimized autoload files

13 > Illuminate\Foundation\ComposerScripts::postAutoloadDump

14 > @php artisan package:discover

15 Discovered Package: fideloper/proxy

16 Discovered Package: laravel/tinker

17 Discovered Package: barryvdh/laravel-debugbar

18 Package manifest generated successfully.

19 $

Save the changes and install the package configuration to your config directory:

1 $ php artisan vendor:publish

2 Copied File [/vendor/barryvdh/laravel-debugbar/config/debugbar.php]

3 To [/config/debugbar.php]

4 Publishing complete.

While you don’t have to make any changes to this configuration file (found in config/debug-

bar.php), I suggest having a look at it to see what changes are available.

Reload the browser and you should see the Debugbar at the bottom of the page! Keep in mind the
Debugbar will only render when used in conjunction with an endpoint that actually renders a view
to the browser.

The Laravel Debugbar is tremendously useful as it provides easily accessible insight into several key
aspects of your application. Additionally, you can use the Messages panel as a convenient location
for viewing log messages. Logging to the Debugbar is incredibly easy, done using the Debugbar
facade:

Chapter 1. Introducing Laravel 36

1 \Debugbar::error('Something is definitely going wrong.');

Save the changes and reload the home page within the browser. Check the Debugbar’s Messages
panel and you’ll see the logged message! Like the Laravel logger, the Laravel Debugbar supports the
log levels defined in PSR-3³⁸, meaning methods for debug, info, notice, warning, error, critical, alert
and emergency are available.

To disable the Debugbar, you can add the following line of code to the top of your file:

1 \Debugbar::disable();

Testing Your Laravel Application

Automated testing is a critical part of today’s web development workflow, and should not be ignored
even for the most trivial of projects. Fortunately, the Laravel developers agree with this mindset and
include support for both PHPUnit and Dusk with every new Laravel project. PHPUnit is a very
popular unit testing framework which allows you to create well-organized tests used to confirm all
parts of your application are working as expected. Dusk is a Laravel sub-project which allows you to
test your code as it behaves in the web browser, meaning you can ensure your code runs as desired
by actually executing it within a browser such as Chrome. Testing is a major theme throughout this
book, a subject we’ll return to repeatedly to ensure the HackerPair code is correctly implemented.
This section kicks things off by getting you acquainted with Laravel’s default test infrastructure and
PHPUnit fundamentals.

Introducing Unit Tests

Each new Laravel application even includes two example tests which you can use as a reference for
beginning to write your own tests! One of the tests is located inside the tests/Unit directory. Tests
placed in this directory are intended to ensure the smallest possible units of code are behaving as
desired. For instance in later chapters we’ll write unit tests to ensure model instance methods are
returning correct output in conjunction with a variety of circumstances. The default test found in
the Unit directory is named ExampleTest.php and it looks like this:

³⁸http://www.php-fig.org/psr/psr-3/

http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/

Chapter 1. Introducing Laravel 37

1 <?php

2

3 namespace Tests\Unit;

4

5 use Tests\TestCase;

6 use Illuminate\Foundation\Testing\RefreshDatabase;

7

8 class ExampleTest extends TestCase

9 {

10 /**

11 * A basic test example.

12 *

13 * @return void

14 */

15 public function testBasicTest()

16 {

17 $this->assertTrue(true);

18 }

19 }

Granted this isn’t much to look at, but even so it gives you an idea of the basic test structure. Tests
are managed within classes, with each test encapsulated in a class method. Each test begins with
the prefix test, and will contain one or more assertions. Assertions intend to confirm your code’s
conformance to a requirement. For instance, you might assert that a method response value is true,
false, New York City, or null.

Taking these characteristics into consideration, the ExampleTest class contains a single test named
testBasicTest. It uses Laravel’s testing API to interact with PHPUnit, confirming that the value
true does in fact equal true (assertTrue(true)). You can run this test by executing the following
command:

1 $ vendor/bin/phpunit tests/Unit/ExampleTest.php

2 PHPUnit 6.4.3 by Sebastian Bergmann and contributors.

3

4 . 1 / 1 (100%)

5

6 Time: 242 ms, Memory: 10.00MB

7

8 OK (1 test, 1 assertion)

That period is indicative of a passing test. You’re also told how many tests and assertions ran (1
test, 1 assertion). Let’s add another passing test to the class:

Chapter 1. Introducing Laravel 38

1 public function testSomeValueIsFalse()

2 {

3 $this->assertFalse(false);

4 }

Run the test suite again to see the results:

1 $ vendor/bin/phpunit tests/Unit/ExampleTest.php

2 PHPUnit 6.4.3 by Sebastian Bergmann and contributors.

3

4 .. 2 / 2 (100%)

5

6 Time: 200 ms, Memory: 10.00MB

7

8 OK (2 tests, 2 assertions)

Unfortunately, your tests will rarely pass on the first time; that’s just part of writing code. To see
what a failing test looks like, change the assertTrue method in testBasicTest to look like this:

1 $this->assertTrue(false);

Run the test anew and you’ll see an F in place of the period, and some feedback regarding why the
test failed:

1 $ vendor/bin/phpunit tests/Unit/ExampleTest.php

2 PHPUnit 6.4.3 by Sebastian Bergmann and contributors.

3

4 F 1 / 1 (100%)

5

6 Time: 195 ms, Memory: 10.00MB

7

8 There was 1 failure:

9

10 1) Tests\Unit\ExampleTest::testBasicTest

11 Failed asserting that false is true.

12

13 /Users/wjgilmore/Code/valet/hackerpair/tests/Unit/ExampleTest.php:17

14

15 FAILURES!

16 Tests: 1, Assertions: 1, Failures: 1.

Chapter 1. Introducing Laravel 39

In particular, note the reference to the line number causing the failed assertion (17). This feedback
will be very useful in terms of helping you to quickly track down why your tests are failing, and in
later chapters I’ll introduce even more efficient solutions when the reason isn’t so obvious.

assertTrue and assertFalse are just two of many available assertion methods. For instance you
would use assertEquals to confirm that a particular return value matches expectations:

1 public function testUserFullNameIsJasonGilmore()

2 {

3 $fullName = "Jason Gilmore";

4 $this->assertEquals("Jason Gilmore", $fullName);

5 }

You would use assertCount to confirm an array contains the expected number of values:

1 public function testUserHasFavoritedFiveEvents()

2 {

3 $favorites = [45, 12, 676, 88, 15];

4 $this->assertCount(5, $favorites);

5 }

Creating Your Own Test

You can easily create a test skeleton using the following command:

1 $ php artisan make:test TicketsTest --unit

This will create a new test inside the tests/Unit directory named TicketsTest.php. Open it up and
you’ll find the following contents:

1 <?php

2

3 namespace Tests\Unit;

4

5 use Tests\TestCase;

6 use Illuminate\Foundation\Testing\RefreshDatabase;

7

8 class TicketsTest extends TestCase

9 {

10 public function testExample()

11 {

12 $this->assertTrue(true);

13 }

14 }

Chapter 1. Introducing Laravel 40

Once generated you can go about modifying (or deleting) the example test. We’ll return to unit
tests repeatedly throughout the book, introducing other assertion methods along the way. In the
meantime, browse the PHPUnit documentation³⁹ for a preview of what’s available.

Introducing Feature Tests

Another example test is found in the directory tests/Feature and also named ExampleTest.php.
Feature tests are intended to confirm the behavior of multiple code units working together and often
involve performing HTTP requests. In fact, the example test issues an HTTP request to retrieve the
project home page, and determines whether a 200 response status code is returned (a 200 status code
is indicative of a successful request):

1 <?php

2

3 namespace Tests\Feature;

4

5 use Tests\TestCase;

6 use Illuminate\Foundation\Testing\RefreshDatabase;

7

8 class ExampleTest extends TestCase

9 {

10 /**

11 * A basic test example.

12 *

13 * @return void

14 */

15 public function testBasicTest()

16 {

17 $response = $this->get('/');

18

19 $response->assertStatus(200);

20 }

21 }

To run the test, execute the phpunit command from within your project’s root directory:

³⁹https://phpunit.de/manual/current/en/appendixes.assertions.html

https://phpunit.de/manual/current/en/appendixes.assertions.html
https://phpunit.de/manual/current/en/appendixes.assertions.html

Chapter 1. Introducing Laravel 41

1 $ vendor/bin/phpunit tests/Feature/ExampleTest.php

2 PHPUnit 6.4.3 by Sebastian Bergmann and contributors.

3

4 . 1 / 1 (100%)

5

6 Time: 130 ms, Memory: 12.00MB

7

8 OK (1 test, 1 assertion)

As you learned earlier in the chapter, the web.php routes file only contains a single route definition
pointing to /. Let’s confirm the /contact URI doesn’t exist by attempting to retrieve it and
confirming a 404 status code is returned:

1 public function testNonexistentEndpointReturns404()

2 {

3 $response = $this->get('/contact');

4

5 $response->assertStatus(404);

6 }

You can test much more than mere status codes; for instance you can use the assertSeeTextmethod
to determine whether the string Laravel is found in the response:

1 public function testHomepageContainsProjectName()

2 {

3 $response = $this->get('/');

4

5 $response->assertSeeText('Laravel');

6 }

Like unit tests, we’ll return to feature tests throughout the book, and later we’ll more heavily
rely upon a relatively recent Laravel testing solution known as Dusk whenever the test involves
interaction with web page elements. Despite Laravel Dusk’s rise to prominence (Dusk is introduced
in chapter 2), feature tests certainly continue to play an important role in ensuring application
quality, and in later chapters we’ll return to them whenever appropriate.

In the meantime, have a look at the Laravel documentation⁴⁰ for a list of assertions which can be
used in conjunction with the get, post, put, delete, and json methods (I’ll introduce these other
test helper methods in later chapters).

⁴⁰https://laravel.com/docs/5.5/http-tests

https://laravel.com/docs/5.5/http-tests
https://laravel.com/docs/5.5/http-tests

Chapter 1. Introducing Laravel 42

Bear in mind that while the get method is in fact retrieving your project’s home page via
an HTTP request, this does not involve a web browser. Therefore any JavaScript which
may execute on a given endpoint is not going to execute, possibly resulting in unexpected
results. You can test JavaScript within automated tests using Laravel Dusk, a Laravel feature
we’ll explore in chapter 2.

Additional Testing Resources

Automated testing is such an important part of building modern web applications that you owe it
to yourself, your employer, and your clients to incorporate it into all of your projects. In doing so,
you’ll save untold amounts of time, pain, and money, not to mention allow you to focus on the
entertaining aspects of web development rather than dreary manual testing and bug hunting. That
said, I encourage you to keep the following resources in mind as you continue reading this book:

• Almost every chapter in this book concludeswith a section explaining how to test the chapter’s
subject matter.

• Chapter 2 introduces Laravel Dusk, an amazing integration testing solution which allows
you to confirm how your web application runs inside an actual browser. This capability is
particularly crucial for applications which include JavaScript, since JavaScript is otherwise
not capable of being tested using the other automated approaches discussed in this book.

• Laracasts (https://laracasts.com/) includes a free video series called “Testing Laravel” which
covers Laravel testing fundamentals.

• AdamWathan’s Test-Driven Laravel⁴¹ is undoubtedly the reference resource for learning how
to test all facets of Laravel applications.

Conclusion

It’s only the end of the first chapter and we’ve already covered a tremendous amount of ground!
With your project generated and development environment configured, it’s time to begin building
the application. Onwards!

⁴¹http://www.testdrivenlaravel.com

http://www.testdrivenlaravel.com/
http://www.testdrivenlaravel.com/

	Table of Contents
	Introduction
	Introducing the HackerPair Companion Project
	About this Book
	About W. Jason Gilmore
	Errata and Suggestions

	Chapter 1. Introducing Laravel
	Installing the Laravel Installer
	Managing Your Local Laravel Project Hosting Environment
	Perusing the HackerPair Skeleton Code
	Configuring Your Laravel Application
	Useful Development and Debugging Tools
	Testing Your Laravel Application
	Conclusion

